
Citation: Vlachos, C.; Tolis, F.;

Karras, G.C.; Bechlioulis, C.P. Neural

Network Iterative Learning for SISO

Non-Affine Control Systems.

Electronics 2024, 13, 1473. https://

doi.org/10.3390/electronics13081473

Academic Editor: Jose Luis

Calvo-Rolle

Received: 17 March 2024

Revised: 1 April 2024

Accepted: 10 April 2024

Published: 12 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Neural Network Iterative Learning for SISO Non-Affine
Control Systems
Christos Vlachos 1, Fotios Tolis 1 , George C. Karras 2,* and Charalampos P. Bechlioulis 1

1 Department of Electrical and Computer Engineering, University of Patras, 26504 Rio, Greece;
vlachosc@upatras.gr (C.V.); fotistece@gmail.com (F.T.); chmpechl@upatras.gr (C.P.B.)

2 Department of Informatics and Telecommunications, University of Thessaly, 35100 Lamia, Greece
* Correspondence: gkarras@uth.gr

Abstract: This work introduces an identification scheme capable of obtaining the unknown dynamics
of a nonlinear plant process. The proposed method employs an iterative algorithm that prevents
confinement to a sole trajectory by fitting a neural network over a series of trajectories that span the
desired subset of the state space. At the core of our contributions lie the applicability of our method
to open-loop unstable systems and a novel way of generating the system’s reference trajectories,
which aim at sufficiently stimulating the underlying dynamics. Following this, the prescribed
performance control (PPC) technique is utilized to ensure accurate tracking of the aforementioned
trajectories. The effectiveness of our approach is showcased through successful identification of the
dynamics of a two-degree of freedom (DOF) robotic manipulator in both a simulation study and a
real-life experiment.

Keywords: system identification; non-affine nonlinear systems; artificial neural networks; prescribed
performance control; persistency of excitation

1. Introduction

Nonlinear dynamic models play a vital role in capturing the complex behaviors
exhibited by the majority of real-world physical systems. Beyond the inherent nonlinearity,
challenges emerge due to the lack of precise model knowledge, impacting various domains
such as model-based control and the design of optimal and fault-tolerant control laws.
In this spirit, developing a nonlinear system identification scheme is essential for enhancing
our understanding of these systems’ behaviors and for crafting robust and efficient control
strategies tailored to their characteristics.

Over the last decades several approaches that tackle nonlinear system identification
have emerged. Volterra series [1] methods involve estimating the Volterra kernels that
describe the nonlinear behavior of a system. However, a typical issue in the estimation of
Volterra series models is the exponential growth of the regressor terms. Various works have
been proposed to address this problem through the regularization [2,3] and incorporation of
prior structural knowledge in block-oriented models [4]. Block-oriented nonlinear models
such as the Hammerstein and Wiener models [5] consist of a cascade combination of a static
nonlinear element and a linear dynamic model and address the computational issue of
multidimensional Volterra kernels. For the Hammerstein–Wiener model, where a nonlinear
block both precedes and follows a linear dynamic system [6], the authors in [7] suggest an
adaptive scheme for system identification in which only quantized output observations are
available due to sensor limitations. Nevertheless, these methods are generally limited to a
highly specific model form in each case, and typically, knowledge of this form is required
prior to the identification process.

On the other hand, the NARMAX [8] framework provides a flexible and powerful
approach for modeling and understanding the dynamics of nonlinear systems in which the

Electronics 2024, 13, 1473. https://doi.org/10.3390/electronics13081473 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13081473
https://doi.org/10.3390/electronics13081473
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0007-3741-6551
https://orcid.org/0000-0002-4045-4715
https://orcid.org/0000-0001-9850-2540
https://doi.org/10.3390/electronics13081473
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13081473?type=check_update&version=2

Electronics 2024, 13, 1473 2 of 18

system is modeled in terms of a nonlinear functional expansion of lagged inputs, outputs
and prediction errors. In [9], a multilayer perceptron neural network is used to build a
NARMAX model in order to identify the dynamics of a DC motor. A significant challenge in
system identification using NARMAX models lies in the trade-off between selection of the
model parameters and an adequate representation of the system dynamics. Finally, artificial
intelligence tools such as Fuzzy Logic (FL) and Artificial Neural Networks (ANNs) have
proved to be successful computational tools in any attempt to model nonlinear systems.
More specifically, fuzzy system identification techniques have found extensive application
in a variety of nonlinear systems [10–12].

2. State of the Art and Contributions

ANNs have been widely employed for nonlinear system identification, due to their
ability to serve as universal approximators [13]. NNs can be categorized into two main
structures, namely Feedforward Neural Networks (FNNs) and Recurrent Neural Networks
(RNNs). The former does not incorporate any feedback loops in its structure (i.e., it solely
features feedforward connections), while the latter includes both feedforward and feedback
connections. Regarding RNNs, they have been successfully utilized to approximate dynam-
ical systems [14]. More specifically, in [15], a continuous time RNN is employed to be used
as a predictive controller, while in [16], the authors suggest a modified Elman–Jordan NN
for the identification and online control of a nonlinear single-input single-output (SISO) pro-
cess model. Furthermore, ref. [17] proposes a fixed time control scheme for strict-feedback
nonlinear systems where an RNN is used to estimate the uncertain dynamics. Additionally,
in [18], a novel finite memory estimation-based learning algorithm for RNNs is introduced;
however, it shows an inability for real-time implementation. The aforementioned issue is
alleviated in [19] with a moving window iterative identification algorithm for unknown
nonlinear systems in discrete time. Finally, Ref. [20] proposes an improved version of the
classical Elman NN, where it is used to identify the unknown dynamics of time-delayed
nonlinear plants.

Concerning FNNs, they have been employed in various works to handle uncertainties
in adaptive neural network control [21,22]. In addition, several studies have explored
adaptive identification of nonlinear systems using FNNs [23–28], utilizing Radial Basis
Functions (RBFs) to approximate the unknown dynamics. While these works address
a wide range of systems, they typically only consider a partial Persistency of Excitation
(PE) [29] condition over periodic trajectories. The PE condition is crucial in adaptive
control of nonlinear systems as it influences the convergence properties of the identification
algorithm; it is, however, very difficult to be verified a priori. This issue is tackled in [30],
where the full PE condition is addressed, specifically for systems in the Byrnes–Isidori [31]
canonical form. In the aforementioned work, a reference trajectory is designed to a priori
ensure satisfaction of the PE condition for RBF networks, based on [32]. Subsequently,
the PPC technique [33] is applied to track this trajectory for uncertain input affine dynamical
systems in canonical form.

In NN-based learning algorithms, the nonlinearities of a system are modeled using
an NN with unknown, yet constant weights, reducing the identification process to the
estimation of the network’s parameters. The effectiveness of the aforementioned approach
relies heavily on factors such as the structure of the network, the training algorithm em-
ployed and the quality of the training data. During training, the network is provided with
input–output data pairs, representing the system’s behavior across various conditions.
These data are acquired by probing the plant with properly designed input signals. The suc-
cess of the identification process depends significantly on the ability of the input signals
to effectively stimulate the system dynamics across the entire compact region of interest.
However, even in the presence of sufficiently rich reference trajectories, precise tracking
remains a challenging task owing to the system’s nonlinearity as well as the identification
error during initialization of the training process.

Electronics 2024, 13, 1473 3 of 18

The majority of the existing options for nonlinear system identification are ineffective,
particularly when open-loop stable dynamics cannot be assumed. This highlights the
necessity of an online approach applicable to a wide range of systems. In this work, we
propose a novel approach for designing reference trajectories along with an algorithm that
iteratively improves the approximation of the unknown input–output mapping over a
compact set. These trajectories sufficiently stimulate the system dynamics and are tracked
using the PPC scheme. This allows accurate tracking of a reference trajectory, ensuring that
the system’s response meets predefined performance criteria throughout both transient
and steady-state phases. We note that the aforementioned control technique is vital to
the identification process since it does not require prior knowledge of the underlying
dynamics [34]. The proposed methodology is motivated by the inadequacy of conventional
open-loop excitation signals that are utilized in the identification literature to effectively
stimulate unknown dynamics since they may lead to instability, e.g., open-loop unstable
dynamical systems.

The proposed method employs a two-phase strategy. Initially, the system is driven
through a path characterized by known and desired traits, by linking together multiple
points located over the desired workspace, with a trajectory that minimizes certain response
criteria. Subsequently, a neural network is utilized to learn the dynamics of the unknown
open-loop system, even in cases where it could be unstable. The iterative training procedure
of the network entails adjusting it across a series of trajectories that encompass the specific
subset of input and state space being targeted. This algorithm guarantees that the acquired
knowledge remains applicable across the entire set and is not just limited to a single
trajectory’s neighborhood.

Our key contributions in this work can be summarized as follows:

• A method for designing reference trajectories that are capable of adequately stimulat-
ing the dynamics of a system.

• An identification scheme capable of retrieving the unknown plant dynamics even in
the case of open-loop instability.

• Full coverage of the targeted system state space instead of limitation to a sole trajectory.

Finally, the overall methodology is demonstrated through an extensive simulation
study, as well as a real-life experiment on a two-degree of freedom robotic manipulator.

3. Problem Formulation and Preliminaries

Consider a class of SISO non-affine nonlinear dynamical systems described in the
canonical form:

x(n) = f (x̄, u) (1)

where x̄ = [x, ẋ, ẍ, . . . , x(n−1)]T ∈ Rn is the state vector and n ≥ 1 is the system’s order,
while u ∈ R denotes the control input. Subsequently, we define the nonlinear function fu
that can be regarded as the control input gain of System (1) as:

fu(x̄, u) =
∂ f (x̄, u)

∂u
(2)

Throughout this work, the following assumptions are asserted:

Assumption 1. The function f (·, ·) : Rn+1 → R is Lipschitz continuous and fu(x̄, u) is known
to be strictly positive (or negative), i.e., fu(x̄, u) ̸= 0 for all (x̄, u) ∈ Rn × R. Without loss of
generality, we assume that fu is strictly positive, i.e., it holds that ∂ f

∂u ≥ g > 0, where g is a positive
constant.

Assumption 2. The state vector x̄ is available for measurement.

Assumption 1 essentially translates into a controllability condition, which is preva-
lent among a wide spectrum of nonlinear dynamical systems. Furthermore, regarding

Electronics 2024, 13, 1473 4 of 18

Assumption 2, we stress that the necessity for full-state feedback is a common feature in
identification processes. The rapid advancement of sensing technologies and the wide
availability of data, combined with the fact that identification processes typically take
place in specific environments where access to the system’s states is available, renders this
assumption less restrictive.

In this work, the objective is to establish an iterative learning framework that allows
the extraction of the unknown non-affine mapping f (x̄, u) in a compact region of interest
Ω ⊂ ℜn+1. We have to stress that the adopted scheme can be readily extended to encompass
multi-input multi-output (MIMO) square systems (i.e., with an equal number of inputs
and outputs) by implementing the identification process that will be described in the
sequel, separately along each output. In such a case, Assumption 1 pertains to the positive
definiteness of the input Jacobian of the nonlinear dynamics.

4. Methodology

In this section, we initially present the structure that will be utilized for the approx-
imation of the unknown system dynamics. Additionally, we design a set of trajectories
that sufficiently excite the system within a targeted compact set Ω ⊂ Rn+1. Furthermore,
a comprehensive presentation of the controller employed to trace the generated reference
trajectories is provided. Ultimately, the entire iterative identification algorithm, along with
its individual steps, will be outlined.

4.1. Approximation Structure

In order to approximate the unknown nonlinear system dynamics, the following
neural network will be used

f (x̄, u) = NN(x̄, u; w∗) + ϵ(x̄, u) (3)

where w∗ represents the vector that contains the optimal synaptic weights that minimize
the modeling error term ϵ(x̄, u), i.e., |ϵ(x̄, u)| < ϵ̄ within a compact set Ω for the smallest
positive constant ϵ̄. By approximating the nonlinear function f , we obtain the estimate

f̂ (x̄, u) = NN(x̄, u; ŵ) (4)

based on which the approximation error can be written as

f̃ (x̄, u) = f (x̄, u)− f̂ (x̄, u) = NN(x̄, u; w∗)− NN(x̄, u; ŵ) + ϵ (5)

Hence, our objective reduces to the formulation of an iterative learning scheme capable
of estimating the unknown weights w∗, in order to navigate the approximation error to an
arbitrarily small neighborhood of the origin.

4.2. Reference Trajectory Design

Guiding the system along a predefined path with specified characteristics produces
crucial data, which will be used for the successful estimation of the unknown dynamics. To
create a reference trajectory that sufficiently excites the system dynamics, multiple points
scattered all over the compact set Ω = Ωx ×Ωẋ × · · · ×Ωx(n) ⊂ Rn+1 are smoothly linked
together to form the trajectory path. First, a set of M points X = [X1, . . . , XM] ∈ ℜn+1×M is
selected such that they cover Ω; then, a closed path is obtained by traversing these points.
Towards this direction, we connect any pair of points Xi → Xj with a trajectory that mini-
mizes the derivative x(n). Thus, to obtain the trajectory that connects the aforementioned
points, a minimum-energy optimization problem with a fixed final state [35] is solved for
each transition.

Electronics 2024, 13, 1473 5 of 18

In order to successfully acquire the desired trajectory z(t) = xdi,j
(t) between two

points Xi and Xj, consider the following dynamic system:

ż = Az + Bũ (6)

where ũ denotes the system’s input. In addition, A and B are given by:

A =

[
0 In−1

0(n−1)×1 01×(n−1)

]
B =

[
0(n−1)×1

1

]
where 0 and I are the zero and the identity matrix, respectively, and the subscripts denote
their dimensions. Our aim is to drive the system from the initial state z(t0) = Xi to the
desired final state that is fixed to z(Tij) = Xj, where Tij denotes the transition time between
the two points. In addition, the following positive definite quadratic form is subjected
to minimization:

J(t0) =
1
2

∫ Tij

t0

ũT Rũ dt (7)

The solution to the aforementioned optimal control problem is an open-loop control
signal that can be obtained in closed form (i.e., it depends only on the initial and final states):

ũ∗(t) = BTeAT(Tij−t)G−1(t0, Tij)[z(Tij)− eA(Tij−t0)z(t0)] (8)

where G(t0, Tij) denotes the reachability Grammian:

G(t0, Tij) =
∫ T

t0

eA(Tij−τ)BBTeAT(Tij−τ)dτ (9)

Since the pair (A, B) is reachable, the Grammian matrix G(t0, Tij) is invertible, and
therefore, a minimum-energy control ũ∗(t) exists for any pair Xi, Xj. Therefore, the solution
to System (6), and thus the reference trajectory between Xi and Xj, is obtained by:

xdi,j
(t) = z(t) = −

∫ t

t0

eA(Tij−τ)BBTeAT(Tij−τ)G−1(t0, Tij)[z(Tij)− eA(Tij−t0)z(t0)]dτ (10)

where the transition time Tij is yet to be determined. Towards this direction, notice that
since the control law is available in closed form, we can readily determine the value of the
optimal quadratic cost when applying it:

J∗(t0, Tij)) =
1
2

dT(t0, Tij)G−1(t0, Tij)d(t0, Tij) (11)

where d(t0, Tij) represents the final state difference:

d(t0, Tij) = z(Tij)− eA(Tij−t0)z(t0). (12)

The transition time Tij for which the system state will traverse Xij is obtained by
solving the following optimization problem:

min
Tij

{
αJ∗(t0, Tij)) + βC(t0, Tij)) + γTij

}
s.t. Tmin ≤ Tij ≤ Tmax (13)

whose computation can be efficiently tackled [36]. The positive weighting parameters α, β
and γ specify a trade-off between the quadratic cost J(t0, Tij), the minimization of the curve
length of the transition C(t0, Tij) and the transition time Tij, while Tmin and Tmax denote the

Electronics 2024, 13, 1473 6 of 18

lower and upper bound of the latter, respectively. More specifically, the curve length of the
transition is given by:

C(t0, Tij) =
∫ Tij

t0

√
1 + ż2 dt (14)

As our goal is to approximate the underlying dynamics within a confined workspace,
specific constraints need to be imposed on the transition curve. This justifies the incorpora-
tion of the length of the curve in the performance index (13). The time T∗ij that results from
minimizing (13) yields a minimum-energy open-loop control that guides the system’s state
from the initial to the final state while the length of the curve is taken into account. An alter-
native approach would be to treat the curve length C(t0, Tij) as the sole performance index.
However, this strategy proves to be insufficient as a trajectory comprised of a sole straight
line (which is what minimizing only the curve length would achieve) fails to adequately
stimulate the dynamics of the system. It is important to emphasize that the collection of
transition points and their corresponding times is an offline procedure. Following this
process, all the parameters are stored in a matrix H and can be accessed to generate online
solutions using (10).

H =

X1 . . . XN−1
X2 . . . XN
T12 . . . TN−1N

 (15)

Finally, the complete algorithm for generating a sole reference trajectory is summarized
in Algorithm 1. Given a set of M points that cover the compact region of interest Ω,
the aforementioned algorithm produces a reference trajectory that spans a significant part
of the targeted state space Ω.

Algorithm 1 Reference Trajectory Design

1: Select a random sequence of the points M∗ (i.e., a permutation of M)
2: Set the first point of M∗ as the initial point Xi and the second one as X f
3: Repeat
4: Construct the Performance Index of the transition (13)
5: Minimize the Performance Index with respect to the time span T and store the

transition characteristics [Xi, X f , T] in matrix H
6: Set the previous final point as the new initial and the next point of the sequence as

the new final point
7: until the final point is the starting point of the sequence (i.e., the path has closed)

4.3. Controller Design

The aforementioned reference trajectories will be tracked by employing a controller
that utilizes the PPC technique. Employing this scheme proves essential when working
with unknown systems since it does not incorporate any prior knowledge of the system
dynamics. To achieve prescribed performance, a scalar error σ(t) must remain bounded
within a predefined region, formed by decaying functions of time, as illustrated in Figure 1:

−ρ(t) < σ(t) < ρ(t), ∀t ⩾ 0 (16)

The function ρ(t) is a smooth, bounded, strictly positive and decreasing function of
time called performance function and is chosen as follows:

ρ(t) = (ρ0 − ρ∞)e−lt + ρ∞

with ρ0, ρ∞ and l being positive gains that are chosen to satisfy the designer’s specifica-
tions. Specifically,

• ρ∞ = limt→∞ ρ(t) is selected according to the maximum allowable tracking error at
the steady state;

Electronics 2024, 13, 1473 7 of 18

• l determines a lower bound on the speed of convergence;
• ρ0 affects the maximum overshoot and is selected such that ρ0 > |σ(0)|.

Figure 1. Graphical representation of (16).

For the scalar error σ, we define the linear filtered error:

σ(t) = (
d
dt

+ λ)ne(t) =
n

∑
j=0

(
n− 1

j

)
λje(n−j)(t) (17)

where λ is a positive constant and e(t) = x(t)− xd(t) denotes the tracking error. In addition,
consider the normalized error ξ = σ(e(t))

ρ(t) and the transformation T(ξ(t)) that maps the
constrained behavior as defined in (16), into an unconstrained one. More specifically,
T : (−1, 1) → (−∞, ∞) is a strictly increasing, symmetric and bijective mapping, e.g.,
T(ξ) = 1

2 ln(1+ξ
1−ξ). Finally, prescribed performance is achieved by employing the following

control law [34]:
u = −kT′(ξ)ρ−1T(ξ), k > 0 (18)

where k is a positive gain.

4.4. Iterative Learning

The identification algorithm involves an iterative process, aiming to enhance the
approximation of the unknown underlying dynamics until convergence is reached (i.e.,
|ϵ(x̄, u)| ≤ ϵ̃, where ϵ̃ is an arbitrarily small positive value). More specifically, we adopt
an artificial neural network with any number of hidden layers and sigmoidal activation
functions, which is trained based on the collected data over a series of reference trajectories.
The aforementioned training process takes place in a supervised learning environment,
where the necessary input–output data for the estimation of the network’s weights at
each iteration are acquired by tracing a reference trajectory designed through the process
outlined in Section 4.2.

However, in order to guarantee that the final result is devoid of bias along a specific
trajectory, a distinct random sequence of points is employed to construct the reference
trajectory in each iteration. In addition, to ensure accurate tracking, the aforementioned
trajectory will be tracked with predefined transient and steady-state performance using the
PPC technique, as described in Section 4.3. During each instance of learning, the weights of
the neural network are obtained by optimizing the matching between the network’s output
and the target values via a backpropagation algorithm. Notice that under Assumption 2,
the system’s state [x, ẋ, . . . , x(n−1)] (i.e., the input training data) is available for measure-
ment. However, since we do not have access to x(n), the target output values to train the
neural network NN(x̄, u; w) are not available.

Electronics 2024, 13, 1473 8 of 18

To overcome this challenge, during each iteration m = 1, 2, . . . the following tracking
differentiator [37] is employed:

żi = zi+1, i = 1, . . . , n− 1 (19)

żn = −
n

∑
j=1

[
kzj R

n+1−j(zj − x(j−1))
]
+ NN(x̄, u; w̃m−1) (20)

with positive gains R, kzj , j = 1, . . . , n. When R→ ∞, then based on [37], zi → x(i−1), i =
1, . . . , n and consequently żn → x(n), from which we may derive the input–output pair that
will be employed for the training process. Notice that during the first round (m = 1) over
the closed reference trajectory, the NN structure in (20) is not initialized yet, as we have not
gathered the necessary data. Therefore, the network is activated after the first training stage
has taken place. As a result, in each subsequent round (m), the extracted neural structure
originates from the previous iteration. After each round of training, the obtained knowledge
regarding the system’s dynamics is employed not only to enhance the estimation of x(n)

but also to provide improved initial weights for the consecutive iterations. Consequently,
an accurate model of the system dynamics can be acquired after sufficient iterations (e.g.,
when the weights do not change above a threshold). The complete algorithm for the
iterative learning of the unknown dynamics is summarized in Algorithm 2.

Remark 1. The collection of transition points and their corresponding times that are utilized in
the design of the online reference trajectories, as described in Algorithm 1, is an offline procedure.
Consequently, once the trajectories have been generated, the problem is reduced to a tracking control
problem with the PPC scheme, which is efficiently tackled owing to the low complexity control signal.
In a similar manner, once the tracking of the reference trajectories is complete, we have successfully
acquired all the necessary data that will be employed in the final part of Algorithm 2, in order to
train the adopted neural structure. Therefore, we stress that our approach can be employed to tackle
identification of complex systems without sacrificing online performance since the computational
burden mainly stems from offline procedures.

Algorithm 2 Iterative Learning

1: Select a set of M Points that cover Ω
2: Repeat
3: Algorithm 1
4: until K reference trajectories are created
5: Repeat
6: Track the designed reference trajectory Ki using PPC and store the required training

data
7: until all trajectories are cleared
8: Repeat
9: if Initial iteration

10: NN ← Null
11: Employ the tracking differentiator to complete the required training data
12: Update the neural network weights via backpropagation
13: until all the training data has been utilized

5. Results

In this section, we demonstrate the effectiveness of the proposed identification scheme
with the goal of obtaining the underlying system dynamics of a two-degree of freedom
robotic manipulator without assuming any prior knowledge, via two scenarios: a simu-
lated one, showcasing the full capabilities of our method, and a real-life experiment to
demonstrate the applicability of our algorithm to real-world systems.

Electronics 2024, 13, 1473 9 of 18

5.1. Simulation Study

Initially, we present the simulation results for the successful identification of the
unknown dynamics of a two-degree of freedom robotic manipulator, as illustrated in
Figure 2. All simulations were conducted in MATLAB R2023a. The robotic manipulator
obeys the following dynamic model

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ, (21)

where q = [q1 q2]
T and q̇ = [q̇1 q̇2]

T denote the joint angular positions and velocities,
respectively, M(q) is a positive definite inertia matrix, C(q, q̇) is the matrix that describes
the Coriolis–centrifugal phenomena, G(q) is the vector describing the influence of gravity
and τ is the torque that acts as the system’s input. More specifically, the inertia matrix is
formulated as

M =

[
M11 M12
M21 M22

]
where

M11 = IZ1 + IZ2 + m1
l2
1
4
+ m2(l12 +

l2
2
4
+ l1l2c2)

M12 = M21 = IZ2 + m2(
l2
2
4
+

1
2

l1l2c2)

M22 = IZ2 + m2
l2
2
4

Figure 2. Two-DOF robotic manipulator.

In addition, the vector containing the Coriolis and centrifugal torques is defined
as follows:

C(q, q̇)q̇ =

[
−cq̇2 + k1 −c(q̇1 + q̇2)

cq̇1 k2

][
q̇1
q̇2

]
with c being c = 1

2 m1l1l2s2. Additionally, the gravity vector is given by:

G(q) =
[1

2 m1gl1c1 + m2g(l1c1 +
1
2 l2c12)

1
2 m2l2gc12

]
and the terms c2, s2 and c12 correspond to cos(q2), sin(q2) and cos(q1 + q2), respectively.
The values adopted for simulation are provided in Table 1, with mi, Izi and li denoting
the mass, the moment of inertia and the length of link i, respectively, ki being the joint
friction coefficient and g the acceleration of gravity. The aforementioned dynamics can
be expressed as q̈ = f (q, q̇, τ), aligning with the form described in Section 3. Our goal is

Electronics 2024, 13, 1473 10 of 18

to learn the unknown nonlinear mapping f over the domain set Ω = Ωqi ×Ωq̇i ×Ωq̈i =
[−1, 1]× [−1, 1]× [−1, 1] for i = 1, 2.

Table 1. System parameter values.

m1 l1 IZ1 k1 m2 l2 IZ2 k2 g

3.2 0.5 0.96 1 2.0 0.4 0.81 1 9.81

To achieve this, a reference trajectory traversing in random order 27 points scattered
over the domain set Ω is designed. A closed path of 27 such points, along with the
workspace are depicted in Figure 3. It is evident that the generated trajectory, which
traverses all points, spans a significant part of the desired state space. In order to obtain
the time of transition between the points of the sequence, the performance index (13) was
minimized, with the weighting parameters set as α = 0.1, β = 1 and γ = 0.1. Subsequently,
a PPC controller with gains k = 1, λ = 1.5 and specifications ρ1

0 = 3, ρ1
∞ = 0.01, l1 = 4,

ρ2
0 = 3, ρ2

∞ = 0.01 and l2 = 4 is used to track the reference trajectory. Finally, the gains of
the tracking differentiator are set to kz1 = kz2 = 0.2 and R = 100. In Figures 4 and 5, the
tracking of one of the reference signals by the PPC controller is depicted, along with the
error and the control input, for both of the manipulator’s joints.

1

0

1
0

1

0

2

0

1 2

1

10

2

0

Figure 3. The workspace (left) and a closed path (blue) traversing it (right).

In addition, for the training process, a single hidden-layer neural network with 15 neu-
rons was utilized. To elaborate further on this, 15 different reference trajectories were
formed by permuting the 27 points of the workspace to sufficiently improve iteratively
the estimation of the underlying dynamics. During each iteration, data are collected by
tracking a different reference trajectory with the PPC controller. The gathered data are fed
to the neural network, whose training is conducted by the MATLAB toolbox employing
the default Levenberg–Marquardt algorithm. After the first iteration, the resulting network
is employed in the tracking differentiator to improve both the acceleration estimation
and the selection of the initial weights for the consecutive iterations. To avoid overfitting
of the employed neural network and achieve satisfactory generalization capabilities, af-
ter tracking the reference trajectories, the acquired dataset was split into a training and a
testing set, with a ratio of 85% and 15%, respectively. This was to ensure that the acquired
neural structure performs well, not only on the training set, but also on the unseen data
represented by the testing set.

Electronics 2024, 13, 1473 11 of 18

0 20 40 60 80 100 120

0

2

0 20 40 60 80 100 120

0

1

0 20 40 60 80 100 120

0

10

20

0 1 2 3 4 5 6 7 8 9 10

0

2

Figure 4. The tracking responses of q1 and q̇1, the evolution of the tracking error and the control
input under PPC.

0 20 40 60 80 100 120

0

2

0 20 40 60 80 100 120

0

1

0 20 40 60 80 100 120

0

0 1 2 3 4 5 6 7 8 9 10

0

2

Figure 5. The tracking responses of q2 and q̇2, the evolution of the tracking error and the control
input under PPC.

In Figure 6, the curve fitting evolution for both components of the unknown dynamics
can be observed. Furthermore, by comparing the initial estimations in Figure 7 with the
results of the approximation problem in Figure 8, it becomes evident that the proposed
scheme has resulted in a highly accurate estimate of the system dynamics with no de-
pendence on any prior knowledge. We stress that to ensure that the evaluation of the

Electronics 2024, 13, 1473 12 of 18

identification scheme is free of bias, the testing is conducted using a reference trajectory
different from the ones employed during the training stages.

0

0.5

1

1.5

2

0

0.5

1

1.5

2

Figure 6. Improvement of fitting during iterations for a testing dataset.

20 40 60 80 100

0

1

2

20 40 60 80 100

0

1

2

Figure 7. Actual values and estimates of f (q, q̇, τ) after the first iteration.

Electronics 2024, 13, 1473 13 of 18

20 40 60 80 100

0

1

2

20 40 60 80 100

0

1

2

Figure 8. Actual values and estimates of f (q, q̇, τ) at the end of the iterative process.

5.2. Experimental Study

This section showcases the results of an experimental study which validates the
effectiveness and applicability of the proposed scheme in a real-world system. Towards
this direction, we consider the two-degree of freedom planar robot manipulator with
DC geared motor actuation, depicted in Figure 9. Measurements regarding the system’s
state (i.e., position and velocity) for each joint are obtained through a rotary encoder
attached at each motor’s shaft. Furthermore, a microcontroller was employed to acquire the
necessary sensor data as well as to drive the motors. This is achieved through utilization of
a motor driver that allows the direction and speed of a DC motor to be adjusted by using a
Pulse–Width-Modulated (PWM) signal.

In order to calculate the applied input control signal, note that the produced torque is
given by:

τ = Iα ∗ KT

where Iα denotes the armature current and KT is the motor torque constant. Moreover, at a
constant operating point, by applying Kirchoff’s Voltage Law, we obtain:

Vsupply = Eb + Iα ∗ Rα

Eb = Ke ∗ωm

where Vsupply is the supplied voltage, Ra denotes the armature’s resistance, while ωm
denotes the angular velocity and Eb and Ke are the back-EMF voltage and constant, respec-
tively. By applying the law of conservation of energy, it can be shown that KT = Ke, and
therefore, the applied control input signal can be approximately obtained as follows:

τ =
Ke ∗Vsupply − K2

e ∗ωm

Rα

Ke =
Vrated

ωnoload

Electronics 2024, 13, 1473 14 of 18

Finally, the constant Ke can be obtained by dividing the rated voltage of each motor by
its no-load speed. For the motors employed in our experiment, the following parameter val-
ues were extracted: R1 = 4.2 Ω, R2 = 5.6 Ω, Ke1 = 0.027 V/rpm and Ke2 = 0.020 V/rpm.

Figure 9. Two-DOF robotic manipulator.

Similarly to the previous study, we aim at learning the unknown nonlinear mapping f
over the domain set Ω = Ωqi ×Ωq̇i ×Ωq̈i = [−π/2, π/2]× [−π/2, π/2]× [−π/2, π/2]
for i = 1, 2; therefore, a reference trajectory traversing in random order 27 points scattered
over the domain set Ω is designed. The time of transition between the points of the
sequence was obtained by minimizing the performance index (13), with the weighting
parameters set as α = 0.1, β = 1 and γ = 0.1. Subsequently, a PPC controller with gains
k = 2 and λ = 1.5 and specifications ρ1

0 = 4.8, ρ1
∞ = 0.1, l1 = 1.5, ρ2

0 = 4.8, ρ2
∞ = 0.1,

l2 = 1.5 is used to track the reference trajectory. In Figures 10 and 11, the tracking of one
of the reference signals by the PPC controller is depicted, along with the control input,
for both of the robot’s joints. A Savitzky–Golay filter [38] was used to eliminate the noise of
the experimental data. In addition, a video of the robotic manipulator tracking a reference
trajectory of 27 points using the PPC technique can be accessed through the following
hyperlink: https://youtu.be/CrUUgfKE6t4 (accessed on 27 February 2024).

In the initial phase of the experiment, we track 20 different reference trajectories and
store the obtained data (i.e., position, velocity and applied torque) that will be used in the
next phase to iteratively improve the underlying dynamics estimation. In the learning
phase, the gathered data along with the target acceleration output (which is obtained
through a tracking differentiator as described in Section 4.4) are fed to a single hidden-layer
neural network with 15 neurons whose training is conducted by the MATLAB toolbox
employing the default Levenberg–Marquardt algorithm. Similar to the simulation study,
overfitting of the employed neural network is avoided by splitting the acquired dataset
into a training and a testing set, with a ratio of 85% and 15%, respectively. After the first
iteration, the resulting network is utilized in the tracking differentiator, whose gains are
set to kz1 = 0.25, kz2 = 0.1 and R = 25, to improve both the acceleration estimation and
the selection of the initial weights for the consecutive iterations. To evaluate the learning
capabilities of the identification scheme, a reference trajectory different from the ones
employed during the training stages was used to compare the results of the approximation
problem. More specifically, the initial and final estimations of the unknown dynamics are
provided in Figures 12 and 13, where decreases in the Root Mean Square Error (RMSE)
of 43% and 49% are witnessed for the underlying dynamics f1 and f2, respectively. It is
clear that the suggested approach yields an adequate estimation of the system dynamics,
without relying on any prior knowledge.

https://youtu.be/CrUUgfKE6t4

Electronics 2024, 13, 1473 15 of 18

e1

Figure 10. The tracking responses of q1 and q̇1, the evolution of the tracking error and the control
input under PPC.

e2

Figure 11. The tracking responses of q2 and q̇2, the evolution of the tracking error and the control
input under PPC.

Electronics 2024, 13, 1473 16 of 18

Figure 12. Actual values and estimates of f (q, q̇, τ) after the first iteration.

Figure 13. Actual values and estimates of f (q, q̇, τ) at the end of the iterative process.

6. Conclusions and Future Work

In this work, we present an iterative learning process that aims at extracting the
unknown nonlinear dynamics of a plant in the targeted system state space. The approach
was demonstrated through both an extensive simulation study and a real-life experiment
on a robotic manipulator with two degrees of freedom. Our main contributions consist of
a novel reference trajectory generation scheme that is capable of sufficiently exciting the
underlying dynamics and an iterative algorithm that progressively improves the unknown
parameters of the employed neural network, even in the case of open-loop instability.

Electronics 2024, 13, 1473 17 of 18

Future formal approaches should consider tackling the issue of input and state constraints
through the design of a trajectory that inherently avoids configurations associated with
physical system constraints/limitations (e.g., mechanical constraints).

Author Contributions: Conceptualization, C.P.B.; methodology, C.P.B.; software, C.V. and F.T.;
validation, C.V. and F.T.; formal analysis, C.V. and F.T.; investigation, all; resources, C.P.B.; data
curation, C.V. and F.T.; writing—original draft preparation, C.V.; writing—review and editing, C.P.B.
and G.C.K.; visualization, C.V. and F.T.; supervision, C.P.B.; project administration, C.P.B. and G.C.K.;
funding acquisition, C.P.B. and G.C.K. All authors have read and agreed to the published version of
the manuscript.

Funding: The work of C.V. and C.P.B. was funded by the Hellenic Foundation for Research and
Innovation (H.F.R.I.) under the second call for research projects to support postdoctoral researchers
(HFRI-PD19-370).

Data Availability Statement: Data for this study are available from the corresponding author
on request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Volterra, V. Sopra le Funzioni Che Dipendono da Altre Funzioni; Tipografia della R. Accademia dei Lincei: Rome, Italy, 1887.
2. Birpoutsoukis, G.; Marconato, A.; Lataire, J.; Schoukens, J. Regularized nonparametric Volterra kernel estimation. Automatica

2017, 82, 324–327. [CrossRef]
3. Dalla Libera, A.; Carli, R.; Pillonetto, G. Kernel-based methods for Volterra series identification. Automatica 2021, 129, 109686.

[CrossRef]
4. Xu, Y.; Mu, B.; Chen, T. On Kernel Design for Regularized Volterra Series Model with Application to Wiener System Identification.

In Proceedings of the 2022 41st Chinese Control Conference (CCC), Hefei, China, 25–27 July 2022; pp. 1503–1508. [CrossRef]
5. Nelles, O. Nonlinear Dynamic System Identification. In Nonlinear System Identification: From Classical Approaches to Neural Networks

and Fuzzy Models; Springer: Berlin/Heidelberg, Germany, 2001; pp. 547–577. [CrossRef]
6. Wills, A.; Schön, T.B.; Ljung, L.; Ninness, B. Identification of Hammerstein–Wiener models. Automatica 2013, 49, 70–81. [CrossRef]
7. Li, L.; Zhang, J.; Wang, F.; Zhang, H.; Ren, X. Binary-Valued Identification of Nonlinear Wiener–Hammerstein Systems Using

Adaptive Scheme. IEEE Trans. Instrum. Meas. 2023, 72, 3001110. [CrossRef]
8. Chen, S.; Billings, S.A. Representations of non-linear systems: The NARMAX model. Int. J. Control 1989, 49, 1013–1032. [CrossRef]
9. Abdul Rahim, N.; Taib, M.N.; Adom, A.; Abdul Halim, M.A. Nonlinear System Identification for a DC Motor using NAR-

MAX Model with Regularization Approach. In Proceedings of the International Conference on Control, Instrumentation and
Mechatronics Engineering (CIM’07), Johor, Malaysia, 28–29 May 2007.

10. Al-Mahturi, A.; Santoso, F.; Garratt, M.A.; Anavatti, S.G. Online System Identification for Nonlinear Uncertain Dynamical
Systems Using Recursive Interval Type-2 TS Fuzzy C-means Clustering. In Proceedings of the 2020 IEEE Symposium Series on
Computational Intelligence (SSCI), Canberra, Australia, 1–4 December 2020; pp. 1695–1701. [CrossRef]

11. Zou, W.; Zhang, N. A T-S Fuzzy Model Identification Approach Based on a Modified Inter Type-2 FRCM Algorithm. IEEE Trans.
Fuzzy Syst. 2018, 26, 1104–1113. [CrossRef]

12. Ferdaus, M.M.; Pratama, M.; Anavatti, S.; Garratt, M. Online Identification of a Rotary Wing Unmanned Aerial Vehicle from Data
Streams. Appl. Soft Comput. 2018, 76, 313–325. [CrossRef]

13. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989,
2, 359–366. [CrossRef]

14. Delgado, A.; Kambhampati, C.; Warwick, K. Dynamic recurrent neural network for system identification and control. Control
Theory Appl. IEE Proc. 1995, 142, 307–314. [CrossRef]

15. Al Seyab, R.; Cao, Y. Nonlinear system identification for predictive control using continuous time recurrent neural networks and
automatic differentiation. J. Process. Control 2008, 18, 568–581. [CrossRef]

16. Sen, G.D.; Gunel, G.Ö.; Guzelkaya, M. Extended Kalman Filter Based Modified Elman-Jordan Neural Network for Control and
Identification of Nonlinear Systems. In Proceedings of the 2020 Innovations in Intelligent Systems and Applications Conference
(ASYU), Istanbul, Turkey, 15–17 October 2020; pp. 1–6. [CrossRef]

17. Ni, J.; Ahn, C.K.; Liu, L.; Liu, C. Prescribed performance fixed-time recurrent neural network control for uncertain nonlinear
systems. Neurocomputing 2019, 363, 351–365. [CrossRef]

18. Kang, H.H.; Su Lee, S.; Kim, K.S.; Ki Ahn, C. Finite Memory Estimation-Based Recurrent Neural Network Learning Algorithm for
Accurate Identification of Unknown Nonlinear Systems. In Proceedings of the 2019 IEEE Symposium Series on Computational
Intelligence (SSCI), Xiamen, China, 6–9 December 2019; pp. 470–475. [CrossRef]

19. Kang, H.H.; Ahn, C.K. Neural Network-Based Moving Window Iterative Nonlinear System Identification. IEEE Signal Process.
Lett. 2023, 30, 1007–1011. [CrossRef]

http://doi.org/10.1016/j.automatica.2017.04.014
http://dx.doi.org/10.1016/j.automatica.2021.109686
http://dx.doi.org/10.23919/CCC55666.2022.9902870
http://dx.doi.org/10.1007/978-3-662-04323-3_15
http://dx.doi.org/10.1016/j.automatica.2012.09.018
http://dx.doi.org/10.1109/TIM.2023.3307760
http://dx.doi.org/10.1080/00207178908559683
http://dx.doi.org/10.1109/SSCI47803.2020.9308202
http://dx.doi.org/10.1109/TFUZZ.2017.2704542
http://dx.doi.org/10.1016/j.asoc.2018.12.013
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1049/ip-cta:19951873
http://dx.doi.org/10.1016/j.jprocont.2007.10.012
http://dx.doi.org/10.1109/ASYU50717.2020.9259812
http://dx.doi.org/10.1016/j.neucom.2019.07.053
http://dx.doi.org/10.1109/SSCI44817.2019.9002701
http://dx.doi.org/10.1109/LSP.2023.3301236

Electronics 2024, 13, 1473 18 of 18

20. Kumar, R. Memory Recurrent Elman Neural Network-Based Identification of Time-Delayed Nonlinear Dynamical System. IEEE
Trans. Syst. Man Cybern. Syst. 2023, 53, 753–762. [CrossRef]

21. Chen, M.; Ge, S.S.; How, B.V.E. Robust Adaptive Neural Network Control for a Class of Uncertain MIMO Nonlinear Systems
With Input Nonlinearities. IEEE Trans. Neural Netw. 2010, 21, 796–812. [CrossRef]

22. He, W.; Chen, Y.; Yin, Z. Adaptive Neural Network Control of an Uncertain Robot With Full-State Constraints. IEEE Trans.
Cybern. 2016, 46, 620–629. [CrossRef]

23. Wang, M.; Wang, C. Neural learning control of pure-feedback nonlinear systems. Nonlinear Dyn. 2014, 79, 2589–2608. [CrossRef]
24. Liu, T.; Wang, C.; Hill, D.J. Learning from neural control of nonlinear systems in normal form. Syst. Control Lett. 2009, 58, 633–638.

[CrossRef]
25. Wang, C.; Wang, M.; Liu, T.; Hill, D.J. Learning From ISS-Modular Adaptive NN Control of Nonlinear Strict-Feedback Systems.

IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 1539–1550. [CrossRef]
26. Dai, S.L.; Wang, C.; Wang, M. Dynamic Learning From Adaptive Neural Network Control of a Class of Nonaffine Nonlinear

Systems. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 111–123. [CrossRef]
27. Wang, M.; Wang, C. Learning From Adaptive Neural Dynamic Surface Control of Strict-Feedback Systems. IEEE Trans. Neural

Netw. Learn. Syst. 2015, 26, 1247–1259. [CrossRef]
28. Wang, M.; Wang, C.; Liu, X. Learning from adaptive neural control with predefined performance for a class of nonlinear systems.

In Proceedings of the 33rd Chinese Control Conference, Nanjing, China, 28–30 July 2014; pp. 8871–8876. [CrossRef]
29. Wang, C.; Hill, D. Learning from neural control. IEEE Trans. Neural Netw. 2006, 17, 130–146. [CrossRef]
30. Zisis, K.; Bechlioulis, C.P.; Rovithakis, G.A. Control-Enabling Adaptive Nonlinear System Identification. IEEE Trans. Autom.

Control 2022, 67, 3715–3721. [CrossRef]
31. Byrnes, C.; Isidori, A. Asymptotic stabilization of minimum phase nonlinear systems. IEEE Trans. Autom. Control 1991,

36, 1122–1137. [CrossRef]
32. Kurdila, A.; Narcowich, F.; Ward, J. Persistency of Excitation in Identification Using Radial Basis Function Approximants. Siam J.

Control Optim. 1995, 33, 625–642. [CrossRef]
33. Bechlioulis, C.P.; Rovithakis, G.A. Robust Adaptive Control of Feedback Linearizable MIMO Nonlinear Systems With Prescribed

Performance. IEEE Trans. Autom. Control 2008, 53, 2090–2099. [CrossRef]
34. Dimanidis, I.S.; Bechlioulis, C.P.; Rovithakis, G.A. Output Feedback Approximation-Free Prescribed Performance Tracking

Control for Uncertain MIMO Nonlinear Systems. IEEE Trans. Autom. Control 2020, 65, 5058–5069. [CrossRef]
35. Lewis, F.L.; Vrabie, D.; Syrmos, V.L. Optimal Control Of Continuous-Time Systems. In Optimal Control; John Wiley & Sons, Ltd.:

Hoboken, NJ, USA, 2012; Chapter 3, pp. 110–176. [CrossRef]
36. Brent, R.P. Algorithms for Minimization without Derivatives; Prentice-Hall: Englewood Cliffs, NJ, USA, 1973; p. 195.
37. Guo, B.Z.; Zhao, Z. On convergence of tracking differentiator. Int. J. Control 2011, 84, 693–701. [CrossRef]
38. Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964,

36, 1627–1639. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TSMC.2022.3186610
http://dx.doi.org/10.1109/TNN.2010.2042611
http://dx.doi.org/10.1109/TCYB.2015.2411285
http://dx.doi.org/10.1007/s11071-014-1834-y
http://dx.doi.org/10.1016/j.sysconle.2009.04.001
http://dx.doi.org/10.1109/TNNLS.2012.2205702
http://dx.doi.org/10.1109/TNNLS.2013.2257843
http://dx.doi.org/10.1109/TNNLS.2014.2335749
http://dx.doi.org/10.1109/ChiCC.2014.6896493
http://dx.doi.org/10.1109/TNN.2005.860843
http://dx.doi.org/10.1109/TAC.2021.3106870
http://dx.doi.org/10.1109/9.90226
http://dx.doi.org/10.1137/S0363012992232555
http://dx.doi.org/10.1109/TAC.2008.929402
http://dx.doi.org/10.1109/TAC.2020.2970003
http://dx.doi.org/10.1002/9781118122631.ch3
http://dx.doi.org/10.1080/00207179.2011.569954
http://dx.doi.org/10.1021/ac60214a047

	Introduction
	State of the Art and Contributions
	Problem Formulation and Preliminaries
	Methodology
	Approximation Structure
	Reference Trajectory Design
	Controller Design
	Iterative Learning

	Results
	Simulation Study
	Experimental Study

	Conclusions and Future Work
	References

