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Abstract: Oxide electrolyte-gated transistors have shown the ability to emulate various synaptic
functions, but they still require a high gate voltage to form long-term plasticity. Here, we studied
electrolyte-gated transistors based on InOx with tungsten doping (W-InOx). When the tungsten-to-
indium ratio increased from 0% to 7.6%, the memory window of the transfer curve increased from
0.2 V to 2 V over a small sweep range of −2 V to 2.5 V. Under 50 pulses with a duty cycle of 2%,
the conductance of the transistor increased from 40-fold to 30,000-fold. Furthermore, the W-InOx

transistor exhibited improved paired pulse facilitation and successfully passed the Pavlovian test
after training. The formation of WO3 within InOx and its ion intercalation into the channel may
account for the enhanced synaptic plasticity.

Keywords: electrolyte-gated transistors; long-term potentiation; paired pulse facilitation; synaptic
functions

1. Introduction

The electrolyte-gated transistor has been a promising candidate for neuromorphic
computing due to its ability to simulate various synaptic behaviors, including short-term
plasticity and long-term plasticity [1,2]. Under the stimulation of the gate bias, the ions
can be adsorbed at the interface between the electrolyte and semiconductor causing the
variation in channel conductance. With various relaxation times in electrostatic adsorption
and electrochemical adsorption, the change in conductance decays after stimulation occurs
in a short time and long time, respectively [3].

Amorphous oxide semiconductors, such as InOx, IZO, and IGZO, due to their high
mobility and compatibility with large-area semiconductor device processes, have been
employed to fabricate electrolyte-gated transistors [4–7]. These devices have shown great
performance in their application to neuromorphic computing and artificial vision. However,
for achieving the transition from short-term plasticity to long-term plasticity, it is usually
necessary to increase the gate voltage, which likely results from the high migration and
adsorption energy barriers of ions in these oxide semiconductors. Introduction materials
with low migration and adsorption energy barriers may provide a solution to this prob-
lem. Tungsten trioxide (WO3), due to its active d-orbital and layered structure, prefers
intercalation by hydrogen ions, lithium ion, and sodium ion at [WO6]-octahedral sites
under potential bias. Among these ions, the diffusion barrier for hydrogen ions in WO3 is
relatively low because of the smallest size [8–11]. This indicates that WO3 is likely suitable
as a dopant to improve the plasticity performance.

In this work, we studied the effect of tungsten doping in InOx electrolyte-gated
transistors. The InOx transistor doped with tungsten showed significant enhancements
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in long-term plasticity compared with the InOx transistor, characterized by an expansive
memory window from 0.2 V to 2 V and increased conductance from 40-fold to 30,000-fold.
Synaptic functions, including the paired pulse facilitation and Pavlovian conditioning,
were also enhanced by tungsten doping.

2. Materials and Methods

The 0.2 mol/L AlOx precursor solution was synthesized by dissolving aluminum
nitrate hydrate (Aladdin, Shanghai, China), nitric acid (Alfa Aesar, Ward Hill, MA, USA),
and ammonium hydroxide (50% v/v, Alfa Aesar, Ward Hill, MA, USA) in water. The
0.15 mol/L InOx precursor solution was synthesized by dissolving indium nitrate hydrate
(Aladdin, Shanghai, China) in 2-Methoxyethanol (Sigma-Aldrich, St. Louis, MO, USA). The
0.1 mol/L WCl6 solution was synthesized by dissolving tungsten hexachloride (Aladdin,
Shanghai, China) in 2-methoxyethanol. The InOx with tungsten doping (W-InOx) precursor
solution was synthesized by mixing the InOx precursor solution and the WCl6 solution
with volume ratios of 40:3 and 20:3, respectively. For the fabrication of the transistors, the
AlOx precursor solution was spin-coated on a heavily doped silicon wafer and annealed on
a hot plate at 300 ◦C for 30 min; the spin-coating process was repeated five times. The InOx
and W-InOx precursor solutions were spin-coated, respectively, on the AlOx and annealed
on a hot plate at 280 ◦C for 1.5 h. After the photolithography process and etching with
hydrochloric acid, the channel layer was patterned. Finally, Al source/drain electrodes
were deposited by thermal evaporation to fabricate the bottom-gate, top-contact transistors.
The schematic illustration of the transistor is shown in Figure 1a.
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Figure 1. (a) Scheme of the electrolyte-gated transistor using the AlOx as an electrolyte layer and the
W-InOx as a semiconductor layer. (b) XPS survey for the 7.6% W-InOx film. (c) XPS W4f core-level for
the InOx films with various tungsten concentrations.

3. Results

In a previous study, the solution-processed AlOx films were confirmed to act as an
electrolyte with mobile hydrogen ions [12]. Due to the formation of the electric double
layer (EDL) and ionic electrochemical adsorption, the conductance of the channel can be
adjusted, which leads to the synaptic plasticity. To promote the synaptic plasticity, we
fabricated the InOx films with tungsten doping (W-InOx) as a channel layer. The chemical
composition of these films was determined by X-ray photoelectron spectroscopy (XPS). The
atom ratios of W to In were 3.7:100 and 7.6:100 in the W-InOx films with various tungsten
concentrations, respectively. Figure 1b shows the survey spectrum of the 7.6% W-InOx
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film. The peaks at about 445 eV for In3d and about 530 eV for O1s suggest that the films
consist of the elements In and O. As shown in Figure 1c, the W4f spectrum exhibits two
peaks at 35.3 eV and 37.4 eV in both the 3.7% and the 7.6% W-InOx, which correspond to
the W4f7/2 and W4f5/2 peaks of WO3, respectively [13,14]. The result indicates the valence
state of W is +6. For the InOx film, the absence of the W4f peaks indicates that there are no
W elements in the film.

Figure 2a shows the transfer curves with various tungsten concentrations at VD = 1 V.
The anticlockwise hysteresis of the transfer curve increases with increasing tungsten con-
centration. The hysteresis windows ∆VG at ID from 10 nA to 50 nA are extracted as the
memory windows. As shown in Figure 2b, the memory windows (MWs) from ID = 10 nA
to 50 nA for the InOx, 3.7% W-InOx, and 7.6% W-InOx transistors are 0.215 V, 0.579 V, and
1.998 V, respectively, across the sweep range of −2 V to 2.5 V. The 7.6% W-InOx transistor
shows a wide memory window, accounting for 44% of the sweep range. Figure 2c,d shows
the responses to consecutive pulses in W-InOx transistors. The normalized excitatory
postsynaptic currents (EPSCs) were calculated as (ID − Imin)/(Imax − Imin). The decay
current rises from 0.016 to 0.166 as the W to In ratio increases from 0% to 7.6% after ap-
plying positive gate pulses for 30 s. The decay current declines from −0.089 to −0.304
after applying negative gate pulses for 30 s. The enhanced amplitude of variation of the
decay current in the 7.6% W-InOx transistor, following both positive and negative pulses,
signifies a transition from short-term to long-term plasticity. For the 7.6% W-InOx transistor,
under continuous gate pulse stimulation, the ID gradually increases and exhibits short-term
plasticity. After the pulses, the increased ID can be maintained for a long time, exhibiting
long-term plasticity. For the InOx transistor, after the same gate pulse stimulation, the ID
decays in a short time and only exhibits short-term plasticity.
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Figure 2. (a) The transfer curves of the W-InOx transistor with various concentrations of tungsten. The
gray band at ID from 10 nA to 50 nA is the area for extracting the memory window. The arrows mark
the scanning direction of curve. (b) The memory window (MW) extracted from the ∆VG in forward
and backward curves at ID from 10 nA to 50 nA. The value (red dots) and error bar (black sticks) are the
average and the standard deviation of ∆VG, respectively. The long-term potentiation (c) and depression
(d) of the W-InOx transistors under continuous pulses. The pulse amplitude, width, and period in (c) are
4 V, 200 ms, and 1 s, respectively, and are −4 V, 800 ms, and 1 s, respectively, in (d).
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Paired pulse facilitation (PPF) is a neuron behavior consisting of two EPSCs elicited
by a pair of pulses, where the latter EPSC is larger than the former one [15]. As shown
in Figure 3a, two pulses with an interval time ∆t of 0.3 s were applied to the gate elec-
trode. The PPF index was calculated as the PPF Index = I2/I1. Figure 3b illustrates
that the PPF index increases as the ∆t decreases, emulating the synaptic short-term
memory [16]. With an increase in the W-to-In ratio from 0% to 7.6%, the PPF index
at ∆t = 50 ms rises from 1.17 to 2.14, suggesting an enhancement of the short-term memory.
The PPF curve was fitted with a double-phase exponential function defined as follows:
PPF Index = 1 + C1exp(−∆t/τ1) + C2exp(−∆t/τ2) [17]. τ1 and τ2 are the characteristic
relaxation times for fast ionic decay and slow ionic decay, respectively. τ1 corresponds to
the short relaxation time of residual ions after the first stimulation. τ2 corresponds to the
long relaxation time of ions after the second stimulation [18]. For the InOx transistor, τ1 and
τ2 are estimated to be 63.04 ms and 869.47 ms, respectively. For the 7.6% W-InOx transistor,
the corresponding values are 407.43 ms and 2168.18 ms, respectively. The increased τ1
and τ2 values for the 7.6% W-InOx transistors indicate a reduced forgetting rate in the
short-term memory [19].
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Figure 3. (a) EPSCs at VD = 1 V triggered by a pair of gate voltage pulses; I1 and I2 are the current
values at the end of the first and the second pulses. The pulse amplitude, width, and period are
2 V, 0.3 s, and 0.6 s, respectively. (b) PPF index as a function of the interval time ∆t and fitted by a
double-phase exponential function.

The enhancement of long-term plasticity and the PPF behavior in the 7.6% W-InOx
transistor is likely due to the formation of the WO3 and hydrogen ion intercalation within
WO3. As shown in Figure 4, without W doping, the electrochemical accumulation of
ions driven by the high gate bias decays quickly after the gate bias is removed, resulting
in low long-term potentiation and a short relaxation time in PPF. With W doping, the
electrochemical absorption and the proton intercalation in WO3 can synergistically improve
the storage of the hydrogen ions in the channel layer. The hydrogen ions can act as the
donor in the InOx and WO3 and increase the channel conductance [11,20]. The more
adsorbed hydrogen ions result in higher long-term potentiation and an extended relaxation
time in PPF [7,10,21].

The longer relaxation time can lead to a longer memory duration and higher ampli-
tudes of the potentiation and depression. As shown in Figure 5a–c, as the W-to-In ratio
increases from 0% to 7.6%, the conductance of the transistor increases from 40-fold to
30,000-fold after applying 50 positive gate pulses with a 2% duty ratio. Furthermore, as
the W-to-In ratio increases, the conductance of the transistor decreases from 0.91 to 0.39
compared to the initial value after applying 50 negative gate pulses. The enhancement in
the potentiation and depression behaviors for the 7.6% W-InOx transistor, stimulated by
such sparse pulses, suggests that tungsten doping can effectively prolong the memory time
in the channel.
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Figure 5. The excitatory postsynaptic current (a) and the inhibitory postsynaptic current (b) as
functions of the pulse number with a pulse period of 10 s. The pulse amplitude and width are 4.5 V
and 0.2 s for (a) and −4.5 V and 0.8 s for (b), respectively. (c) The ratio of the current after the last
pulse (A50) to the current before the first pulse (A0). Pavlovian experiment for the InOx transistor (d)
and the 7.6% W-InOx transistor (e). The pulse amplitudes correspond to 2 V for the bell signal and
3 V for the food signal, with a pulse width of 0.5 s. (f) The ratio of the response to the bell signal after
training (Aafter) to the threshold (Ath).

To demonstrate the connection between learning and memory, the Pavlovian experi-
ment was performed [22,23]. Gate pulses with amplitudes of 2 V and 3 V were utilized to
simulate the bell ring and the food signals, respectively. As shown in Figure 5d–f, before
training, the bell signal caused a low EPSC (Abefore), while the food signal caused a high
EPSC (Afood). We set the average of Abefore and Afood as the threshold (Ath). When the
EPSC stimulated by the bell signal exceeds the threshold, it means that the dog salivated.
During the training, the food signal was delayed by 7 s compared to the bell signal. Within
a period of 15 s, both the food signal and the bell signal were used for training once. After
10 trainings with the bell ring and the food, the EPSC stimulated only by the bell signal
(Aafter) clearly increased to 1.15 times of Ath for the 7.6% W-InOx transistor, whereas for the
InOx transistor, the EPSC did not reach the threshold. The successful training indicates that
the W-InOx transistor has better learning and memory capabilities.
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4. Conclusions

The synaptic performance of the InOx electrolyte-gated transistors with various W
concentrations was studied. As the W-to-In ratio increased from 0% to 7.6%, the transistor
showed an increasing hysteresis window from 0.2 V to 2 V with a sweep range of −2 V
to 2.5 V in the transfer curve, and the conductance increased from 40-fold to 30,000-fold
after applying 50 positive pulses with a 2% duty ratio. With tungsten doping, the synaptic
performance was improved with a higher PPF index and longer relaxation time in PPF, and
a successful training in the Pavlovian experiment was performed compared with those
without tungsten doping. The formation of WO3 and its resulting ion intercalation may be
the cause of this enhancement.
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