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Abstract: Software-defined networking (SDN) and network functions virtualisation (NFV) are crucial
technologies for integration in the fifth generation of cellular networks (5G). However, they also pose
new security challenges, and a timely research subject is working on intrusion detection systems
(IDSs) for 5G networks. Current IDSs suffer from several limitations, resulting in a waste of resources
and some security threats. This work proposes a new three-layered solution that includes forwarding
and data transport, management and control, and virtualisation layers, emphasising distributed con-
trollers in the management and control layer. The proposed solution uses entropy detection to classify
arriving packets as normal or suspicious and then forwards the suspicious packets to a centralised
controller for further processing using a self-organising map (SOM). A dynamic OpenFlow switch
relocation method is introduced based on deep reinforcement learning to address the unbalanced
burden among controllers and the static allocation of OpenFlow switches. The proposed system is
analysed using the Markov decision process, and a Double Deep Q-Network (DDQN) is used to
train the system. The experimental results demonstrate the effectiveness of the proposed approach in
mitigating DDoS attacks, efficiently balancing controller workloads, and reducing the duration of the
balancing process in 5G networks.

Keywords: 5G mobile networks; distributed denial-of-service attacks; SDN; network functions
virtualisation; controller burden balancing; deep reinforcement learning

1. Introduction

As a promising network paradigm, software-defined networking/network functions
virtualisation (SDN/NFV) is intended to provide security, efficiency, flexibility, dynamism,
and cost-effectiveness to emerging networks like 5G networks. SDN networks comprise
two primary devices: controller and forwarding devices or switches. Controllers are located
in the control plane and are responsible for controlling and managing network devices
and forwarding control commands to the switches. Switches, however, are responsible for
forwarding packets to their destination in the data plane. NFV is proposed to virtualise
network functions and provision services for users. Notably, as a result of NFV and virtual
network functions (VNFs), network management is encouraged. The combination of SDN
and NFV has the benefit of two distinct worlds and is more beneficial for complicated
networks like the fifth generation of mobile networks.

Though the combination of SDN and NFV offers several advantages, such as increased
flexibility, scalability, and efficiency, it also introduces new security challenges. One of the
main security challenges with SDN/NFV-based 5G networks is that they are more complex
and distributed than traditional networks. SDN/NFV-based 5G networks also rely on
several new technologies, such as cloud computing and virtualisation. These technologies
can introduce new security vulnerabilities. Another security challenge with SDN/NFV-
based 5G networks is that attackers are increasingly targeting them and are vulnerable to
various attacks, including distributed denial-of-service (DDoS) attacks, man-in-the-middle
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attacks, and malware attacks [1]. These attacks can disrupt or disable SDN/NFV-based 5G
networks and compromise mobile users’ data [2].

Effective intrusion detection and mitigation systems are crucial for safeguarding
SDN/NFV-based 5G networks from malicious attacks [3,4]. Traditional intrusion detection
and mitigation systems are ineffective at monitoring and protecting SDN/NFV-based 5G
networks because they are typically designed for centralised networks. Detecting and
preventing intrusions in SDN/NFV-based networks is a motivating issue that has attracted
significant research attention. Researchers are actively developing new intrusion detec-
tion and mitigation systems [2–4] designed explicitly for SDN/NFV-based 5G networks,
and these systems are expected to play a vital role in securing the next generation of
cellular networks.

NFV provides key capabilities like the chaining of service functions and personalisa-
tion of services, among others. The centralised controller in SDN brings many benefits to
the control and management of the network, but in the meantime, it poses severe security
threats. In the control plane, DDoS attackers will threaten the network, produce a consider-
able amount of traffic in a short duration, send an enormous number of unmatched traffic
flows to the controller, and make the legitimate flow impossible.

SDN networks can use a central controller to manage and control them. However,
this approach is only effective for small networks. For large-scale networks, a single
controller can become a bottleneck [5], causing the whole network to fail. Therefore, using
multiple controllers for large-scale networks is recommended to avoid the system becoming
overloaded and non-functional [6].

The centralised SDN/NFV architectures in 5G networks face challenges due to con-
trollers’ inherent scalability limitations. In other words, as 5G networks expand to provide
coverage for users and the ubiquity of services, the centralised (single) controller may
be overburdened due to controlling too many switches. Furthermore, controller failure
may cause the whole network to shut down because of a single point of failure problem.
Distributed control architectures offer a critical and efficient solution for building scalable
SDN networks.

To address the challenges of single controller deployment, we propose a new method
leveraging multi-controllers in SDN networks. This involves using distributed controllers
instead of a single controller to manage the network. It not only enhances the reliability and
scalability of the network but also allows for better coordination among the controllers [7,8].
However, this approach presents a new challenge: relying on the static mapping of switches
to distributed controllers may hinder the controller’s ability to adapt to changes in traffic.
Real networks are enormously variable in various dimensions, and as a result, the unequal
traffic of forwarding devices in the distributed control network is likely to occur. In the case
of the static allocation of switches to controllers, and when the traffic varies abruptly, some
distributed controllers may be overburdened, while others might have unused resources. In
this work, to solve the issue of the unbalanced burden of controllers in SDN/NFV-based 5G
networks, a switch relocation approach based on deep reinforcement learning is presented,
where a deep reinforcement learning framework is proposed to work with the whole
network and train how to relocate switches for achieving the maximum amount for reward.

Contributions and plan of the paper: Our paper introduces a three-layered framework
that builds on our previous work [8] on detecting DDoS attacks in SDN-based 5G networks.
In this new framework, we use entropy detection to categorise incoming packets as normal
or suspicious. Suspicious packets are then sent to a centralised controller for further
processing using a self-organising map (SOM). Although entropy is a valuable solution,
its effectiveness can be affected under bursty traffic conditions which may raise the false
positive rate. To mitigate some limitations and improve entropy’s effectiveness, we used
traffic filtering to reduce the false positive rate. We also introduce a dynamic OpenFlow
switch relocation method that uses deep reinforcement learning to balance the load among
controllers and allocate OpenFlow switches dynamically. We tested the system using the



Electronics 2024, 13, 1515 3 of 23

Markov decision process and trained it using a Double Deep Q-Network (DDQN). More
specifically, the main contributions of this paper are as follows:

• A three-layered framework is proposed to address two distinct and crucial problems
in 5G networks with multiple controllers based on SDN/NFV. The issues include
balancing the burden of switches in a multi-controller scenario and presenting an
intrusion detection system. Generally, a three-layer architecture is considered an effec-
tive perimeter security measure for all communication networks because it provides a
balanced approach to addressing security concerns at different network architecture
levels. Through the employment of security at the application layer, control layer,
and infrastructure layer, various types of security threats can be mitigated. They can
effectively ensure confidentiality, integrity, and availability in SDN-enabled networks.

• The proposed framework comprises three layers: forwarding and data transport,
management and control, and virtualisation. The management and control layer
is divided into main (centralised) and distributed controllers. In the distributed
controllers’ sub-layer, entropy detection is employed to classify incoming packets as
normal or suspicious. The main controller then forwards the suspicious packets to the
virtualisation layer for further processing using an SOM. This process results in the
detection and mitigation of DDoS attacks.

• The static allocation of OpenFlow switches (OF-switches) and distributed controllers in
SDN/NFV-based 5G networks featuring multiple controllers may overload some con-
trollers and underuse others. This paper proposes an OF-switch relocation approach
based on deep reinforcement learning to address this challenge.

The rest of the paper is organised as follows. Section 2 summarises related work.
Section 3 presents the main building blocks of the framework. Section 4 details the proposed
method for mitigating DDoS attacks in multi-controller SDN/NFV architectures. The
results of the experiments and an evaluation of the proposed algorithm are presented in
Section 5. Section 6 presents concluding remarks for the paper.

2. Related Work

This section reviews existing research on distributed control approaches for SDN
networks. We categorise multi-controller SDN networks into two groups: physically
distributed with logically centralised control and physically and logically distributed
architectures [7,8].

In SDN networks with logical centralisation, multiple controllers are physically de-
ployed, regardless of whether they are functionally or logically centralised. For example,
HyperFlow [9] supports SDN networks that are logically centralised but physically dis-
tributed. While there are other examples of logically centralised and physically distributed
SDN networks, some limitations of this approach have led to the presentation of logically
distributed structures. This is particularly relevant for 5G networks, where mobility and
scalability are crucial factors.

Multi-controller SDN networks can be further categorised based on the distribution of
control logic: flat and vertically distributed. In flat architectures, each controller manages
a specific network segment and cooperates using pre-defined mechanisms for overall
network control. There is no single central controller dictating commands. References [9,10]
showcase examples of flat-distributed control. In [9], a network is divided into two sub-
networks, each with its controller and IP address. In [10], a switch transfer protocol helps
distribute the processing load across multiple controllers.

Unlike flat-distributed control, hierarchical SDN networks employ multiple controller
levels. The authors in [11] proposed a multi-service algorithm based on OpenFlow con-
trollers. This algorithm leverages the FlowVisor application to manage distributed servers
and dynamically switches between different load balancing methods to optimise processing
across controllers. Similarly, [12] presents a HybridFlow-based SDN algorithm utilising
distributed controllers in a hierarchical structure. Several studies have explored security
challenges in multi-controller SDN networks. The authors in [13] investigated various
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distributed denial-of-service (DoS) attacks and proposed machine learning-based detection
and mitigation algorithms for flooding attacks. Focusing on performance optimisation,
Wang et al. [14] proposed an efficient SDN latency monitoring solution to ensure accurate
delay measurement and maximise network performance.

Numerous studies have explored the integration of SDN into wireless networks. For
example, [15] introduced OpenFlow and FlowVisor to enhance control plane operations in
wireless networks. NEC’s approach in [16] focuses on virtualising base stations, enabling
the dynamic allocation of radio resources at the Medium Access Control (MAC) layer.
Ericsson’s Cloud EPC adapted the Long-Term Evolution (LTE) control plane to manage
OpenFlow switches. Alcatel-Lucent’s SoftRAN architecture, detailed in [17], explores a
logically centralised control plane with a distributed data plane for the scalable enforcement
of Quality of Service (QoS) and firewall policies.

The literature review shows a need for research on detecting and mitigating DDoS
attacks in multi-controller SDN-based 5G networks. The existing literature has not yet
addressed this issue.

3. Materials and Methods
3.1. Markov Decision Process

The state of a typical SDN system at the current moment relates only to the state at
the previous moment and is not associated with the state before the previous moment.
Regarding the Markov characteristic of the system, we utilise the Markov decision process
to analyse the system. The model is demonstrated as follows: M = {St, A, P, Rt, α}, where
St denotes the state of the system state at time t, A is the OpenFlow (OF) switch relocation
action set, P is the probability of state transitions, Rt is the system reward (describing the
feedback of the environment), and α represents the attenuation coefficient. Furthermore,
the relocation approach δ(a, St) denotes the probability of action a in St. To analyse the
system state that utilises the Markov decision process, the required terminologies and
descriptions are presented in Section 3.1.1.

3.1.1. Terminologies and Descriptions

This section presents the terminologies and descriptions used in the model.

State of the System

The network is described as a graph with no direction, G = (O, E), where O =
{o1, · · · , on} is the set of OF-switches, and n is the number of switches. C = {c1, · · · , cm}
denotes the set of controllers, and m presents the number of controllers. The controller
burden capacity set is denoted by B = {b1, · · · , bm}, and bi denotes the maximum burden
of the i-th controller. The request rate of the packet-in message sent by the j-th switch, oj, to
the i-th controller, ci, at time t is stated as qij(t). The association between the i-th controller
and the j-th OF-switch is expressed as the following (1):

uij(t) =
{

1 oi controlled by ci
0 otherwise

(1)

When the request rate of the packet-in message produced by the j-th OF-switch is
found out, the state of the system state is expressed according to the following (2):

St =


q11(t)u11(t) q12(t)u12(t) · · · q1n(t)u1n(t)
q21(t)u21(t) q22(t)u22(t) · · · q2n(t)u2n(t)

...
... · · ·

...
qm1(t)um1(t) qm2(t)um2(t) · · · qmn(t)umn(t)

 (2)
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Action Set

In an SDN architecture for a 5G network with m controllers and n OF-switches, there
are m × n kinds of OF-switch relocation actions, in which n kinds are “non-relocation”
actions. Relocation actions are enumerated from 1 to m × n.

Controller Burden

There exists a variety of sources of burden for controllers, among which are receiving
messages of packet-in, transmitting flow entries, and getting in touch with other controllers.
The primary reason for the burden of SDN controllers can be attributed to the process of
messages of packet-in [18] and as a result, the request rates of packet-in messages received
by the i-th controller as the controller burden (3):

bi(t) =
n

∑
j=1

qij(t)uij(t) (3)

Controller Burden Ratio

Due to the difference in the burden capacities of controllers, it is imprecise to use the
dispersal of the controller burden to reveal the effect of burden balancing. The burden ratio
of the i-th controller (denoted by βi(t)) is defined in a way to reveal the consumption ratio
of the resources of the controller according to the following (4):

βi(t) =
bi(t)

di
(4)

where di shows the burden capacity of the i-th controller. The average burden ratio of
controllers can be defined according to the following (5):

β(t) =
∑m

i=1 βi(t)
m

(5)

Rate of Balancing Burden of Controller

The rate of balancing the burden of the controller (denoted by D(t)) is used to illustrate
the scattering of the burden ratio of the controller and the average of the burden ratio of
controllers and is expressed according to the following (6):

D(t) =

(
∑m

i=1
(βi(t)−β(t))

2

m

) 1
2

β(t)
(6)

It should be noted that D(t) measures the level of balancing the burden of the controller.
Therefore, D(t) signifies the performance of the strategy recruited for balancing the burden
among the controllers.

Switch Relocation Cost

The cost of relocation in OF-switches is affected by two parameters: (1) the controller
sends the flow-mod messages to the OF-switches that require to be relocated; (2) the OF-
switch sends the relocation requests to the target controller. The OF-switch relocation cost
of the j-th OF-switch (denoted by Ej(t)) is defined as follows (7):

Ej(t) =
m

∑
i=1

(
γij(t)uij(t)eij

)
+

m

∑
k=1

λkjukj(t + 1)ekj, (7)

where γij(t), eij, λkj, ukj(t + 1), and ekj denote the number of flow-mod requests sent by
the overburdened controller i to OF-switch j, the number of hops from the j-th OF-switch
to the i-th controller, the number of request messages sent by the j-th OF-switch to the k-th
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controller, the relation between the k-th controller and the j-th switch after relocation, and
the number of hops from the j-th OF-switch to the k-th controller, respectively.

The Reward of the System

After the relocation of switches, the quality of the relocation is influenced by whether
the state of the system improves or deteriorates. Therefore, the reward of the system must
be identified. In order to prevent numerous OF-switch relocation occurrences, only consid-
ering the enhancement of the controller burden after relocation and to avoid relocating the
OF-switch to a distant controller, the OF-switch relocation cost must be taken into account.
Hence, the reward of the system can be expressed according to the following Equation (8):

Rt =

{D(t)−D(t+1)
∑n

j=1 Ej(t)
∑n

j=1 Ej(t) ̸= 0

0 ∑n
j=1 Ej(t) = 0

(8)

where D(t) and D(t + 1) represent the rate of balancing the burden of the controller before
and after the relocation of the OF-switch, and ∑n

j=1 Ej(t) denotes the switch relocation cost
during the relocation process. If the relocation does not happen, then ∑n

j=1 Ej(t) = 0, and
as a result, the reward of the system will be zero.

Best Approach

The best approach
>
δ(a|St ) is identified in a way to maximise the reward of the system

according to the below (9):

>
δ(a|St ) = argmax

δ
E

[
∑

t
αtRt

]
(9)

where E[.] denotes the expected value. When α (attenuation coefficient) is close to zero,
the instantaneous reward of the system will be more crucial. If it becomes close to 1, the
average reward of the system becomes more important.

3.1.2. Deep Q-Network Model for SDN/NFV-Based 5G Networks

In SDN/NFV-based 5G networks with multiple controllers, the state of the system
changes dynamically because of the time-varying characteristic of the flow, and it is not
possible to employ conventional reinforcement learning methods like Q-learning directly.
We propose using a Deep Q-Network (DQN) [19], a deep neural network mixed with a
Q-learning method. In a DQN, the following applies to update the Q-value (10):

Q(St, a, ϕt) = Q(St, a, ϕt) + σ

(
Rt + αmax

σ′
Q
(
St+1, a′, ϕt+1

)
− Q(St, a, ϕt)

)
(10)

where the function Q(St, a, ϕt) is utilised to denote the output achieved when the state
of the system is its input, ∅t is the DQN parameter, and σ is the learning rate. After the
convergence of Equation (10), the optimal value of the Q-function is obtained, and the
target value of the Q-function (zt) is described as follows (11):

zt = Rt + αmaxQ
(
St+1, a′, ϕt+1

)
a′

(11)

The state in SDN/NFV-based 5G networks is used to determine the Q-value of reloca-
tion actions. Moreover, using the back-propagation mechanism, the loss function can be
defined for optimising the parameters of the DQN according to the following Equation (12):

Z(ϕt) = (zt − Q(St, a, ϕt)) (12)
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3.1.3. DDQN-Based Switch Relocation Approach

The proposed DQN-based relocation approach of OF-switches for 5G networks pro-
vides the best Q-value of the Q-function using the training of the neural network. Never-
theless, exploiting only one Q-function to choose the relocation action and computing the
target value of the Q-function may result in big or small Q(St, a, ϕt) and Q(St+1, a′, ϕt+1)
concurrently and result in oscillation in the model. Simultaneously utilising Equation (11)
to compute the target value of the Q-function may cause overestimation. Hence, two equal
Q-networks are recruited: the target Q-network and the learning Q-network.

• The learning Q-network chooses relocation actions and renews the parameters of the
model.

• The target Q-network computes the target value of the Q-function. Afterwards, the
target Q-network is renewed occasionally with the parameters of the learning Q-
network to boost the training process.

Dissimilar Q-networks are used for the computation of the target value of the Q-
function and the selection of actions to prevent overestimation. Additionally, experience
repeat is utilised to put the samples achieved by interaction with the environment in the
memory unit due to the requirement of the independent distribution of samples by the
deep learning method. Throughout the training stage, a portion of the samples are chosen
randomly to optimise the parameters of the learning Q-network. The target value of the
Q-function of the DDQN is stated as follows (13):

zt = Rt + αQ
(

St+1, argmax
a′

Q
(
St+1, a′, ϕt+1, ϕ′

t+1
))

(13)

where ∅t+1 and ∅′t+1 denote the parameters of the learning and target Q-networks,
respectively.

As stated earlier, a main controller is used to manage the distributed controllers in
our proposed architecture for multi-controller SDN/NFV-based 5G networks. The main
controller gathers the state messages and cooperates with its surroundings in a periodic
manner. In the training stage, the system’s state is shaped into a matrix (Equation (2))
and supplied to the learning Q-network. Then, the learning Q-network utilises neural
networks to obtain the value of the Q-function for relocation occurrences. The action
is chosen based on the greedy method to gain the reward of the system and the next
state. After that, the system’s state, action, reward, and next state are accumulated in the
memory to provide random samples for training the learning Q-network and the target
Q-network. In the online stage, the parameters of the trained Q-network are uploaded. As
soon as the main controller realises that the distributed controller is overburdened, the
state of SDN is shaped as a matrix (a two-dimensional one) and supplied into the system
to obtain the Q-value. The OF-switch relocation action matching the maximum Q-value
is then the outcome. The proposed OF-switch relocation approach based on a DDQN for
multi-controller SDN/NFV-based 5G networks is provided in Algorithm 1.
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Algorithm 1: The DDQN-based OF-switch relocation approach with multiple controllers.

Initialisations and General Info
Inputs:

The system graph G = (O, E), set of controllers (C), no. of iterations (T), set of actions (A),
examination rate (µ) for greedy algorithm, learning rate (σ), and attenuation coefficient (α)

Output:
OF-switch relocation action (a)

Initialisations:
Initialising the memory, parameters of the target, and learning Q-networks

Training stage:
Obtain the state of the network and produce the state in a shape of a state matrix St periodically

Main Algorithm
for t = 1 to T, do the following:

(1) For relocation actions, the learning Q-network makes use of the convolutional
version of neural networks to achieve the value of the Q-function.

(2) The action is chosen based on the greedy algorithm, in this manner as follows:
i-th probability 1 − µ choose an arbitrary action a
otherwise choose a = argmax

a
Q(St, a, ϕt)

(3) To obtain the state at time t + 1 and reward (Rt), the selected action in the previous
step runs the simulator.

(4) Store the state at time t + 1 and t, the reward (Rt), and action (a).
(5) Choose arbitrary sets of data from memory for training the learning Q-network.

(6) Set zt =

Rt + αQ
(

St+1, argmax
a′

Q
(
St+1, a′, ϕt+1, ϕ′

t+1
))

St+1 is not a final state

Rt St+1 is a final state
(7) Based on the loss function, (zt − Q(St, a, ϕt))

2, and by back-propagating, the neural
network parameters of the network (ϕt) are updated.

(8) If t % z == 0, then
Update the parameters of the target Q-network by ϕt = ϕ′

t. End if
(9) Update the state of the network by St = St+1.

End for
Online Phase:

(1) Use the current state of the system as an input to the learning Q-network.
(2) Obtain the OF-switch relocation action (a) matching to the maximum value of the

Q-function.

3.2. DDoS Attack Detection and Mitigation

This section presents the details of the proposed two-phased framework for detecting
and mitigating DDoS attacks. An initial anomaly identification phase is performed by
every distributed controller for the prompt detection of any anomalies in traffic flows in an
early manner. As soon as any controller detects a suspicious traffic flow, it is forwarded to
a main (centralised) controller for further process (identifying the DDoS attack and taking
proper measures). The main components of this architecture are shown in Figure 1. A
detailed description of the individual components illustrated in Figure 1 is provided in the
subsequent sections.

The proposed scalable framework for an SDN-based 5G network with multiple con-
trollers in Figure 1 includes three layers: the forwarding and data transport layer (including
OpenFlow Switches, 5G Base Stations, UEs, PDN-GWs, etc.), management and control
layer (including distributed and main SDN controllers), and intelligence layer (including
machine learning techniques, Traffic Classification, Analysis and Decision Making, Big data
centre, etc.).
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The OpenFlow switches in the forwarding and data transport layer perform traffic
monitoring, collecting, and uploading traffic flows to the upper layer (management and
control layer) and blocking malicious traffic based on the instructions of the main controller.
Identifying suspicious traffic and detecting DDoS attacks preliminarily in the uploaded
traffic from the lower layer, generating mitigation strategies relying on decisions made by
the upper layer (intelligence layer), and instructing the lower layer are the main objectives of
the management and control layer. Performing further analyses through machine learning
techniques, etc., is the main responsibility of the intelligence layer.

Figure 2 presents the proposed detection strategy, which will be explained in subse-
quent sections.
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3.2.1. Traffic Collection in Forwarding Layer

Although the basic OpenFlow traffic collection method can collect and analyse the
required data regarding network traffic, it has some flaws, especially in dealing with vast
amounts of data in scalable solutions in 5G networks [20]. Actually, due to the enormous
number of packet-in events produced by the OpenFlow switch and sent to the OpenFlow
controllers, an equal number of responses for flow entries needs to be passed on and kept
in the flow table of the switch, and as a result, the resources of the OpenFlow switch and
controllers will be entirely consumed. Additionally, the amount of overhead data in such
SDN networks will be very unwieldy to handle.

To overcome the abovementioned restrictions, we propose to take advantage of sFlow
(as the southbound API) and its packet sampling ability in the proposed scalable framework.
It will be operational by incorporating the sFlow agent within switches [21]. The sFlow
agent can be considered a procedure that combines counters of interface and flow samples
into datagrams of sFlow, which are sent instantaneously to the sFlow collector module in
the local dispersed controller. Then, all the required flow information is forwarded by the
sFlow collector to the initial detection module in dispersed controllers.

3.2.2. Initial Anomaly Detection

We employ entropy to measure randomness and detect anomalies. The ability to
measure the randomness in 5G traffic is the major reason for utilising entropy for DDoS
detection in SDN-based 5G networks. We use two vital components for initial DDoS detec-
tion based on entropy: the window size and a threshold, where the entropy is calculated
within this window. Moreover, a threshold is required for the initial DDoS attack detection.
Assume n is the number of 5G traffic packets in a window, and pi denotes the probability
of each element in the window. Therefore, entropy (E) can be obtained by the following
equation defined in [22]:

E = −∑n
i=1 pilogpi (14)

In SDN-based 5G networks, the controller recruits a flow for new incoming links to
direct the packets to the destination 5G user without further processing. Considering that
the packet is new and the destination 5G user is within the network, we can quantify the
level of randomness by computing the entropy relying on window size. As a result, if each
packet is intended for exactly one 5G user, we will have the maximum entropy. Similarly,
suppose all the traffic in a window is intended for a single 5G user. In that case, the
minimum amount of entropy happens. We will use this entropy characteristic to compute
the randomness in the controller of SDN-based 5G networks. Therefore, entropy can be
considered one of the suitable ways for DDoS detection in SDN-based 5G networks due to
its capability of quantifying randomness and having minimum and maximum amounts.
If a vast number of packets are attacking one 5G user or a subnet of them, the amount of
entropy will drop.

In SDN-based 5G networks, the controller is responsible for collecting statistics from
the switch tables to calculate the entropy. Distributed controllers monitor flows and remove
any inactive flow that remains inactive for a certain amount of time. In this work, we will
use this characteristic to attach another statistic to the controller. As long as we know the
estimated number of 5G users in the network, the destination IP addresses of the newly
arrived packets to be gathered into windows of size 50 are added. We will then compute
and compare the entropy of each window with an experimental threshold. Low entropy
(below a threshold) indicates a potential attack.

A window size of 50 has been selected due to the following reasons:

• The main reason is the limitation in the number of new connections arriving for each
5G user. In SDN-based 5G networks, as soon as a connection is established, packets
will not cross distributed controllers if there are no new requests.

• Another reason is the limitation in the number of OF-switches and 5G users that can
be connected to each controller.
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• The third reason is the computational complexity and the number of calculations
performed in every window. Clearly, 50 values can be calculated much quicker than
100, and attack detection in a window with 50 packets can be conducted much faster.

• Lastly, to determine the appropriate window size, we analysed and tested the entropy
for five different window sizes and measured the CPU and memory usage. According
to Table 1, the memory usage does not change substantially. However, the CPU usage
grows as the window size increases.

Table 1. Window size and its effect on CPU and memory usage.

Window Size CPU Usage Memory Usage (GB)

5 55 1.5

50 61 1.5

100 66 1.5

500 75 1.5

5000 91 1.5

Therefore, we set the window size to be less or identical to the number of 5G users.
Since the number of arriving new connections to each 5G user in the network is restricted
and only a restricted number of switches and 5G users are eligible to be connected to
each controller in SDN-based 5G networks with multiple controllers, we use 50 for the
window size.

A preventive solution in the case of DDoS attacks on controllers in a 5G scenario is
presented here. As soon as a controller receives a packet, a new flow is generated. Therefore,
the controller constructs a new flow entry in the OF-switch, and the rest of the packets
of the flow are forwarded to the destination user without further processing. Keeping in
mind that the received packet is new and that the destination IP addresses exist in the
network, it is possible to compute the entropy to determine the randomness amount of the
destination IPs. The entropy method is a proper technique to detect DDoS attacks because,
in the case of DDoS attacks, a vast amount of traffic is sent to a user or a collection of users.
The threshold and window size are the two principal modules for detecting DDoS attacks
based on entropy in the early stages.

The destination IP address of the arriving packets from the 5G user should be moni-
tored to detect DDoS attacks in the controller. We added a function to dispersed controllers
in the SDN-based 5G network with multiple controllers to build a hash table of the arriving
packets. If a 5G user has recently been active in the network and its IP address is new in
the table, its count in the table will be one. In the case of the existence of an example of
it in the hash, its count will be increased by one. For every 50 packets, we compute the
entropy of the window. The hash table is denoted by W = {(a1, b1), (a2, b2), · · ·}, in which
a is the IP address of the destination, b is the number of times it showed up, and W denotes
the window.

The probability of the occurrence of each IP address, pi, can be computed by pi =
ai
n ,

where n is the window size. We will have the maximum entropy if each IP address occurs
only once and packets are distributed equally in the network. If more packets arrive to
a user than others, its entropy will decrease. All entities must be capable of distributing
traffic when the 5G network is in its normal working mode. A vast number of packets
directed at the host indicates an attack. Such packets will occupy most of the window,
reduce the number of unique 5G users, and decrease entropy. In the event of a DDoS attack,
a large number of packets are sent to a single user or group of users, causing a reduction in
entropy. This decrease in entropy can serve as an indication of a potential attack. To identify
a DDoS attack, the entropy level is compared to a predetermined threshold within each
window. If it is smaller than the threshold for five consecutive windows, it can be assumed
that an attack is taking place. This process is completed within five consecutive windows
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of 50 packets each, which is 250 packets in total. This method provides the early detection
of a DDoS attack in 5G systems. In this work, we adjust an experimental threshold based
on this fact.

Entropy is a measure of the probability of an event happening in relation to the total
number of events. For instance, in a 5G network that has 64 mobile users, each user should
have an equal chance of receiving new packets. This would result in a high entropy value.
However, if some 5G users receive an excessive number of packets, the randomness is
decreased and consequently, the amount of entropy drops. If the entropy value falls below
a certain threshold, and it remains below that threshold for five successive windows, then
an attack is likely to take place. By measuring the entropy in five intervals, we can detect
DDoS attacks early, as it would require 250 packets for an attack to take place. Different
amounts between one and five successive intervals were tested in this work, and it was
proved that five results in the lowest number of false positives for the detection of DDoS
attacks in an early manner. Moreover, using five windows has other benefits, such as
resilience to potential network device losses or faults in 5G systems. This means that if
such occurrences happen and disrupt service for certain 5G users or slow down the influx
of new packets to controllers, the impact on system entropy and the likelihood of false
positives are reduced. In other words, the use of five windows ensures that administrators
of the 5G network have enough time to implement necessary security measures, which
enhances overall system robustness and reliability.

3.2.3. Virtualisation Layer

The SOM will be used to classify suspicious flows (the outcome of the initial detection)
into normal and malicious packets. The SOM is a tool that uses both supervised and
unsupervised learning methods while also being dynamic and adaptive. We use an SOM
to classify flows into normal and malicious ones. Normal flows are sent to the cloud for
further processing, while malicious ones are eliminated. The virtualisation layer contains
multiple VNFs that are used to classify the traffic for the possible detection of DDoS
attacks. Suspicious flows are classified by the VNF based on factors such as the source and
destination IP addresses, the duration of traffic flow, and other criteria.

In the following section, we discuss the proposed two-phased framework for detecting
and mitigating DDoS attacks.

4. Proposed System

This section describes the proposed detection and mitigation framework for DDoS
attacks within a multi-controller SDN-based 5G network. Our novel approach addresses
the limitations of existing centralised architectures in handling DDoS threats. The frame-
work operates at two key levels: (1) Switch-level processing: incoming traffic flows are
first identified and then processed at the switch level and (2) Controller-level analysis:
processed information is then forwarded to the relevant controllers for further analysis.
Here, malicious activities are swiftly detected, and the controllers make informed decisions
to either forward or block the suspicious packets.

In 5G mobile networks, OpenFlow switches play a crucial role in managing data
flow [23]. These switches receive incoming packets from user equipment (UE). Each switch
maintains a buffer flow table containing rules that define how to handle different types of
traffic. When a packet arrives, the switch compares its header information (fields) against
the rules in the table. If a matching rule is found, the switch knows exactly where to send
the packet—it is forwarded to the appropriate output port based on the rule’s instructions.
If not, the switch does not have the necessary information to handle it independently. In
this case, the packet is directed to the OpenFlow controller, a central entity responsible
for making advanced routing decisions. The controller analyses the packet based on its
pre-programmed conditions and decides whether to forward it within the network or
block it for security reasons. This communication between OpenFlow switches and the
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controller is facilitated by the OpenFlow protocol. Figure 3 shows the sample architecture
of this system.
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Unlike traditional multi-controller SDN architectures, our approach utilises a single,
central main controller to oversee the entire SDN/NFV-based 5G network. This main con-
troller achieves network-wide management through real-time communication with several
distributed controllers. Each distributed controller manages a designated cluster of base
stations within the cellular network. To ensure efficient network control, the main controller
dynamically creates groups of OpenFlow switches and informs each distributed controller
about the members assigned to their group. Figure 3 depicts the interaction between the
control plane (as shown in Figure 1) and the data plane within the system. Within the
data plane, the Packet Data Network Gateway (PDN-GW) acts as the entry point for traffic
entering the 5G network. UE, including potentially malicious ones, communicates with the
server (the main controller). Importantly, OF-switches handle all data forwarding within
the network but only communicate directly with the OF controller for control instructions.

Evaluation Metrics for Detection Algorithm

The application acts as a binary classifier, categorising network packets as either
malicious or benign. Evaluating its classification accuracy is crucial to validate the proof
of concept. To achieve this, we must analyse quantifiable data and statistics. A well-
established and effective method for binary classifier evaluation is sensitivity and specificity
analysis, as detailed in [24]. Sensitivity, also known as True Positive Rate (TPR), measures
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the application’s ability to detect malicious packets and provides the probability of detection.
It can be calculated using the following Equation (15):

TPR =
TP

(TP + FN)
(15)

Specificity (True Negative Rate or TNR) reflects the likelihood of the application
correctly identifying legitimate traffic. The likelihood of retaining legitimate traffic without
dropping it can be computed using the following Equation (16):

TPN =
TN

(TN + FP)
(16)

The OMNeT++ simulation framework supports the generation and propagation of
signals during simulations. These signals are subsequently logged for post-simulation
statistical evaluation. The code has four signals that are implemented to record true
positives (TPs), true negatives (TNs), false positives (FPs), and false negatives (FNs),
respectively.

• TPs refer to any packet that has been correctly identified as malicious by the switch
and subsequently dropped.

• TNs refer to packets that have been correctly identified as benign by the switch and
therefore forwarded through a port.

• FPs refer to packets that have been incorrectly identified as malicious and subse-
quently dropped.

• FNs refer to packets that have been incorrectly identified as benign and allowed to
pass through the network instead of blocking them.

5. Performance Evaluation

This section presents the simulation results obtained using OMNeT++ to evaluate our
proposed multi-controller SDN/NFV-based 5G network architecture. We focus on two
key performance metrics: Firstly, we assess the effectiveness of the proposed methodol-
ogy in distributing the processing burden evenly across the dispersed controllers within
the multi-controller SDN architecture. Secondly, we analyse the performance of the pro-
posed detecting and mitigating attack method in a simulated multi-controller environment
representative of 5G networks.

5.1. Simulation Setup

The experiments conducted had specific parameters, which are mentioned in Tables 2–4.
To optimise the execution time of the experiment, each network was run for a maximum
of 50 s during the simulation. This allowed us to test a full SYN flood attack on the con-
troller application with the maximum amount of connected UE calculated from a previous
study [25], which determined that the number of active users who can be connected to and
served by a given eNB simultaneously ranges from 60 to 100. In our simulation, we assume
the majority of eNB-connected devices are malicious. We utilised a total of 60 UE nodes.
Among these, 20 were categorised as benign UE, while the remaining 40 were classified as
malicious UE. To ensure accuracy, we averaged outcomes from 100 independent, identically
distributed (i.i.d.) random network simulations.

To distinguish between benign and malicious UE, we set non-realistic packet rates;
instead, they were proportionally set, with the malicious packet rate notably higher than
the benign packet rate. For TCP connection establishment and flow table management,
we adopted the default values provided by OpenFlowOMNeTSuite, including those for
the SYN-RECEIVED timer, SYN-ACK retransmissions (as outlined in [26]), and flow entry
idle timeout. The anomaly detection threshold dynamically adjusted based on UE packet
rates. Upon the receipt of an ACK before timer expiration, the connection was success-
fully established; otherwise, the connection attempt was terminated, and the allocated
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resources were released. Additionally, the default idle timeout value for flow entries in
OpenFlowOMNeTSuite was adopted. The simulation time for each experiment varied
between 15 and 60 min, depending on the events generated and the nodes involved.

Table 2. Parameters used during simulation on OMNET++.

Parameters Value

Network simulations 100

Runtime per network instance 50 s

Benign UE 20

Benign UE data throughput 0.1 data packets per second (pps)

Malicious UE 40

Malicious UE data throughput 3.5 pps

SYN-RECEIVED Timer 75 s

SYN-ACK Retransmissions Loop: 3–6–12s

Flow cache timeout 10 s

Attack detection threshold 0.5 pps

TCP Algorithm TCP Reno

Table 3. UE traffic parameters (benign vs. malicious) for simulation.

Parameters Value

UE Mobility Stationary

Packet Flow Direction Omni-directional

UE Transmit Power 26 dBm

Delayed Acknowledgment (Enabled) False

SACK Enabled False

Multiple MIMO True

Queue size 1 MiB

Max Payload (per TTL) 1 KiB

Table 4. eNB configuration parameters for simulation.

Parameters Value

Resource block allocation Distributed

Scheduling strategy MAXCI

Traffic direction Omni-directional

Transmit Power 26 dBm

Queue size 2 MiB

Max payload (per TTL) 3000 KiB

TCP App TCPSessionApp

The properties of real network traffic are highly complex, making theoretical analysis
unmanageable. In SDN, the statistical distribution of flow requests follows a Poisson
distribution [27]. To ensure that our approach is suitable for statistical flow requests, we
add a periodic perturbation to the Poisson distribution [28]. We use iperf to simulate
packet-in messages with various rates. The attenuation coefficient is 0.2, which means that
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the immediate reward is more important for the system. The learning rate value is set to
0.05. For the greedy algorithm, we start with 0.8 and gradually increase it until it reaches 1.
Our simulations employ an SDN-controlled 5G network architecture with four distributed
controllers and a central controller. The burden capacity for the four distributed controllers
is 14,300 flows/s, 12,500 flows/s, 12,400 flows/s, and 14,400 flows/s. The burden threshold
is set to 12,500 flows/s, 10,200 flows/s, 10,500 flows/s, and 12,200 flows/s.

5.2. Modelling Benign UE Traffic

The experiment incorporates 20 UE nodes simulating legitimate users generating
realistic traffic. Each UE node initiates a single TCP connection with the server at a
randomly chosen time within ten-second intervals (1–10 s, 11–20 s, etc.). The data size for
each transmission also varies randomly between 100 and 2000 bytes, and the start time for
transmission is chosen uniformly at random.

5.3. Attack Simulation

To simulate a DDoS attack, our simulation incorporates 40 malicious UE nodes that
mimic the behaviour of a botnet. These nodes collaboratively launch a TCP SYN flood
attack against the server. This attack aims to overwhelm the server with a multitude of
uncompleted connection requests, ultimately exhausting its resources.

The attack unfolds in a specific pattern: each malicious UE node transmits a “wave”
of 10 SYN messages in rapid succession, repeated every 3 s for a total duration of 29 s.
This wave-like pattern is then repeated ten times throughout the entire attack. The first
wave commences 2 s after the simulation begins, with each subsequent wave lasting
approximately 1 s. By constantly sending these SYN messages and deliberately ignoring
the server’s response (SYN-ACK), the malicious nodes aim to deplete the server’s resources
and prevent legitimate users from establishing connections.

5.4. Simulation Results

This section analyses the performance of the proposed multi-controller 5G network
through simulation results. First, we will present the results regarding the burden balancing
issue. Following this, we will present the results on detecting and mitigating DDoS attacks.

5.4.1. Burden Balancing

In order to evaluate the effectiveness of our proposed methods, we compared the
results of our burden balancing strategy with a classic switch relocation method commonly
used in SDN networks and a reinforcement learning-based burden balancing approach
(RLBBA) [19]. The DDQN serves as the central controller in our 5G load balancing scheme,
dynamically relocating OpenFlow switches by analysing the current network state. The
RLBBA uses a reinforcement learning model, which learns OF-switch relocation actions by
interacting with its environment, to achieve burden balancing among distributed controllers.

Rate of Controller Burden Balancing

The rate of burden balancing is an important index for measuring the quality of the
various burden balancing approaches. In our experiment, we utilised iperf to create flow
requests with a Poisson distribution that lasted for 24 h. The average rate of the burden
balance for various approaches is presented in Figure 4.

Figure 4 shows that the rate of burden balancing for the RLBBA is higher than that of
the proposed method. There are two reasons for this difference. Firstly, the reinforcement
learning approach used by the RLBBA relies on matrices to record states and actions, which
is only suitable for limited and discrete circumstances. In real-world situations, however,
states are infinite, making the RLBBA’s approach ineffective. Secondly, the RLBBA lacks the
ability to generalise, leading to a higher rate of burden balancing after OF-switch relocation.
Our proposed method uses neural networks to fit the value of the Q-function, which
significantly improves its generalisation capability and lowers the rate of burden balancing.
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Burden Ratio

The simulation result presented in Figure 5 quantifies the quality of burden balancing
approaches by measuring the burden ratio of controllers.
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Due to static burden balancing, the OF-switches in the 5G network cannot be relocated.
Figure 5 shows a significant difference in the burden ratio of distributed controllers. To
address this issue, the RLBBA has been used to relocate the OF-switches controlled by C1.
However, due to the lack of generalisation capability, the burden ratio still varies after
relocation. We address this challenge with a DDQN-based load balancing approach to
extract the features of the system for decision-making. This approach reduces the required
computation, boosts the generalisation capability, and minimises the difference in the
burden ratio of distributed controllers. Table 5 presents the average controller burden ratio.
The average burden ratio of our proposed method is higher and provides little variation in
the burden ratio among distributed controllers.

Table 5. The average burden ratio of distributed controllers for various approaches.

Approach Average Burden Ratio of Distributed Controllers

Static 0.5175

RLBBA 0.5525

Proposed Method 0.6275



Electronics 2024, 13, 1515 18 of 23

Balancing Duration

We use the balancing duration to quantify the time it takes to perform the relocation
approach. In this regard and in the simulations, we increase the request rate of the first
distributed controller until it exceeds its threshold. Then, we implement burden balance
approaches and compare the balancing duration and the burden of distributed controllers
to measure the effectiveness of the approaches. The results of these comparisons are shown
in Figure 6.
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From Figure 6, it is clear that the burden on the first controller varies over time
when running both the RLBBA and our proposed method. In the thirtieth second, the
first controller experiences a significant number of requests from OF-switches, causing
the controller’s burden to exceed the threshold. At this moment, the proposed method
relocates the burden and reduces the controller’s burden to a normal level in the following
seconds. Similarly, the RLBBA relocates the burden process around the fiftieth second.
This experiment demonstrates the efficiency of our proposed method in balancing the
burden in multi-controller SDN-based 5G networks while also reducing the duration of the
balancing process.

5.4.2. DDoS Attack Detection and Mitigation

The experiment replicates the attack scenario and SDN controller application on each
controller in the multi-controller 5G network. The evaluation metrics for the detection
algorithm are presented in Equations (17) and (18). We evaluate the proposed system’s
performance using three key metrics: the detection rate, packet loss rate, and delay. The
DDoS attack detection rate specifically evaluates how effectively the system identifies
malicious activity under high attack loads. It is mathematically expressed as follows (17):

Detection Rate =
True Negatives

Attack Rate
× 100, (17)

where the attack rate is equal to the total number of attacks. The packet loss rate in a 5G
network refers to the rate at which packets are lost. There are many reasons why packets
may get lost, such as traffic issues or collisions in the packet switched network. When
packets get lost, they may not reach their intended destination. The packet loss rate is
expressed as follows (18):

Packet Loss Rate = Packet Forward Rate − Packet Recieved Rate (18)
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The delay metric in our work measures the delay in providing packet-in messages as a
response to UE and is calculated by subtracting the time taken to send and receive packets
to specific UE.

It is important to note that the following results represent performance in the steady
state of the multi-controller scenario, achieved after balancing the workload across con-
trollers. In this study, we compare our proposed framework with some existing works,
namely the robust security scheme (RS) in [29] and SDN-cloud computing (SDN-CC) in [30]
in terms of the detection rate, packet loss rate, and delay.

The detection rate plays a crucial role in measuring the ability of various attack
detection frameworks and comparing their performance. Figure 7 shows the relationship
between the DDoS attack detection rate and the false positive rate (FPR).
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We have considered the detection rate for proving the efficacy of our proposed method
in mitigating DDoS attacks in 5G networks and compared it with existing works in Figure 7.
Our proposed method outperforms previous works significantly in terms of detection rate.
This is because the classification methods used in [29,30] are not optimal and require a large
amount of computational complexity.

We also evaluate the packet loss rate, comparing our results to existing work. Conges-
tion occurring in OpenFlow switches and the network itself is the leading cause of packet
loss. In SDN-based 5G networks, it is necessary to monitor the packet loss rate constantly. It
is possible to calculate the packet loss rate through either per-packet flow or per switch. We
employ a per-packet flow approach to calculate packet loss rate, as illustrated in Figure 8.
The packet loss rate was compared with existing works, and it was found that SDN-CC’s
performance deteriorated as the number of OF-switches increased, in contrast to RS and
the proposed method.
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Figure 9 shows the relationship between the packet loss rate and the data rate. The
data rate refers to the total number of packets transmitted from the source to the destination
within a given time frame. By comparing our proposed solution with existing methods,
we found that our approach achieves better performance with less computational effort in
terms of the packet loss rate.
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Figure 9. The packet loss in terms of the data rate.

The time taken for data to be transmitted from its source to its destination is known
as a delay. This calculation takes into account the queuing delay as well. In Figure 10,
we compare the delay of our proposed system to existing works. Our method achieves
demonstrably lower delay compared to existing approaches.
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6. Conclusions

This paper introduces a new intrusion detection system and burden balancing tech-
nique designed explicitly for multi-controller SDN/NFV-based 5G networks. The proposed
framework consists of three layers. The two upper layers are responsible for detecting and
mitigating DDoS attacks, while the second layer handles the adaptation and balancing
of the burden of distributed controllers. The controllers are classified into two categories:
distributed controllers and a main (centralised) controller. The distributed controllers
leverage a lightweight entropy-based method to classify incoming packets into normal
and suspicious. Suspicious packets undergo further categorisation into normal packets
and malicious packets, which are then stored in NFV utilising an SOM. In multi-controller
SDN scenarios, the static relationship between OF-switches and controllers can lead to
burden imbalance in distributed controllers. To overcome this problem, it is necessary
to relocate the OF-switches. The proposed solution uses a Markov decision process to
describe the system’s state, relocation action set, and other parameters. This is combined
with deep reinforcement learning to present a novel OF-switch relocation approach for
multi-controller SDN/NFV-based 5G networks.

We have assessed the effectiveness of the proposed methodology in distributing the
processing burden evenly across the dispersed controllers within the multi-controller SDN
architecture and analysed the performance of the proposed detecting and mitigating attack
method in a simulated multi-controller environment representative of 5G networks.

Based on the experimental results, the proposed framework provides better perfor-
mance in the burden balancing of distributed controllers, augmenting the mean burden
rate, reducing the balancing duration, decreasing the packet loss rate and the overall system
delay, and increasing the detection rate, compared to existing works.

In our future work, we plan to incorporate comparisons with the most recent studies to
enhance and complement our evaluation results, particularly in relation to RS and SDN-CC
methods. We will also explore other machine learning-based approaches and network
slicing techniques. A multifaceted approach will also be investigated to enhance entropy’s
effectiveness in detecting DDoS attacks under bursty traffic conditions.
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