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Abstract: Cerebral ischemia has a high morbidity and disability rate. Clinical diagnosis is mainly
made by radiologists manually reviewing cerebral perfusion images to determine whether cerebral
ischemia is present. The number of patients with cerebral ischemia has risen dramatically in recent
years, which has brought a huge workload for radiologists. In order to improve the efficiency of
diagnosis, we develop a neural network for segmenting cerebral ischemia regions in perfusion
images. Combining deep learning with medical imaging technology, we propose a segmentation
network, UTAC-Net, based on U-Net and Transformer, which includes a contour-aware module
and an attention branching fusion module, to achieve accurate segmentation of cerebral ischemic
regions and correct identification of ischemic locations. Cerebral ischemia datasets are scarce, so
we built a relevant dataset. The results on the self-built dataset show that UTAC-Net is superior to
other networks, with the mDice of UTAC-Net increasing by 9.16% and mIoU increasing by 14.06%
compared with U-Net. The output results meet the needs of aided diagnosis as judged by radiologists.
Experiments have demonstrated that our algorithm has higher segmentation accuracy than other
algorithms and better assists radiologists in the initial diagnosis, thereby reducing radiologists’
workload and improving diagnostic efficiency.

Keywords: cerebral ischemia; segmentation; transformer; U-Net; computer-aided diagnosis

1. Introduction

Cerebral ischemia refers to a syndrome with a range of symptoms caused by inad-
equate blood supply to the brain, making it difficult to meet the metabolic needs of the
brain [1]. “Time is the brain” [2]. Brain injury after cerebral ischemia can lead to irre-
versible neuronal damage, memory loss, cognitive decline, severe brain dysfunction, and
long-term motor and cognitive impairment [3–6]. Cerebral perfusion imaging (CPI) with
single-photon emission computed tomography (SPECT) is a perfusion imaging of cerebral
blood flow after intravenous injection of radiopharmaceuticals, which is a well-established
noninvasive test in terms of the evaluation of ischemia by directly reflecting the tracer
uptake of the cerebrum. The analysis of medical images is the most important technical
aspect [7].

Semantic segmentation plays a central role in medical image diagnosis [8]. In the initial
diagnosis, radiologists have to segment the ischemic region from the complex background,
which is subjective, time-consuming, and labor-intensive. The large number of people
suffering from cerebral ischemia places a heavy burden on radiologists during the initial
diagnosis, so they expect computer-aided diagnosis (CAD) to complete the task of image
screening. Semantic segmentation has been widely used in a variety of clinical images,
which greatly assists in medical diagnosis [9]. In a variety of important scenarios, such as
image-guided interactions, radiological diagnostics, and radiology [10], it can help medical
staff to effectively extract lesion areas, greatly reduce work intensity, and accurately perform
disease analysis. Therefore, we design a CAD network for segmenting cerebral ischemia
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regions, which can construct models to complete the image screening task, achieve the
accurate positioning and segmentation of ischemic sites, improve the efficiency of film
reading, and carry out a meaningful attempt and exploration for the wide application of
intelligent medicine.

CAD, known as the “third eye” of the doctor, improves the diagnosis efficiency by
locating the lesions, extracting the effective features of the lesions, and building an auxil-
iary diagnosis model [11,12]. At present, CAD has attracted great attention from medical
researchers and clinical practitioners. Ayus et al. [13] proposed CAD for Alzheimer’s
identification, which may assist doctors and healthcare workers in improving AD diag-
nosis. Jasphin et al. [14] proposed a CAD network that can differentiate and categorize
gastric cancers from intestinal disorders. Zhong et al. [15] proposed a CAD network for
mammographic breast cancer screening. The majority of CAD studies have been designed
based on magnetic resonance images and computed tomography scans, and only a small
proportion of CAD studies have been designed on the basis of SPECT images. For instance,
CAD is employed in research on the myocardial coronary artery, lumbar lesions, lung
cancer, thyroid, bone, and brain. Papandrianos et al. [16] proposed CAD of the myocardial
coronary artery in SPECT myocardial perfusion imaging for classifying SPECT as normal
or abnormal. Petibon et al. [17] proposed CAD of lumbar lesions in Tc-99m-MDP SPECT to
achieve effective detection of lumbar lesions. Xing et al. [18] proposed CAD of lung cancer
in chest SPECT to correct the attenuation of chest SPECT images for the early diagnosis
and evaluation of the treatment effects of lung cancer. Kwon et al. [19] proposed CAD of
the thyroid in thyroid SPECT to generate an attenuation map and automatically segment
the thyroid for the automatic evaluation of thyroid uptake. Lin et al. [20] proposed CAD
of bone scan in SPECT to identify whether a SPECT image includes lesions by classifying
the image into categories. Ni et al. [21] proposed CAD of Alzheimer in SPECT brain perfu-
sion images to automatically evaluate Alzheimer’s disease by extracting image features of
SPECT BPI. The above studies have amply demonstrated that CAD can be an effective tool
to aid in diagnosis using image processing techniques and SPECT image features.

However, most CAD that has been combined with deep learning has focused on image
classification and image detection. While classification can determine whether medical
images are normal or abnormal, it cannot provide the precise location of the lesion. Image
detection detects abnormal locations on abnormal images by drawing frames, but it cannot
provide the exact size and shape of the lesion. Image segmentation can segment the exact
location and size of the lesion from the background to provide essential information for
the doctor’s diagnosis. In the case of SPECT CPI, there are various locations and shapes of
ischemic regions. Therefore, we design UTAC-Net for CAD of cerebral ischemia based on
image segmentation and SPECT CPI.

The development of image segmentation changes every day. Ronneberger et al. [22]
introduced skip connections in CNN and proposed U-Net. U-Net combines low-resolution
and high-resolution feature maps via skip connections. U-Net has now become the standard
for most medical image segmentation tasks and has stimulated numerous improvements.
Xiao et al. [23] proposed ResU-Net, which combined the advantages of ResNet and U-Net.
Based on U-Net, by introducing multiple residual blocks and shortcuts in the encoder
and decoder, it can better extract low-frequency information and alleviate the problem
of missing semantic information and the gradient vanishing problem. Zhou et al. [24]
proposed UNet++, which introduces a series of nested dense skip connections to effectively
narrow the semantic gap between the encoder and decoder. Patel et al. [25] proposed EU-
Net, which enhances semantic information by applying three parallel multiscale patches of
nonlocal attention blocks and employs spatial cross-layer attention to focus on essential
features and suppress unimportant and noisy features. Schlemper et al. [26] added the
attention mechanism to the U-Net segmentation network and proposed A-UNet, which
autonomously learns relevant features for segmentation tasks and suppresses irrelevant
features. Zhang et al. [27] proposed SAU-Net. They added the self-attention module to
the U-Net segmentation network to increase the global information. This module derives
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an attention diagram along the spatial dimension to achieve adaptive feature refinement.
Additionally, the original U-Net convolution block is replaced with a structured dropout
convolution block to prevent network overfitting. Previous studies have demonstrated the
high accuracy of U-Net with minimal data. Thus, we propose UTAC-Net as an improved
version that employs U-Net as the backbone.

However, the operation of CNN is subject to the receptive field, which restricts its abil-
ity to establish long-range dependencies. Chen et al. [28] introduced Transformer with the
advantage of self-attention mechanism into the U-Net network and proposed TransUNet.
It takes Transformer as a powerful encoder to extract global features. However, the lack of
low-level detailed features in this model leads to issues with positioning. Wang et al. [29]
put forward UCTransNet, which uses the CTrans module to replace skip connections in
U-Net. It explores the global contextual information of a multiscale and narrows the
semantic gap between low-level and high-level features. Liu et al. [30] proposed Swin
Transformer, a hierarchical Transformer that represents computation by moving windows.
This is performed by restricting the self-attentive computation to nonoverlapping local
windows, while allowing cross-window connections. Zhang et al. [31] proposed TransFuse,
a parallel branching architecture, which fuses Transformer and CNN in a parallel fashion
to achieve a shallow network architecture to model global relationships and underlying
details. The fusion of Transformer and CNN branches is performed by the newly proposed
BiFusion module. Zhu et al. [32] proposed brain tumor segmentation based on the fusion
of deep semantics and edge information in multimodal MRI, aiming to make fuller use of
multimodal information for accurate segmentation. A shifted patch tokenization strategy
is introduced into Swin Transformer to extract semantic features, and the edge spatial
attention block is introduced into CNN to achieve edge detection. A multifeature inference
block is designed to implement feature fusion. Ma et al. [33] proposed MedSAM, which is a
generic medical image segmentation. The network architecture includes three components:
an image encoder, a prompt encoder, and a mask decoder. To minimize the computational
cost of adapting SAM to the medical image segmentation, the image encoder and prompt
encoder are frozen and only the mask decoder is fine-tuned. MedSAM improves the ability
to detect small objects and effectively reduces interference from objects around the segmen-
tation target, thus reducing outliers. Fu et al. [34] proposed a novel multiscale network,
HmsU-Net, based on CNN and Transformer, which facilitates the effective interaction of the
extracted multiscale information. At the same time, they designed a lightweight attention
mechanism to reduce the computational cost of the standard Transformer.

Previous studies indicate that U-Net is unable to fully extract global information
due to its own receptive field, while Transformer benefits from establishing long-range
dependence to compensate for the shortcomings of U-Net. Consequently, we proposed
UTAC-Net based on U-Net and Transformer to extract rich features. It can combine the
advantages of U-Net and Transformer to achieve accurate segmentation of SPECT CPI for
cerebral ischemia.

The accuracy and reliability of diagnostic results can be directly influenced by the
segmentation of medical images [35]. The shape and position of cerebral ischemic regions
in CPI are highly variable, and they are essential for the identification of abnormal regions.
The above studies for other diseases would be much less accurate if used in the diagnosis
of cerebral ischemic diseases. Certain networks encounter difficulties extracting boundary
information. In light of the characteristics of cerebral ischemia and the aforementioned
issues with certain networks, we propose an improved network, UTAC-Net. It enables more
precise segmentation of ischemic regions with distinct boundaries and accurate positions.
UTAC-Net can achieve fast and objective diagnosis without the interference of radiologists’
subjective factors and reduce manual processing time. CAD of cerebral ischemia improves
the diagnostic efficiency of cerebral ischemia by assisting radiologists’ diagnoses.

The CAD network of cerebral ischemia has several difficulties: the cerebral ischemia
dataset is small due to difficulties in acquiring the dataset; the shape and position of cerebral
ischemic regions in CPI are highly variable, and they are essential for the segmentation of
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abnormal regions; and the boundary features of the abnormal regions in CPI are rich, so
general networks cannot extract these irregular boundary features.

Aiming at the problems existing in the field of CAD for cerebral ischemia on a SPECT
image, we propose a new algorithm with the main contributions as follows:

• We propose a novel segmentation network, called UTAC-Net, which adopts a branch-
ing code consisting of U-Net with Transformer, the attention branching fusion module
(ABFM), and the contour-aware module (CAM).

• The dual-branch encoder combines the advantages of Transformer and U-Net. U-
Net pays more attention to local features with complex details, and can effectively
learn and recover the details of the image; Transformer pays more attention to global
features and, through self-attention, deals with multiple elements in the sequence
simultaneously to achieve highly parallel computation, which can capture long-range
dependencies between different positions. The two branches form a complementary
structure to extract more features on the SPECT image.

• ABFM selectively fuses global and local features to highlight those relevant to the
segmentation task, and consists of the channel attention module, the spatial attention
module, and the convolutional block attention module (CBAM) composition. The
channel attention module filters the local features extracted by U-Net, the spatial
attention module filters the global features extracted by Transformer, and the filtered
features are fused and fed into CBAM to achieve full feature adaptation in both channel
and spatial dimensions. This allows the network to highlight important features and
suppress unimportant features.

• CAM fuses the contour features containing different scales from the decoding stage
to further clarify the contour of the ischemic region. CAM performs an evolutionary
deformation of the contour vertices of the ischemic region by the vertex iteration
method designed in this paper so that the vertices keep approaching the contour of
the ischemic region.

2. Materials and Methods
2.1. Overview

The structure of UTAC-Net is shown in Figure 1, adopting an architecture of encod-
er–decoder. The encoder uses a two-branch coding structure with U-Net and Transformer
in parallel. The U-Net branch extracts the local features, while the Transformer branch
extracts the global features. The local features and global features extracted by the dual
encoder are then fused by the attention branching fusion module (ABFM). ABFM fuses the
features extracted from the two branches with different weight values. The fused features
are fed into a common decoder for upsampling to recover the image size. Different layers
of features input the contour-aware model (CAM) to extract the contour information that
may have been lost in the upsampling process. Finally, we refine the contour by making the
extracted contour features complementary to the feature maps output from the backbone.

2.2. Transformer

Although U-Net has good performance, its limited receptive field means that it only
works on local features and cannot capture long-range and global semantic information [8,36].
Transformer is able to establish long-range connections and has an advantage in capturing
global information [37]. However, if the dataset is small, Transformer will overfit.

Inspired by TransUNet [28] and UCTransNet [29], we combine Transformer with
U-Net to extract global and local information. Inspired by the article dual encoder [38,39],
we consider using the Transformer encoder to form a dual encoder with the U-Net encoder.
The global and local features extracted by the dual encoder are then fused by ABFM. The
fused features are fed into a common decoder for upsampling to recover the image size. In
order to extract the rich contour information in the abnormal regions, different layers of
features decoded at different stages input the contour-aware model to extract the contour
information that may be lost during the upsampling process.
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Figure 1. Overview of UTAC-Net.

The key to the Transformer encoder is the attention, by which we mean finding the
features in the input image that are relevant to the ischemic region and strengthening their
relevance, while weakening irrelevant features. The Transformer encoder consists of a stack
of N encoder layers, each encoder layer consists of two sublayer connection structures,
the first sublayer connection structure includes a multi-self-attention (MSA) layer and a
LayerNorm layer as well as a residual connection, where the multi-self-attention layer
is obtained by parallel expansion of multiple self-attention layers. The second sublayer
connection structure consists of a feed forward network (FFN) layer and a LayerNorm
layer and a residual connection, where the feed forward network consists of two multi-
layer perceptrons (MLPs). The image x ∈ RH∗W∗C is first cut into a sequence of patches
X = [X1, X2, . . . , Xn] ∈ Rn ∗ P2 ∗ C, where (P, P) is the size of the patch, n = (H ∗ W)/P2

is the number of patches, and C is the number of channels. After each patch is tiled,
it is converted into a patch embedding by linear projection to obtain a sequence of
patch embeddings X0 = [E − X1, . . . , E − Xn] ∈ Rn ∗ D, where E ∈ RD ∗ (P2C). Since
Transformer cannot recognize the position information, we add the position embedding
pos = [pos1, . . . , posn] ∈ Rn ∗ D to the patch sequence to obtain the token Z0 = X0 + pos.
We then exploit a stack of Transformer blocks encompassing an MSA and an MLP to learn
the long-range contextual representation. As shown in Figure 2a, Z0 = [a1, . . . , an] ∈ Rn ∗ D
is input into three Transformation matrices in Transformer: Wq, Wk, Wv to obtain the cor-
responding values of qi, ki, vi (i = 1, 2, 3, . . . , n), respectively. While q is the query, k is the
key, v is the extracted information, and d is the length of vector ki. The correlation between
tokens is calculated by a dot product operation QKT : the current token is dot-produced
with the tokens in the whole image, and if the correlation of that token is large, the result
of the dot product will be large. After obtaining the correlation, in order to highlight the
tokens with high correlation, we will give different weights to the tokens; i.e., the greater
the correlation, the greater the weight. The weights are obtained quantitatively using
the weighted summed Softmax correlation, which measures the average correlation of
the current token among all the tokens by solving for the expected, and this result is the
weight value. Its calculation formula is shown in Equation (1). As shown in Figure 2b, bi is
obtained by weighting each vi.
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Figure 2. The transformation matrices (a); the process of weighting (b).

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (1)

The MSA consists of M parallel attention heads that accept multiple keys, queries, and
values; generates multiple attention outputs from multiple scaled dot product attention
blocks; and finally joins the multiple attentions to obtain a final attention t,

i. Its calculation
formula is shown in Equation (2). Then t,

i inputs the LayerNorm, which takes the original
embeddings, adds them to the embeddings of the multiple attention heads, and then
normalizes them to a standard normal distribution with a mean of 0 and a variance of 1.
The results of the LayerNorm are sent to the FFN to map and extract the input features. Its
calculation formula is shown in Equation (3).

t,
i = MSA(Norm(t(i−1)) + t(i−1)) (2)

ti = MLP(Norm(t,
i) + t,

i) (3)

2.3. Attention Branching Fusion Module

An attention module enhances important features and suppresses unimportant fea-
tures to improve the representational ability of the network [27,28,40,41]. In order to
effectively combine the global features extracted by Transformer with the local features
extracted by the U-Net encoder, we design an attention mechanism to fuse the features
of the two branches. Inspired by the convolutional block attention module (CBAM) [42],
we propose the attention branching fusion module that mixes the combined channel in-
formation with spatial information. It is able to make the fusion process more focused on
important features and suppress unnecessary features. CBAM is able to sequentially gener-
ate attentional feature maps in both channel and spatial dimensions. The input features
are sequentially filtered by the channel attention module and the spatial attention module,
and finally, the recalibrated features are obtained. The important features are emphasized,
and the unimportant features are compressed. We propose a new attention module, ABFM,
based on CBAM.

Since the channel attention is more focused on which features are of interest, we take
the local features extracted by the U-Net encoder and first go through the channel attention
to make the network more attentive to the local features in the channel information. The
relative spatial attention is more focused on where the features of attention are, so we will
take the global features extracted by Transformer and input the spatial attention to make the
network pay more attention to the global features in the spatial information. The features
adjusted by different attention modules are fused and input CBAM to perform all-round
feature adjustment in both channel and spatial dimensions. This makes the network more
selective to focus on the salient parts, emphasizing the important features and suppressing
the unimportant ones.
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Our proposed attention module is shown in Figure 3. X is the feature extracted from the
U-Net branch, and Y is the feature extracted from the Transformer branch. X inputs the chan-
nel attention module to generate the channel attention weight X′ by Equations (4) and (5),
where σ is a sigmoid calculation, and ⊗ denotes pixel-by-pixel multiplication. Y inputs the
spatial attention module to generate the spatial attention weight Y′ by Equations (6) and (7),
and f 7×7 denotes the convolution operation with a filter size of 7 × 7. Referring to Table II
in [42], when comparing different convolutional kernel sizes, it is found that larger convo-
lutional kernel sizes produce better accuracy. A large field of view (i.e., a large receptive
field) is necessary to determine spatially important regions, and we used a convolutional
layer with a large kernel size to compute spatial attention. X1 and Y1 are added at the
same location to obtain F. F inputs the CBAM module. In the CBAM module, F is first
input to the channel attention module to generate F′, by Equations (8) and (9), where σ is a
sigmoid calculation, and ⊗ denotes pixel-by-pixel multiplication. F′ is then input to the
spatial attention module to generate F′′ by Equations (10) and (11), and f 7×7 denotes the
convolution operation with a filter size of 7 × 7. The channel attention and spatial attention
are applied sequentially in CBAM so that the features of each branch generate the attention
weights A independently and complementarily.

Figure 3. Attention branching fusion module.

MC(X) = σ(MLP(AvgPool(X) + MLP(MaxPool(X))) (4)

X′ = Mc(X)⊗ X (5)

MS(Y) = σ( f 7×7([AvgPool(Y); (MaxPool(Y)])) (6)

Y′ = MS(Y)⊗ Y (7)

MC(F) = σ(MLP(AvgPool(F) + MLP(MaxPool(F))) (8)

F′ = Mc(F)⊗ F (9)

MS(F′) = σ( f 7×7([AvgPool(F′); (MaxPool(F′)])) (10)

F′′ = MS(F′)⊗ F′ (11)
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2.4. Contour-Aware Module

The unclear boundary between ischemic and normal regions is a challenge for ischemic
region segmentation. Inspired by the boundary-aware model [43], we propose the contour-
aware module. Since the shallow features contain a large amount of boundary information,
different scales of shallow features input to the contour-aware module are fused in the
decoding stage of U-Net to further clarify the contours of the ischemic regions. The contours
extracted by CAM are fused with the segmentation map output by the U-Net backbone
network, and the two processes are kept independent and complementary.

Inspired by the boundary patch refinement in [44], we propose boundary point classi-
fier refinement. Our method deforms the contour evolution process with a vertex classifier.
As shown in Figure 4, we propose the vertex iteration method of CAM, where the vertices
are continuously moved close to the boundaries of the ischemic regions. First, the initial
contour C(0) : (xi|i = 1, . . . , N) is obtained by the decoder of the backbone, and then this
series of vertices xi are moved along their normal direction to continuously iterate towards
the boundary. The vertex classifier ϕ(xi) is used to predict the state of the vertex, determin-
ing its relative position (in or out of the region) to the ischemic region. The relative position
is used to determine whether the vertex is moving along a positive or negative normal
direction. For each vertex xi, the vertex classifier ϕ(xi) returns a scalar in the range [0, 1],
indicating whether the vertex is outside the region (e.g., ϕ(xi) = 1) or inside the region (e.g.,
ϕ(xi) = 0 ). If ϕ(xi) = 0.5, the vertex classifier is not sure whether the vertex is outside or
inside; this means that the vertex may be on the boundary. Equation (12) uses (ϕ(xi)− 0.5)
to determine if that vertex is on the boundary. In Equation (13), di indicates the positive
and negative direction in which the vertex moves along the normal. If phi(xi) = 1, the
vertex is outside the region, so let di = −1. If phi(xi) = 0, the vertex is inside the region,
so let di = 1. The vertex moves step by step along di, checking the value of phi(xi) at the
current vertex after each move. If the vertex moves from the inside of the boundary to the
outside (or from the outside to the inside), then the vertex stops to move. Then the vertex
is called the position flip point and the number of moves from the original position to the
flip point is si. We perform Equations (12) and (13) successively for each vertex of C(0) to
obtain a series of contours C(1), C(2), C(3), . . . , C(n) , until all vertices stop moving; then the
contour generated is the actual contour of the region.

Figure 4. Contour-aware module.
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si = λ|ϕ(xi)− 0.5| (12)

x′i = xi + sidi (13)

where di is the direction of the movement, x′i is the vertex corresponding to the next contour
C(′), and si is the moving step.

3. Results
3.1. Datasets

To evaluate the effectiveness of UTAC-Net, we test it on two medical datasets: the CPI
dataset and the ISIC 2018 dataset.

The CPI dataset: it was collected from 97 patients, 60% male and 40% female, with a
maximum age of 78 years and a minimum age of 33 years. All participants signed a written
informed consent form. The imaging agent used in all patients was Tc-99m-ECD, a small
molecule lipophilic imaging agent that freely crosses the blood–brain barrier and stably
resides in the brain. The scanner is a Discovery NM/CT 670 CZT. The dataset contains
798 SPECT images, as shown in Figure 5, covering 12 annotated sites on both sides of the
brain, including the frontal lobe, temporal lobe, parietal lobe, occipital lobe, thalamus lobe,
and basal ganglia.

The CPI dataset is selected and annotated by three experienced radiologists. To ensure
the true form of CPI, no preprocessing, such as data enhancement, is performed. Because
the label type of the ischemic site is related to the location of the ischemic region, this study
does not use methods such as rotation and folding to expand the dataset, but uses real
cases, which has practical clinical significance. We separated these images randomly. Due
to the small size of the dataset, ten-fold cross-validation is used to conduct experiments,
randomly dividing the dataset into 10 parts, selecting 9 of them in turn to be used as the
training set, and the remaining 1 to be used as the test set, and finally averaging the results
over the 10 times.

Figure 5. SPECT image with 12 annotated sites.

An example of the dataset is shown in Figure 6. The symmetry and continuity of
the distribution of the cortical contrast medium in the SPECT images, i.e., the contrast of
the color grades in the bilateral images, were observed. If a decrease in radioactivity or a
defect is detected, it is an abnormality. Normal and abnormal sites are nested and fused
with each other, and their boundaries are blurred and difficult to distinguish. Moreover,
the distribution of ischemic regions is random, with various shapes and rich boundary
information. In this study, a new segmentation network is proposed to achieve accurate
segmentation of ischemic regions based on these characteristics.
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Figure 6. Example of the dataset.

The ISIC 2018 dataset: it is a large medical public dataset, which also features a random
distribution of abnormal sites with different shapes, fuzzy boundaries, and rich features.
The dataset contains dermoscopic images from different centers released by the ISIC 2018
challenge. The dataset has a total of 2594 images and corresponding annotations with
1868 images in the training set, 467 images in the validation set, and 259 images in the
test set.

3.2. Experimental Configuration

The experimental platform is configured as follows: Intel(R) Xeon(R) Silver 4310 CPU
@ 2.10 GHz, Tesla A40 GPU, and Ubuntu 18.04.6 LTS operating system. The experiments
are implemented using PyTorch 1.10.1. To ensure fairness, all input images are resized to
512 × 512 using the same setup. The SGD optimizer is used. As an important superpa-
rameter in deep learning, the learning rate determines if and when the objective function
converges to a local minimum. The higher the learning rate, the greater the magnitude of
model parameter updates, leading to model dispersion. The smaller the learning rate, the
smaller the magnitude of the model parameter update, resulting in slow model conver-
gence. Therefore, in practice, the initial learning rate is usually 0.001. Momentum is another
important parameter of the SGD algorithm, which helps the SGD algorithm to converge
faster during optimization and prevents the model from stagnating at the local optimum.
Momentum is normally set to 0.9. The decay rate is a parameter used to control the learning
rate, allowing the learning rate to gradually decrease during the training process, making
the model more stable as it approaches convergence. The decay rate is typically set to
0.0001. Batch_size is the size of the dataset for each training input in deep learning. When
training neural networks, the dataset is usually divided into small batches for training, and
each small batch contains multiple data samples, and setting the appropriate batch_size
can speed up the training speed and improve the training effect. Therefore, the number of
batches is 4.

3.3. Evaluation Metrics

In order to evaluate the comparative effectiveness of UTAC-Net and other segmenta-
tion networks, the Dice similarity coefficient and the intersection over union (IoU), which
are commonly used in medical image segmentation, are used as an objective evaluation
metric and combined with the subjective comparisons.

Dice: it is a set similarity measure function to calculate the similarity of two samples,
taking the value [0, 1], as shown in Equation (14).

Dice =
2 ∗ (pred

⋂
true)

pred
⋃

true
=

2TP
FP + 2TP + FN

(14)

IoU: it is used to measure the degree of overlap between the predicted bounding box
and the real bounding box, taking the value [0, 1], as shown in Equation (15).
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IoU =
(pred

⋂
true)

(pred) + (true)− (pred
⋂

true)
=

TP
TP + FP + FN

(15)

3.4. Comparison with Other Methods on the CPI Dataset

This section presents the training and testing results of UTAC-Net and other improved
networks based on U-Net on the CPI dataset.

3.4.1. Quantitative Results

As shown in Tables 1 and 2, the objective evaluation of U-Net and other improved
networks based on U-Net and UTAC-Net, all of the above networks are replicated in the
same experimental environment and without using any data augmentation methods. The
comparison shows that UTAC-Net has the best segmentation in 12 categories, with an
mDice coefficient 9.16% higher than U-Net, 5.68% higher than SAU-Net, 3% higher than
TransUNet, 1.71% higher than UCTransNet, and 3.52% higher than HmsU-Net. The mIoU
of UTAC-Net is 14.06% higher than U-Net, 8.99% higher than SAU-Net, 4.86% higher than
TransUNet, 2.8% higher than UCTransNet, and 5.23% higher than HmsU-Net.

Table 1. Dice (%) of different networks on the CPI dataset.

Categories U-Net SAU-Net TransUNet UCTransNet HmsU-Net UTAC-Net

background 99.64 99.64 99.67 99.68 99.65 99.69
11 86.14 84.09 92.25 92.51 90.15 92.72
21 86.90 88.59 82.84 91.57 89.22 92.31
12 81.94 82.24 88.07 84.87 84.42 86.84
22 73.90 85.70 85.31 85.46 84.86 85.81
13 76.08 87.59 87.73 88.50 85.18 88.65
23 81.53 82.01 89.92 89.30 86.50 90.92
14 77.51 80.02 80.20 86.39 78.61 87.13
24 76.82 78.96 79.62 83.76 78.82 86.67
15 75.66 76.31 83.77 85.00 85.46 86.50
25 77.88 77.65 85.70 85.29 85.52 87.92
16 86.01 87.79 86.88 88.03 90.50 94.48
26 84.24 86.01 90.42 89.87 90.32 93.03

mDice 81.19 84.67 87.35 88.64 86.83 90.35

Table 2. IoU (%) of different networks on the CPI dataset.

Categories U-Net SAU-Net TransUNet UCTransNet HmsU-Net UTAC-Net

background 99.28 99.28 99.34 99.36 99.30 99.38
11 65.65 72.55 85.61 86.06 82.07 86.43
21 66.83 79.52 70.71 84.45 80.54 85.72
12 69.40 69.83 78.68 73.71 73.04 76.74
22 58.61 74.98 74.38 74.61 73.70 75.15
13 61.39 77.92 78.14 79.37 74.19 79.61
23 68.82 69.51 81.69 80.66 76.21 83.36
14 63.28 66.70 66.96 76.04 64.76 77.20
24 62.37 65.23 66.15 72.06 65.04 76.48
15 60.85 61.69 72.07 73.91 74.61 76.21
25 63.78 63.46 74.98 74.36 74.70 78.45
16 75.45 78.23 76.81 78.62 82.65 89.53
26 72.77 75.45 82.51 81.60 82.35 86.96

mIoU 68.34 73.41 77.54 79.60 77.17 82.40

3.4.2. Qualitative Results

As shown in Figure 7, the subjective evaluation of U-Net and other improved networks
based on U-Net and UTAC-Net, the images in the first column are the input images;
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the images in the second column are images annotated under the guidance of clinically
experienced radiologists; the images in the third, fourth, fifth, sixth, and seventh columns
are the output images of the U-Net network and other improved networks based on U-
Net; and the last column shows the output images of UTAC-Net. Comparing the six
output images with the radiologists’ annotated images, in the first row, when segmenting
the ischemic region in the left frontal lobe, the boundaries of the output images of other
improved networks based on U-Net in the blue box are rough, while the boundary of the
output image of UTAC-Net is clear; in the second row, for the segmentation of the ischemic
region in the right parietal lobe, the sizes of the output images of other improved networks
based on U-Net in the yellow box are imprecise, while the size of the output image of
UTAC-Net is precise. In the third row, for the segmentation of multicategory ischemic
regions, when segmenting the ischemic region in the left frontal lobe, the output images
of other improved networks based on U-Net in the green box are imprecise in size and
have rough boundaries, while the output image of the UTAC-Net network is precise in size
and has clear boundary; when segmenting the ischemic region in the left occipital lobe, the
output images of other improved networks based on U-Net in the red box are imprecise
in size and have rough boundaries, while the output image of the UTAC-Net network is
precise in size and has clear boundary; and when identifying the ischemic region in the
left occipital lobe, the output images of other improved networks based on U-Net in the
red box are incorrectly segmented due to interference from other categories. Among them,
U-Net annotates the ischemic region in the left occipital lobe as the left parietal lobe, and
SAU-Net, TransUNet, UCTransNet, and HmsU-Net partially annotate the ischemic region
in the left occipital lobe as the left parietal lobe. However, the output image of UTAC-Net
is unaffected by interference, and the category is correct with clear boundaries, accurate
size, and excellent performance.

Figure 7. Subjective evaluation of other networks and UTAC-Net on the CPI dataset. Use color boxes
to highlight where there are significant differences in the comparative results.

An objective evaluation and subjective judgment of the results of UTAC-Net compared
with other networks shows that UTAC-Net can not only accurately segment ischemic
regions with clear boundaries and precise sizes from the complex nested background, but
also correctly identify the type of ischemia. UTAC-Net is resistant to interference and
meets the requirements for lesion recognition in the medical field. The importance of the
dual encoder and ABFM can be fully illustrated by the correct identification and accurate
segmentation of different ischemic regions by excluding the interference of a similar degree;
the smooth boundaries also fully illustrate the key role of CAM.
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3.5. Comparison with Other Methods on the ISIC 2018 Dataset

To further evaluate the effectiveness of UTAC-Net in feature segmentation, we per-
formed a comparative experiment on ISIC 2018. This section presents the training and
testing results of UTAC-Net and other improved networks based on U-Net on ISIC 2018.

The comparative results are shown in Table 3. The Dice coefficient of UTAC-Net is
2.51% higher than that of U-Net, 1.14% higher than that of U-Net++, 1.32% higher than that
of ResU-Net, 5.85% higher than that of Swin-Unet, 1.34% higher than that of DCSAU-Net,
1.94% higher than that of GAU-Net, 1.79% higher than that of MCNMF-Unet, 2.86% higher
than that of LeaNet, and 0.17% higher than that of MDU-Net. The mIoU of UTAC-Net is
4.19% higher than that of U-Net, 1.93% higher than that of U-Net++, 2.23% higher than that
of ResU-Net, 9.48% higher than that of Swin-Unet, 3.26% higher than that of GAU-Net,
3.01% higher than that of MCNMF-Unet, and 5.83% higher than that of LeaNet.

Table 3. Comparison of different networks on the ISIC 2018 dataset.

Network Dice (%) IoU (%)

U-Net [22] 89.24 80.57
U-Net++ [24] 90.61 82.83
ResU-Net [23] 90.43 82.53
Swin-Unet [45] 85.90 75.28

DCSAU-Net [46] 90.41 84.10
GA-UNet [47] 89.81 81.50

HmsU-Net [34] 91.85 84.93
MCNMF-Unet [48] 89.96 81.75

LeaNet [49] 88.89 78.93
MDU-Net [50] 91.58 84.81

UTAC-Net(Ours) 91.75 84.76

Comparisons show that UTAC-Net has excellent segmentation performance for fea-
tures with varied shapes and fuzzy boundaries, with a Dice value of 91.75% and an IoU
value of 84.76%, which is better than most networks.

3.6. Ablation Study

We propose a segmentation network, UTAC-Net, based on U-Net and Transformer,
which includes CAM and ABFM. In order to show more clearly the effect of each im-
provement module on the segmentation effect of the network and to evaluate the role of
each module in the network, ablation experiments were conducted based on U-Net. The
experiments include U-Net and Transformer dual-branch coding, the ABFM module, and
CAM. The ablation experiments add the above modules sequentially to the base network,
and the results of the ablation experiments are shown in Table 4, where “

√
” means that the

module is added and “-” means that the module is not added. The results of the ablation
experiment for each module are analyzed in detail in the following section.

Table 4. Ablation experiments.

Module Metric
Network Transformer ABFM CAM mDice (%) mIoU (%)

U-Net - - - 81.19 68.34
Ours ✓ - - 87.35 77.54
Ours ✓ ✓ - 88.15 78.81
Ours ✓ ✓ ✓ 90.35 82.40

3.6.1. Transformer

The Transformer branch is added to U-Net to form a dual-branch coding structure
to establish an effective joint CNN and Transformer mechanism. As shown in Table 4,
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compared with the U-Net network, mDice is improved by 6.16% and mIoU is improved
by 9.2% after adopting the dual-branch coding structure of CNN and Transformer. This
shows that the improved network has significantly improved the segmentation effect of the
whole network. U-Net focuses on local details and extracts local feature information, while
the Transformer branch establishes long-distance dependency and extracts global feature
information. The two parts form a dual-branch coding structure, which enables the network
to extract more features, thus improving the segmentation accuracy of the network.

3.6.2. Attention Branching Fusion Module

On this basis, ABFM is added to fuse the multiscale features extracted from the two-
branch coding structure. As shown in Table 4, after adding ABFM, mDice is improved by
0.8% and mIoU is improved by 1.27%, and the improved network has further improved
the segmentation effect of the network. The experimental data show that ABFM fuses the
multiscale features extracted from the two-branch coding structure. The parallel fusion
of local feature information and global feature information strengthens the attention of
the network to features relevant to the segmentation task, suppresses the interference of
irrelevant features, and improves the segmentation accuracy of the network.

3.6.3. Contour-Aware Module

CAM is then added on this basis to further refine the contour information of the
segmented image. As shown in Table 4, after adding CAM, mDice is improved by 2.2% and
mIoU is improved by 3.59%, and the improved network has improved the segmentation
effect of the network. This indicates that CAM helps the network to extract richer contour
features, and complements the extracted contour features with the feature maps output
from the backbone network to achieve precise outlining of the boundaries of the ischemic
region, so that the output of the network is closer to the real value, thus improving the
segmentation accuracy of the network.

4. Discussion

Based on U-Net and Transformer, we designed a new segmentation network, UTAC-
Net. Experiments on a self-constructed dataset demonstrated that the network can segment
ischemic regions in CPI SPECT images with excellent accuracy, consistency, and clinical
utility. Experiments on publicly available datasets (ISIC 2018) demonstrate the excellent
segmentation performance of UTAC-Net for features with varying shapes and fuzzy bound-
aries. It can therefore help doctors segment lesions in medical images as a diagnostic aid
and assist them in their clinical practice. In the future, we will continue to develop new
models for other diseases in medical images.
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Abbreviations
The following abbreviations are used in this manuscript:

CNN convolutional neural network
CPI cerebral perfusion imaging
SPECT single-photon emission computed tomography
CAD computer-aided diagnosis
ABFM attention branching fusion module
CAM contour-aware module
MSA multihead self-attention
FFN feed forward network
MLP multilayer perceptron
CBAM convolutional block attention module
Tc-99m-ECD Technetium-99m-Ethyl Cysteinate Dimer
IoU intersection over union
TP true positives
TN true negatives
FP false positives
FN false negatives
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