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Abstract: WebAssembly code is designed to run in a sandboxed environment, such as a web browser,
providing a high level of security and isolation from the underlying operating system and hardware.
This enables the execution of untrusted code in a web browser without compromising the security and
integrity of the user’s system. This paper discusses the challenges associated with using fuzzing tools
to identify vulnerabilities or bugs in WebAssembly interpreters. Our approach, known as ESFuzzer,
introduces an efficient method for fuzzing WebAssembly interpreters using an Equivalent-Statement
concept and the Stack Repair Algorithm. The samples generated by our approach successfully passed
code validation. In addition, we developed effective mutation strategies to enhance the efficacy of our
approach. ESFuzzer has demonstrated its ability to generate code that achieves 100% WebAssembly
validation testing and achieves code coverage that is more than twice that of libFuzzer. Furthermore,
the 24-hour experiment results show that ESFuzzer performs ten times more efficiently than libFuzzer.

Keywords: fuzzing; WebAssembly interpreter; equivalent-statement; equivalent-exchange

1. Introduction

WebAssembly is a binary instruction format designed for a virtual machine that
operates within web browsers. It serves as a portable target for compiling high-level
programming languages, such as C/C++, Rust, Java, and others. Its interpreter is a
low-level, stack-based machine. The primary goal of WebAssembly is to offer a secure,
efficient, and platform-independent approach to executing code in web browsers (97.14%
of web browsers supported it in April 2024, see https://caniuse.com/wasm, accessed
on 11 April 2024), allowing web applications to handle computationally intensive tasks.
WebAssembly is widely supported in modern web browsers, including Chrome, Firefox,
Safari, and Edge. Its usage is becoming increasingly prevalent in various applications.
However, this exposes new attack surfaces in the browser, and errors in the WebAssembly
interpreter may result in incorrect program outputs or abnormal termination, potentially
leading to security vulnerabilities. In recent years, several security issues have been
identified, including vulnerabilities discovered by Natalie Silvanovich in Webkit [1] and
seven CVEs reported for WAVM in 2018 [2].

Fuzzing has proven to be effective at identifying vulnerabilities [3], and its application
extends to detecting vulnerabilities in WebAssembly interpreters, similar to its use in
other high-level programming languages like JavaScript and C/C++. However, disparities
emerge when comparing WebAssembly with these languages, particularly in the area of
validation. In WebAssembly, the validation process carefully evaluates each instruction
within the program input to ensure the integrity of the type and quantity of the values
present on the stack. This particular characteristic poses challenges for traditional fuzzing
methodologies, such as AFL [4] and libFuzzer [5], as generating valid testcases becomes a
more complex task. Consequently, the testing process becomes less efficient and effective,
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necessitating the exploration of alternative approaches to address this limitation within the
context of academic research.

To address this demand, we propose a fuzzing framework named ESFuzzer. The con-
tributions of our approach are as follows:

• We introduce the concepts of Equivalent-Statement and Equivalent-Exchange, along
with a novel intermediate representation to present them. These concepts provide valu-
able insights into program behavior, allowing us to optimize, transform, and analyze
programs more effectively.

• We have developed a novel algorithm called the Stack Repair Algorithm. This algo-
rithm tackles challenges associated with stack manipulation in the fuzzing process.

• We have developed a fuzzing framework called ESFuzzer and conducted an evaluation
using libFuzzer on Chrome for V8. The results demonstrate that our tool effectively
addresses the validation challenge and is more efficient than libFuzzer.

2. Background and Related Works

When conducting fuzz testing for WebAssembly interpreters, researchers encounter
several challenges. Some of these challenges arise from the fuzz testing technique itself.
Others include the execution environment and the semantic complexity of WebAssem-
bly as a low-level bytecode format, which introduce additional challenges to the testing
process. To find related works on this topic, a search was conducted using the keywords
“WebAssembly interpreter” and “fuzzing”, with the operator “AND”.

2.1. Fuzzing Overview

Fuzzing is a popular area of research that has received a lot of attention in recent years
and has proven to be effective. Previous research has applied fuzzing techniques to inter-
preters and compilers using various approaches, such as fuzzing special-purpose languages
like C [6–8] or JavaScript [9–12], as well as fuzzing general-purpose languages. The choice
of approach depends on the requirements of the target system and the availability of input
models. Additionally, language-agnostic tools have been developed, which do not make
any assumptions about the target language and are more widely applicable [12–15]. These
findings demonstrate the versatility of fuzzing techniques in identifying vulnerabilities in
a wide range of software systems.

A fuzz test begins by generating program inputs, known as testcases. The quality
of these testcases directly affects the effectiveness of the test. The inputs should meet
the program’s requirements for the input format, while also being varied enough to po-
tentially cause the program to fail. The target programs accept various inputs, such as
files with different formats, network communication data, and executable binaries with
specified characteristics.

How to generate broken-enough testcases is the main challenge for fuzzers. Van Sprun-
del [16] classified these fuzzers into two types: Generative-based and Mutation-based.

a Generative-based fuzzing: Generative-based approaches use input models such as
configuration files [6,13,14,17–21] or static analysis [22,23] to generate valid examples.
The main advantage of the generative approach is that the produced inputs are
syntactically correct by design, since the generator functions respect the underlying
syntax expected by the program under test.

b Mutation-based fuzzing: Mutation-based approaches require a valid set of initial
inputs and generate testcases by mutating these inputs. Examples of mutation-based
fuzzers include Honggfuzz [24], AFL++ [25], Collafl [26], POSTER [27], AFLFast [28],
and Angora [29], which collect metadata about the execution of a target program using
compile-time instrumentation. This classification helps us understand the different
approaches to fuzzing and their suitability for different types of software systems.

Particularly in the field of fuzz testing for interpreters or compilers, prior research has
focused on generating input samples for specific ones. Lindig’s [8] consistency checker for
the C language compiler generates C code using a small grammar and fixed test generation
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scheme. Yang et al. introduced CSmith [6], a language-specific fuzzer for testing compilers.
The paper’s primary contributions are twofold: First, it advances the state of the art
in compiler testing by creating programs that cover a large subset of C while avoiding
undefined and unspecified behaviors that could hinder the automatic detection of wrong-
code bugs. Second, it presents a collection of qualitative and quantitative results regarding
the bugs found in open-source C compilers. Ruderman’s jsfunfuzz [30] is a generation-
based fuzzer trained to handle various JavaScript language features. Domato [31] generated
samples targeting specific DOM logic issues by using HTML, CSS, and JavaScript syntax.
CodeAlchemist [32] employed a semantics-aware assembly approach to produce JavaScript
code snippets. Additionally, some works [10,15,33] have focused on the abstract syntax
tree (AST) of JavaScript, such as Park’s work [12], which introduced the concept of aspect-
preserving mutations. These techniques demonstrate the diverse approaches to fuzzing
compilers and interpreters, highlighting the importance of developing specialized fuzzers
for specific languages and systems.

Another challenge is low coverage. The aim of fuzz testing is to cover as many execu-
tion paths and code regions of the target system as possible to reveal hidden vulnerabilities.
However, real software systems are often complex, with numerous execution paths and
code branches. Several studies have explored this challenge. Skyfire [34] uses data-driven
seed generation, while Dharma [35] and F1 [36] optimize the input generation process
from the grammar itself. Vuzzer [37] extracts data-flow and control-flow features to cre-
ate a smart feedback loop, while other studies combine coverage feedback with syntax
awareness. Nautilus [18] combines coverage feedback with syntax awareness and muta-
tion operators inspired by AFL, and Zest [32] uses a Quickcheck-like [38] input generator
for coverage-guided fuzzing. Montage [39] leverages machine learning to find bugs by
combining AST fragments in unique ways.

2.2. WebAssembly Fuzzing

WebAssembly is a new technique that is currently under research with a focus on
security. Some articles [40–46] have looked into the security of WebAssembly binaries, such
as Daniel Lehmann’s Fuzzm [42], the first binary-only grey-box fuzzer for WebAssembly.
This approach uses canary-based binary instrumentation to detect overflows and under-
flows on the stack and heap. Other approaches [47–49], such as that by Dwfault [47], have
introduced a mechanism of hierarchical variation and instruction correction based on AFL,
which partly solves the problem of syntax validation but introduces a large number of nop
instructions that can break the program’s logic. Researches [50,51] focus on WebAssembly
interpreters in smart contracts. Paper [50] designed and implemented WASAI, a new
concolic fuzzer for uncovering vulnerabilities in WebAssembly smart contracts. Paper [51]
implemented a grey-box fuzzer called GFuzzer based on WebAssembly for smart contracts
on the EOSIO platform considering that EOSIO contracts are not open-sourced.

In addition to smart contracts, WebAssembly is also widely used in web browsers
like Firefox, Safari, and Chrome. These browsers come pre-installed with a WebAssembly
interpreter. However, there is a lack of research on fuzz testing the WebAssembly interpreter
in browsers.

2.3. Understanding WebAssembly

WebAssembly is a binary instruction format specifically designed for a stack-based
virtual machine. This enables the execution of code written in multiple languages on the
web at nearly native speed, making it possible for client applications that were previously
unable to be run on the web. WebAssembly programs are usually written in high-level
programming languages like C/C++ and Rust, or in text format, and then compiled into a
binary format for distribution on a web server.

WebAssembly has two concrete representations: One is a compact binary format that
uses the extension ".wasm". ".wasm" is the typical distribution format for WebAssem-
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bly code, and it has a human-readable text format with the extension ".wat" (short for
"WebAssembly Text Format").

In both binary and textual formats, the fundamental unit of code in WebAssembly is a
module. In textual format, a module is represented as a large S-expression, as shown in
Listing 1. A module contains definitions of types, functions, tables, memories, and globals.

Listing 1. A WebAssembly program in text format.

1 (module
2 (func (export "addTwo") (param i32 i32) ( result i32)
3 local . get 0
4 local . get 1
5 block
6 . . .
7 block
8 . . .
9 end

10 . . .
11 end
12 i32 .add
13 )
14 )

Before a WebAssembly program execution, it is validated by an interpreter. Valida-
tion of the WebAssembly code is crucial in the execution process, as it ensures that only
valid programs can be instantiated. In contrast to traditional programming languages,
WebAssembly’s validation procedure extends beyond syntax analysis. This is due to its
stack-based virtual machine design, which necessitates the validation of both syntax and
the validity of the operands stored on the stack. As a result, the WebAssembly inter-
preter ensures not only the syntactic correctness of the code, but also its semantic integrity
and security.

The validation algorithm of WebAssembly uses two distinct stacks: a value stack and
a control stack. The value stack keeps track of the types of operand values on the stack,
while the control stack manages structured control instructions and their associated blocks.

When a value is pushed, its type is recorded on the value stack. If the type is unknown,
it is marked as “Unknown”. When a value is popped, the stack checks that it does not
cause underflow in the current block, and then removes one item. This ensures that the
program is semantically correct and that the values are of the expected type.

Upon successful validation, a WebAssembly program proceeds to execution within
the WebAssembly interpreter. The execution process involves several essential steps:

i Virtual Machine (VM) Initialization: the interpreter initializes the WebAssembly VM
and sets up the stack, which serves as a storage mechanism for instruction operands.

ii Instruction Parsing: the WebAssembly VM reads and parses instructions from the
program, extracting opcodes, operands, and relevant information.

iii Instruction Execution: the VM executes the corresponding operation based on the
opcode and operand, performing the required computation.

iv State Management: after executing an instruction, the VM updates various com-
ponents, such as program counters, stacks, and other relevant state information,
to ensure the continuity of the execution process.

v Control Flow Handling: The interpreter manages the program’s control flow by
handling branching, looping, and function calls. It keeps track of program counters
and manages conditional and unconditional jumps to different program sections.
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3. Conception

Before delving into our proposed methodology, it is imperative to establish a concep-
tual foundation by formally defining several key notions that underpin the methodologies
presented in the subsequent sections.

Definition 1. The Effect-Array use to represent the effect of an instruction on the stack. We can
use a two-dimensional array denoted as E. This array encompasses the impact of instructions on the
stack, considering both outgoing and incoming operands. Specifically, we define “O” as the outgoing
array and “I” as the incoming array. These arrays represent the types and orders of operands in
an instruction. The term “on” denotes the type of the nth outgoing operand, while “in” denotes
the type of the nth incoming operand. Currently, there are only four available number types in
WebAssembly: i32, f32, i64, and f64.

E = [O, I], O = [o1, o2 . . . on], I = [i1, i2 . . . in]

on, in ∈ {i32, f 32, i64, f 64}

By utilizing this two-dimensional array E, we can capture and analyze the stack
behavior that results from the execution of instructions. This representation enables us
to compare and assess the impact of different instructions on the stack. It helps identify
appropriate replacements and ensures the preservation of stack integrity throughout the
program’s execution.

For instance, as shown in Figure 1, the instruction i32.add removes two operands
of type i32 from the stack, computes their sum, and then places the resulting value (of
type i32) back onto the stack. Therefore, the Effect-Array for i32.add can be represented as
E(i32.add) = [[i32, i32], [i32]]. This indicates that the instruction requires two i32 operands
as inputs and generates a single i32 value as the output.

Figure 1. Schematic diagram of the stack operation of i32.add.

For a given code block, such as Listing 2, the signature of the code block indicates that
it requires two i32 parameters and returns an i32 result. Based on this information, we
determine that the Effect-Array is E(block) = [[i32, i32], [i32]].

Listing 2. WebAssembly code block.

1 (block (param i32 i32) ( result i32)
2 local . get 0
3 local . get 1
4 i32 .add
5 )
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Definition 2. An Equivalent-Statement is a set of instructions or code blocks that produce the
same Effect-Array.

An instruction or code block can be considered equivalent if it has the same char-
acteristics in terms of the type, number, and order of its input and output operands on
the stack. This equivalence ensures that replacing one statement with another from the
set of Equivalent-Statements maintains the stack behavior and overall functionality of
the program.

As previously noted, the i32.add instruction and the code block in Listing 2 produce
identical Effect-Arrays [[i32, i32], [i32]], demonstrating their equivalence. So, we can say
that i32.add and the code block in Listing 2 belong to the same Equivalent-Statement.

Based on the impact of instruction and the code block on the stack, we can classify
Equivalent-Statement into three categories:

• Expanded Statement: statements have more out-stack operands than in-stack operands
(len(O) > len(I)), which causes an increase in the stack when inserted into a program.

• Common Statement: statements have an equal number of out-stack and in-stack
operands (len(O) = len(I)), resulting in no change to the stack.

• Contracted Statement: statements have fewer out-stack operands than in-stack operands
(len(O) < len(I)), resulting in a reduction in the stack when inserted into a program.

In program structure, we often observe the following pattern: At the outset, there
are numerous Expanded Statements that push a large number of operands onto the stack.
Common Statements are interspersed throughout the program to represent routine compu-
tations. Towards the end, there are Contracted Statements that consume the stack, leaving
only the correct number and type of operands.

By categorizing Equivalent-Statements into these groups, we can easily manage their
effects on the stack and streamline the generation of Equivalent-Statements in a program.

For the sake of simplicity, we developed a compact intermediate representation (IR) to
depict Equivalent-Statements. An IR instruction looks like this:

IR.OP O : [o1, o2 . . . on], I : [i1, i2 . . . in]

For example, an intermediate instruction with the format IR.OP O:[i32, i32], I:[i32]
denotes an Equivalent-Statement that pops out two operands of type i32 from the stack
and pushes one operand of type i32 back, such as i32.add or i32.sub.

Definition 3. The Equivalent-Exchange involves replacing an instruction or code block with any
statement from its corresponding Equivalent-Statement, while maintaining the stack configuration
of the program.

This replacement does not alter the stack behavior or the overall functionality of the
program, and it provides valuable flexibility in code transformations and optimizations. It
also enables the generation of diverse testcases while maintaining the desired stack behavior.
This technique plays a crucial role in generating and mutating testcases for fuzzing.

4. Stack Repair Algorithm

As mentioned earlier, the WebAssembly interpreter conducts the validation process
before the program execution. This verification ensures that the type and quantity of values
on the top of the stack are congruent with the corresponding instructions. Only samples
that pass this validation check are allowed to proceed to the execution phase, while those
that fail are rejected. In response to this, we developed a methodology known as the Stack
Repair Algorithm, with the goal of improving the success rate of the validation check for
the provided samples.

The Stack Repair Algorithm is used to restore the correct stack state after generation
or mutation. This was implemented to ensure that the sample passed validation by the
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WebAssembly interpreter. This was accomplished by calculating the Effect-Array of each
Equivalent-Statement in the sample.

Algorithm 1 presents a systematic approach to stack repair that involves maintaining a
virtual stack. At the beginning, the algorithm initializes the virtual stack to match its initial
state. Subsequently, it iterates through each statement in the queue, individually evaluating
the correctness of the current stack state in relation to the statement’s Effect-Array.

To verify the correctness of the stack state, the algorithm compares the virtual stack
with the expected Effect-Array associated with the statement. If the virtual stack aligns
with the expected Effect-Array, the algorithm proceeds to the next step. If the virtual stack
does not match the expected Effect-Array, the algorithm initiates a repair process to indicate
an incorrect stack state.

Algorithm 1 Stack Repair

Input: ops
Output: ops

1: virtual_stack = initStack()
2: for op in ops do
3: if staticCheck(virtual_stack, op) then
4: continue
5: else
6: repair(ops)
7: end if
8: end for

During the stack repair process, two main situations may require fixing:

• If the number of operands on the stack is less than what the next statement requires,
the algorithm can insert the necessary statement to push the required number of
operands onto the stack.

• If the type or order of the operands on the stack is incorrect or does not match what the
next statement expects, the algorithm needs to perform a stack rollback. This involves
locating and modifying the statement that pushed the incorrect operand onto the
stack. Once the correct operand is pushed, the stack can be rolled forward to resume
normal execution.

The first case is simpler and does not require an example, whereas the second case is
more specific. Therefore, an instance will be provided.

Listing 3 contains a code error on line 4. The WebAssembly interpreter validation will
detect an error because for IR.OP O:[[i64,i64], I:[i64]] requires two i64 operands, but the
current stack only contains i32 and i64 operands. To fix this issue, stack rollback is necessary,
which can be achieved by reversing the execution order of statements and the outgoing
and incoming operands.

Starting from line 4, the algorithm first clears the temporary stack and then adds the
two i64 operands to it. On line 3, an i64 is taken from the stack and placed into the stack as
an i32. The stack now holds [i64, i32]. Line 2 removes an i32 from the stack, leaving only
[i64]. The error occurred due to a type mismatch. We remove i64 and replace it with i32 in
the stack. The operation should be reversed, resulting in IR. OP O:[i32], I :[i64]. The final
result is displayed in Listing 4.

Listing 3. IR code fragment before repair.

1 IR .OP O: [ ] , I [ i32 ] ; ; stack [ i32 ]
2 IR .OP O: [ ] , I [ i32 ] ; ; stack [ i32 , i32 ]
3 IR .OP O: [ i32 ] , I [ i64 ] ; ; stack [ i32 , i64 ]
4 IR .OP O: [ i64 , i64 ] , I [ i64 ] ; ; error !
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Listing 4. IR code fragment after repair.

1 IR .OP O: [ ] , I [ i32 ] ; ; stack [ i32 ]
2 IR .OP O: [ i32 ] , I [ i64 ] ; ; stack [ i64 ] insert here !
3 IR .OP O: [ ] , I [ i32 ] ; ; stack [ i64 , i32 ]
4 IR .OP O: [ i32 ] , I [ i64 ] ; ; stack [ i64 , i64 ]
5 IR .OP O: [ i64 , i64 ] , I [ i64 ] ; ; stack [ i64 ]

5. ESFuzzer

After discussing the main concepts and algorithm proposed in this paper, we will now
shift our focus to our tool, ESFuzzer. In this section, we will provide a detailed overview of
the architecture and implementation of ESFuzzer.

5.1. Overview

ESFuzzer ’s workflow is illustrated in Figure 2 and comprises three phases, Gener-
ation, Mutation, and Execution. In the Generation phase, ESFuzzer randomly combines
intermediate instructions from Corpus to create an intermediate program and send it to
the next phase. During the Mutation phase, ESFuzzer mutates the intermediate programs
based on the mutation strategy we designed and the process information obtained from
the Execution phase; subsequently, ESFuzzer repairs the results using the Stack Repair
Algorithm and translates them into a WAT format script for compilation and execution.
Finally, in the Execution phase, ESFuzzer monitors the execution of the WebAssembly
interpreter and collects test samples that can trigger a crash or explore new paths.

Figure 2. Main workflow of ESFuzzer.

Listing 5 presents a real-world test case generated by ESFuzzer based on Listing 4. It
is executable by the WebAssembly interpreter.
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Listing 5. A real-world test case generated by ESFuzzer.

1 (module
2 (func (param i32 i32) (param i64)
3 i32 . const 18103
4 i64 .extend_i32_s
5 i f ( result i32) ; ; label = @1
6 i32 . const 20160
7 else
8 i32 . const 7257
9 end

10 i64 .extend_i32_u
11 i64 . sub
12 )
13 (export "main" (func 0))
14 )

5.2. Corpus

Furthermore, we establish a corpus to store the associations between IR instructions
and WebAssembly statements. Each IR instruction is associated with a set of WebAssembly
instructions or code blocks. This corpus facilitates efficient translation and ensures the
accurate representation of IR instructions in WebAssembly during the Generation and
Mutation processes.

ESFuzzer uses the corpus to store code snippets as input. The corpus is sourced from
two places: the internet, where code snippets are obtained from public repositories, forums,
blogs, and documentation, and refined samples that trigger new paths or crashes.

5.3. Generation

During the Generation phase, the tool randomly combines intermediate instructions to
create a program. This process involves selecting instructions from a pool of available op-
tions and arranging them in a sequence. The resulting program may contain inconsistencies
or errors in the stack behavior.

To tackle these issues, we implement our Stack Repair Algorithm. The algorithm
systematically analyzes the generated program, checking the correctness of the stack state
at each statement based on the expected Effect-Array. If any inconsistencies or errors are
detected, the algorithm performs repairs to align the stack state with the expected behavior.

5.4. Mutation

During the Mutation phase, the tool uses three important mutation methods to modify
the IR program, based on program information received from the executor. These methods
play a crucial role in the program’s transformation process.

5.4.1. Statement-Based Mutation

The statement-based mutation offers three options for modifying programs:

• The first option involves exchanging the WebAssembly instructions or code blocks
that correspond to the same IR instructions. This allows for the replacement of specific
sections of the program while maintaining the overall structure and behavior.

• The second option is to randomly mutate the operands within the IR instructions. This
involves modifying the values or variables used in the IR instructions
(e.g., IR.OP[[], [1]]− > IR.OP[[], [978]]), introducing variations in the program’s data
flow and computation.

• The third option combines both the exchange of WebAssembly instructions or code
blocks and the random mutation of operands within the IR instructions. This compre-
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hensive approach allows for a wider range of modifications to the program, increasing
the potential for creating new and diverse program instances.

By offering these three options, statement-based mutation provides flexibility for modify-
ing programs, facilitating the exploration of different program configurations and behaviors.

5.4.2. Size-Based Mutation

To effectively manage program complexity, we employ three categories of Equivalent-
Statements as discussed in Section 3: Expanded Statement, Common Statement, and Con-
tracted Statement.

To increase the complexity of a program, we can add more Expanded Statements at
the beginning or introduce Common Statements in the middle. Conversely, reducing the
number of Expanded Statements decreases program complexity. These strategies enable
the fine-tuning of the complexity of the program’s computation and control flow.

5.4.3. Control Flow-Based Mutation

In the representation of a WebAssembly module, it is typically expressed as a single
S-expression (https://en.wikipedia.org/wiki/S-expression, accessed on 11 April 2024).
Within this S-expression, functions are defined, and each function contains a sequential list
of instructions in its body. This structure enables the modification of the program’s control
flow by altering the sequence of IR instructions.

By rearranging the order of IR instructions within the linear list of instructions in
a function’s body, we can effectively modify the program’s control flow. This flexibility
enables us to rearrange the execution order of instructions and introduce conditional
branching, or implement loops, among other control flow modifications.

This trade-off, in which the instruction sequence of the IR is modified to reflect
changes in the program’s control flow, allows for dynamic and flexible program execution.
By manipulating the instruction sequence in the IR, we can customize the program’s
behavior and achieve the desired control flow patterns within the WebAssembly module.

6. Evaluation

In this section, we will assess our approach by addressing three questions:

• RQ1: Did our tool effectively meet the validation challenge?
• RQ2: Has the code coverage improved with our tool?
• RQ3: Has the efficiency of fuzzing improved with the use of our tool?

6.1. Experimental Setup
6.1.1. Contrast

Coverage-guided fuzzing (CGF) is a powerful testing technique for identifying a
wide range of bugs in software applications. One of the most well-known tools based
on CGF is libFuzzer, an in-process, coverage-guided, evolutionary fuzzing engine. Due
to its in-process nature, libFuzzer enables rapid testing speeds, and its coverage-guided
approach makes the testing process highly efficient. As a result, libFuzzer is a powerful tool
that has helped uncover thousands of bugs in real-world programs. To ensure an accurate
evaluation of our approach, we chose libFuzzer as our experimental control.

6.1.2. Repetitions and System Configuration

To address the variability in results stemming from the inherent non-determinism of
fuzzing, we conducted three rounds of fuzzing on the WebAssembly interpreter in V8 using
both ESFuzzer and libFuzzer [5]. The experiments were conducted using two machines,
each equipped with an Intel Core i7-6700 four-core eight-thread CPU running at 3.4 GHz,
64 GB of RAM, and Ubuntu 20.04 LTS. For libFuzzer, we used LLVM version 13.0.0, and for
V8, the version was 9.2.88.

https://en.wikipedia.org/wiki/S-expression
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Additionally, to maintain consistency in our experimental design, we limited the use of
libFuzzer to the WebAssembly module of V8. Using it directly on V8 would introduce muta-
tions that are inconsistent with our research goals. Fuzzing the WebAssembly module with
libFuzzer allowed us to take full advantage of its in-process and coverage-guided features.
This ensured that any discrepancies between the results of ESFuzzer and libFuzzer were
attributable to variations in the fuzzing techniques rather than the execution environment.
To prepare for our experiments, we made some modifications to the V8 codebase:

• We replaced the default LLVM compiler used by V8 with a complete version to ensure
the proper functionality of libFuzzer. We disabled the Chrome Clang plugin by
setting the “clang_use_chrome_plugins” flag to false, as it could potentially cause
compatibility issues with the tool.

• We modified the entry process to work with libFuzzer, which is designed as a li-
brary. To accomplish this, we removed the link to the V8/test/fuzzer/fuzzer.cc
file and added the “fsanitize=fuzzer” compiler option in the ninja build file “ob-
j/V8_simple_wasm_fuzzer.ninja”. This enabled libFuzzer to exclusively work with
the WebAssembly V8 module without interfering with other parts of the V8 codebase.

6.2. Results and Analysis

RQ1: Did our tool effectively address the validation challenge?

The “WebAssembly.validate()” (https://developer.mozilla.org/en-US/docs/WebAs
sembly/JavaScript_interface/validate, accessed on 11 April 2024) function is commonly
used in WebAssembly testing and evaluation to verify the successful validation of code
for testcases. This function accepts a WebAssembly binary as input and returns a Boolean
value indicating whether the binary is valid or not. By using this method, we can guarantee
that programs are free of syntax errors or other issues that could lead to test failures.
The validation process helps ensure the integrity and correctness of the WebAssembly
programs being evaluated, ensuring their compliance with the WebAssembly specification.

In order to enhance the statistical significance of the results and minimize the impact of
chance, we conducted three rounds of 24 h experiments. We counted the number of samples
generated and the number of valid samples in each round, and the results are presented
in Table 1. It is noteworthy that every sample generated by ESFuzzer successfully passed
the validation process conducted using the JavaScript API function. This result indicates
that ESFuzzer was successful in producing valid and syntactically correct testcases that
comply with the requirements of the JavaScript API. This validation step instills confidence
in the quality and reliability of the generated samples, further supporting the effectiveness
of ESFuzzer in producing valid test inputs.

Table 1. Code validation results (3 × 24 h).
Total Valid Percent

No. 1 960,516 960,516 100%
No. 2 957,050 957,050 100%
No. 3 975,717 975,717 100%

RQ2: Has the code coverage improved with our tool?

To assess the impact of ESFuzzer on enhancing code coverage, we utilized the llvm-cov
component. Table 2 summarizes the results of the analysis, presenting the four statistics for
particle size in the first four rows.

https://developer.mozilla.org/en-US/docs/WebAssembly/JavaScript_interface/validate
https://developer.mozilla.org/en-US/docs/WebAssembly/JavaScript_interface/validate
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Table 2. The code coverage and crash results (3 × 24 h).

ESFuzzer libFuzzer
Level Total

Number Percent Number Percent

lines 11,280 4244 37.62% 2359 20.91%
regions 17,366 4324 24.90% 1677 9.66%

branches 9152 2512 27.45% 940 10.27%
functions 908 455 50.11% 202 22.25%

Average 35.02% 15.78%

Table 2 demonstrates that ESFuzzer achieved twice the coverage advantage of Lib-
Fuzzer over three 24 h sessions in terms of code coverage across all categories, including
lines, regions, branches, and functions. This indicates that ESFuzzer explored a larger
portion of the codebase compared to LibFuzzer.

RQ3: Has the efficiency of fuzzing improved with the use of our tool?

To compare the efficiency of the two fuzzers, we assessed their average sample size
and execution rate in the experiment. These metrics provide insights into the performance
and resource utilization of the fuzzing processes.

The average sample size indicates the size of the testcases or inputs generated and
used by the tools during the experiment. It serves as an indicator of the complexity and
diversity of the test inputs generated by each tool. A larger average sample size indicates
that the tool has explored a broader range of potential inputs, which could potentially result
in better code coverage and bug detection.Therefore, we calculated the average sample size
hourly and present the results in Appendix A.

Figure 3 illustrates the variation in the average sample size over time. The results
for libFuzzer (Figure 3a) indicate an initial increase of 131.4 bytes per second, followed by
a gradual decrease. This decline can be attributed to the fact that after 4 h, the samples
generated by libFuzzer were no longer able to trigger new paths in the WebAssembly
interpreter, and therefore could not generate any more complex code.

(a) libFuzzer (b) ESFuzzer

Figure 3. The average sample size during 24 h of fuzzing on the x-axis, with the corre-
sponding values plotted on the y-axis. The graph displays the fitted curve with confidence
limits (darker pink) and prediction limits (lighter pink) for the 24 h period.

In contrast, ESFuzzer (see Figure 3b) outperformed libFuzzer, achieving an average
sample size change of approximately 1980 bytes per second. ESFuzzer’s mutation strategy
was designed to maintain the stability of the average sample size, ensuring the complexity
of the samples and the possibility of triggering new paths.

The execution rate measures the speed at which the tools execute testcases. It quantifies
the number of testcases processed or executed per unit of time. A higher execution rate
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indicates greater efficiency in processing testcases, enabling more thorough exploration of
the target system within a given time frame.

Table 3 compares the efficiency of libFuzzer and ESFuzzer based on the average sample
size and execution rate metrics.

The table shows that libFuzzer generated 0.17 GB, 0.16 GB, and 0.19 GB of valid
samples in three separate measurements, while ESFuzzer generated significantly larger
average sample sizes of 1.77 GB, 1.76 GB, and 1.81 GB. The variation in the valid sample size
between the two tools can be attributed to ESFuzzer achieving a larger average sample size
compared to libFuzzer. This suggests that ESFuzzer explored a broader range of potential
inputs, potentially resulting in improved code coverage and bug detection.

Table 3. The total sample size and execution rate of libFuzzer and ESFuzzer, measured in
gigabytes (GB) and bytes per second (B/s), respectively.

Total Sample Size (GB) Exec Rate (B/s)

ESFuzzer libFuzzer ESFuzzer libFuzzer

No. 1 1.77 0.17 21,939 2120
No. 2 1.76 0.16 21,833 1954
No. 3 1.81 0.19 22,571 2327

Average 1.78 0.17 22,114 2133

Table 3 shows that libFuzzer had execution rates of only 2120 bytes, 1954 bytes,
and 2327 bytes per second in the three experimental runs. In contrast, ESFuzzer achieved
much higher execution rates of 21,939 bytes, 21,833 bytes, and 22,571 bytes per second.
These results suggest that ESFuzzer outperformed libFuzzer in terms of execution speed,
allowing for more efficient processing of testcases and exploration of the target system
within a specified time frame.

Overall, the results presented in Table 3 indicate that ESFuzzer outperformed libFuzzer
in terms of sample quality, as demonstrated by the larger average sample size and execu-
tion rate. ESFuzzer generated significantly larger valid samples and demonstrated faster
execution rates, indicating improved performance and efficiency compared to libFuzzer.

7. Conclusions

This paper presents ESFuzzer as a solution to the challenges of fuzzing WebAssem-
bly interpreters. The first challenge addressed is the inefficiencies in the execution of
fuzzing tests caused by WebAssembly’s static checking mechanism. The second challenge
addressed is the low coverage problems caused by the lack of a targeted mutation strategy.

This paper proposes an algorithm called the Stack Repair Algorithm that can effec-
tively address the challenges of WebAssembly’s interpreter static validation mechanism.
Additionally, three mutation strategies based on the concepts of Equivalent-Statement and
Equivalent-Exchange are designed to increase the complexity of testcases and improve code
coverage. The evaluation results demonstrate that the proposed approach outperforms
libFuzzer in several aspects.

Although our scheme effectively addresses the first challenge, it only partially ad-
dresses the second challenge and does not completely solve the problem. Therefore, future
research should focus on improving the efficiency of fuzzing WebAssembly interpreters by
increasing code coverage.
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Appendix A

To enhance the statistical significance of the experimental results and minimize the
impact of chance, we conducted three 24 h rounds of experiments and calculated the
average sample size generated per hour. This approach enabled us to better comprehend
the variability and randomness inherent in the experiment, aiding in the determination
of the authenticity of observed effects and the evaluation of the experimental results’
credibility. After conducting experiments for 24 h, variations in the mean at different time
points could be observed, as shown in Table A1.

Table A1. The average sample size was measured during the fuzzing test using both
libFuzzer and ESFuzzer.

ESFuzzer libFuzzer

No. 1 No. 2 No. 3 No. 1 No. 2 No. 3

0:00 2010.19 1988.26 1947.13 129.01 128.85 130.78
1:00 1951.22 2045.11 1974.76 129.85 129.83 130.03
2:00 1890.35 1955.71 2005.04 130.37 130.50 130.29
3:00 2081.00 1969.34 1961.12 131.14 131.23 131.24
4:00 2067.74 1989.52 1986.56 131.04 131.03 131.05
5:00 1990.67 1878.36 1894.70 130.10 130.35 130.14
6:00 2008.66 1975.41 1906.67 129.74 129.98 129.99
7:00 1988.79 1999.17 2031.58 129.10 129.29 129.26
8:00 1987.29 2068.14 1895.87 128.75 129.00 128.95
9:00 2073.54 1989.51 1985.09 128.60 128.62 128.60

10:00 2027.47 2009.11 2086.80 128.36 128.50 128.37
11:00 1903.81 2058.28 1951.70 128.31 128.36 128.36
12:00 1840.19 2038.37 2004.77 128.17 128.25 128.22
13:00 1916.38 1959.31 2042.05 128.07 128.16 128.15
14:00 1893.98 1911.15 2005.71 128.00 128.01 128.01
15:00 1996.16 1917.37 1911.74 127.89 127.93 127.94
16:00 1907.07 1965.20 2027.69 127.77 127.82 127.83
17:00 1929.54 1980.80 1986.80 127.65 127.73 127.69
18:00 1974.43 1946.88 2023.53 127.45 127.54 127.51
19:00 2037.25 1988.92 1965.01 127.22 127.25 127.26
20:00 1960.79 2023.85 2025.14 127.01 127.07 127.05
21:00 2023.16 2017.07 2087.93 127.00 126.98 127.03
22:00 1990.75 1963.74 1932.69 126.82 126.90 126.85
23:00 1976.95 1952.01 2024.20 127.54 127.66 126.54
24:00 2001.27 2042.55 2051.16 126.58 127.02 127.13
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