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Abstract: With the rapid development of science and technology, uncrewed aerial vehicle (UAV)
technology has shown a wide range of application prospects in various fields. The accuracy and
real-time performance of UAV target detection play a vital role in ensuring safety and improving the
work efficiency of UAVs. Aimed at the challenges faced by the current UAV detection field, this paper
proposes the Gathering Cascaded Dilated DETR (GCD-DETR) model, which aims to improve the
accuracy and efficiency of UAV target detection. The main innovations of this paper are as follows:
(1) The Dilated Re-param Block is creatively applied to the dilatation-wise Residual module, which
uses the large kernel convolution and the parallel small kernel convolution together and fuses the
feature maps generated by multi-scale perception, greatly improving the feature extraction ability,
thereby improving the accuracy of UAV detection. (2) The Gather-and-Distribute mechanism is
introduced to effectively enhance the ability of multi-scale feature fusion so that the model can make
full use of the feature information extracted from the backbone network and further improve the
detection performance. (3) The Cascaded Group Attention mechanism is innovatively introduced,
which not only saves the computational cost but also improves the diversity of attention by dividing
the attention head in different ways, thus enhancing the ability of the model to process complex
scenes. In order to verify the effectiveness of the proposed model, this paper conducts experiments
on multiple UAV datasets of complex scenes. The experimental results show that the accuracy of the
improved RT-DETR model proposed in this paper on the two UAV datasets reaches 0.956 and 0.978,
respectively, which is 2% and 1.1% higher than that of the original RT-DETR model. At the same time,
the FPS of the model is also improved by 10 frames per second, which achieves an effective balance
between accuracy and speed.

Keywords: UAV detection; DETR; attention mechanism; multi-scale fusion

1. Introduction

With the development of uncrewed aerial vehicle (UAV) technology and its wide
application, how to effectively monitor and control the flight of UAVs has become an
important topic. The flight of UAVs may affect airspace security, civil aviation, military,
government, public facilities, personal privacy, etc. And it may even be used for illegal or
malicious purposes [1]. In military terms, UAV detection can help the military find and
lock the enemy’s UAV or other targets [2] for accurate attack or interception. It can also
help the military protect its own UAV from being found or interfered with by the enemy
and improve the effectiveness and security of surveillance [3]. In areas such as airports,
drone detection can help airports prevent drones from entering no-fly areas and causing
flight delays or hazards. UAV detection can also help the airport to monitor and manage
UAV activities around the airport and maintain the order and safety of the airspace [4].
In areas with high confidentiality, such as government agencies or military bases, UAV
detection can help government agencies prevent UAV snooping or threats to important
people or occasions and protect the interests and security of the country [5]. Therefore,
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UAV detection is a key technology that can help us find, locate, track, and manage UAVs to
protect the interests and security of society and the country [6].

Traditional UAV detection methods mainly include methods based on radar, acous-
tic waves, electromagnetic, optical, infrared, and other sensors, but they all have some
shortcomings. For example, the disadvantage of radar is that it is easily affected by electro-
magnetic interference or reflection, and the disadvantage of an acoustic wave is that it has
a small detection range and is easily affected by environmental noise or wind speed [7].
The disadvantage of electromagnetic interference or reflection is that its detection range is
limited by signal strength and frequency, and it is vulnerable to encryption or spoofing [8].
The disadvantage of infrared is that its detection is affected by ambient temperature and
humidity, and it requires complex temperature calibration and analysis [9]. Therefore,
optical image-based detection methods can be used, and UAV detection methods using
image detection have many advantages that make them highly favored in various applica-
tion scenarios. For example, it can automate the monitoring process of the UAV and also
achieve accurate target detection and positioning in complex environments. Image-based
detection methods can be adjusted and optimized according to different environments and
weather conditions to ensure that UAVs can be effectively detected in various complex
environments [10]. This adaptability makes the image detection system widely applicable
in diverse application scenarios.

By using advanced object detection algorithms, we will be able to detect and identify
various types of UAVs more accurately, including small UAVs and high-speed vehicles.
This will not only help improve public safety but also promote the sustainable development
and application of UAV technology. UAV detection can help regulators detect and respond
to potential UAV threats in time to protect people’s lives and property. In the field of
commercial applications, it can provide UAV operators with more reliable monitoring
and management solutions to help them better plan flight paths and avoid collisions and
unexpected events between UAVs.

With the continuous development of machine learning and computer vision algo-
rithms, image-based detection techniques are constantly improving. Object detection
models such as Faster R-CNN [11], You Only Look Once (YOLO) family [12], SSD [13],
Mask R-CNN [14], RetinaNet [15], and EfficientDet [16] have been widely used and studied
in various object detection. However, these object detection models are rarely used in UAV
detection, which has only been commonly used in the last two years and is still limited by
factors such as data scarcity, complex environments, diversity of target categories, com-
putational resource requirements, and legal and privacy issues. UAV detection involves
various UAV morphologies, complex environmental conditions, and challenges such as
data acquisition and privacy protection. More research and resource investment are needed
to realize its wide application in practice.

In recent years, some works have been applied to UAV detection. The Facebook AI
research team proposed Detection Transformer (DETR) in 2020 [17]. The model uses the
Transformer architecture for object detection and realizes object detection and recognition
in an end-to-end manner without the use of traditional techniques such as prior boxes and
non-maximum suppression. The proposed DETR model has attracted extensive attention
and achieved remarkable results in the field of object detection. In 2023, Tushar Sangam et al.
improved DETR and Dogfight [18] and applied them to UAV detection. They proposed a
simple and effective improved DETR framework TransVisDrone [19], providing an end-to-
end solution with higher computational efficiency. The CSPDarkNet-53 network is used
to learn the spatial features related to the target. Then, the VideoSwin model is used to
understand the spatio-temporal dependencies of the UAV motion to improve the detection
ability of the UAV in challenging scenes.

At present, there is a lot of work on designing efficient DETR-based models that are
applied to other object detection tasks. However, the high computational cost of these
schemes limits the practical application of DETR, which cannot make full use of its ad-
vantages, such as non-maximum suppression (NMS). In 2023, Wenyu Lv proposed the
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real-time detection transformer (RT-DETR) [20], a real-time end-to-end object detector. In
particular, they designed an efficient hybrid encoder to process multi-scale features effi-
ciently by decoupling intra-scale interactions and cross-scale fusion. RT-DETR outperforms
comparably sized state-of-the-art YOLO detectors in both speed and accuracy. At the same
time, Xinyu Liu et al. [21] proposed a new Attention mechanism called Cascaded Group
Attention to solve the problems of computational efficiency and attention diversity in vision
transformers. By providing different input data segmentation for each attention head, the
Cascaded Group Attention reduces computational redundancy and improves attention
diversity. Haoran Wei et al. proposed the DWRSeg network [22] in 2023 to address the
efficiency of capturing multi-scale context information in real-time semantic segmentation.
They designed the dilatation-wise Residual module, which employs a well-designed two-
step feature extraction method aimed at capturing multi-scale information efficiently. The
module effectively obtains multi-scale context information through region residualization
and semantic residualization. Chengcheng Wang et al. [23] improved feature fusion by
globally integrating features from different levels using convolution and self-attention oper-
ations. They injected global information into features at various levels, thereby enhancing
information fusion capability. We are inspired by these works to propose the Gathering
Cascaded Dilated DETR (GCD-DETR) model for UAV detection, and we primarily make
the following contributions:

(1) First, we propose the DWR-DRB Module, which applies Dilated Re-param Block
in the Dilatation-Wise Residual module, uses large kernel convolution with parallel small
kernel convolution, and fuses multi-scale perceptual wild generated feature maps. The
feature extraction ability is greatly improved.

(2) Secondly, Cascaded Group Attention (CGA) and the Gather-and-Distribute Mech-
anism (GD) are applied to the RT-DETR model. The model provides complete feature
segmentation to each detection head, and the attention calculation is explicitly decomposed
to each detection head. Moreover, multi-scale fusion is carried out to save the computational
cost and improve the attention to the target feature region.

(3) We design new real-time Transformer models that strike a good balance between
efficiency and accuracy. The model has shown good detection ability in a variety of
comparative experiments.

The remainder of this paper is organized as follows: In Section 2, we will first review
the current state of the art in UAV detection technology to provide a deeper understanding
of the background and motivation of the research. In Section 3, we present the details of our
proposed novel UAV detection method, including the details of the adopted GCT-DETR
model and the modules in it. In Section 4, we will present and analyze the experimental
results to verify the effectiveness of our model. Finally, we summarize and discuss the
results of this study and suggest future research directions and improvements in Section 5.

2. Related Work
2.1. Drone Detection

UAV dataset has challenges such as high-altitude perspective, low resolution, motion
blur, illumination change, and occlusion. Therefore, there are few existing public and
recognized datasets that are faced with the problems of insufficient data volume and low
data quality. In recent years, deep learning has been widely used in the field of UAV
detection, but it uses non-uniform data sets. Therefore, there is still a lot of room for the
development of UAV detection, and it is necessary to gradually improve the quality of
various environmental datasets and use more efficient and accurate models.

In 2020, Ulzhalgas et al. embarked on the UAV detection challenge by dissecting it into
two distinctive subtasks: moving object detection and object classification. Their approach
was innovative as it leveraged background subtraction for moving object detection while
relying on the robust feature extraction capabilities of convolutional neural networks
(CNNs) for object classification [24]. This division of labor ensured a comprehensive and
efficient method for identifying UAVs amidst complex visual backgrounds.
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Aamish Sharjeel introduced a groundbreaking UAV detection methodology in 2021, merg-
ing Continuous Outlier Representation with Online Low-rank Approximation (COROLA)
alongside CNNs. The brilliance of this approach lay in COROLA’s adeptness at pinpoint-
ing small moving objects within scenes, complemented by CNNs’ prowess in accurately
classifying UAVs across diverse and intricate backgrounds [25]. This amalgamation not
only fortified the detection system’s resilience but also significantly elevated its efficacy. In
the same year, Muhammad et al. proposed “Dogfight” [18], a novel approach diverging
from conventional region proposal-based methods. Instead, they adopted a two-stage seg-
mentation technique grounded on spatio-temporal attention cues. Their method intricately
incorporated pyramid pooling to capture detailed contextual information within convolu-
tional feature maps, followed by pixel and channel-level attention mechanisms to precisely
localize UAVs. This sophisticated strategy underscored a paradigm shift in UAV detection
methodologies, prioritizing accuracy and adaptability. Yaowen Lv et al. introduced a
novel detection paradigm in 2022, intertwining background difference analysis with the
lightweight SAG-YOLOv5s network. By exploiting background difference, their method
effectively isolated potential UAV targets within high-resolution images while concurrently
minimizing computational overhead by eliminating extraneous background elements [26].
This innovative fusion of techniques showcased a leap forward in optimizing detection
efficiency while conserving computational resources. Yuliang Zhao’s 2023 proposal, the
information enhancement model TGC-YOLOv5, marked a significant advancement in
UAV detection methodologies. By integrating Transformer encoder modules and Global
Attention Mechanisms (GAMs) into YOLOv5, the model exhibited a twofold increase in
detection accuracy. This augmentation facilitated enhanced focus on the regions of interest
while mitigating information diffusion across layers, thus enhancing the model’s overall
effectiveness [27]. Jun-Hwa Kim’s 2023 contribution revolutionized UAV detection by
integrating multi-scale image fusion layers and P2 layers into the YOLO-V8 medium model.
This integration aimed at bolstering the model’s adaptability to diverse UAV scales, thereby
fortifying its robustness in detection scenarios [28]. This strategic enhancement underscored
a concerted effort towards ensuring comprehensive and accurate UAV detection across
varying environmental conditions. Qianqing Cheng’s 2023 innovation, the CA-PANet
multi-scale attention module, heralded a breakthrough in feature fusion for UAV detec-
tion. Leveraging improved MobileViT as a feature extraction network, the introduction
of coordinate attention within PANet facilitated enhanced fusion of low-dimensional and
high-dimensional features. This not only enriched location information capture but also
significantly augmented detection accuracy, highlighting a pivotal advancement in UAV
detection methodologies [29].

2.2. Detection Transformer

Conditional DETR makes an innovative improvement to solve the problem of slow
convergence speed of DETR. In particular, this method increases the number of queries
from 100 to 300 and optimizes the classification loss by adopting Focal loss to improve the
performance of the model. The key contribution of conditional DETR is the proposal of the
conditional attention mechanism. By decoupling content attention and location attention,
they implement a redesign of self-attention and cross-attention inputs. The original method
is to add query and query_pos and input them into the linear layer of the attention structure.
At the same time, Conditional DETR modifies it so that query and query_pos go through
different linear layers, respectively, and then aggregate the results, thereby improving the
effect of the attention mechanism of the model [30]. Deformable DETR proposes Multi-scale
Deformable Attention (MSDA) to replace Self-attention in the Encoder and Cross-attention
in the Decoder. The model of DETR multi-scale feature detection is designed, which not
only gives DETR the advantage of multi-scale but also reduces the amount of calculation.
In addition, it also proposes the idea of a two-stage DETR, which uses the encoder output
features to initialize the decoder query and its corresponding position [31]. Sparse DETR
offers an effective encoder token sparsification method for end-to-end object detectors, by



Electronics 2024, 13, 1489 5 of 20

which the attention complexity in the encoder is reduced. This efficiency allows Deformable
DETR to stack more encoder layers, thus improving performance with the same amount
of computation [32]. The end-to-end object detection algorithm DETR does not require
hand-crafted post-processing (NMS), but it requires longer training to converge. It is found
that one-to-one label matching makes DETR lack supervision signal in the training process
(because the number of positive object Queries is small), so it needs to extend the training
time to achieve good results.

Group DETR provides a new label assignment strategy for the DETR family of al-
gorithms: group-wise One-to-Many label assignment. The algorithm cleverly decouples
the “one-to-many allocation” problem into the “one-to-one allocation of multiple groups”
problem. It accelerates the convergence of DETR series algorithms, removes redundant
predictions while ensuring the support of multiple positive queries, and realizes end-to-end
detection [33]. In 2023, Decoupled DETR proposes the Task-aware Query Generation Mod-
ule: this module is responsible for initializing queries to match different visual regions, thus
providing more suitable features for classification and localization tasks. They also propose
a Disentangled Feature Learning Process: in this process, the classification and localization
tasks are spatially separated, allowing task-aware queries to be matched to different visual
regions. It solves the problem of space misalignment encountered in traditional DETR
training [34].

3. Proposed Methods

Figure 1 shows the network structure of GCD-DETR designed in this paper. In the
backbone part, we first propose the Dilation-wise Residual and Dilated Re-param Block
(DWR-DRB) module for feature extraction, which can reduce the difficulty of extracting
multi-scale context information and is an efficient multi-scale feature extraction method.
Next, we introduce the Cascaded Group Attention module (CGA). Cascaded Group At-
tention assigns different weights to the feature maps based on the relevance of different
positions in the input image. It can help the model better understand the features in
the image, thus improving the detection performance. In the Neck part, we use a novel
information interaction and fusion Mechanism: Gather-and-Distribute mechanism (GD).
The mechanism obtains global information by fusing features at different levels globally
and injects global information into features at different levels to achieve efficient informa-
tion interaction and fusion. It improves the detection ability of the model for objects of
different sizes.
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3.1. Dilation-Wise Residual and Dilated Re-Param Block Module

In this section, we propose the Dilation-wise Residual and Dilated Re-param Block
(DWR-DRB). We incorporate the Dilated Re-param Block into the dilatation-wise Residual
module and utilize a combination of large kernel convolutions and parallel small kernel
convolutions. Furthermore, we fuse multi-scale receptive field-generated feature maps,
thereby significantly enhancing the feature extraction capability.

3.1.1. Dilated Re-Param Block

In convolutional neural networks (CNNs), combining large kernel convolutions with
parallel small kernel convolutions helps capture features at various scales. Their outputs
are summed after two respective batch normalization (BN) layers [35]. The structural re-
parameterization method [36] can be employed to integrate BN layers with convolutional
layers, and after training, they can be merged effectively to incorporate small kernel
convolutions into large kernel convolutions for inference.

The main idea of Dilated Re-param Block (DRB) structure is to use the combina-
tion of large kernel convolution and dilated convolution to improve the performance of
convolutional neural network. By using large kernel convolutions and multiple dilated
convolutional layers in parallel, the “Dilated Re-param Block” structure is able to capture
both local fine features and widely distributed sparse features. This combination enables
the model to perceive the structural information of the input data more comprehensively.
The whole module is converted into a single non-dilated convolutional layer in the in-
ference phase. This step consists of converting each dilated convolutional layer into an
equivalent non-dilated convolutional layer and merging their output feature maps. The
performance of the structure can be flexibly controlled by adjusting the large kernel size K,
the dilation rate r, and the small kernel size k, as shown in Figure 2, K = 9, r = (1, 2, 3, 4),
and k = (5, 5, 3, 3) [37].
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Figure 2. Dilated Re-param Block.

3.1.2. Dilation-Wise Residual and Dilated Re-Param Block Module

In this section, we introduce the Dilation-wise Residual and Dilated Re-param Block
(DWR-DRB) module, designed to efficiently acquire multi-scale context information, as
illustrated in Figure 3. This module effectively extracts and fuses feature maps gener-
ated from multiple receptive fields through a two-step multi-scale context information
acquisition method within the dilation-wise Residual (DWR) [22] in combination with the
previously mentioned Dilated Re-param Block.
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In particular, the first step involves generating region residual features from input
features through a regular 3 × 3 convolution combined with batch normalization (BN) and
ReLU activation. The second step employs multi-rate depth-wise deformable convolution
(DConv) and Dilated Re-param Block (DRB) modules to perform morphological filtering
on region features of different sizes, referred to as semantic residualization. This method
not only extracts multi-scale contextual information but also refines features and effectively
controls redundant receptive fields through the generation of region residual features and
reverse matching of receptive fields. Consequently, the model maintains simplicity while
dealing with complex semantic information and achieves significant improvements in
feature representation and model performance. Furthermore, aggregating multiple output
feature maps, employing batch normalization, and merging feature maps using pointwise
convolution enhance the model’s perception of multi-scale information, thereby improving
feature representation and performance.

3.2. Cascaded Group Attention

Cascaded Group Attention is based on the concept of group attention, dividing the
image into multiple groups or regions and focusing on features within each group. Unlike
traditional global attention mechanisms, Cascaded Group Attention achieves more intricate
feature focus by cascading multiple layers of attention.

In Cascaded Group Attention, the input image is first divided into groups, where each
group may contain specific semantic information or adjacent pixels in space. Subsequently,
a local attention mechanism is applied to each group, allowing the network to concentrate
more on the features within each group. This progressive focusing process enables the
network to refine feature representation at multiple levels, thereby enhancing the model’s
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perceptual ability and accuracy in feature representation [21]. This attention mechanism
can be described as follows:

X̃ij = Attn(XijW
Q
ij , XijWK

ij , XijWV
ij ) (1)

X̃i+1 = Concat[X̃ij]j = 1:hWP
i (2)

For the j-th attention head, it computes self-attention on the j-th split Xij of the
input feature Xi. The input feature Xi is divided into h different splits, with each split
corresponding to one attention head. This partitioning is achieved by projection layers
WQ

ij , WK
ij , WV

ij , which split the input feature Xi into different subspaces. The purpose of
splitting the input features into different subspaces is to compute the self-attention on each
subspace. WP

i is the linear layer. These projection layers map the input feature into different
subspaces, enabling self-attention computation in each subspace.

During the computation of the attention map for each head, a cascaded approach is
employed, where the output of each head is added to the subsequent heads’ inputs. This
cascading method facilitates gradual improvement in feature representation, enabling the
model to better capture the structure and relationships within the data, as shown in Figure 4.
This entails aggregating the output of each attention head with that of the following heads,
enabling the iterative enhancement of feature representation:

X′
ij = Xij + X̃i(j−1), 1 < j ≤ h (3)

the output X′
ij of each head is the addition of its input split Xij and the output X i(j−1)

of the previous head (j − 1), calculated by Equation (2). X i(j−1) replaces Xij as the new
input feature for computing self-attention in the j-th head. Additionally, after Q projection,
there is a flag indicating the inclusion of an interaction layer, enabling the self-attention
mechanism to simultaneously capture both local and global features.
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Figure 4. Cascaded Group Attention module.

The introduction of the Cascaded Group Attention module allows the model to ef-
fectively focus on specific regions or features, thereby enhancing feature representation.
By iteratively refining feature representation at multiple levels, this module improves the
model’s perceptual ability and accuracy. Additionally, its adaptability to various datasets
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and scenarios further highlights its versatility and effectiveness in enhancing feature un-
derstanding and interpretation.

3.3. Gather-and-Distribute Mechanism

When detecting UAV targets, targets of different sizes are often generated due to the
distance between them. In order to improve the detection ability of these targets, we use the
low-stage gather-and-distribute branch (Low-GD) and the high-stage gather-and-distribute
branch (High-GD) [23]. The core idea of this method is to use different feature extraction
and fusion strategies for different sizes of objects to better adapt to various sizes of target
objects. Two key modules are included in both branch networks: feature alignment module
(FAM) and information injection module (IFM), as shown in Figures 5 and 6. These modules
are designed to efficiently extract and fuse feature maps from the backbone network in
order to better capture various size features of the target object. The inputs of these two
branch networks are the feature maps B2, B3, B4, and B5 output by the backbone network,
where Bi ∈ RN×CBi×RBi . Here, the batch size is denoted by N, the channel by C, and the
feature map size by R = H × W, where H and W denote the height and width of the
feature map, respectively. And the dimensions of RB2, RB3, RB4, RB5 are R, 1

2 R, 1
4 R, and

1
8 R, respectively.
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Figure 5. Low-stage gather-and-distribute branch.
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3.3.1. Feature Alignment Module

The main function of FAM module is to align the feature maps of different levels to
a uniform size and then merge these feature maps by the concatenation operation on the
channel. This reduces information loss and enhances the ability of the model to detect
objects of different sizes without significantly increasing the latency.

In particular, the FAM module will first adjust the input feature maps to the same
spatial resolution by average pooling operation, and then concatenate them in the channel
dimension. In this process, the feature map is resized to the smallest feature size within the
group in order to control the computation latency while preserving low-level information.
As shown in Figure 5, if the feature maps of B2, B3, B4, and B5 correspond to different
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dimensions, the FAM module will unify them to the dimensions of B4 and then concatenate
them on the channel. In Figure 6, the input feature maps are P3, P4, and P5, and the FAM
module will unify them to the dimensions of P3. There are several benefits to resizing
the feature map to the dimensions of B4. Firstly, B4 provides a balance point where it is
neither the largest feature map (as in B2) nor the smallest feature map (as in B5), which
means that it is able to preserve sufficient details while avoiding the computational stress
caused by processing overly large feature maps. Secondly, feature alignment using B4 as a
benchmark can better preserve the information of medium-size objects, which is especially
important for object detection, as it ensures that the model can effectively detect objects of
various sizes. Finally, selecting B4 as the benchmark for alignment can simplify the process
of information fusion. By resizing all feature maps to the size of B4, the concatenation can
be performed directly on the channel, which reduces the average pooling operation, which
helps to reduce the latency and makes the model more suitable for real-time application
scenarios. Therefore, B4 is chosen as the benchmark for feature alignment in order to find a
compromise between preserving critical information and controlling computational cost to
improve the performance and efficiency of the model.

3.3.2. Information Fusion Module

The Information Fusion Module (IFM) is designed to improve the ability of multi-
scale feature fusion. As shown in Figure 5, first, the low-stage IFM (Low-IFM) receives
the aligned feature maps from the FAM module. These feature maps have been unified
in spatial resolution for further processing. The aligned feature map goes through a
multi-layer Rep-Block structure, which is a combination of a series of convolutional layers
and activation functions to extract and enhance feature information. The feature maps
processed by Rep-Block will be split into two parts in the channel dimension, which can
provide more specialized information for feature maps at different scales. The segmented
feature maps are regarded as global information, and they will be used to inject features at
different levels to achieve effective information interaction and fusion. IFM is designed to
reduce information loss and enhance the model’s ability to detect objects of different sizes
without significantly increasing latency. This mechanism obtains global information by
fusing features at different levels globally and injects global information into features at
different levels to achieve efficient information interaction and fusion. The advantage of
this procedure is that it allows the model to make better use of the features extracted from
backbone and can be easily integrated into existing similar network structures. Through its
design, IFM improves the overall performance of the model, making it more accurate and
efficient when dealing with objects of different sizes.

The High-stage Information Fusion Module (High-IFM) is designed to improve the
accuracy of object detection while maintaining low latency. As shown in Figure 6, High-
FAM first receives feature maps from different layers of the network and aligns them to a
uniform spatial resolution. This step is carried out by FAM, which ensures that the feature
maps have the same dimensions before the subsequent fusion. The aligned feature maps
are then passed to High-IFM, where transformer modules are used for processing. Each
transformer module consists of a multi-head attention module and a feedforward network
module. These operations allow the model to combine features at a higher level, which
are typically more abstract but contain more semantic information. These modules work
together to capture long-distance dependencies between features. The High-IFM processed
feature maps are channel-simplified by the Conv 1 × 1 operation, which helps to reduce
the computational complexity and maintain the efficiency of the model.

Feature segmentation and fusion: The reduced feature map is segmented in the
channel dimension and fused with the horizontal features of the current stage. This step
ensures that the features of different levels can be effectively combined, thus improving the
model’s ability to detect objects of different sizes.
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3.3.3. Information Injection Module

To effectively utilize global information in images and inject it into different levels
of feature representations, we employ the information injection module for information
fusion, as illustrated in Figure 7.
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The information injection module is responsible for injecting global information into
different levels of features to enhance the ability of the model to detect objects. The informa-
tion injection module first receives global information from the Information Fusion Module,
which contains features fused from different levels of the network. The module uses the
attention mechanism to weight the received global information. This step highlights the
key information by calculating the importance of each feature while suppressing the unim-
portant information. The weighted global information is subsequently injected into the
local features at the current level. This process is accomplished by specific operations such
as addition or concatenation, which enables the effective combination of global information
with local features. By injecting global information, local features are enhanced, allowing
the model to better understand and recognize objects in the image. Finally, the information
injection module outputs feature representations that fuse global and local information,
and these features will be used in subsequent object detection layers.

4. Experiments
4.1. Datasets and Implementation Details

We utilized two UAV datasets in our experiments. We first utilized the Rotor UAV
dataset proposed by DASMEHDIXTR et al., which consists of 1360 images of drones.
All images are labeled with the class “drone” and include various complex backgrounds
and drone models. We randomly selected 1000 images as the training set, 200 images as
the validation set, and 160 images as the test set. The dataset we used can be found at
https://www.kaggle.com/datasets/dasmehdixtr/drone-dataset-uav/data (accessed on 1
February 2024).

We also utilized an open-source, available military UAV dataset on Roborflow. This
dataset comprises multiple environments, including sky, city, countryside, and coastline.
It encompasses UAV images captured under different weather conditions and at various
times, covering a wide range of UAV use scenarios. The dataset can be found at https:
//universe.roboflow.com/military-drone/dronemil-u8fqk (accessed on 7 February 2024).
It consists of 5238 training images, 1345 validation images, and 678 test images.

For training and evaluation, we conducted numerous experiments using these two
UAV datasets. The model architecture was implemented using PyTorch 1.11.0 and Timm
0.5.4. The model was trained from scratch for 200 epochs on 2 Nvidia V100 GPUs using the
AdamW optimizer and cosine learning rate scheduler. The size of all the image is 640 × 640.
We used a batch size of 16. The input images were resized and randomly cropped to a size
of 640 × 640. The initial learning rate is 1 × 10−4, and the weight decay is 2.5 × 10−2.

4.2. Comparision Results
4.2.1. Comparison with Prior Works

To evaluate the performance of our UAV detection model, we conducted a series of
comparative experiments. Firstly, we compared the number of parameters and Floating

https://www.kaggle.com/datasets/dasmehdixtr/drone-dataset-uav/data
https://universe.roboflow.com/military-drone/dronemil-u8fqk
https://universe.roboflow.com/military-drone/dronemil-u8fqk
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Point Operations Per Second (FLOPs) across various models to evaluate their efficiency.
Subsequently, we evaluated the models using metrics such as Recall, AP@50, and AP@50:95.
Recall measures the proportion of correctly detected objects among all labeled objects.
AP@50 represents the Mean Average Precision for each class when the Intersection over
Union (IOU) threshold is set to 0.5. AP@50:95 calculates the average AP over different IOU
thresholds ranging from 0.5 to 0.95 with a step size of 0.05.

Our model was compared against several established models, including different
versions of YOLOv7 [12], YOLOv8, RT-DETR [20], and the latest Gold-YOLO [23]. The
comparison results on Rotor UAV dataset are presented in Table 1.

Table 1. Comparative experiments with prior works on Rotor UAV dataset.

Model Input Size Backbone Neck Layers Parameters GFLOPs Recall AP@50 AP@50:95

YOLOv7 [12] 640 CBS + ELAN SPPSCP + E-ELAN 415 37,196,556 105.1 0.814 0.858 0.476
YOLOv7x [12] 640 CBS + ELAN SPPSCP + E-ELAN 467 70,815,092 188.9 0.837 0.883 0.53

YOLOv7-w6 [12] 1280 CBS + ELAN SPPSCP + E-ELAN 477 80,944,472 102.4 0.824 0.924 0.57
YOLOv7-d6 [12] 1280 CBS + ELAN SPPSCP + E-ELAN 733 152,886,360 198.3 0.878 0.934 0.588

YOLOv8s 640 C2F + SPPF C2F 168 11,125,971 28.4 0.878 0.941 0.626
YOLOv8m 640 C2F + SPPF C2F 295 25,856,899 79.1 0.864 0.948 0.631
YOLOv8n 640 C2F + SPPF C2F 225 3,157,200 8.9 0.90 0.949 0.626

Gold-YOLO-s [23] 640 Efficient-Rep Gather-and-
Distribute / 21.5M 46.0 0.670 0.928 0.582

Gold-YOLO-m [23] 640 Efficient-Rep Gather-and-
Distribute / 41.3M 87.5 0.693 0.934 0.604

Gold-YOLO-n [23] 640 Efficient-Rep Gather-and-
Distribute / 5.6M 12.1 0.671 0.919 0.580

RT-DETR-r18 [20] 640 ResNet 18 AIFI + CCFM 299 19,873,044 56.9 0.941 0.936 0.621
RT-DETR-r34 [20] 640 ResNet 34 AIFI + CCFM 387 31,106,233 88.8 0.896 0.933 0.602
RT-DETR-r50 [20] 640 ResNet 50 AIFI + CCFM 629 42,782,275 134.4 0.878 0.905 0.581

GCD-DETR (Ours) 640 DWR-DRB +
CGB

Gather-and-
Distribute 494 23,262,488 61.0 0.93 0.956 0.624

We list the network structures used in the backbone and neck parts of all models. The
backbone of Yolov7 uses CBS (Conv + BN + SiLU) and ELAN modules, which are composed
of multiple CBS modules. The neck part is mainly composed of information fusion module
SPPCSP and ELAN module. The backbone and neck of YOLOv8 are mainly composed of
C2f (CSPLayer2Conv) module and SPPF (Spatial Pyramid Pooling Fast). C2f has more skip
connections and additional split operations. Gold-YOLO is mainly composed of Efficient
Repblock and Gather-and-Distribute (GD). The GD mechanism significantly enhances
the information fusion ability of the neck part and improves the detection ability of the
model for objects of different sizes. RT-DETR is mainly composed of Attention-based Intro-
scale Feature Interaction (AIFI) module and the CNN based Cross-scale Feature-fusion
Module (CCFM).

The backbone of our model mainly consists of the Dilation-wise Residual and Di-
lated Re-param Block Module (DWR-DRB) module and Cascaded Group Attention (CGB)
module, and the neck is mainly composed of GD mechanism. Despite variations in the
parameters of these aforementioned methods, the accuracy of the largest model from each
of these methods is consistently lower than that of our proposed GCD-DETR model.

On the rotor UAV dataset, our model achieves a 2% higher AP@50 compared to
the highest accuracies of RT-DETR prior to improvement and a 1% higher accuracy than
YOLOv8n. On the military UAV dataset, as shown in Table 2, our model exhibits a 1%
higher AP@50 than YOLOv8s and a 0.5% higher AP@50 than Gold-YOLO -s. These results
demonstrate that our model can achieve high accuracy with a parameter count similar to
other models. Our model showcases its lightweight nature by achieving higher accuracy
while having significantly fewer GFLOPs compared to YOLOv7-d6. It indicates that our
model can achieve precision while being lightweight and can be more easily deployed on
UAV equipment. The effectiveness of our model can be attributed to the multi-dimensional
feature extraction of the DWR-DRB module and the Gather-and-Distribute mechanism,
which efficiently combines features from different maps. Additionally, the skip connection
helps reduce computational requirements, further contributing to high precision with
minimal computation.
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Table 2. Comparative experiments with prior works on military UAV dataset.

Model Input Size Year Layers Parameters GFLOPs Recall AP@50 AP@50:95

YOLOv7 [12] 640 2022 415 37,196,556 105.1 0.914 0.955 0.624
YOLOv7x [12] 640 2022 467 70,815,092 188.9 0.919 0.958 0.631

YOLOv7-w6 [12] 1280 2022 477 80,944,472 102.4 0.92 0.954 0.633
YOLOv7-d6 [12] 1280 2022 733 152,886,360 198.3 0.922 0.964 0.657

YOLOv8s 640 2023 168 11,125,971 28.4 0.934 0.968 0.687
YOLOv8m 640 2023 295 25,856,899 79.1 0.946 0.959 0.658
YOLOv8n 640 2023 225 3,157,200 8.9 0.957 0.962 0.676

Gold-YOLO-s [23] 640 2023 / 21.5M 46.0 0.897 0.973 0.680
Gold-YOLO-m [23] 640 2023 / 41.3M 87.5 0.944 0.953 0.636
Gold-YOLO-n [23] 640 2023 / 5.6M 12.1 0.950 0.958 0.675
RT-DETR-r18 [20] 640 2023 299 19,873,044 56.9 0.954 0.953 0.692
RT-DETR-r34 [20] 640 2023 387 31,106,233 88.8 0.925 0.977 0.639
RT-DETR-r50 [20] 640 2023 629 42,782,275 134.4 0.927 0.967 0.657

GCD-DETR (Ours) 640 / 494 23,262,488 61.0 0.966 0.978 0.711

The DWR-DRB module has significant advantages in dealing with multi-scale in-
formation. Through deep-separated dilated convolution and a two-step residual feature
extraction method, it can effectively extract the features of small objects and perform well
in real-time semantic segmentation tasks. This allows the DWR-DRB module to outperform
traditional backbone networks such as Gold-YOLO and RT-DETR in terms of accuracy
and efficiency, especially in scenarios where large amounts of detail and dynamic range
need to be processed. In addition, the design of the DWR-DRB module also considers the
optimization of computing resources so that it can maintain high performance even in
resource-constrained environments. The advantage of the DWR-DRB module and the CGB
module is its advanced multi-scale feature extraction ability, especially for small object
detection and real-time semantic segmentation tasks, which provides more accurate feature
extraction than YOLOv7 and YOLOv8 through deep separation dilated convolution and
refined receptive field design, thereby improving the overall network performance.

4.2.2. Comparison of Evaluation Metrics

We conducted a comparison between the training process curves of the original RT-
DETR and our model in the military UAV detection task. Throughout the training process,
we recorded the precision and recall values of each model on the training set, as well
as AP@0.5 and AP@0.5:0.95. We plotted corresponding curves to observe their training
progress in Figure 8.

Our model demonstrates superior performance in terms of precision. The precision
curve of our model maintains a high level of stability during training and converges to
a high precision level. Conversely, while the precision curve for the original RT-DETR
starts with an increasing pattern, it experiences considerable fluctuations during training,
ultimately settling at a precision slightly inferior to that of our model.

Regarding recall, our model also surpasses the original RT-DETR. The recall curve
of our model exhibits early-stage growth, maintains a stable upward trend throughout
training, and finally converges to a high level. However, the recall curve of the original
RT-DETR demonstrates a slower growth rate and noticeable fluctuations in the later stages
of training. Overall, our model showcases higher precision and recall during training,
along with better stability and faster convergence speed.

In addition, we compare the AP@0.5 and AP@0.5:0.95 curves between our model and
the original RT-DETR for object detection. These metrics evaluate the detection accuracy
and robustness of the models at different confidence thresholds. In terms of AP@0.5, our
model outperforms the original RT-DETR at lower confidence thresholds. The curve shows
a faster upward trend and eventually reaches a relatively high average precision. Con-
versely, the AP@0.5 curve of the original RT-DETR exhibits slower growth, and the detection
performance at lower confidence thresholds is slightly lower than that of our model.
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When considering the AP@0.5:0.95 curve, the performance gap between our model
and the original DETR becomes more evident at higher confidence thresholds. Our model’s
curves maintain high stability and exhibit high average accuracy across a range of confi-
dence thresholds from 0.5 to 0.95. However, the AP@0.5:0.95 curve of the original RT-DETR
performs poorly at high confidence thresholds, with significantly lower average accuracy
compared to our model. Therefore, in a comprehensive sense, our model demonstrates
better detection performance not only at low confidence thresholds but also at high confi-
dence thresholds, showcasing better overall robustness. Overall, our model demonstrates
superior precision, recall, and detection accuracy during training when compared to the
original RT-DETR.

4.2.3. Comparison of Detection

We conducted a comparison of the images detected by the original RT-DETR-r18
model and our model. Figure 9a illustrates that the RT-DETR-r18 model fails to detect
multiple targets, while Figure 9b demonstrates that our GCD-DETR successfully detects
all targets. This discrepancy may arise from the fact that when neighboring targets are in
close proximity, the larger target can obstruct the detection of the smaller target, resulting
in missed detections. However, our model overcomes this limitation by incorporating
an attention module and performing multi-scale feature fusion. As a result, our model
accurately identifies objects of various sizes, hence achieving the detection of all objects in
the given scenario.
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4.2.4. Comparison of Heatmap

The heatmap is a visualization technique utilized in object detection to display the
intensity distribution of objects detected by a model in an input image. Heatmaps are
commonly employed to indicate the location and confidence of the detected target, with
brighter areas representing higher confidence in the detection. In Figure 10, we compare
the heatmaps generated by the RT-DETR-r18 model and our proposed model.
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The first heatmap corresponds to the RT-DETR-r18 model, revealing that the deeper
regions of intensity are concentrated only in a specific area of the UAV, while other regions
show lower levels of focus. Conversely, the second heatmap corresponds to our model,
where darker-colored areas are concentrated on the body and support parts of the UAV,
encompassing almost the entire UAV. Additionally, a high level of attention is observed
towards the overall structure of the UAV in our model’s heatmap, indicating a more
confident detection of the UAV target. These findings demonstrate the effectiveness of our
model in detecting UAVs compared to the RT-DETR-r18 model.

4.3. Training Metrics

During the training process of object detection models, loss functions are the key
indicators used to assess the accuracy of model predictions and guide model optimization.
The Generalized Intersection over Union Loss (giou_loss) is a metric for evaluating the
localization accuracy of object detection models. It measures not only the overlap between
the predicted and actual bounding boxes but also includes a penalty term that considers the
area of the smallest enclosing box containing both bounding boxes. The lower the giou_loss,
the more accurate the model is at localizing targets. Classification Loss (cls_loss) is used
to measure the model’s performance in recognizing and classifying targets. It calculates
the difference between the model’s predicted output and the actual target values. In object
detection, this often involves classification problems, and the lower the Classification Loss,
the more accurate the model is at classification tasks. The l1 loss is a method for measuring
the difference between predicted values and actual values. It works by calculating the
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average absolute difference between them. This method performs well when dealing with
outlier data because it does not allow individual extreme values to overly influence the
overall loss. The lower the l1_loss, the better the model’s performance.

Figure 11 shows the changes in the various metrics of our model during the training
process. We note that the GCD-DETR model not only exhibits smooth performance across
all evaluation indicators but also consistency. The steady decline in giou_loss indicates
a continuous improvement in the model’s accuracy in target localization. The reduction
in Classification Loss reflects an enhanced ability of the model to distinguish between
different categories of targets. The gradual decline in the l1_loss demonstrates a better
balance between precision and recall. These smooth curves of the indicators show that the
model exhibits stability and reliability during training, with no overfitting or underfitting
issues. Additionally, our model performs exceptionally well in AP@0.5 and AP@0.5:0.95,
meaning it maintains high-level performance in object detection tasks of varying difficulty
levels. These results indicate that the GCD-DETR model excels not only in single tasks but
also has strong adaptability and robustness when dealing with diverse and complex object
detection scenarios.
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4.4. Ablation Results

In this section, we remove important design elements in our designed model for
ablation experiments. To amplify the difference and reduce the training time, all models
are trained 200 epochs.

First, we just use the original RT-DETR model for testing; then, we add our Cascaded
Group Attention (CGA), Dilation-wise Residual and Dilated Re-param Block Module
(DWR-DRB), and Gather-and-Distribute Mechanism (GD) in turn. The results are shown in
Table 3. It is shown that after adding Cascaded Group Attention, AP@50 improved by 1.3%,
and the FPS reached 52.5 frames per second with almost no increase in GFLOPs. It shows
that Cascaded Group Attention reduces the amount of computation with almost no increase
in cost, and the AP@50 is improved by 1% when only adding the DWR-DRB module. In
the case of adding only Gather-and-Distribute mechanism, the AP@50 is improved by
1.2%. With all modules added, our final model improves the AP@50 by 3% over the
original RT-DETR-r18 model and achieves 41.9 frames per second at almost no additional
computational cost, which is about 10 frames per second higher than RT-DETR-r18. It
shows that our model improves the inference speed while improving the accuracy and can
be better applied to UAV detection.
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Table 3. Ablation experiments.

RT-DETR DWR-DRB CGA GD Layers Parameters GFLOPs Recall AP@50 AP@50:95 FPS
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the detection results are shown in Figure 12. Figure 12a shows that in the dusk scene, our 
model can also accurately identify when there is less light and the UAV is dark. Figure 
12b shows that the sky color of the background and the color of the UAV are both white, 
indicating that our model can still achieve accurate recognition when the color of the UAV 
is similar to the sky background. In Figure 12c, it can be seen that the target UAV is very 
small, and its color is almost integrated into the background sky. However, our model can 
still recognize it, indicating that our model also has a good effect on detecting small tar-
gets. Figure 12d is a picture of the UAV at a close distance, and the UAV takes up a large 
portion of the picture, indicating that when using the UAV to detect the UAV, the recog-
nition of a nearby target can achieve a high accuracy rate. Figure 12e,f shows UAV detec-
tion under a complex background. It can be seen that in the complex background, the UAV 
is easier to integrate with the environment, and at the same time, it is more difficult to 
detect, but our model can still achieve a high accuracy rate, indicating the effectiveness of 
our model in the face of complex background detection. Figure 13 shows the detection 
results of more complex scenes, which can be seen in the woods or on the road. Our model 
can detect drones even when there are occlusions or complex backgrounds. 
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4.5. Detection Results

We have used our model to detect UAV pictures with different scenes and sizes, and
the detection results are shown in Figure 12. Figure 12a shows that in the dusk scene, our
model can also accurately identify when there is less light and the UAV is dark. Figure 12b
shows that the sky color of the background and the color of the UAV are both white,
indicating that our model can still achieve accurate recognition when the color of the UAV
is similar to the sky background. In Figure 12c, it can be seen that the target UAV is very
small, and its color is almost integrated into the background sky. However, our model can
still recognize it, indicating that our model also has a good effect on detecting small targets.
Figure 12d is a picture of the UAV at a close distance, and the UAV takes up a large portion
of the picture, indicating that when using the UAV to detect the UAV, the recognition of a
nearby target can achieve a high accuracy rate. Figure 12e,f shows UAV detection under a
complex background. It can be seen that in the complex background, the UAV is easier to
integrate with the environment, and at the same time, it is more difficult to detect, but our
model can still achieve a high accuracy rate, indicating the effectiveness of our model in
the face of complex background detection. Figure 13 shows the detection results of more
complex scenes, which can be seen in the woods or on the road. Our model can detect
drones even when there are occlusions or complex backgrounds.
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5. Conclusions

The appearance of uncrewed aerial vehicles in images or videos is diverse and vari-
able, with their scale, angle, appearance, and other characteristics changing based on
distance and viewpoint. This variability greatly increases the complexity and challenges
of UAV detection algorithms. In complex backgrounds like the sky, trees, or buildings,
UAV detection algorithms must possess excellent object detection capability to exclude
interference information. Moreover, UAVs may also face occlusion from other objects,
further complicating detection.

Additionally, UAVs differ in morphology and appearance due to varying models,
manufacturers, and purposes. It requires detection algorithms to have strong adaptability
and accurately identify UAVs in different situations. Real-time detection and tracking of
UAVs are often required in applications like military surveillance and border monitoring.
As a result, detection algorithms must exhibit efficient computing performance and fast
response speeds. However, obtaining a representative UAV image dataset is challenging
due to the diverse operating environments and the substantial workload associated with
data collection and annotation.

To address these challenges, this paper proposes an improved transformer model
called GCD-DETR and conducts extensive experiments on two public datasets. The GCD-
DETR model introduces the DWR-DRB module, leveraging the Cascaded Group Attention
and Gather-and-Distribute mechanism to strike a balance between efficiency and accuracy.
In particular, the DWR-DRB module enhances adaptability to changes in UAV morphol-
ogy and appearance via a two-step multi-scale context information acquisition method.
Cascaded Group Attention assists the model in focusing on UAV targets and eliminating
interference information in complex backgrounds. The Gather-and-Distribute mechanism
further enhances detection accuracy through global information interaction and fusion. The
experimental results demonstrate significant performance improvements in the GCD-DETR
model in UAV detection tasks, particularly when dealing with complex backgrounds and
occlusions. The successful application of this model offers substantial support for the
intelligent development of UAVs, especially in areas such as military surveillance and
border monitoring.

However, practical applications of UAV detection technology still face limitations and
challenges, including computing resource constraints and real-time requirements. Future
research aims to improve the robustness and efficiency of UAV detection technology to
address even more complex and variable application scenarios. Additionally, with the
continuous development and popularization of UAV technology, the application of UAV
detection technology will witness further expansion and development opportunities.
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