
Citation: Zhai, G.; Zhang, J.; Wu, S.;

Wang, Y. Predefined-Time Tracking

Control of Unmanned Surface Vehicle

under Complex Time-Varying

Disturbances. Electronics 2024, 13,

1510. https://doi.org/10.3390/

electronics13081510

Academic Editor: Mahmut

Reyhanoglu

Received: 19 March 2024

Revised: 7 April 2024

Accepted: 15 April 2024

Published: 16 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Predefined-Time Tracking Control of Unmanned Surface Vehicle
under Complex Time-Varying Disturbances
Guanyu Zhai, Jundong Zhang * , Shuyun Wu and Yongkang Wang

College of Marine Engineering, Dalian Maritime University, Dalian 116026, China;
zhaiguanyu99@dlmu.edu.cn (G.Z.); w1501499650@dlmu.edu.cn (S.W.); wyk_9825@dlmu.edu.cn (Y.W.)
* Correspondence: zhjundong@dlmu.edu.cn

Abstract: Aiming at the unmanned surface vehicle (USV) trajectory tracking control under com-
plex time-varying environment, a predefined-time convergence sliding mode disturbance observer
(PTC-SMO) is introduced to effectively handle the internal parameter uncertainties and external
environmental disturbances, thereby guaranteeing precise compensation of the lumped disturbance
term within a set time. Then, in order to achieve precise tracking of the desired trajectory using
USV under a predetermined time constraint, a novel fast trajectory tracking control strategy with
predefined-time convergence (PTC-FTTCS) is established to improve tracking performance and
ensure that the trajectory tracking error converges quickly in the predefined time. Through rigorous
comparative simulation under ideal conditions and time-varying disturbances, the results demon-
strate reliable trajectory tracking and disturbance handling effects, and the tracking performance and
disturbance observation performance are significantly better than state-of-the-art methods.

Keywords: USV; trajectory tracking; sliding mode theory; predefined-time convergence; disturbances
observer

1. Introduction

Unmanned Surface Vehicles (USVs) represent a groundbreaking advancement in mar-
itime technology, offering highly intelligent decision-making capabilities without the need
for manual intervention [1,2]. These cutting-edge platforms are transforming a wide range
of maritime operations, from resource surveying to military endeavors. Amidst the rapid
progression of unmanned technologies, the field of intelligent motion control has attracted
significant attention. However, the dynamic nature of the USV system, characterized by
strong time variability, intricate coupling, and considerable uncertainty, poses substantial
challenges. These systems are subjected to complex disturbances, including external winds,
waves, and ocean currents, complicating the development of precise system motion models
and the achievement of accurate trajectory tracking [3].

Trajectory tracking control, fundamental to the operational efficacy of USV, refers to
controlling the USV to steadily move along the desired trajectory in global time. In order to
achieve precise trajectory tracking, prevalent control methodologies encompass include
adaptive control [4–6], fuzzy control [7,8], model predictive control [9], neural network
control [6,10,11] and sliding mode control [12,13]. Among these, sliding mode control is
distinguished for its robustness, simplicity, and low sensitivity to parameter variations and
external disturbances, rendering it highly effective for USV controller design [14]. Chen [15]
introduced an adaptive sliding mode control algorithm to enhance the stabilization of the
heading angle and reduce longitudinal speed tracking errors, achieving robust global
asymptotic stability, but the impact of chattering near the sliding surface is relatively
large; Wang [16] proposed a novel non-singular terminal sliding mode approach law,
incorporating variable exponential reaching laws for the trajectory tracking control, thereby
enhancing the convergence rate and reducing the chattering phenomenon. Nonetheless,
these strategies did not adequately address the impact on the tracking system’s convergence
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time; Fan [17] proposed a finite-time back-stepping control strategy that ensures system
convergence to a near-zero bounded region within a finite-time, Nonetheless, these strategies
did not adequately address the impact on the tracking system’s convergence time. This
method’s effectiveness, however, is highly dependent on the system’s initial conditions. To
mitigate the issue, Ghommam [18] introduced an adaptive neural network-based fixed-time
control strategy, ensuring the tracking error of the USV converges to zero within a fixed time.

It is crucial to highlight that within the sphere of practical engineering implemen-
tations, the necessity for predefining both convergence time and tracking accuracy is
paramount. Introducing an excessive number of control parameters can, paradoxically,
detract from controller performance. The concept of predefined time stability, which dic-
tates the maximum allowable system convergence time to meet specific task demands, has
recently gained traction in control method research. Juan [19] proposed a novel sliding
mode control method with predefined-time convergence and authenticated the ability of the
system to reach an equilibrium state within the stipulated convergence time. Becerra [20] in-
troduced a motor control strategy predicated on predefined-time stability and corroborated
its effectiveness through empirical trials. Yang [21] investigated the predefined-time
formation tracking problem of networked NASVs under external disturbances and pro-
posed a hierarchical time-triggered control scheme with predefined-time stability. The
estimator reduces the frequency of control signal updates and communication overhead.
Liang [22] designed a class of hierarchical control algorithms based on the newly proposed
predefined-time sliding mode surface to address the formation tracking control problem of
NMSVs under various conditions. Liang [23] introduced a predefined-time optimization
control strategy subjected to set constraints, wherein a distributed optimization estimator
calculates the optimal solutions under geometric constraints. Additionally, a singularity
avoidance scheme was devised to tackle issues related to system singularities. Based on
the excellent control performance of predefined time control, this paper attempts to design
an efficient USV trajectory tracking controller by combining predefined time control theory
and sliding mode control.

Moreover, the trajectory tracking control accuracy of USVs is significantly impacted by
intricate internal and external elements such as wind, waves, system actuator malfunctions,
and unmodeled dynamics. In ideal navigation conditions without the aforementioned
complex disturbances, tracking controllers designed based on sliding mode control can
basically achieve reliable expected trajectory tracking. However, as the complexity of the
disturbance increases, the control effect is greatly reduced. In [10], a finite time disturbance
observer was designed to achieve precise observation and compensation of disturbances
for trajectory tracking control of USV under constant external disturbances. Qu [14] further
improves the sliding mode control structure to enhance anti-interference performance and
achieve continuous observation of disturbances. In addition, in practical environments,
external disturbances are unpredictable and time-varying, posing a huge challenge to the
accuracy of trajectory tracking control. To eliminate the lumped disturbance interference,
Li [24] focused on the unmodeled dynamics and input saturation of the USV system, de-
vising a filtered extended state observer to efficaciously monitor complex interferences
and improve model robustness. Wu [25] developed a terminal sliding mode observer with
limited input saturation, ensuring swift convergence of observation errors in the face of un-
known velocities and adeptly handling inputs under uncertain constraints. Li [26] treated
external disturbances as the lumped disturbance terms, introducing a disturbance observer
characterized by fixed-time stable convergence, with convergence time independent of
initial conditions. Inspired by the predefined-time control theory and disturbance ob-
server technology, this paper proposes a novel disturbance observer with predefined-time
convergence to achieve accurate observation of lumped disturbance terms.

To summarize, the domain of intelligent control for USV is significantly enriched by
the potential applications of predefined-time control theory. Utilizing the foundational
principles of sliding mode control, alongside the technologies of disturbance observer and
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predefined-time stability theory, this paper proposes an efficient tracking control strategy
and an accurate disturbances observer. The main contributions of this paper include:

(1) For trajectory tracking control of USV under the ideal state, a novel fast integral
terminal sliding mode tracking strategy is proposed by combining integral sliding mode
and terminal sliding mode to keep the USV continuously and stably navigating along the
set trajectory without disturbance.

(2) For complex disturbance environments, a novel fast trajectory tracking control
strategy with predefined-time convergence (PTC-FTTCS). This strategy enables the USV
to move along a planned trajectory in dynamic and uncertain environments and ensure
that the tracking error converges within a predefined time, which improves reliable control
performance in engineering applications.

(3) To mitigate the impact of external complex disturbances and unreliable model
parameters, a sliding mode disturbance observe with predefined-time convergence (PTC-
SMO) is improved to for observing and approximating internal unknown parameter pertur-
bations and time-varying complex disturbances, improving system stability and robustness.
The proposed tracking controller and disturbance observer are further corroborated by
thorough comparative simulation experiments.

The rest of this paper is organized as follows: Section 2 focuses on explaining the
mathematical model of USV and lemmas, as well as the design process of the USV tracking
controller under ideal conditions. Section 3 provides a detailed introduction to the design
process of disturbance observer and predefined time tracking controller. Section 4 provides
a rigorous discussion of simulation experiments. Section 5 provides the conclusion and
outlook of the entire paper.

2. Theoretical Basis and System Model
2.1. Basic Theories of Predefined-Time Convergence

Refer to the following system model:

ẋ(t) = f (x(t))
x(0) = x0, f (0) = 0, x ∈ U0 ⊂ Rn (1)

where x is the variable of system and f (x(t)) is delineated as a continuous nonlinear
function within the vicinity of the origin U0.

Definition 1 ([27]). If system (1) exhibits negative homogeneity coupled with asymptotic stability,
enabling it to reach its equilibrium state within a finite time Tp, then system (1) is characterized as
globally finite-time stable. It is worth mentioning that this finite time Tp is contingent upon the
initial configuration of the system.

Definition 2 ([28]). In the event that system (1) achieves global finite-time stability, with the
convergence time Tp possessing a supreme limit that does not depend on the initial state of the
system, such a system is then defined as globally fixed-time stable.

Definition 3 ([19]). Further assuming that system (1) qualifies as a globally fixed-time stable
system, and the state convergence time Tp is subject to a minimal supreme limit that is precisely
incorporated in the function, then the system is a globally predefined time stable system, this
configuration elevates the system to be globally predefined-time stable.

Lemma 1 ([29]). Consider the system as shown below:

ẋ = −h(+∞)− h(0)
Tc

[
∂h(xm)

∂x

]−1

(2)

where 0 < m < 1, Tc > 0 . If the bounded function satisfies the following conditions:
(1) h(x)is continuous within the range of(0,+∞) and satisfies h(0) = 0;
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(2) lim
δ→0

h(|x|m+δ)−h(|x|m)
δ > 0;

(3) lim
x→0

[
∂h(xm)

∂x

]−1
= 0,

[
∂h(xm)

∂x

]−1
|x=0 = 0;

then the system converges at a predefined time with the convergence time T < Tc.

Lemma 2 ([30]). For a Lyapunov function V(x) with globally positive definite, if the derivative
satisfies:

V̇ ≤ −h(+∞)− h(0)
Ts

[
∂h(Vm)

∂V

]−1

+ c (3)

where the definition of h(Vm) is consistent with Lemma 1, and c is a constant, 0 < m < 1, Tc > 0.
Then the system state x will converge to a small area near the origin within the predefined time
Tc. Subsequently, the state of the system x is guaranteed to approach a vicinity in close proximity
to the origin, achieving this convergence within a predefined time Tc. In actual control systems,
due to factors such as modeling errors and sampling delays, it is impossible to achieve predefined
time control that accurately converges to the origin and can only achieve actual predefined time
convergence to a small neighborhood near the origin.

2.2. USV Mathematical Model

The USV has the characteristics of strong coupling, strong nonlinearity, and high
complexity in actual maritime navigation. Therefore, unmodeled dynamics and various
external disturbances cannot be ignored when establishing a USV model, and an overly
simple USV model lacks practicality and generality, but an overly complicated model
will handle subsequent controller design impossible. Hence, when establishing the UAV
model, we cannot consider the ideal state and ignore the uncertainty terms composed of
hydrodynamic derivatives within the system, as well as the external complex disturbances
composed of strong winds, waves, and undercurrents, which makes it difficult to work on
the bottom execution mechanism and cannot fully control the six degree-of-freedom USV
model. In this paper, the three degree-of-freedom model is considered to solve the USV
tracking problem, which revolves around establishing the relationship between surging
speed u, swaying speed v, and yawing angular speed r, and ignores the heave speed, roll
angular speed, and pitch angular speed.

As shown in Figure 1, it can be seen that the dynamics and kinematics equations of
the USV are as follows: {

η̇ = R(ψ)ν
Mν̇ + C(ν)ν + D(ν)ν = τ + δ

(4)

where η=[x, y, ψ]T represents the position vector of the USV, ν = [u, v, r]T signifies the
velocity vector, ψ is defined as the heading angle, and r is the angular velocity. The control
input vector, τ=[τi1, 0, τi3]

T, comprises the thrust moment τi1 in the surge direction and the
yaw moment τi3, reflecting the directional control efforts. The term δ=MRT(ψ)d(t), d(t)
represents the vector of complex disturbances emanating from environmental forces such
as wind, waves, and ocean currents. The inertia matrix M = MT > 0 is symmetric and
positive definite, which integrates the rigid body’s inertia matrix with that of the added
mass. The Coriolis matrix C(ν) = −C(ν)T is skew-symmetric with its parameters derived
from multiple hydrodynamic coefficients obtained through sea trials. Additionally, D(ν)
describes the damping matrix that accounts for both linear and nonlinear resistance forces
acting on the hull. These matrices are characterized as follows:

M =

 m11 0 0
0 m22 m23
0 m32 m33

 (5)
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C(ν) =

 0 0 c13(ν)
0 0 c23(ν)

−c13(ν) −c23(ν) 0

 (6)

D(v) =

 d11(ν) 0 0
0 d22(ν) d23(ν)
0 −d32(ν) d33(ν)

 (7)

Matrix parameters are delineated in Table 1, where m signifies the mass, L denotes
the length, B represents the width of, and xg represents the center of gravity along the
X axis within the body-fixed coordinate system. Iz represents the moment of inertia and
Nv̇ = Yṙ, X∗, Y∗, Z∗ represents the hydrodynamic derivative of the USV.

Figure 1. Three-degree-of-freedom USV inertial coordinate and fixed-body coordinate system.

Table 1. The matrix parameters definition.

Parameters Values Parameters Values

m11 m − Xµ̇ c23(v) m11µ
m22 m − Yv̇ d11(v) −Xµ−X|µ|µ|µ|
m23 mxg − Yṙ d22(v) −Xu − X|u|u|u| − Xuuuu2

m32 mxg − Nv̇ d23(v) −Yr−Y|v|r|v|−Y|r|r|r|
m33 Iz − N ṙ d32(v) −Nv−N|v|v|v|−N|r|v|r|

c13(v) −m11 − m23r d33(v) −Nr−N|v|r|v|−N|r|r|r|

The R is the transformation matrix bridging the inertial and body-fixed coordinate
systems:

R(ψ) =

 cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

 (8)

The matrix R also has the following properties:

Ṙ(ψ) = R(ψ)S(r)

RT(ψ)S(r)R(ψ) = R(ψ)S(r)RT(ψ) = S(r)

∥R(ψ)∥ = 1, RT(ψ)R(ψ) = I, ∀ψ ∈ [0, 2π]

(9)
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Define expected tracking trajectory:{
η̇d = R(ψd)νd
Mdν̇d+C(νd)νd+D(νd)νd = τd

(10)

where τd=[τd1, 0, τd3]
T indicates the desired control input of the USV, while ηd=[xd, yd, ψd]

T

and νd=[ud, vd, rd]
T, respectively, represent the position and velocity vector of expected

tracking trajectory.

2.3. Design of USV Tracking Controller under Ideal Conditions

In this section, this paper initially concentrates on the USV trajectory tracking control
under ideal conditions. Specifically, a USV tracking control strategy based on the fast
integral terminal sliding mode (FITSMC) is proposed, integrating both integral sliding
mode and terminal sliding mode to significantly enhance tracking effectiveness.

From Formula (4), we can obtain:

η̈ = RM−1τ − RM−1A
(

η,RTν
)

η̇+Sη̇ (11)

where

A
(

η,RTν
)
= (C(ν)+D(ν))RT (12)

The position error between the actual and desired positions is described as follows:

e = η− ηd (13)

The FITSMS is designed as follows:

s = e+λ1

∫
edτ + λ2

∫
eq/pdτ (14)

The derivation of the s satisfies:

ṡ = ë+λ1e + λ2eq/p (15)

To enhance the approach velocity towards the sliding mode surface while maintaining
stability during the sliding phase, a novel approach law is instituted as:

ṡ = −ε
[
s2+ f (e)ė2]α/2sgn(s)−k|e|βs

f (e) =


ξ
(
∆2
/
|e|
)2

ξ

ξ
(
|e|
/

∆1
)2

|e| > ∆2
∆1 < |e| ≤ ∆2

|e| ≤ ∆1

(16)

among them, ε, α, β, k, ∆1, ∆2, ξ are all positive constants and satisfy ∆1 > ∆2, where k|e|βs

indicates the fast approach term, and ε
[
s2+ f (e)ė2]α/2sgn(s) indicates the variable speed

approach component. If the discrepancy e is too large or too small, the variable speed
approach term will adjust the rate of approaching the sliding mode surface to avoid sharp
changes in output due to large changes in speed or normal fluctuations.

Then, the FITSMC trajectory tracking control strategy is designed as follows:

τ = A
(

η,RTν
)

η̇−MR−1ε
[
s2+ f (e)ė2

]α/2−MR−1k|e|βs

−MR−1Sη̇+MR−1η̈d − MR−1
(

λ1e + λ2eq/p
) (17)
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To substantiate the stability of the aforementioned tracking controller, a Lyapunov
function is employed for the stability verification as follows:

V =
1
2

s2 (18)

Taking the derivative of (18):

V̇ =sṡ

=s
(

ë+λ1e + λ2eq/p
)

=s
(

η̈−η̈r+λ1e + λ2eq/p
)

=s
(

RM−1τ − RM−1A
(

η,RTν
)

η̇+Sη̇−η̈r+λ1e + λ2eq/p
)

=s

(
−ε
[
s2+ f (e)ė2

]α/2sgn(s)−k|e|βs

)

=−ε
[
s2+ f (e)ė2

]α/2s − k|e|βs2< 0

(19)

Combining Definition 1, the designed FITSMC tracking control strategy can converge
within a finite time, thereby ensuring prompt and steady adherence to the envisaged
trajectory under optimal conditions.

3. Design of Tracking Controller for USV under Complex Disturbances

In actual marine navigation environments, due to the limitations of experimental envi-
ronments, the fluid dynamics and other parameters inside USV cannot be fully obtained.
Moreover, the interference of wind, waves, and currents during the USV navigation process
also brings significant challenges to the tracking control accuracy. This section combines
predefined time control theory, sliding mode control, and disturbance observer technology
to design a predefined time disturbance observer and accurate trajectory tracking controller.

3.1. Predefined Time Disturbance Observer

In order to simplify the subsequent analysis, Equation (4) is updated as follows:{
ẋ1 = x2
ẋ2 = M−1(x1)R(x1)τ + Θ

(20)

where x1 = η, x2 = η̇, the parameter Θ = M−1[δ(t)− C(x1, x2)x2 − D(x1, x2)x2] repre-
sents the lumped uncertainty term composed of internal unmodeled dynamics and external
complex disturbances in the tracking control system. Consider the following assumptions:

Assumption 1. The parameter Θ is characterized by the properties of being continuously differen-
tiable and bounded, that is

∥∥Θ̇
∥∥ ≤ L̂, where L̂ represents a bounded positive constant.

Assumption 2. The time derivatives of all state variables in the unmanned vehicle trajectory
tracking system are globally Lipschitz continuous; that is, their second-order time derivatives satisfy
∥ẍ∥ ≤ h, where h is the non-negative Lipschitz constant.

In order to eliminate the effects of the lumped disturbance term on the accuracy
of tracking, this section introduces a disturbance observer for estimating the lumped
disturbance within the tracking system. Defining the actual observation error and based on
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the tracking differentiator in the literature [30], and the novel predefined time convergence
sliding mode disturbance observer (PTC-SMO) is formulated as follows:

e = Θ − ∆1

∆̇1 = M−1(x1)R(x1)τ + ∆2 + α1[|e|
1
2 sign(e) + α2

3|e|
3
2 sign(e)]

∆̇2 = α2[|e|0sign(e) + 4α2
3e + 3α2

3|e|
3
2 sign(e)]

(21)

where ∆2 represents the observed value obtained from the disturbance observer. In order
to avoid discontinuity problems in the calculation process, the sign function in the above
tracking differentiator is replaced with the hyperbolic tangent function as follows:

e = Θ − ∆1

∆̇1 = M−1(x1)R(x1)τ + ∆2 + α1[|e|
1
2 tanh(e) + α2

3|e|
3
2 tanh(e)]

∆̇2 = α2[β1|e|0 tanh(β2e) + 4α2
3e + 3α2

3β1|e|
3
2 tanh(β2e)]

(22)

where, α1, α2, α3, β1, β2 are the designed observer gain parameter. The larger the value of
β1, β2, the better the observation effect, but it will also consume larger computing resources.
In practical applications, the value can be weighed according to the observation error
requirements.

According to the literature [30], it can be seen that the parameter value α1, α2, α3 are
correlated with the convergence time. To guarantee that the observer specified in the
preceding equation attains tracking convergence prior to the predefined time Td, it is
imperative to fulfill the subsequent relationship:

α1 =
√

8γ
α2 = γ

α3 =
6.9

√
γ

(γ−k)Td1

(23)

Among them γ > 0, Td1 represents the maximum convergence time of observer,
k represents non-negative unknown constant, which can be satisfied by taking larger
parameters. The stability proof of the tracking differentiator at the predefined time in
Equation (22) can be found in the literature [28] and will not be repeated in this article.

Remark 1. Under the predefined time observer (22), when time t > Td1, ∆1 → x2, ∆2 → Θ.
Additionally, in the subsequent time, the norm of the lumped disturbance observation error is∥∥Θ̃
∥∥ = ∥Θ − ∆2∥ ≤ ξ.

3.2. Predefined Time Sliding Mode Tracking Controller

The deviation error in real-time positioning of USV from the prescribed path is:

ε1 = x1 − ηd
ε2 = x2 − η̇d

(24)

By deriving the above formula, we can obtain:

ε̇1 = ε2
ε̇2 = M−1(x1)R(x1)τ + Θ − η̈d

(25)

In order to simplify the tracking controller structure, combined with Lemma 1, the
bounded nonlinear function is selected as follows:

g1(ε1) = a tan(|ε1|m) (26)
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Combined with Lemma 2, the novel predefined time fast sliding surface is designed
as follows:

sp = ε̇1 +
g1(+∞)− g1(0)

Td2

[
∂g1(ε1

m)

∂ε1

]−1

(27)

Simplified to:

sp = ε2 +
π

2Td2

[
m|ε1|m−1

1 + |ε1|2m sgn(ε1)

]−1

(28)

where Td2 is a predefined time parameter, m is a positive real number, sgn(ε1) is a symbolic
function. To further reduce sliding mode chatter, the saturation function sat(ε1) is used as
shown below instead:

sat(ε1) =


1 ε1 > ξ
ε1
ξ |ε1| < ξ

−1 ε1 ≤ ξ

(29)

where ξ, a known quantity, represents the maximum value of disturbance. Equation (28) is
further simplified to:

sp = ε2 +
π

2Td2m
(|ε1|1−m + |ε1|1+m)sat(ε1) (30)

Derive the above equation to obtain:

ṡp =ε̇2 +
π

2Td2m
((1 − m)|ε1|−m + (1 + m)|ε1|m)

=M−1(x1)R(x1)τ + Θ − η̈d +
πε2

2Td2m
((1 − m)|ε1|−m + (1 + m)|ε1|m)

(31)

Design the predefined time convergence tracking controller as follows:

τ = R−1(x1)M(x1){
πε2

2Td2m

(
(m − 1)|ε1|−m − (1 + m)|ε1|m

)
− π

2Td2m

(∣∣sp
∣∣1−m

+
∣∣sp
∣∣1+m

)
sat(sp) + η̈d − ξsat(sp)}

(32)

For the purpose of avoiding the singularity problems of ṡp, the value of m should meet
the following conditions:

m =

{
1, s ̸= 0andϵ2 = 0
1
2 , other

(33)

Theorem 1. For system (4), based on the PTSS designed by Equation (28), the designed predefined
time tracking controller (32) guarantees that the USV tracks the expected trajectory within the
predefined time; that is, the system state can converge to a small area near the origin within a
predefined time.

Proof of Theorem 1. First, during the approach phase, The Lyapunov function is selected
as shown below:

Vp=
1
2

∣∣sp
∣∣2 (34)
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Seeking the derivation:

V̇p =
sp∣∣sp
∣∣ ṡp

=
sp∣∣sp
∣∣ [M−1(x1)R(x1)τ + Θ − η̈d

+
πε2

2Td2m

(
(1 − m)|ε1|−m + (1 + m)|ε1|m

)]
=− π

2Td2m

(∣∣sp
∣∣1−m

+
∣∣sp
∣∣1+m

)
sat
(
sp
)
+
(
Θ − ξsat

(
sp
))

≤− π

2Td2m

(
Vp

1−m + Vp
1+m

)
− ξ

(35)

As established by Lemma 2, sp achieves stability stable at the actual predefined time,
and the time used in the approach phase satisfies:

T1 < Td2 (36)

After reaching the sliding mode surface, that is sp = 0, the system enters the sliding
stage. Combining Lemma 1, it is evident that the system can complete convergence within
a predefined time, and T2 satisfies:

T2 < Td2 (37)

Subsequently, combining Equation (30) with the designed tracking controller (32), the
state of the system (4) can complete the convergence within the stipulated predefined time.
The cumulative convergence time of the system is given by:

T = T1 + T2 < 2Td2 (38)

Theorem 1 is proved complete.

In summary, after rigorous theoretical derivation, the PTC-SMO and PTC-FTTCS
proposed in this part can achieve rapid convergence within predefined times, which
ensures stable path tracking by USV over the global time.

4. Numerical Simulation and Discussion Analysis

To ascertain the stability of the proposed PTC-FTTCS and the efficiency of the PTO-
SMO, this section conducts comprehensive comparative simulation experiments from two
aspects: ideal navigation state and navigation state with complex disturbances. For the
purpose of this simulation study, the Cybership II model of the USV, endowed with detailed
parameters, has been selected. The parameters pertinent to this model are delineated in
Table 2.

Table 2. Sea trial measurement parameters of simulation model [31].

Parm Measurement Parm Measurement Parm Measurement

mc 23.8 kg Yv −0.8612 Xu̇ −2.0
Iz 1.76 kg·m2 Y|v|v −36.2823 Yv̇ −10.0
Xg 0.046 m Yr 0.1079 Nv̇ 0.0
Xu −0.7225 Nv 0.1052 Nṙ −1.0

X|u|u −1.3274 N|v|v 5.0437 Bİ 0.29 m
Xuuu −5.8664 Yṙ 0.0 Li̇ 1.225 m
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4.1. FITSMC-TTCS under Ideal Navigation State

This part provides a rigorous simulation analysis of the effectiveness of the proposed
FITSMC-TTCS under ideal navigation conditions. The designed parameters of FITSMC are
as follows: c1 = 0.07, c2 = 0.03, ε = 15, k = 450, β = 0.15, ξ = 0.06, ∆1 = 0.01, ∆2 = 0.35,
α = 0.60. The parameters of ISMC are the same as those of FITSMC-TTCS. The selected
desired tracking trajectory is ηd = [15 ∗ sin(0.1 ∗ t) + 0.15, 0.35 ∗ t, sin(0.63 ∗ t) + 0.1]T .

The specific simulation analysis is shown in Figures 2 and 3. Specifically, Figure 2a
represents the navigation trajectory of the USV under ISMC and FITSMC, and Figure 2b
represents the trajectory error curve of the USV under an ideal navigation state based
on ISMC and FITSMC. Observations from Figure 2 elucidate that while both ISMC and
FITSMC are capable of effectively tracking the predetermined trajectory, FITSMC exhibits
superiority by tracking the desired trajectory with minimal errors in a shorter time. Figure 3
shows the trajectory tracking curve and velocity tracking curve in the x, y, and ψ directions,
where Figure 3a visualizes the trajectory tracking performance, and Figure 3b outlines the
velocity tracking efficiency. It is apparent that the FITSMC strategy attains the desired
position and velocity swiftly and with higher tracking precision.
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Figure 2. (a) Trajectory tracking curve under ideal navigation state based on ISMC and FITSMC;
(b) Tracking error curve under ideal navigation state based on ISMC and FITSMC.
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Figure 3. (a) Position tracking curve based on ISMC and FITSMC; (b) Velocity tracking curve based
on ISMC and FITSMC.

4.2. PTC-FTTCS and PTO-SMO with Complex Disturbances

During the actual navigation process, the USV confronts formidable challenges due to
complex external disturbances, which significantly impede the precision of tracking control.
On the basis of FITSMC-TTCS under ideal navigation conditions, this part conducts a com-
prehensive comparative simulation with existing fixed-time convergence algorithms [32] to
further verify the efficiency of the proposed PTC-FTTCS and PTO-SMO. Specifically, the
designed PTC-FTTCS and PTO-SMO parameters are shown in Table 3.

Table 3. The designed PTC-FTTCs and PTO-SMO parameters.

Parm Setvalue Parm Setvalue Parm Setvalue

γ 2 Td1 1.0 s β1 1200
k 1 Td2 0.05 s β2 −5.870

m(ξp ̸= 0, ξ1 = 0) 1 m(other) 0.5 L̂ 2000

The specific simulation analysis is shown in Figures 4–9. Firstly, two sets of com-
parative simulations are conducted with FTC-FTTCS to evaluate the efficacy of the in-
troduced PTO-FTTCS, as shown in Figure 4. The selected desired tracking trajectory is
ηd = [0.05πt, 0.05πt, 0.2t + 2]T . Specifically, under both constant and time-varying dis-
turbances, the designed PTO-FTTCS can control the USV to move along the set expected
path stably, while FTC-FTTCS fails to effectively follow the set path in the presence of
time-varying disturbances, proving the effectiveness of PTO-FTTCS. Moreover, the compre-
hensive tracking performance is further elucidated through detailed position and velocity
tracking curves presented in Figure 5, which further demonstrate that the proposed PTO-
FTTCS can achieve accurate tracking performance in different dimensions, and the tracking
time satisfies the predefined time set.
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(a) (b)

Figure 4. (a) Straight trajectory tracking curve with constant complex disturbances Θ = [5, 5, 5]T based on
FTC-FTTCS and PTC-FTTCS; (b) traight trajectory tracking curve with variable complex disturbances
Θ = [24 cos (0.1πt)2, 20 cos (0.1πt), 3 cos (0.3π)2]T based on FTC-FTTCS and PTC-FTTCS.

(a) (b)

Figure 5. (a) Position tracking curve based on FTC-FTTCS and PTC-FTTCS; (b) Velocity tracking
curve based on FTC-FTTCS and PTC-FTTCS.

Figure 6 substantiates the observation capability of the introduced PTC-SMO. Specif-
ically, from Figure 6a, it can be seen that PTC-SMO can achieve precise observations of
complex disturbances, ensuring that disturbance observation errors converge to 0 within
predefined times. The time-varying disturbance dynamic tracking curve in Figure 6b
further demonstrates the global effectiveness of PTC-SMO. Subsequently, two series of
curve trajectory expansion experiments are executed to further validate the reliability of the
proposed PTC-FTTCS algorithm. In Figure 7, the developed PTC-FTTCS demonstrates its pro-
ficiency in facilitating the swift and consistent tracking along the expected elliptical trajectory
ηd = [10sin (0.02πt),−2cos (0.02πt), 0.1t + 2]T and wave trajectory ηd = [t, 10sin (0.02πt), 0]T.
The proposed algorithm is further corroborated by the exhaustive analysis of position and
velocity tracking effects delineated in Figures 8 and 9.
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(a) (b)

Figure 6. (a) Disturbances observation performance curve based on PTC-SMO; (b) Disturbances
observation error curve based on PTC-SMO.

(a) (b)

Figure 7. (a) Elliptical trajectory tracking curve with variable complex distur-
bances Θ = [200 cos (0.1πt)2, 200 cos (0.1πt), 3 cos (0.3π)2]T based on FTC-FTTCS and
PTC-FTTCS; (b) Wave trajectory tracking curve with variable complex disturbances
Θ = [200 cos (0.1πt)2, 200 cos (0.1πt), 3 cos (0.3π)2]T based on FTC-FTTCS and PTC-FTTCS.



Electronics 2024, 13, 1510 15 of 17

(a) (b)

Figure 8. (a) Position tracking curve of elliptical trajectory; (b) Velocity tracking curve of elliptical trajectory.

(a) (b)

Figure 9. (a) Position tracking curve of wave trajectory; (b) Velocity tracking curve of wave trajectory.

In summary, through the rigorous numerical simulation comparison and verification
mentioned above, it is concluded that the tracking performance of the FITSMC-TTCS under
an ideal navigation state and the PTC-FTTCS with complex disturbances proposed in this
paper is superior to the state-of-the-art methods and the proposed PTO-SMO can achieve
precise observation of time-varying disturbances in global time.

5. Conclusions

Addressing the intricate challenge of precise tracking control under time-varying
disturbances, this paper combines the fast integral terminal sliding mode, predefined
time convergence theory, and disturbance observer technology to significantly improve
trajectory tracking performance from three aspects. Firstly, a novel FITSMC trajectory
tracking control strategy is proposed, ensuring rapid and stable tracking of the desired
trajectory under ideal navigation conditions in finite time. Following this, global stable
observation of time-varying disturbances is achieved through the proposed PTC-SMO,
effectively eliminating the influence of lumped disturbances on tracking control accuracy.
Furthermore, the PTC-FTTCS ensures the tracking system’s state transitions to a vicinity
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near the origin within a predefined time. Finally, the efficiency of the proposed algorithms
in this paper is proven through rigorous numerical comparison and simulation.

The algorithm proposed in this article provides a novel approach for subsequent
multi-USVs cooperative trajectory tracking and formation control problems. When the
physical verification conditions are met in the future, we will further verify the proposed
algorithms in this paper through physical experiments.
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