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Abstract: A key part of modern deep neural network (DNN) applications is matrix multiplication.
As DNN applications are becoming more diverse, there is a need for both dense and sparse matrix
multiplications to be accelerated by hardware. However, most hardware accelerators are designed to
accelerate either dense or sparse matrix multiplication. In this paper, we propose VerSA, a versatile
systolic array architecture for both dense and sparse matrix multiplications. VerSA employs interme-
diate paths and SRAM buffers between the rows of the systolic array (SA), thereby enabling an early
termination in sparse matrix multiplication with a negligible performance overhead when running
dense matrix multiplication. When running sparse matrix multiplication, 256 × 256 VerSA brings
performance (i.e., an inverse of execution time) improvement and energy saving by 1.21×–1.60×
and 7.5–30.2%, respectively, when compared to the conventional SA. When running dense matrix
multiplication, VerSA results in only a 0.52% performance overhead compared to the conventional SA.

Keywords: matrix multiplication; systolic array; sparse matrix; dense matrix; hardware acceleration

1. Introduction

The rise of artificial intelligence (AI)-based applications has brought about a huge
change in human life. One of the most important key enablers of this change is the
improvement in computing power. A core operation in AI is matrix multiplication (MM).
A dataflow-based architecture enables an efficient processing of matrix multiplication.
The operations in dataflow architecture are mainly performed by moving the data and
results through computing logic such as an arithmetic logical unit (ALU). One of the most
widely used dataflow architectures to accelerate MM is a systolic array-based architecture.

Systolic arrays (SAs) are typically composed of two-dimensional processing element
(PE) arrays. A PE performs a multiply-and-accumulation (MAC) operation with tem-
porarily latching and forwarding of the inputs and/or outputs. There are three different
dataflows, depending on which elements are stationary in the PE, in general SAs: input
stationary, weight stationary, and output stationary. Depending on the dataflows, different
elements are pinned to the PEs and then transferred throughout the PEs. The systolic arrays
can efficiently execute the matrix multiplication due to the massive parallelism among the
PEs, thereby enabling an abundant number of parallel MAC operations. Due to their low
design complexity and satisfactory performance, SAs have been widely adopted in many
industrial products such as tensor processing units (TPUs) [1–3].

Nonetheless, SAs often suffer from inefficiency when running sparse matrix multi-
plication (SpMM). Since there is no intermediate path that is directly connected to the
output buffer, the ineffectual operations have no choice but to be executed throughout
the datapath anyway. This causes huge latency and energy overheads when performing
SpMM. To overcome this problem, many works have focused on sparsity-aware processing
engines [4–15]. Though they show a significant speedup when executing SpMM, they
are not appropriate for dense matrix multiplication. For example, a specialized format
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(e.g., a compressed sparse row (CSR)) must be used to execute SpMM [12], and it could be
desirable for sparse matrices in terms of the data size and computation efficiency. However,
they are still problematic for dense matrix multiplication. Due to the large metadata size of
specialized formats, the data size would be rather increased when compared to a dense
format (i.e., storing the matrix in a row-wise or column-wise manner without the coordi-
nate metadata), which incurs large storage or memory overhead, as well as computation
inefficiency. Even worse in typical embedded or mobile systems where accommodated
hardware resources are constrained, it could be very hard to employ separate hardware
accelerators for dense and sparse MMs.

In this paper, we propose VerSA, Versatile Systolic Array architecture, to accelerate
both dense and sparse matrix multiplications. By providing two operation modes, i.e.,
sparse and dense modes, VerSA adaptively executes dense MM and SpMM in a single-
hardware architecture. In the sparse mode, the model utilizes intermediate paths and
buffers (IPBs) between the rows of PEs, which is designed for the early termination of
SpMM by skipping ineffectual operations. In the dense mode, VerSA operates similarly as
the conventional systolic array (SA) with negligible performance overhead. Our evaluation
results show that our 256 × 256 VerSA architecture when running in the sparse mode shows
a better performance by 1.21×–1.60× when compared to the conventional SA. Also, VerSA
when running in the dense mode shows a comparable performance when compared to the
conventional SA, incurring only a 0.52% performance overhead. When compared to the
state-of-the-art SpMM accelerator [12], VerSA shows a better performance by 20.1×, on av-
erage, when executing various SpMM benchmark applications. The main contributions of
this work can be summarized as follows:

• We propose the VerSA architecture, which can be used for both dense and sparse
matrix multiplications in a versatile manner;

• When executing SpMM, 256 × 256 (128 × 128) VerSA results in performance improve-
ment and energy saving by 1.21×–1.60× (1.16×–1.45×) and 7.5–30.2% (1.6–21.3%),
respectively, on average, when compared to the conventional SA;

• When compared to the state-of-the-art SpMM accelerator, our 256 × 256 (128 × 128)
VerSA shows a better performance by 20.1× (5.7×), on average, meaning that VerSA
can be used for a broader range of MM applications;

• In terms of logic synthesis results, 256 × 256 (128 × 128) VerSA architecture can be
implemented with only small hardware and power overheads when compared to the
conventional SA by 12.6% (14.9%) and 11.7% (14.4%), respectively.

The remainder of this paper is organized as follows. Section 2 reviews the recent
literature that are closely related to our work. Section 3 explains the background for general
systolic arrays and our motivation. Section 4 explains our VerSA architecture in detail.
Section 5 shows our evaluation results in terms of performance and energy. Section 6
discusses the hardware and software overheads and limitations of this work. Section 7 then
concludes this paper.

2. Related Works

For dense matrix multiplication, systolic arrays are widely used due to their simple
yet efficient logic architecture (e.g., [1]) and the easy employment of various dataflows
such as weight stationary, row stationary, input stationary, and output stationary [16].
However, conventional systolic arrays are not adequate for sparse matrix multiplication as
they cannot skip ineffectual operations.

For sparse matrix multiplication supports, many works have been focused on remov-
ing the ineffectual operations from matrix multiplication [4–15]. The most widely used
method is to employ a compressed format (e.g., compressed sparse row [12] or channel
cyclic sparse row format [9]) for performing sparse matrix multiplication. Since the com-
pressed format already removes many of the zero values in the operand matrices, MM
operations with compressed formats also remove a large portion of the ineffectual opera-
tions. However, the compressed format often leads to a larger data size in the case of dense
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matrices due to the metadata size being even larger than the non-zero data. Furthermore,
the compressed format is often required to be uncompressed for MAC operations. Several
works have also compared the indices (e.g., the column index of the input matrix and row
index of the weight matrix) of the non-zero values, and they only performed multiplications
with those values [5], which are often referred to as the inner product. However, non-zero
index matching often incurs a huge overhead in logic and time complexities as the density
in the operand matrices increases. In [15], a flexible architecture that supports three differ-
ent dataflows for sparse matrix multiplications was proposed. Though the aforementioned
approach enables a flexible dataflow change within a single hardware architecture, only
dataflows for sparse MM are supported.

As explained above, accelerators that are used only for sparse matrix multiplication
are very hard to be employed for dense matrix multiplication due to the inefficiency of
their compressed formats and dataflows, which are optimized only for sparse matrix
multiplication. When compared to the related works introduced in this section, our VerSA
architecture can be employed to perform both dense and sparse MMs with a unified
hardware architecture. Due to its versatility, VerSA is more suitable for resource-constrained
embedded systems where separate hardware accelerators for dense and sparse MMs in
the system are not desirable.

3. Background and Motivation

One of the most widely used architectures for accelerating MM is a systolic array
(SA), which is shown in Figure 1. The main advantages of the SA are its design simplicity
and high efficiency for matrix multiplication. The conventional systolic arrays for matrix
multiplication can provide three different dataflows: input stationary, weight stationary,
and output stationary [17]. Assuming we perform A × B = C where A, B, and C are
matrices, input, weight, and output stationary dataflows fix (i.e., preloaded and are not
moved throughout the PEs) the elements in the matrix A, B, and C, respectively, in the PEs
of the SA. For typical DNN applications, the weight stationary dataflow is widely used for
DNN inference accelerators because the weights can be heavily reused across the batches
when performing DNN inferences, which minimizes the data transfer overhead in the SA.
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Figure 1. The conventional systolic array architecture with weight stationary dataflow. When
performing A × B = C, A, B, and C correspond to the input (A in the figure), weight (W in the figure),
and output (O in the figure), respectively.
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When performing sparse matrix multiplication (SpMM), the main disadvantage of the
conventional SA is that we cannot skip ineffectual operations such as multiply-with-zero or
add-with-zero. Thus, for SpMM, the conventional SA takes the same clock cycles (and the
same execution time with a fixed-clock frequency) for both SpMM and dense MM. Since there
is a huge opportunity in removing the ineffectual operations present in SpMM, employing
the SA for SpMM may cause a huge energy waste and performance loss. On the contrary,
employing the specialized hardware accelerator for SpMM could be beneficial for accelerating
the matrix multiplication. For example, in [12], where a specialized hardware accelerator
for SpMM was used, up to 47× (on average) speedup can be obtained when compared to
the conventional SA. However, the specialized SpMM hardware can be useful only when
performing SpMM as it results in even worse performance for dense matrix multiplication.
As general embedded systems are resource-constrained, it would be hard to deploy both
SpMM and dense MM hardware accelerators. Consequently, employing a versatile hardware
accelerator that can adapt to both SpMM and dense MM would be desirable.

Based on the motivations described above, we will focus on the following design
principles and considerations:

• We will devise a novel, unified hardware architecture for efficiently executing both
sparse and dense MMs;

• For the versatility of our hardware, we will also devise appropriate hardware and
software supports. We will also focus on minimizing the overhead caused from those
supports.

4. VerSA Architecture
4.1. Overview

In this subsection, we briefly explain the overview of VerSA architecture. VerSA
architecture consists of two parts: the hardware accelerator and software supports. VerSA
hardware is built upon a general systolic array that can perform matrix multiplication.
We newly introduce the intermediate paths and SRAM output buffers (IPBs) between the
group of the rows (which we call the ‘subarray’ in this paper) in the SA. For software
supports, we need to make the preloaded matrix (weight) in the condensed format similar
to that in [7] so that we can reduce the clock cycles required for sparse MM execution.
The column indices of the partial sum output matrices should also be adjusted when using
a column-wise-condensed weight matrix, and it should be added by software supports
when performing a blocked MM (i.e., when the size of the input or weight matrix is too
large to be executed in a single systolic array or a subarray).

Figure 2 depicts the overall execution flow of the VerSA architecture (A × B = C),
which is similar to the conventional SA execution flow where several steps are added for the
sparse mode supports. For the dense mode, which performs dense matrix multiplication,
our VerSA operates almost same as the conventional SA-based MM execution. However,
the following additional steps are required for sparse mode operations: (1) pre-processing
when conducting a column-wise condensing of the weights (i.e., B matrix) and (2) post-
processing for adjusting the column indices of the generated partial sum matrix (i.e.,
the partial sum of the C matrix). Column-wise condensing has the effect of removing
many of the zero-valued weights in advance. Thus, by generating and preloading the
column-wise-condensed weight matrix, our hardware can skip many ineffectual operations.
Figure 3 shows an example of the column-wise-condensed matrix generation. We first
divide the weight matrix into multiple groups of rows so that the number of rows inside
of a single group is the same as the NumRowssubarray (see Table 1 for notation). For each
group of rows, the matrix is condensed while maintaining the shape of each column within
the group (our matrix condensing method is similar to that introduced in [7], but our
method also maintains the shape of each column, which makes our hardware design less
complicated.). The original column indices are also maintained for column restoration
during the post-processing stage. As explained above, the partial sum matrices should also
be added together when performing a blocked MM; however, it is also required for the
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conventional SA, meaning that our VerSA has a negligible overhead when compared to the
conventional SA.
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Figure 2. The overall execution flow of the VerSA architecture (A × B = C). The steps from 1⃝ to 7⃝
correspond to sparse mode operations while those from a⃝ to f⃝ correspond to dense mode operations.
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Figure 3. An example of a column-wise matrix condensing with a 4 × 8 weight matrix and
NumRowssubarray = 2. The gray and white cells represent the non-zero and zero weight elements,
respectively.

Table 1. Summarization the design parameter notation in VerSA.

Description Notation Used in the Paper

Total number of rows in the SA NumRowstotal

The number of rows in a single subarray NumRowssubarray

The number of subarrays in the SA Numsubarray

The number of IPBs NumIPB = Numsubarray − 1

4.2. Hardware Architecture

VerSA hardware architecture is similar to conventional systolic arrays; however,
the key difference is an intermediate path inside the systolic array. When performing
matrix multiplication, passing the generated partial sum from the first row to the last
row takes N clock cycles in the case of N × N systolic arrays. In the case of dense matrix
multiplication, using the full datapath would be meaningful because most of the operations
are effectual during the continuous partial sum generation (i.e., the partial sum transfer
and generation from the first row to the last row). However, in the case of sparse matrix
multiplication, the rows will not be fully utilized with a very high probability. In this case,
we could perform an early termination of partial sum generation in the case where certain
rows do not need to be used.

To reduce the clock cycles needed for passing the partial sums to the lowest row in the
SA, VerSA introduces intermediate paths and SRAM output buffers between the rows in
the SA. Figure 4 shows the architecture of our VerSA with intermediate paths and buffers
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(IPBs). Firstly, we group the adjacent rows of the SA, which is referred to as ‘subarray’
(the number of rows in a single subarray is denoted as NumRowssubarray). Between the
subarrays, there is an IPB, which is composed of the intermediate output path and SRAM
buffer. If we can obtain the partial sum results from the IPBs (i.e., the ones earlier than
those that pass through all the PEs in the same column from the first row to the last row),
then we can reduce the required clock cycles for MM operation. Table 1 summarizes the
design parameters for VerSA.

Mode
selection bit

Subarray0 

Output from 
subarray 0

Subarray1 

Subarray2 

Subarray3 

Output from 
subarray 1

Output from 
subarray 2

Output from 
subarray 3

Figure 4. The hardware architecture of VerSA. The internal architecture of a single processing element
in VerSA is the same as that in the conventional SA. In the case of the dense mode, the hardware
performs the operations of Steps b⃝, d⃝, and e⃝, as shown in Figure 2. In the case of the sparse mode,
the hardware performs the operations of Steps 2⃝, 4⃝, and 5⃝, as shown in Figure 2.

The IPB consists of the output buffers and multiplexors (MUXes). To enable both
dense and sparse MMs in VerSA hardware, the mode selection bit is connected to the
MUXes in the IPBs. In the case of the dense mode, the partial sums from the upper (i.e.,
previous) subarray are selected in the MUXes and delivered to the next subarray. In this
case, the subarrays are connected via the IPBs. On the contrary, in the case of the sparse
mode, the zero values are selected in the MUXes of the IPBs, meaning that each subarray
independently operates in the sparse mode.

Passing the IPB requires one clock cycle because the partial sums should pass through
the flip-flops (FFs) inside of the IPB. Thus, for dense mode operations, we additionally
require NumIPB clock cycles in comparison to the conventional SA, where NumIPB is the
total number of the IPBs in the VerSA. Since the main goal of VerSA is to enable both
dense and sparse MM executions within a single SA, there can be a negligible performance
overhead from the additional clock cycles when considering the performance gain from the
sparse mode operations. In the case of the sparse mode, the subarrays operate separately
(i.e., operate in parallel). Thus, the number of the required clock cycles for passing the
partial sums to the output buffer in the IPBs or the last output buffer can be reduced to
NumRowssubarray + 1 (one additional clock cycle is for the IPB). Early termination in the
sparse mode could be performed by using a special purpose control signal that notifies the



Electronics 2024, 13, 1500 7 of 14

timing of the termination in the hardware accelerator. With the given input matrix (i.e., the
A matrix) dimension, condensed weight matrix (i.e., the condensed B matrix) dimension,
and the hardware design parameters shown in Table 1, the required clock cycles can be
calculated, which enables an early termination that is achieved by counting the executed
clock cycles and comparing it with the required clock cycles.

4.3. An Example of the Sparse and Dense Mode Operations

In the following subsections, we explain how the sparse and dense mode operations
are performed in detail.

4.3.1. Sparse Mode Operations

In the sparse mode, each subarray can operate independently. To accomplish it,
the IPBs between the subarrays select zero values in the MUXes. In the case of the con-
ventional systolic array, the N-th row in the SA starts the input streaming after N clock
cycles after the first row input streaming begins. On the contrary, the subarrays in VerSA
accept the input streaming independently, as shown in Figure 5. Assuming that there are
NumRowssubarray rows in a single subarray, where Numsubarray subarrays exist in the SA,
the input streaming of the K-th row within each subarray starts at K-th clock cycles. In other
words, Numsubarray rows in the SA will begin the input streaming at the same clock cycle.

Mode select=1 
(sparse mode)

0  2  0  1

0  0  3  0  0

6  0  0  0

0  5  0  4  0

0
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0
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0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
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2
3
4
5
6
7
8

Cycle:
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0
0
0
3b
0
0
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0
0
0
0
0

0
0
0
0
0
0
0
0

0  1 0  1

0 0
0  1 0  1
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0 0 0 0

X X X X

0  a  0  0
0 0 0 b
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0 b  0  0
c  0  0  0
d  0 0  0

1  0  0  4
0 3  0  0
2  0  0  5
0  0 6  0

1
3
1
1

Condensed format with 
original column indices

Original weight matrix

Weight preloading

Input streaming in 
the first subarray

Input streaming in 
the second subarray

1
2

3

3

4 Output 
(partial sum)

Figure 5. An example of sparse mode operations in VerSA.

Figure 5 demonstrates an example of the sparse mode operation of VerSA. In this
example, we use the design parameters with NumRowstotal = 4, NumRowssubarray = 2,
Numsubarray = 2, and NumIPB = 1. For the sparse mode operation, we first perform column-
wise matrix condensing (Figure 5 1⃝). The weight matrix is then preloaded (i.e., with a
weight stationary dataflow) to the SA (Figure 5 2⃝). When performing the matrix multipli-
cation, the input matrix is streamed to the subarrays (Figure 5 3⃝). As shown in Figure 5,
the subarrays operate independently as the MUXes in the IPB forcibly make the partial
sum input as zero (i.e., where zero is selected in the MUXes). After the MAC operations are
performed in the PEs, the outputs or partial sums are generated from the IPB and the last
output buffer (Figure 5 4⃝). Since the subarrays operate independently, the outputs are also
generated simultaneously from each subarray.

Since we convert the weight matrix into a condensed format, the column indices of
the partial sum matrices must also be restored to the original indices before the summation
among the partial sums. Figure 6 demonstrates the restoration of the partial sum matrices
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and summation, thereby generating the final output matrix. By referring to the original
column indices, which are stored during the matrix condensing, the column indices of the
partial sums can also be restored to generate the final output matrix.

8

Restored
partial sum
0  a  0  0
0  0  0  3b
0  2a 0  0
0  0  0  0

Restored 
partial sum
0  4d 0  0
0  0  0  0
0  5d 0  0
0  6c 0  0

+
Output matrix
0  a+4d  0  0
0    0   0  3b
0  2a+5d 0  0
0   6c   0  0

Generated
partial sum
a 0 0  0
0  3b 0 0
2a 0 0  0
0  0  0  0

Generated 
partial sum
4d 0  0 0
0  0  0 0
5d 0  0 0
6c 0  0 0

1
3
1
1

1
3
1
1

Figure 6. The restoration of the partial sum matrices and summation in VerSA, which correspond to
the operations of Steps 6⃝ and 7⃝ in Figure 2.

Since the restoration of the partial sum indices and summation of the partial sum
matrices are performed in software (i.e., not in our VerSA hardware), it incurs additional
delays; however, it could be negligible when compared to the delay of the summation
of the partial sums when performing a blocked MM. Moreover, the conventional SA will
also have a delay overhead for the accumulation of the partial sums when performing a
blocked MM. Thus, the additional delay overhead of the post-processing in VerSA would
be marginal.

4.3.2. Dense Mode Operations

In the case of the dense mode operation, our VerSA operates similarly to conventional
systolic arrays while the main difference is the consideration of the additional delay from
the IPBs. Since the IPB takes one clock cycle, the input streaming should be performed
with consideration of the fact that an additional one clock cycle will be taken from the
IPB. Thus, for the input streaming to a certain row within a subarray, N clock cycle delays
should be added when there are N IPBs above the current row. For example, as shown
in Figure 7, the input streaming of the rows in the second subarray is delayed by one
clock cycle because there is one IPB above the rows in the second subarray. Though the
remaining operations can be performed similarly to the conventional SA, there should be a
little performance overhead when compared to the conventional SA due to the additional
delay from the IPBs.

4.4. Implementation and Logic Synthesis

We have implemented our VerSA hardware architecture with a Verilog hardware
description language (HDL) and synthesized it with 32 nm process technology using Design
Compiler. The power, performance, and area (PPA) of the input and output buffers with
the SRAM cells are estimated by CACTI7 [18] and incorporated into our PPA evaluation
results. For each PE, we use an integer 8-bit MAC unit (multiplier and adder) and registers
for preloaded weights and temporarily latched partial sums and inputs. One should note
that 8-bit integer formats are widely used in DNN inference engines due to the prevalence
of quantization methods [19]. For systolic arrays, we used 128 × 128 and 256 × 256 PE
array dimensions, which are widely used in commercial systolic arrays [2]. The number
of subarrays (Numsubarray) in VerSA is set to eight for both dimensions. As summarized
in Table 2, both the conventional systolic array and our VerSA were synthesized with
a 250 MHz clock frequency. The size of the SRAM buffers for a 128 × 128 (256 × 256)
architecture is 64 KB (256 KB) for each input and output buffer. In the case of VerSA,
the output buffers are distributed across the IPBs, and the output buffer is also placed
below the last subarray. Though there could be various design choices, we evenly distribute
the output buffers to the IPBs and the last output buffer, thereby resulting in 8 KB (32 KB)
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for each IPB and last output buffer in a 128 × 128 (256 × 256) configuration. As shown
in Table 2, adding the IPB in VerSA increases the area and power consumption when
compared to the conventional SA. As a result, the 128 × 128 (256 × 256) VerSA increases
the area and power by 14.8% (12.6%) and 14.4% (11.7%), respectively, when compared to
the conventional SA with the same array dimension.

Mode select=0 
(dense mode)

4  2  5  1

1  7  6  2  0

8  6  7  3

3  5  8  4  0

0
0
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0
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66
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0
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24
0
0
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0
0
0
0
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0

Cycle: 1
2
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4
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7
8
9
10
11

Cycle:

8  7  6  5  4  3  2  1

1 cycle delay

0
0
0
0
0
0
0
25
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59
39

Output matrix
26  27  40  25
66  63 104  81
58  54  74  59
62  24  62  39

*Preloaded weights

X X X X
0  1 0  1

0 0
0  1 0  1

0 0

Figure 7. An example of dense mode operations in VerSA.

Table 2. A logic synthesis comparison of the conventional SA (Conv_SA) and VerSA.

Array Size Numsubarray Clock Frequency Design Area (mm2) Power (W)

Conv_SA N/A 19.2346 1.4145

VerSA
128 × 128

8 22.0997 1.6184

Conv_SA N/A 76.9042 5.6125

VerSA
256 × 256

8

250 MHz

86.6091 6.2699

5. Evaluation
5.1. Methodology

For cycle-level performance evaluations, we use SCALE-sim [17], which is an archi-
tectural simulator for systolic arrays. For the evaluations of VerSA, we incorporated the
cycle-level impact of the IPBs and exact cycle-level behaviors together in the simulator.
We used the synthesis results from Table 2 for the clock cycle time and power, which are
then used in the performance and energy evaluations. For the benchmarks, we used the
following various matrix multiplications from real-world DNN workloads: GPT2 [20],
GNMT [21], NCF [22], Transformer [23], ResNet-50 [24], and VGG-19 [25]. For the pur-
pose of comparison with the state-of-the-art MM accelerator, we compared our VerSA
with a row-wise sparse matrix multiplication hardware accelerator [12] with SuiteSparse
benchmarks [26].

5.2. Performance

Figure 8 summarizes the speedup results of our VerSA in comparison to the conven-
tional SA in both the sparse mode and dense mode across different sparsity levels. For the
comparison of our VerSA with the conventional SA, the same clock frequency (250 MHz)
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was used for both designs. We show the relative performance of VerSA in comparison
to the conventional SA with the metric of speedup. The speedup of VerSA against the
conventional SA (ConvSA) can be formulated as follows:

Speedup of VerSA against ConvSA =
Per fVerSA

Per fConvSA
=

ExectimeConvSA
ExectimeVerSA

, (1)

where Per fX and ExectimeX are the performance of X and the execution time of X, respectively.
In the case of the sparse mode, our 128 × 128 VerSA (256 × 256) leads to better per-

formance when compared to the conventional SA by 1.16×–1.45× (1.21×–1.60×) across
various sparsity levels. The early termination that occurs due to the IPBs in our VerSA
leads to the clock cycle (i.e., execution time) reduction that is required for the MM workload
execution. As the array size increases, the performance gain of the sparse mode is likely to
increase because it is likely to skip more rows in the case of bigger arrays; meanwhile, the
conventional SA must pass through the whole rows to generate the outputs. In the case of the
dense mode, our 128 × 128 (256 × 256) VerSA shows only a little performance overhead by
0.85% (0.52%) when compared to the conventional SA. As our model has a bigger array size
with fixed Numsubarray, the performance overhead caused by the additional IPBs is reduced.
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Figure 8. The speedup of VerSA architecture when compared to the conventional SA. SM_X%
represents the sparse mode with an X% sparsity level. DM is the dense mode. The Numsubarray is set
to eight in both 128 × 128 and 256 × 256 SA.

Table 3 shows the speedup of our VerSA against the state-of-the-art SpMM accelera-
tor [12]. In this paper, we used the same clock frequency for both the SpMM accelerator and
VerSA to compare the performance. Please note that this is a very conservative assumption
when considering the logic complexity between the two designs; our VerSA has a much
lower logic complexity than the SpMM accelerator in [12].

In the case of the large workloads with a relatively high sparsity (web-Google, mario002,
amazon0312, and m133-b2), our 128× 128 (256× 256) VerSA results in 82.8–98.0% (38.6–92.9%)
performance losses, on average, when compared to the accelerator in [12]. Since the SpMM
accelerator in [12] primarily focuses on sparse matrix multiplication, it has an advantage when
dealing with large and sparse MM workloads. However, for the rest of the workloads, our
VerSA shows a speedup of more than three times when compared to the accelerator used
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in [12]. It means that our VerSA hardware accelerator performs matrix multiplication with a
much higher versatility when compared to the SpMM accelerator.

Table 3. Speedup of our VerSA against the state-of-the-art sparse MM accelerator with a 4PE
configuration [12].

Matrix Dimension Sparsity 128 × 128 Speedup 256 × 256 Speedup

web-Google 916 k × 916 k 99.9994% 0.020 0.071

mario002 390 k × 390 k 99.9986% 0.126 0.449

amazon0312 401 k × 401 k 99.9981% 0.172 0.614

m133-b2 200 k × 200 k 99.9980% 0.154 0.552

cage12 130 k × 130 k 99.9883% 3.486 12.446

2cubes-sphere 101 k × 101 k 99.9843% 5.858 20.908

filter3D 106 k × 106 k 99.9766% 9.935 35.460

ca-CondMat 23 k × 23 k 99.9656% 23.553 83.665

wikiVote 8.3 k × 8.3 k 99.8529% 206.464 694.082

poisson3Da 14 k × 14 k 99.8179% 284.415 1,005.949

Facebook 4 k × 4 k 98.9331% 10,692.458 36,502.207

5.3. Energy

Figure 9 depicts the energy results of our VerSA relative to the conventional SA. We
present the energy consumption of VerSA relative to that of the conventional SA (ConvSA),
which can be formulated as follows:

Energy consumption of VerSA relative to ConvSA =
EnergyVerSA

EnergyConvSA
, (2)

where EnergyX is the energy consumption in the case of X.
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Figure 9. The energy consumption of our VerSA normalized to the conventional SA (=1.0). SM_X% is
the sparse mode with an X% sparsity level. DM means the dense mode.
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In the case of the sparse mode, our 128 × 128 (256 × 256) VerSA shows lower energy
consumption when compared to the conventional SA by 1.6–21.3% (7.5–30.2%) across
various sparsity levels. Despite the increased power consumption, thanks to the reduced
execution time, the total energy consumption of our VerSA is less than that of the conven-
tional SA. In the case of the dense mode, our 128 × 128 (256 × 256) VerSA consumes more
energy, by 15.4% (12.3%), when compared to the conventional SA due to the additional
clock cycles and power consumption of the IPBs.

6. Discussion
6.1. Hardware Overhead

As mentioned in Section 4.4, our VerSA hardware architecture shows power and area
overheads when compared to the conventional SA. Our VerSA hardware obviously employs
IPBs, which correspond to additional logic gates when compared to the conventional SA.
However, VerSA has several advantages over the conventional SA or SpMM hardware when
implementing a system. When integrating the intellectual properties (IPs) in a single chip
or system to execute both dense and sparse MMs, VerSA enables system implementation
with a VerSA hardware block only while also not requiring heterogeneous integration
(i.e., integrating different hardware blocks for dense MM and sparse MM). It also implies
that integration with VerSA leads to less hardware complexity and better IP reusability,
which eventually results in a cost reduction. Moreover, by enabling both dense and sparse
MMs within a single hardware, the VerSA-integrated system will have better hardware
utilization when compared to the system with heterogeneous integration. In the case of
a system with heterogeneous integration, when performing dense MM, the sparse MM
hardware block will be in the idle state, and also vice versa.

6.2. Software Overhead

VerSA requires several software supports such as weight matrix condensing and
column restoration. Weight matrix condensing requires the search of zero values in the
weight matrix, and it condenses the matrix in a column-wise manner. Performing the matrix
condensing can incur non-negligible execution time overhead. However, once the weight
matrix is preloaded into VerSA, the weights can be reused across a large number of DNN
inferences because the weights are not changed during the DNN inference. This means that
the weight matrix condensing overhead can be amortized across multiple DNN inferences,
thus resulting in negligible execution time overhead. Though the column restoration delay
overhead seems to be inevitable, the relative delay overhead of the column restoration
would also be negligible when compared to that of the partial sum matrix accumulation for
the blocked MM. As modern DNN workloads need to execute the multiplication between
operand matrices with a very large dimension (where a single MM should be executed by
multiple MM operations with the blocked operand matrices and accumulation among the
partial sum matrices), the blocked MM will be frequently executed for DNN inferences.
This means the delay overhead from the column restoration would be negligible when
running real-world DNN workloads.

6.3. Limitations of This Work

The limitations of this work can be summarized as follows:

• In the evaluation results, we only considered the hardware execution time. Though the
software execution time overhead could be marginal, as mentioned in Section 6.2, it
would also be desirable for evaluating end-to-end performance;

• Since the main contribution of this paper is to design VerSA architecture, our eval-
uation is based on cycle-level simulation and logic synthesis results. A verification
and evaluation with full system implementation and software supports (e.g., an
implementation in field programmable gate arrays) would also be interesting;

• As presented in Sections 5.2 and 5.3, our hardware architecture has inevitable per-
formance and energy overheads when performing dense MM when compared to
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the conventional SA. This is an inherent limitation that arises from the VerSA ar-
chitecture design. However, considering that the contemporary DNN models have
non-negligible sparsity, our VerSA can sufficiently compensate for the performance
and energy overheads of the dense MM.

Overcoming the limitations listed above can be an interesting future research direction,
and we have a plan to further delve into these topics as our future work.

7. Conclusions

Though conventional systolic arrays have been widely used to accelerate matrix mul-
tiplication, they are not efficient for sparse matrix multiplication (SpMM) due to their
inability to skip the ineffectual operations. To resolve this problem, many hardware ac-
celerators have been proposed, which show much better performance when compared
to the conventional systolic array when running sparse matrix multiplication workloads.
However, most SpMM hardware architectures are not suitable for dense matrix multiplica-
tion. In this paper, we propose VerSA architecture, a versatile systolic array architecture
to accelerate both dense and sparse matrix multiplications. By adding intermediate paths
and SRAM buffers (IPB), SpMM can be terminated earlier than the conventional SA, thus
accelerating SpMM. Since our architecture is built upon a systolic array, dense MM can
also be executed with negligible performance overhead. In comparison to the conventional
SA, our 256 × 256 VerSA architecture improves the performance of SpMM by 1.21×–1.60×
across various sparsity levels while there is only a 0.52% performance overhead in the case
of dense MM. In terms of energy consumption, our 256 × 256 VerSA architecture reduces
the energy consumption of SpMM by 7.5–30.2%, while there is only a 12.3% energy over-
head in the case of dense MM. DNN hardware accelerators are widely deployed in mobile
edge or embedded devices. In addition, DNN workloads are also becoming increasingly
diverse, thus necessitating the acceleration of both dense and sparse matrix multiplications.
We believe that our VerSA can be a promising alternative that can be employed for both
dense and sparse matrix multiplications with a unified hardware architecture.
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