
Citation: Long, W.; Zeng, J.; Wu, Y.;

Gao, Y.; Zhang, H. A Certificateless

Verifiable Bilinear Pair-Free

Conjunctive Keyword Search

Encryption Scheme for IoMT.

Electronics 2024, 13, 1449. https://

doi.org/10.3390/electronics13081449

Academic Editor: Baris Aksanli

Received: 30 January 2024

Revised: 4 April 2024

Accepted: 7 April 2024

Published: 11 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Certificateless Verifiable Bilinear Pair-Free Conjunctive
Keyword Search Encryption Scheme for IoMT
Weifeng Long 1,2,* , Jiwen Zeng 1, Yaying Wu 3, Yan Gao 2 and Hui Zhang 2

1 School of Mathematical Sciences, Xiamen University, Xiamen 361005, China; jwzeng@xmu.edu.cn
2 School of Mathematical Sciences, Guizhou Normal University, Gui’an New District, Guiyang 550001, China;

19010060164@gznu.edu.cn (Y.G.); 21020061214@gznu.edu.cn (H.Z.)
3 School of Big Data and Computer Science, Guizhou Normal University, Gui’an New District,

Guiyang 550001, China; 21010230690@gznu.edu.cn
* Correspondence: 460143769@gznu.edu.cn

Abstract: With superior computing power and efficient data collection capability, Internet of Medical
Things (IoMT) significantly improves the accuracy and convenience of medical work. As most
communications are over open networks, it is critical to encrypt data to ensure confidentiality before
uploading them to cloud storage servers (CSSs). Public key encryption with keyword search (PEKS)
allows users to search for specific keywords in ciphertext and plays an essential role in IoMT. However,
PEKS still has the following problems: 1. As a semi-trusted third party, the CSSs may provide
wrong search results to save computing and bandwidth resources. 2. Single-keyword searches
often produce many irrelevant results, which is undoubtedly a waste of computing and bandwidth
resources. 3. Most PEKS schemes rely on bilinear pairings, resulting in computational inefficiencies.
4. Public key infrastructure (PKI)-based or identity-based PEKS schemes face the problem of certificate
management or key escrow. 5. Most PEKS schemes are vulnerable to offline keyword guessing attacks,
online keyword guessing attacks, and insider keyword guessing attacks. We present a certificateless
verifiable and pairing-free conjunctive public keyword searchable encryption (CLVPFC-PEKS) scheme.
An efficiency analysis shows that the performance advantage of the new scheme is far superior to that
of the existing scheme. More importantly, we provide proof of security under the standard model
(SM) to ensure the reliability of the scheme in practical applications.

Keywords: Internet of Medical Things; IoMT; certificateless encyption with keyword search; standard
model; offline keyword guessing attacks; online keyword guessing attacks; insider keyword guessing
attacks; security; privacy

1. Introduction

The Internet of Things can connect any item to the Internet. It uses information-
sensing devices such as radio frequency identification and infrared sensors to transmit data
and communicate according to specific protocols, thus realizing intelligent identification,
positioning, tracking, monitoring, and management functions [1–3]. As shown in Figure 1,
as an application of Internet of Things technology in the medical field, IoMT [4] can
closely connect medical staff, patients, and various medical devices to achieve real-time
feedback on patient health status. It not only improves the speed of medical response and
provides all-weather medical care but also alleviates the workload of medical staff. IoMT
improves the precision and convenience of medical work, leading to a better quality of
medical care. IoMT also plays a significant role in saving lives, helping to control costs, and
improving efficiency.

Electronic medical records (EMRs) [5,6] play a crucial role in IoMT. With the acceler-
ation of the digitization of medical data, the amount of EMR data has increased rapidly.
Storing and managing EMRs has become a significant challenge. Fortunately, cloud com-
puting technology offers a solution to this challenge. Hospitals can store EMRs in the cloud,

Electronics 2024, 13, 1449. https://doi.org/10.3390/electronics13081449 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13081449
https://doi.org/10.3390/electronics13081449
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0005-7736-8000
https://doi.org/10.3390/electronics13081449
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13081449?type=check_update&version=1

Electronics 2024, 13, 1449 2 of 29

eliminating the cost of local management and maintenance and enabling efficient data
sharing and utilization.

Figure 1. System model of IoMT.

Because EMRs contain private patient information, they often need to be encrypted to
ensure patient privacy. However, this encryption method makes it inconvenient for users to
search for specific keywords in EMRs. The simplest solution is for users to download all the
ciphertext data, decrypt them individually, and then search among them. This approach is
impractical. It leads to exceedingly high computational and communication costs. To solve
this problem, researchers have proposed searchable encryption (SE) [7] technology. SE is
an encryption primitive that allows users to perform keyword searches on encrypted data.

In reality, we are more likely to encounter multi-data owner scenarios, such as a
patient’s EMR, that often need to be co-managed by multiple doctors, departments, or
healthcare organizations. If each party independently owns some of the data in an EMR,
this scenario is a non-shared multi-owner scenario [8]. If, on the other hand, multiple parties
jointly own the data of an EMR, then this scenario is a shared multi-owner scenario [9]. In
a non-shared multi-owner scenario, each staff member is responsible for a specific portion
of the EMR. Each part of the data is a separate record, requiring independent computation
of indexes and signatures. This processing will result in a linear increase in the cost of
storing indexes and signatures as the number of owners increases, as well as an increase
in verification and encryption time, thus significantly increasing the overall computation
and storage costs. In contrast, the shared multi-owner scenario allows multiple owners
to sign on the same EMR, ultimately generating a multi-signature. The size of the multi-
signature is constant and independent of the number of owners. Therefore, the verification
time and storage overhead of signatures are independent of the number of owners. For
indexing in the shared multi-owner setup, the whole EMR is given only a single index
through which the retriever can search the multi-owner EMR. In this way, the shared
multi-owner significantly saves time and space costs, which makes it more advantageous
in real-world applications. In recent years, some research works have also verified the ad-

Electronics 2024, 13, 1449 3 of 29

vantages of the shared multi-owner setting. Miao et al. [10] proposed a keyword-searchable
encryption scheme with a hidden access policy under the shared multi-owner setting.
Padhya et al. [11] proposed a new key aggregation-searchable encryption scheme support-
ing sorted queries on encrypted datasets and a multi-keyword multidimensional search
on multi-owner datasets. However, most PEKS solutions deployed in shared multi-owner
scenarios face significant computational and storage costs.

The current PEKS scheme leaves much to be desired in terms of efficiency and security:
PKI-based or identity-based cryptosystems encounter certificate management and key
escrow problems during system deployment; the use of secure channels leads to inefficiency
in the PEKS scheme; single-keyword searches inevitably produce many irrelevant results,
leading to a waste of bandwidth and computational resources; CSS, as a semi-trusted third
party, may provide incorrect search results to save computational and bandwidth resources;
a large number of pairing operations puts a heavy computational burden on the system; the
PEKS scheme is vulnerable to offline keyword-guessing attacks, online keyword-guessing
attacks, and internal keyword-guessing attacks; most of the searchable encryption schemes
are proven to be secure in the random oracle model (ROM) but the ROM is not suitable
in the idealized model, resulting in security that cannot be fully guaranteed in practical
applications; most searchable encryption schemes incur significant computational and
storage costs when deploying PEKS schemes in non-shared multi-owner setups. In reality,
it is necessary to solve the above problems, which provides a new direction for our research.

1.1. Our Contribution

We construct a certificateless-based, verifiable, pairing-free, conjunctive keyword
search encryption scheme (CLVPFC-PEKS). Specifically, the main contributions are
as follows:

• Conjunctive multi-keyword search: The new solution allows users to search for
multiple keywords without increasing the number of trapdoors and ciphertexts, sig-
nificantly improving the accuracy of search results.

• Verifiability of the search results: The new scheme attaches a signature to each doc-
ument. The signature will then be used to verify the search results, ensuring the
accuracy of the search results and preventing users from wasting time and resources
on invalid results.

• Certificateless-based: The new scheme overcomes the limitations of certificate man-
agement and key escrow in existing searchable encryption schemes.

• No pairing: Pairing operations take time, so the computational efficiency can be
significantly improved by not using pairing operations.

• No need for a secure channel: The new solution eliminates the need for a secure
channel and reduces system construction costs.

• Shared multi-owner settings: The new scheme allows users to search for document
sets shared by multiple users using a single trapdoor.

• Proven security under the standard model: The new scheme is secure against offline
keyword guessing attacks and chosen keyword attacks (CKAs) in the standard model.
Meanwhile, based on the security of the Diffie–Hellman shared secret keys, the new
scheme can also resist online keyword guessing attacks (e.g., file injection attack (FIA))
and insider keyword guessing attacks (IKGAs).

In Table 1, we compare the features of PKES schemes. Currently, no SE scheme can
provide result verification, can provide a conjunctive keyword search, is secure channel-free,
is certificateless-based, is pairing-free, and can provide support for shared multi-owners
simultaneously. In particular, none of the pairing-free SE schemes support result verification
and conjunctive keyword searches.

Electronics 2024, 13, 1449 4 of 29

Table 1. Functional comparison.

Scheme SRV CKS CL SCF PF SMO

[12] ×
√

× × × ×

VCSE [13]
√ √

×
√

× ×

VCKSM [14]
√ √

×
√

×
√

VMKDO [15]
√ √

× × × ×

VMKS [16]
√ √ √

× × ×

mCLPECK [17] ×
√ √

× × ×

CL-dPAEKS [18] × ×
√ √

× ×

[19] ×
√

× × × ×

[20] × ×
√ √ √

×

[21] × ×
√ √ √

×

[22] × ×
√ √ √

×

ours
√ √ √ √ √ √

SRV: verifiability of search results. CKS: conjunctive keyword search. CL: certificateless-based. SCF: secure-chanel
free. PF: pairing-free. SMO: shared multi-owner. ×: not supporting this functionality.

√
: supporting this functionality.

1.2. Organization

The following is the framework for the rest of this article. We summarize some related
work in Section 2. We discuss preparatory knowledge in Section 3. We define the system
model and the security model of the scheme in Section 4. We show the details of the
CLVPFC-PEKS scheme in Section 5. We discuss the security of the CLVPFC-PEKS scheme
in Section 6. We analyze the effectiveness of CLVPFC-PEKS in Section 7. Finally, we
summarize this paper in Section 8.

2. Related Work

In 2004, Boneh et al. [23] first proposed the concept and construction of public key
encryption with keyword search(PEKS), which laid the foundation for research in this
field. However, the early PEKS schemes still had many shortcomings in efficiency and
safety. Baek [24] points out that the PEKS scheme of [23] is inefficient because [23] uses safe
channels. To eliminate the requirement for secure channels, Baek et al. [24] proposed PEKS
without secure channels (SCF-PEKS), also known as PEKS with designated servers/testers
(dPEKS) [25]. However, most SCF-PEKS schemes are PKI-based or ID-based, which in-
evitably incurs problems with certificate management and key escrow. To overcome these
challenges, Peng et al. [18], based on the certificateless cryptosystem [26], proposed a
keyword-searchable encryption scheme (CL-SCF-PEKS) without a secure channel. Since
then, many papers have studied certificateless searchable encryption schemes, which in-
ject new vitality into the development of this field. It is worth noting that most PEKS
schemes [18,27–30] search for a single keyword. However, this single-keyword search
method often produces irrelevant results, wasting bandwidth and computing resources.
Golle et al. [31] proposed the first conjunctive keyword-searchable encryption scheme to
address the issue of resource waste. Subsequently, more searchable encryption schemes
that support conjunctive keywords have been proposed in recent years [14,32,33].

Given that the computational complexity of pairing is much higher than that of scalar
multiplication on the group of elliptic curves, designing schemes that do not require pairing
will significantly improve the computational efficiency of the schemes. Current SE schemes
that do not require pairing operations are still scarce, and these schemes [21,22,34–40]
remain to be improved. In 2019, Lu et al. [39] proposed a PEKS scheme based on the
certificateless cryptosystem, which is pairing-free, and proved the indistinguishability
of keyword ciphertexts (CL-PF-PEKS). However, Ma et al. [40] showed that the work

Electronics 2024, 13, 1449 5 of 29

of [39] is insecure under user-simulated attacks and provided a new CL-PF-PEKS scheme.
Recently, [21,22] proposed CL-PF-PEKS schemes that are both secure and effective, respec-
tively, but unfortunately, they are single-keyword-searchable.

Existing SCF-PEKS schemes have significant shortcomings in terms of security, espe-
cially their vulnerability to offline keyword guessing attacks [41], online keyword attacks
(e.g., FIA) [19,42], and internal keyword attacks [43]. PEKS schemes typically use keywords
from low-entropy spaces, making them vulnerable to offline keyword-guessing attacks. In
this attack, both internal and external attackers can use a testing algorithm to accurately
guess the keywords corresponding to the given keyword trapdoors. The attack works
because the generation of trapdoors uses only keywords and public keys. Currently, the
offline keyword guessing attack has become one of the most destructive attacks on PEKS
schemes because it can lead to the leakage of encrypted data and information related to
the keywords contained in the trapdoor. Unfortunately, Yang et al. [44] showed that even
after modifying the trapdoor structure of PEKS schemes, an attacker can still perform an
online keyword guessing attack(e.g., FIA). Unlike external offline keyword attacks, external
online keyword guessing attacks allow attackers to guess keywords by analyzing search
results in the cloud in real time. Specifically, the external attacker first generates keyword
ciphers and data ciphers containing all possible keywords and data ciphers using the
public keys of the cloud server and the retriever and injects these ciphers into the cloud
server. Subsequently, the external attacker monitors the communication between the cloud
server and the retriever. Once the attacker finds that the search results returned by the
server match the previously injected ciphertexts, they can determine the keywords that
the retriever is searching for. In addition, the PEKS scheme is also vulnerable to internal
malicious CSS attacks. Jeong et al. [45] demonstrated that the PEKS framework is sus-
ceptible to internal offline keyword attacks initiated by malicious CSSs. Wang et al. [46]
pointed out that even though the trapdoor is indistinguishable, the SCF-PEKS scheme is
still not able to defend against keyword-guessing attacks by malicious CSSs. More seriously,
Shao et al. [47] proposed a generic attack method and pointed out that it is almost impossible
to construct a SCF-PEKS scheme that can defend against malicious CSSs. This is because ma-
licious CSSs can perform keyword encryption and testing algorithms, making the SCF-PEKS
scheme particularly vulnerable against offline keyword-guessing attacks from malicious
internal servers.

In addition, CSSs, as semi-trusted entities, may selectively perform a few search op-
erations and return some inaccurate search results to save computational and bandwidth
resources. Therefore, PEKS schemes should provide an authentication mechanism to en-
sure the accuracy of search results without decryption. Reference [48] proposed the first
keyword-searchable encryption scheme that supports authentication. Since then, numerous
researchers have explored keyword-searchable encryption schemes that support authentica-
tion [15,16,49]. The authors of [16] proposed a verifiable multiple keywords search(VMKS)
scheme, claiming that it resists keyword guessing attacks under the standard model.

3. Preliminaries

Let q > 3 be a large prime, Fq be a prime field, and the elliptic curve E over the
field Fq satisfy the equation y2 mod q = (x3 + ax + b) mod q, where a, b, x, y ∈ Fq and
(4a3 + 27b2) modq ̸= 0. All points on E and the infinite point O form a cyclic group. The
elliptic curve cryptosystem (ECC) has the following difficulties:

• The elliptic curve discrete logarithm problem (ECDLP): given P, Q ∈ Gq, where P is
the generator of the group and Q is the element in Gq. It is difficult to calculate the
integer k, such that Q = kP, where k ∈ Zq∗ .

• The elliptic curve computational Diffie–Hellman problem (ECDCHP): for any given
a, b in Zq∗ , it is difficult to calculate abP, where (P, aP, bP) ∈ Gq.

• The elliptic curve decisional Diffie–Hellman (ECDDDH) problem: given aP, bP ∈ G,
where a, b are unknown. The decisional Diffie–Hellman (DDH) problem is to decide
whether X equals abP or a random element in G.

Electronics 2024, 13, 1449 6 of 29

4. The System Model and Security Model of CLVPFC-PEKS
4.1. System Model

There are five core entities involved in the new scheme: the key generation center
(KGC), the data owners (DOs, including patients and their doctors), CSSs, retrievers (e.g.,
authorized doctors or hospitals), and a private audit server (PAS), as shown in Figure 2.

Figure 2. System model of CLVPFC-PEKS.

• The KGC is responsible for generating the public parameters of the system and some
of the private keys for the DOs, the CSSs, and the retrievers.

• DOs have many files to store and manage, but their resources and capabilities are
limited. From the perspective of resource-saving and data security, the data owner
chooses to upload the encrypted data files and indexes (keyword ciphertext) to the
cloud storage server.

• The CSS, as a semi-trusted entity with powerful computing and storage capabilities,
provides data storage and retrieval services to authorized cloud customers. When a
retriever initiates a retrieval request, the cloud storage server looks up the keyword
traps and returns the corresponding data files to the retriever.

• Retrievers can initiate a ciphertext retrieval request by sending a keyword trap-
door to the cloud storage server and decrypt the received ciphertext to obtain the
required information.

• The PAS, as a fully trusted entity, is responsible for validating the search results to
ensure that the data files received by the searcher are accurate.

The CSS is semi-trustworthy and curious. It may selectively perform a few search
operations and provide some erroneous search results to conserve its resources. At the same
time, CSSs try to snoop on valuable and sensitive information. The PAS is fully trusted to
ensure the accuracy of search results. In addition, authorized retrievers can confidently
initiate search requests without worrying about leaking valuable information to CSSs.

Electronics 2024, 13, 1449 7 of 29

4.2. Solution Framework

To better understand the notations in our proposed scheme, Table 2 explains the
pre-defined notations used throughout this paper. We set integer k as the security level and
(F, W) as the EMR file and the keyword set contained in EMR.

Table 2. Notation descriptions.

Notations Descriptions

x Master secret key

Ppub System public key

O = {O1, O2, · · · , Od} Data owner collection

IDi ∈ {0, 1}∗(1 ⩽ i ⩽ d) Identity set for data owner Oi

IDC Identity for CSS

IDu Identity for data user

(PKC, SKC) Public/secret key pair for CSS

(PKOi , SKOi) Public/secret key pair for data owner Oi

(PKu, SKu) Public/secret key pair for data user

F = { f1, f2, · · · , fn} File set F

C = {c1, c2, · · · , cn} Ciphertext set

ID = {id1, id2, · · · , idn} Identity set for F

Wi = {wi1, wi2, · · · , wim} Collection of keywords

sigi,t Data owner Oi signature for ct

sigt Data owners’ multi-signature for ct

Sig = {sig1, sig2, · · · , sign} F’s multi-signature

Ii Index of fi

I = {I1, I2, · · · , In} Index set for F

W ′ = {w′
1, w′

2, · · · , w′
l} Search keyword set

TW ′ Trapdoor of W ′

C′ = {ck1
, ck2 , · · · , cks} Search results

ID′ = {idk1
, idk2 , · · · , idks} Identity set for C′

Definition 1 (CLVPFC-PEKS). Our scheme is a tuple of six algorithms, as follows:
SetUp(1k): Given the security parameter k, the KGC outputs the public parameters Ω, the

system public key Ppub, and the master secret key msk for the traditional public key algorithm.
KeyGen (Ω, O, U, CSS): For the data owner set O, the data user U, and the CSS, the KGC generates

the public/secret key pairs {PKOi , SKOi}(1 ⩽ i ⩽ d),{PKu, SKu}, and {PKC, SKC}, respectively.
Set-Secret-Value: After inputting the public parameters Ω, this probabilistic algorithm outputs

data owners, data users, and CSS’s Secret-Value.
Partial-Private-Key-Extract: The KGC executes this algorithm, which accepts the identity of

the data owner, data user, and CSS, then uses them in combination with the master key to generate a
partial private key for the data owner, data user, and CSS.

Set-Private-Key: Set the full secret keys of the data owner, data user, and CSS.
Set-Public-Key: Set the full public keys of the data owner, data user, and CSS.
Enc(Ω, F, W, {IDi}, ID, {SKOi}, {PKOi}, PKu): DOs first conduct this probabilistic algo-

rithm to generate the ciphertext set C for the set F. Then, DOs generate multiple signatures Sig and
index set I for ciphertext C. Then, they send the tuple (C, I, Sig) to the CSS. TraGen(Ω, SKu, W ′);
given the keyword W ′, the DO runs this algorithm to output trapdoor TW ′ .

Electronics 2024, 13, 1449 8 of 29

Test(Ω, TW ′ , I): Using the trapdoor TW ′ as an input, the CSS matches it with the index set I,
then returns the relevant ciphertext C′ ⊆ C and signature Sig′ set to PAS.

Verify (Ω, C′, ID′, sig, {PKOi)}): The PAS runs this algorithm by initiating interaction with
the CSS to check the correctness of the search result CW′. If CW′ passes the result validation, the
PAS will return it to the retriever. Otherwise, it will abort the algorithm.

4.3. Security Model

Our scheme primarily considers security in the following two aspects: (1) The index
corresponding to the keyword has security against choice keyword attacks. (2) The trapdoor
used for queries should possess security.

Because our scheme is certificateless-based, there are two different classes of adver-
saries: A1 and A2. Therefore, when discussing the security of the index and trapdoor, we
must analyze and prove them from the angles of these two adversaries.

A1: A1 does not know the master key, but A1 can replace any user’s public key.
A2: A2 knows the master key, but A2 cannot replace any user’s public key.
We call these adversaries the adversary of type-1 and the adversary of type-2.
Mahmoud Ismail et al. [50] articulated the basic principles of the zero-trust framework,

delved into the threat landscape facing IoT systems, and assessed how the zero-trust princi-
ple can effectively address these threats. Jamal A. Alenizi et al. [51] investigated various
risks and vulnerabilities that may affect the operation of blockchain-based smart healthcare
systems, especially ransomware, and proposed a framework for mitigating healthcare
ransomware attacks. The framework proposed by Jamal A. Alenizi et al. has higher compu-
tational efficiency and lower communication overhead than similar existing frameworks.

4.3.1. Ciphertext Indistinguishability against Chosen Keyword Ciphertext Attack

A PEKS scheme with ciphertext indistinguishability against chosen keyword and
ciphertext attacks (CKCA-CIND) feature can protect the data owner’s keyword ciphertext
stored in the cloud from revealing relevant keyword information. When encrypted data are
stored in the CSS, it will attach the corresponding keywords {wi1, wi2, · · · , wim}. Even if
the keyword ciphertext is captured during transmission, no adversary can obtain keywords
embedded in the keyword ciphertext.

We will define the definition of CKCA-CIND. There are two games to discuss the
security of CKCA-CIND.

Game 1.
A1 simulates malicious users, and B is the challenger. B and A1 play this game together.
Setup: B runs the SetUp(1k) program to obtain Ω, Ppub and msk. B sends Ppub to A1

and keeps msk. Then, B sets the key pair of Oi (i ∈ {1, 2, · · · , d}) and CSS, i.e., (PKOi , SKOi)
(i ∈ {1, 2, · · · , d}) and (PKc, SKc). B sends the public keys PKOi (i ∈ {1, 2, · · · , d}) and
PKc to A1, while SKOi and SKc are unknown to A1.

Phase 1. A1 executes the User-Public-Key query before executing other queries. It sets
up lists to store the above queries and answers. All lists are initially empty. A1 makes the
queries to challenger B as follows:

• User-Public-Key query: When A1 inputs the identity IDu, B outputs the user’s public
key PKu.

• Replace-Public-Key query: A1 inputs (IDj, PK′
j), B replaces PKj with PK′

j.
• Secret-Value query: When A1 inputs the identity IDj, B returns the secret value

corresponding to the IDj. If PKj is replaced, B refuses to answer.
• Partial-Private-Key-Extract query: When A1 enters the IDj, if IDj = ID♢

u (ID♢
u is

the challenge identity), B fails and stops. Otherwise, B returns the corresponding
Partial-Private-Key.

• Keyword Ciphertext Query: A1 asks B for the keyword ciphertext of any keyword W
it cares about. B runs the Enc(Ω, F, W, {IDi}, ID, {SKOi}, {PKOi}, PKu) algorithm to
answer W’s keyword ciphertext IW .

Electronics 2024, 13, 1449 9 of 29

• Keyword Trapdoor Query: A1 sends a keyword W′ to B. B runs the TrapGen(Ω, SKu, W′)
algorithm to answer W′’s trapdoor TW′ .

• Test Query: A1 selects and sends the keyword ciphertext IW and trapdoor TW ′ to
B. B executes the Test(Ω, TW ′ , IW) algorithm to return the test result of whether the
keyword ciphertext and the trapdoor match.

Challenge: A1 submits a tuple (W0, W1, IDu
∗, PKu

∗) to B, where W0 and W1 are chal-
lenging keywords not asked in the previous trapdoor and keyword ciphertext query. If
ID∗

u ̸= ID♢
u , B aborts. Otherwise, B picks ξ ∈ {0, 1}, randomly computes the keyword

ciphertext IWξ
, and returns the challenge ciphertexts IWξ

to A1.
Phase 2. A1 can perform many queries like Phase 1, but A1 cannot query the keyword

ciphertext and trapdoor of W0 and W1.
Guess: A1 outputs ξ ′ ∈ {0, 1}. A1 wins if ξ ′ = ξ. Otherwise, it fails.
Next, the advantages of A1 in Game 1 are given as

AdvCKCA−CINDA1
|Pr[ξ ′ = ξ| − 1

2
|.

Game 2.
A2 simulates the malicious server, and B is a challenger. B and A2 play this game

together. Setup: It only differs from the setup of Game 1 in the following steps. B sends the
public keys PKOi , Ppub, and msk to A2, and SKOi is unknown to A2.

Phase 1. The steps are the same as in Phase 1 of Game 1, except for the Secret-Value
query and Partial-Private-Key query. The changes in them are as follows:

• Secret-Value query: When A2 enters the IDj, if IDj = ID♢
u (ID♢

u is the challenge
identity), B fails and stops. Otherwise, B returns the secret value corresponding to IDj.

• Partial-Private-Key-Extract query: When A2 inputs the identity IDj, B returns the
partial private key corresponding to the IDj. If PKj is replaced, B refuses to answer.

Phase 2. Same as Phase 2 of Game 1.
Next, the advantages of A2 in Game 2 are given as

AdvCKCA−CINDA2
|Pr[ξ ′ = ξ| − 1

2
|.

Definition 2 (Security of CKCA-CIND). If the probability that any adversary will win the
above two games in polynomial time is negligible, then we state that the CLVPFC-PEKS scheme is
CKCA-CIND safe.

4.3.2. Safety of Trapdoor

The attack methods on the trapdoor include offline keyword-guessing attacks, online
keyword-guessing attacks, and insider keyword-guessing attacks.

We first discuss how to defend against offline keyword-guessing attacks.
References [46,52,53] have made efforts to resist offline keyword-guessing attacks. They
modified the structure of the trapdoor and claimed that if the attacker did not know the
server’s private key or the receiver’s private key, then the scheme would be resistant to
offline keyword-guessing attacks by external attackers. In [53], the concept of trapdoor
indistinguishability under a choose keyword attack (CKA-TIND) is proposed, and it is
proven that CKA-TIND is a sufficient condition to prevent offline keyword guessing attacks.
At the same time, ref. [53] proposes a dPEKS scheme with trapdoor indivisibility. The
above schemes are proven safe in the random oracle model, but the proof that the scheme
is safe in the random oracle model does not necessarily mean that the scheme is safe in
reality. Fang et al. [54] proposed a new SCF-PEKS scheme that has no random prediction
and asserts that the scheme can safely resist offline keyword guessing attacks by external
attackers. However, Lu et al. [19] pointed out that Fang’s scheme is insecure under the
keyword guessing attack of external attackers.

In the following, we define the concept of CKA-TIND of CLVPFC-PEKS.

Electronics 2024, 13, 1449 10 of 29

Game 3.
A1 simulates malicious users, and B is the challenger. B and A1 play this game together.
Setup: A1 B runs the SetUp(1k) program to obtain Ω,Ppub and msk. B sends Ppub to A1

and keeps msk secret. Then, B sets the key pair of the date user and CSS, i.e., (PKu, SKu)
and (PKc, SKc). Challenger B sends the public key PKu and PKc to A1, while SKu and SKc
are unknown to A1.

Phase 1. A1 executes the User-Public-Key query before executing other queries. The
setup lists store the above queries and answers. All lists are initially empty. A1 makes the
queries to challenger B as follows:

• User-Public-Key query: When A1 inputs the identity IDi, B outputs the user’s public
key PKi .

• Replace-Public-Key query: Same as in Game 1.
• Secret-Value query: Same as in Game 1.
• Partial-Private-Key-Extract query: When A1 enters the IDj, if IDj = ID♢

i (ID♢
i is

the challenge identity), B fails and stops. Otherwise, B returns the corresponding
Partial-Private-Key.

• Keyword Ciphertext Query: Same as in Game 1.
• Keyword Trapdoor Query: Same as in Game 1.
• Test Query: Same as in Game 1.

Challenge: A1 submits a tuple (W0, W1, {IDi
∗}, {PKi

∗}) (i ∈ {1, 2, · · · d}) to B, where
W0 and W1 are challenging keywords that were not asked in the previous trapdoor and
keyword ciphertext query. If ID♢

i /∈ {IDi
∗}(i ∈ {1, 2, · · · d}), B aborts. Otherwise, B picks

ξ ∈ {0, 1}, randomly computes keyword trapdoor TWξ
, and returns the challenge trapdoor

TWξ
to the adversary A1.
Phase 2. A1 can perform many queries like Phase 1, but A1 cannot query the keyword

ciphertext or trapdoor of W0 and W1.
Guess: A1 outputs ξ ′ ∈ {0, 1}. Adversary A1 wins if ξ ′ = ξ. Otherwise, it fails.
Next, the advantages of A1 in Game 3 are given as

AdvCKA−TINDA1
|Pr[ξ ′ = ξ| − 1

2
|

Game 4.
A2 simulates the malicious server, and B is a challenger. B and A2 play this game

together.
Setup: This differs from the setup of Game 3 only in the following steps. B sends PKu,

Ppub, and msk to A2, and SKu is unknown to A2.
Phase 1. The steps are the same as in Phase 1 of Game 3, except for the Secret-Value

and Partial-Private-Key-Extract queries. The changes in them are as follows:

• Secret-Value query: When A2 enters the IDj, if IDj = ID♢
i (ID♢

i is the challenge
identity), B fails and stops. Otherwise, B returns the secret value corresponding to IDj.

• Partial-Private-Key-Extract query: Same as in Game 2.

Phase 2. Same as Phase 2 of Game 3.
Next, the advantages of A2 in Game 4 are given as

AdvCKA−TINDA2
|Pr[ξ ′ = ξ| − 1

2
|

Definition 3 (Security of CKA-TIND). If the probability that any adversary will win the above
two games in polynomial time is negligible, then we state that the CLVPFC-PEKS scheme is
CKA-TIND safe.

Next, we will discuss how to resist online/insider keyword-guessing attacks.
Lu et al. [19] pointed out that the main reason for vulnerability to online keyword-
guessing attacks is that any opponent can generate legitimate ciphertext for keywords.

Electronics 2024, 13, 1449 11 of 29

Shao et al. [47] pointed out that SCF-PEKS inherently suffers from insider keyword-
guessing attacks because malicious servers can run keyword encryption algorithms and
test algorithms at the same time. To resist the above two attacks, Wu et al. [55] proposed
a searchable public key encryption (SPE-PP) scheme with a privacy protection function.
In their plan, the Diffie–Hellman shared secret key is required for the generation of
the keyword ciphertext and trapdoor. Specifically, the sender uses the shared key to
calculate each keyword ciphertext, while the receiver uses the shared key to generate a
trapdoor. An internal adversary (such as a malicious cloud server) cannot obtain the
Diffie–Hellman shared secret key, so they cannot construct legal ciphertext to match
the trapdoors sent by retrievers for testing. Then, internal adversaries will not be able
to implement insider keyword-guessing attacks. On the other hand, only the retriever
can use the Diffie–Hellman shared secret key to generate a legitimate trapdoor for
each keyword, and the adversary of online keyword guessing cannot obtain the Diffie–
Hellman shared secret key. Then, they cannot construct a legal trapdoor to upload
to the cloud server. Even if they monitor all the files obtained by the retriever under
the public channel, they cannot obtain any keyword-related information through
comparison. In conclusion, the reason why the searchable encryption scheme can
resist online and insider keyword-guessing attacks is that the keyword ciphertext is
embedded in the shared key generated by the sender’s private key and the receiver’s
public key.

In this section, we conduct a comprehensive analysis of the security of the scheme,
focusing primarily on the security of the trapdoor and keyword ciphertext. The security of
the keyword ciphertext only needs to demonstrate that the scheme is resistant to chosen
keyword ciphertext attacks. Trapdoor security is categorized into three aspects: security
against offline keyword-guessing attacks, security against online keyword-guessing attacks,
and security against internal keyword-guessing attacks. Because CKCA-CIND is a sufficient
condition to prevent offline keyword guessing attacks, as long as the scheme is trapdoor-
indistinguishable under the chosen keyword attack, then the scheme is secure against
the offline keyword guessing attack. Also, as long as the shared key embedded in the
keyword ciphertext is generated from the sender’s private key and the receiver’s public
key, the PESK scheme is resistant to both online keyword attacks and internal keyword
guessing attacks.

5. The Proposed CLVPFC-PEKS

This system uses a traditional public key encryption algorithm for keywords. However,
we will not discuss them in detail here. Therefore, the following algorithms focus mainly
on indexing and signature.

SetUp (1k): Given a security parameter k, this deterministic algorithm outputs the
global public parameters Ω and KGC’s master secret key (msk). Given k, the KGC performs
as follows:

• Choose a k bit prime number q and determine the tuple {Fq, E/Fq, Gq, P}, where the
point P is the generator of Gq.

• Choose a number x∈RZ∗
q and compute the system public key Ppub = xP. Set msk =

{x}. Let (PK, SK) = (Ppub, x).
• Select five hash functions H0,H1,H2 :{0, 1}∗ × G × G → Z∗

q , h1 : {0, 1}∗ → Z∗
q ,

h2 : Gq → Z∗
q .

• Let Ω = {Fq, E/Fq, Gq, P, H0, H1, H2, h1, h2, Ppub}.

KeyGen (Ω, O, U, CSS): Let each EMR have a fixed number of data
owners O = {O1, O2, · · · , Od}. KGC generates the public/secret key pairs for the CSS, data
owner Oi, and retriever U.

• Set-Secret-Value: The participant with IDi(i = 1, 2, · · · , d, C, u) selects an element
xi∈RZ∗

q (i = 1, 2, · · · , d, C, u) and generates the corresponding public key Pi = xiP
(i = 1, 2, · · · , d, C, u) .

Electronics 2024, 13, 1449 12 of 29

• Extract-Partial-Private-Key: To obtain the partial private key, the user IDi sends
(IDi, Pi) to the KGC, and then the KGC executes the extraction as in the follow-
ing steps.

– Taking the participant’s IDi(i = 1, 2, · · · , d, C, u) as input, a random number
ri ∈ Z∗

q (i = 1, 2, · · · , d, C, u) is selected by KGC and calculates Ri = riP
(i = 1, 2, · · · , d, C, u).

– The KGC computes ei = ri + xH0(IDi, Ri, Pi)modq(i = 1, 2, · · · , d, C, u). The
partial private key of the participant with IDi(i = 1, 2, · · · , d, C, u) is ei. The
participant with IDi(i = 1, 2, · · · , d, C, u) can verify their partial private key
by checking whether the equation Qi = eiP = Ri + liPpub holds, where li =
H0(IDi, Ri, Pi). If the above equation is true, then the private key IDi is accepted.

• Set-Private-Key: The partial private key of the participant with IDi(i = 1, 2, · · · , d, C, u)
takes the pair SKi = (xi, ei) as their full private key.

• Set-Public-Key: The participant with IDi(i = 1, 2, · · · , d, C, u) takes PKi = (Pi, Ri) as
their full public key.

Enc(Ω, F, W, {IDi}, ID, {SKOi}, {PKOi}, PKu):
Step 1: Given the EMR set F = { f1, f2, · · · , fn} with corresponding identities

ID = {id1, id2, · · · , idn}, it will be encrypted as the ciphertext set C = {c1, c2, · · · , cn}
through the traditional public key encryption algorithm. To generate the multi-signature
on the encrypted file ct ∈ C(1 ⩽ t ⩽ n), each signer Oi(1 ⩽ i ⩽ d) does the following:

• Oi chooses a number yi,t∈RZ∗
q and computes Yi,t = yi,tP.

• Oi broadcasts Yi,t to other members Ok(1 ⩽ k ⩽ d, k ̸= i) of the group.

• Computes Yt =
d
∑

i=1
Yi,t, P0 =

d
∑

i=1
Pi, Q0 =

d
∑

i=1
Qi.

• Computes ht = H1(ct, idt, Yt, P0) and h′t = H1(ct, idt, Yt, Q0) .
• Oi computes Vi,t = yi,t + htxi + h′tei, generates a signature sigi,t = (Yi,t, Vi,t) for ct, and

then sends Vi,t to the designated clerk Oz.

• Upon receiving Vi,t, Oz computes Vt =
d
∑

i=1
Vi,t and outputs the signature

sigt = {Yt, Vt}. Let sig = {sig1, · · · , sign}, where VtP = Yt + htP0 + h′tQ0.

Step 2: All users specify a user to generate an index, for example, Od. Od runs this
algorithm to generate the index of file set F. Given the keyword set W, Od builds an
index for each file fi ∈ F. The index for each fi is generated based on the keyword field
W = {wi1, wi2, · · · , wim}, where m is a fixed integer. Od randomly selects ξ ∈ Z∗

q and
calculates ξ + xd to O1 through public key encryption. O1 computes ξ + xd + x1 and sends
it to O2 through public key encryption. O2 computes ξ + xd + x1 + x2 and sends it to O3
through public key encryption, and so on until Od−1 computes ξ + xd + x1 + · · ·+ xd−1
and sends it to Od through public key encryption. Od calculates x0 = ξ + xd + x1 + · · ·+
xd−1 − ξ = x1 + x2 + · · ·+ xd, and calculates e0 = e1 + e2 + · · ·+ ed in the same way as Oj.

Let R0 =
d
∑

t=1
Rt, l0 =

d
∑

t=1
lt. Construct an m-degree polynomial with the following equation:

F(x) = bi,mxm + bi,m−1xm−1 + · · ·+ bi,1x + bi,0,

so h2(t)h1(wi,1), h2(t)h1(wi,2), · · · , h2(t)h1(wi,m) is the root of equation
F(x) = 1, where t = (x0 + e0)Pu + x0Ru + x0luPpub. Then, Oj selects λi, µi∈RZq

∗ and
computes Mi = λiQc, set Ii,1 = Mi − µiP, Ii,2 = λiP, Vi,j = µibi,j(0 ⩽ j ⩽ m), and the index
set is I = {I1, · · · , In}, where Ii = {Ii,1, Ii,2, Vi,0, Vi,1, · · · , Vi,m}. Finally, Od sends I to CSS.

TrapGen(Ω, SKu, W ′): The DO calculates the value of P0, R0, l0 as follows: P0 =
d
∑

i=1
Pi,

R0 =
d
∑

i=1
Ri, l0 =

d
∑

i=1
li. Given the queried keywords set W ′ = {w′

1, w′
2, · · · , w′

l} , the DO U

first select an element η∈RZ∗
q and set TW ′

m+1
= ηP,

Electronics 2024, 13, 1449 13 of 29

TW ′
j
= l−1h2(t)j

l
∑

r=1
h1(w′

r)
jP + ηPC, where 0 ⩽ j ⩽ m ,t = (xu + eu)P0 + xuR0 +

xul0Ppub. Finally, they send Tw′ = {Tw′
0
, Tw′

1
, · · · , Tw′m , Tw′

m+1
} to the CSS.

Test(Ω, TW ′ , I, C): After gaining the search token TW ′ , the CSS computes Mi = λiQC
fist, and then verifies whether Equation (1) holds.

Ii,1 +
m

∑
j=0

Vi,j(Tw′
j
− xCTw′

m+1
) = Mi (1)

If Equation (1) holds, the CSS will return the relevant ciphertext set C′ = {ck1 , ck2 , · · · , cks}
and its corresponding identity set ID′ = {idk1 , idk2 , · · · , idks} to PAS. Otherwise, it returns ⊥.
The specific test process is shown in Algorithm 1.

Algorithm 1: Search over encrypted data
.
Input: Trapdoor TW′ , index I, ciphertext C, secret key SKC, and public parameters Ω.
Output: Search results C′ and corresponding identity set ID′ or ⊥.
• Tw′ = {Tw′

0
, Tw′

1
, · · · , Tw′m , Tw′

m+1
}

• I = {I1, I2, · · · , In},Ii = {Ii,1, Ii,2, Vi,0, Vi,1, · · · , Vi,m}.
• Mi = eC Ii,2

• f or 0 ⩽ i ⩽ n do Ii,1 +
m
∑

j=0
Vi,j(Tw′

j
− xCTw′

m+1
) = Mi

• If Equation (1) holds, CSS returns the ciphertext ckt ; otherwise, it returns ⊥;
• end for
• CSS returns the relevant results C′ and corresponding identity set ID′ or ⊥ to PAS.

Verify (Ω, C′, ID′, sig, {PKOi}): After receiving the search results C′ , PAS computes
the proof information (ϕ1, ϕ2) and σ. Finally, PAS verifies whether Equation (2) holds. The
specific verify process is shown in Algorithm 2.

Algorithm 2: Results verification.
Input: Search results C′ with corresponding identity set ID′, public key set {PKOi},

signature sig = {sig1, · · · , sign}, and public parameters Ω, where sigt = {Yt, Vt}.
Output: “Accept” or “Reject”
• C′ = {ck1 , ck2 , · · · , cks}, ID′ = {dk1 , idk2 , · · · , idks};
• public key set {PKO1 , PKO2 , · · · , PKOd};
• sig = {sig1, · · · , sign}, sigt = {Yt, Vt};

• compute P0 =
d
∑

t=1
Pt , Q0 =

d
∑

t=1
Qt;

• compute ϕ1 =
s
∑

τ=1
H1(ckτ

, idkτ
, Ykτ

, P0), ϕ2 =
s
∑

τ=1
H2(ckτ

, idkτ
, Ykτ

, Q0),

σ =
s
∑

τ=1
Vkτ

;

• Check
σP =

s

∑
τ=1

Ykτ
+ ϕ1P0 + ϕ2Q0; (2)

• If Equation (2) holds, output “Accept” and send C′ to retriever; otherwise,
output “Reject”.

Electronics 2024, 13, 1449 14 of 29

6. Security of Scheme

We will analyze the correctness and security of the CLVPFC-PEKS scheme in this section.

6.1. Correctness

Theorem 1. The CLVPFC-PEKS scheme is computationally consistent.

Proof. For the correctness of our CLVPFC-PEKS scheme, we do two things. First, we
illustrate that the CSS can effectively ascertain a match between the keyword ciphertext’s
index and the trapdoor when the keyword set W ′ ⊆ W, where W ′ is a set of keywords
searched by a specific user and W is the keyword set of ciphertext. Subsequently, we
elucidate that, given that the search outcomes successfully traverse the established result
verification protocol, retrievers can ascertain the accuracy of the search results.

During the test phase, the CSS obtains the index I = {I1, I2, · · · , In} and trapdoor
Tw′ = {Tw′

0
, Tw′

1
, · · · , Tw′m , Tw′

m+1
}. The CSS starts performing computations.

eC Ii,2 = (rC + xlC)λiP = λi QC = Mi .

Ii,1 +
m
∑

j=0
Vi,j(Tw′

j
− xCTw′

m+1
)

= Mi − µiP +
m
∑

j=0
µibij[l−1h2(t)j

l
∑

r=1
h1(w′

r)
jP + ηPC − xCηP]

= Mi − µiP +
m
∑

j=0
µibij(l−1h2(t)j

l
∑

r=1
h1(w′

r)P)

= Mi − µiP + l−1µi
m
∑

j=0
bijh2(t)j

l
∑

r=1
h1(w′

r)
jP

= Mi − µiP + l−1µi[
m
∑

j=0
bijh2(t)

jh1(w′
1)

j+ · · ·+
m
∑

j=0
bijh2(t)

jh1(w′
l)

j]P

If W ′ ⊆ W, then h2(t)h1(w′
1), · · · , h2(t)h1(w′

l) are the root of the equation F(x) = 1,
where F(x) = bi,mxm + bi,m−1xm−1 + · · ·+ bi,1x + bi,0. Thus,

Ii,1 +
m
∑

j=0
Vi,j(Tw′

j
− xCTw′

m+1
)

= Mi − µiP + l−1µi[
m
∑

j=0
bijh2(t)

jh1(w′
1)

j+ · · ·+
m
∑

j=0
bijh2(t)

jh1(w′
l)

j]P

= Mi − µiP + l−1µi(1 + 1 + · · ·+ 1)P
= Mi − µiP + µiP
= Mi

Equation (1) is satisfied, and thereby CSS can correctly test whether the keyword
ciphertext matches the trapdoor.

In the test phase, the PAS obtains signature sig = {sig1, sig2, · · · , sign} and ciphertext
C′ = {ck1 , ck2 , · · · , cks}, computing

ϕ1 =
s
∑

τ=1
H1(ckτ

, idkτ
, Ykτ

, P0), ϕ2 =
s
∑

τ=1
H2(ckτ

, idkτ
, Ykτ

, Q0)

obtaining the proof information (ϕ1, ϕ2), and then continuing to calculate

σP =
s
∑

τ=1
Vkτ

P =
s
∑

τ=1
(Ykτ

+ hkτ
P0 + h′kτ

Q0)

=
s
∑

τ=1
Ykτ

+
s
∑

τ=1
hkτ

P0 +
s
∑

τ=1
h′kτ

Q0

=
s
∑

τ=1
Ykτ

+
s
∑

τ=1
H1(ckτ

, idkτ
, Ykτ

, P0)P0 +
s
∑

τ=1
H1(ckτ

, idkτ
, Ykτ

, Q0)Q0.

If C′ ⊆ C , then

ϕ1 =
s
∑

τ=1
H1(ckτ

, idkτ
, Ykτ

, P0) =
s
∑

τ=1
H1(cρ(τ), idρ(τ), Yρ(τ), P0)

Electronics 2024, 13, 1449 15 of 29

ϕ2 =
s
∑

τ=1
H1(ckτ

, idkτ
, Ykτ

, Q0) =
s
∑

τ=1
H1(cρ(τ), idρ(τ), Yρ(τ), Q0)

where ρ(τ) ∈ [1, n]. So we have σP =
s
∑

τ=1
Ykτ

+ ϕ1P0 + ϕ2Q0. Equation (2) in program

2 holds. We can also make sure that the ciphertext cannot be modified.

6.2. Security

Lemma 1. Assuming that adversary A1 can triumph in Game 1, then it is feasible to devise
algorithm B, aimed at resolving the ECDDDH problem.

Proof. Let us hypothesize that the tuple (P, aP, bP, X) constitutes an instance of the ECD-
DDH problem. In order to ascertain whether X = abP, algorithm B will assume the role of
the challenger.

Setup: B executes the setup (1k) procedure to obtain public parameters
Ω = {Fq, E/Fq, Gq, P, G, H0, H1, H2, Ppub} along with msk = {x} and Ppub = xP. B then for-
wards the parameter Ω to A1 while keeping msk secret. B selects xi ∈ Z∗

q (i ∈ {2, · · · , d, C}),
ri ∈ Z∗

q (i ∈ {1, 2, · · · , d, C}) randomly and sets
Pi = xiP (i ∈ {2, · · · , d, C}), P1 = aP,Ri = riP (i ∈ {1, 2, · · · , d, C}), and

ei = ri + xH0(IDi, Ri, Pi) mod q(i ∈ {1, 2, · · · , d, C}).
B sends Ω, PKOi (i ∈ {1, 2, · · · , d}), and PKC to A1, but SKOi (i ∈ {1, 2, · · · , d}) and

SKC are unknown to A1.
Phase 1: Prior to conducting other queries, execute the user’s public key query utilizing

the identity IDu. Set up multiple lists to record the queries and corresponding responses.
Each list starts off empty.

For a user public key query, B keeps a list Lu of the tuple (IDu, xuP, ruP, ru) and, upon
receiving an identity IDu, performs the following steps.

Case 1. IDu = ID♢
u . x♢u ∈ Z∗

q , setting PK♢
u = (x♢u P, bP), and adding the tuple

(ID♢
u , x♢u P, x♢u , bP,♢) to the list Lu, where ♢ represents a null value.
Case 2. IDu ̸= ID♢

u . B randomly chooses two different numbers xu, ru ∈ Z∗
q , setting

PKu = (xuP, ruP), and adds the tuple (IDu, xuP, ruP, ru) to the list Lu.
Replace-Public-Key query: B keeps a list LR of tuple (IDj, PKj, PKj

′). When A1 inputs
(IDj, PKj

′), B replaces PKj with PKj
′ and adds (IDj, PKj, PKj

′) to the list LR.
Secret-Value query: When A1 receives the request for the secret value associated with

IDj, B finds (IDj, xjP, rjP, rj) in the list Lu and returns xj. If PKj is replaced, B refuses
to answer.

Partial-Private-Key query: B establishes a list Le of tuple (IDj, ej) when A1 asks
for the partial private key of IDj. If IDj = ID♢

u , B fails and stops. Otherwise, B finds
(IDj, xjP, rjP, rj) in the list Lu, and runs the Extract-Partial-Private-Key algorithm, generat-
ing ej. B outputs ej and adds (IDj, ej) to the list Le.

Keyword Ciphertext Query: When A1 asks W = {wi,1, wi,2, · · · , wi,m} for the key-
word ciphertext, B operates the Enc(Ω, F, W, {IDi}, ID, {SKOi}, {PKOi}, PKu) algorithm to
generate keyword ciphertext IW = {Ii,1, Ii,2, Vi,0, Vi,1, · · · , Vi,m}.

Keyword Trapdoor Query: When A1 asks W ′ = {w′
1, w′

2, · · · , w′
l} for the trapdoor, B

operates the TrapGen{Ω, SKu, W ′} algorithm to generate the trapdoor Tw′ = {Tw′
0
, Tw′

1
, · · · ,

Tw′m , Tw′
m+1

}.
Test Query: A1 gives the keyword ciphertext IW and keyword trapdoor Tw′ , and B

compares them using Algorithm 1.
Challenge: A1 submits a tuple (W0, W1, IDu

∗, PK∗
u) to B, where W0 = {w0,1, w0,2, · · · ,

w0,m} and W1 = {w1,1, w1,2, · · · , w1,m} are challenging keywords not requested in the
previous trapdoor and keyword ciphertext query. If ID∗

u ̸= ID♢
u , B aborts. Otherwise,

ID∗
u = ID♢

u , B calculates lu♢ = H0(ID♢
u , R♢

u , P♢
u) and picks ξ ∈ {0, 1} randomly. B

computes

t = (
d
∑

k=2
xk +

d
∑

k=1
ek)P♢

u +
d
∑

k=2
xkR♢

u +
d
∑

k=2
xkl♢u Ppub + x♢u aP + l♢u xaP + X.

Electronics 2024, 13, 1449 16 of 29

Let F(x) = (x − h2(t)h1(wξ,1))(x − h2(t)h1(wξ,2)) · · · (x − h2(t)h1(wξ,m))− 1, which
can obtain F(x) = bξ,mxm + bξ,m−1xm−1 + · · ·+ bξ,1x + bξ,0 by combining similar terms.
Then, B selects λξ , µξ∈RZq

∗ and computes Mξ = λξ Qc. Set Iξ,1 = Mξ − µξ P,
Iξ,2 = λξ P, Vξ,j = µξbξ,j(0 ⩽ j ⩽ m). Thus, the corresponding keyword ciphertext of
Wξ = {wξ,1, wξ,2, · · · , wξ,m} is IW ξ = {Iξ,1, Iξ,2, Vξ,0, Vξ,1, · · · , Vξ,m}. B returns the challenge
ciphertexts IWξ

to the adversary A1.
Phase 2: A1 can continue to execute various queries, but there is a limitation that A1 is

not allowed to query the keyword ciphertext or trapdoor of W0 or W1.
Guess: A1 returns ξ ′.
Solve CDH problem: If ξ ′ = ξ, B returns 1, otherwise 0. If X = abP, then

t = (
d
∑

k=2
xk +

d
∑

k=1
ek)P♢

u +
d
∑

k=2
xkR♢

u +
d
∑

k=2
xkl♢u Ppub + x♢u aP + l♢u xaP + X

= (x0 + e0)P♢
u +

d
∑

k=2
xkR♢

u + x0l♢u Ppub + abP

= (x0 + e0)P♢
u + x0R♢

u + x0l♢u Ppub
Therefore, IW ξ is a valid keyword ciphertext. Suppose that the advantage of A1

winning in the above game is ε. So,
Pr[ξ ′ = ξ|X = abP] = 1

2 + ε.
If X ̸= abP, then IWξ

is an invalid keyword ciphertext. A1 has no advantage in
distinguishing ξ = 0 from ξ = 1. Hence,

Pr[ξ ′ = ξ|X = abP] = 1
2 .

Probability: Let qu, qr and qe be the number of the user public key query, Replace-
Public-Key query, and the Partial-Private-Key query, respectively. The two events are as
follows:

π1 : A1 did not replace ID♢
u ’s public key R♢

u and queried the partial-private-key
for ID♢

u .
π2 : ID∗

u = ID♢
u .

It is not hard to obtain the following results.
Pr[π1] =

qu−qr−qe
qu

,

Pr[π2|π1] =
1

qu−qr−qe
, Pr[B success] = Pr[π1 ∧ π2] =

1
qu

.
If A1 wins Game 1 with an advantage of ε, then B has a probability greater than ε

qu
to

determine whether X = abP.

Lemma 2. Assuming that adversary A2 can win Game 2, algorithm B can constructed to solve the
ECDDDH problem by exploiting the adversary’s ability.

Proof. Suppose that the tuple (P, aP, bP, X) is an example of an ECDDDH problem. To
determine whether X = abP, B will play the part of the challenger.

Setup: B runs the setup (1k) program to obtain public parameters Ω msk = {x} and
Ppub = xP. B selects xi ∈ Z∗

q (i ∈ {1, 2, · · · , d, C}), ri ∈ Z∗
q (i ∈ {2, · · · , d, C}) randomly,

and sets
Pi = xiP (i ∈ {1, 2, · · · , d, C}), R1 = aP,Ri = riP (i ∈ {2, · · · , d, C}),

e1 = a + xH0(ID1, R1, P1) mod q, ei = ri + xH0(IDi, Ri, Pi) mod q(i ∈ {2, · · · , d, C})
B sends Ω, PKOi (i ∈ {1, 2, · · · , d}), and (PK, SK) to A2, while SKOi (i ∈ {1, 2, · · · , d})

are unknown to A2.
Phase 1: Execute the user’s public key query before other queries using the identity

IDu. Set up multiple lists to store the queries and answers. All lists are initially empty.
User public key query: B maintains a list Lu containing the tuple (IDu, xuP, ruP, ru)

and takes the following actions when receiving an identity IDu:
Case 1. IDu = ID♢

u . B chooses a number r♢u ∈ Z∗
q at random, sets PK♢

u = (bP, r♢u P),
and adds the tuple (ID♢

u , bP,♢, r♢u P, r♢u) to the list Lu, where ♢ represents a null value.
Case 2. IDu ̸= ID♢

u . B chooses xu, ru ∈ Z∗
q at random, sets PKu = (xuP, ruP), and

adds the tuple (IDu, xuP, ruP, ru) to the list Lu.

Electronics 2024, 13, 1449 17 of 29

Replace-Public-Key query: Same as in Lemma 1.
Secret-Value query: B established a list Ls of tuple (IDj, xj). When A2 asks the secret

value for IDj. If IDj = ID♢
u , B fails and stops. Otherwise, B finds (IDj, xjP, rjP, rj) in list

Lu, and returns xj.
Partial-Private-Key query: When A2 asks the partial private key of IDj, B finds

(IDj, xjP, rjP, rj) in list Lu, running the Extract-Partial-Private-Key algorithm and returning
ej. If PKj is replaced, B refuses to answer.

Keyword Ciphertext Query: Same as in Lemma 1.
Keyword Trapdoor Query: Same as in Lemma 1.
Test Query: Same as in Lemma 1.
Challenge: A2 submits a tuple (W0, W1, ID∗

u, PK∗
u) that meets the requirements of

Game 2, where W0 = {w0,1, w0,2, · · · , w0,m} and W1 = {w1,1, w1,2, · · · , w1,m} are challeng-
ing keywords not asked in the previous trapdoor query and keyword ciphertext query.
If ID∗

u ̸= ID♢
u , B aborts. Otherwise, ID∗

u = ID♢
u , B computes l♢u = H0(ID♢

u , R♢
u , P♢

u),
l1 = H0(ID1, R1, P1) and picks ξ ∈ {0, 1} randomly. B computes

t = (
d
∑

k=1
xk + xl1 +

d
∑

k=2
ek)P♢

u +
d
∑

k=1
xkR♢

u +
d
∑

k=1
xkl♢u Ppub + X.

Let F(x) = (x − h2(t)h1(wξ,1))(x − h2(t)h1(wξ,2)) · · · (x − h2(t)h1(wξ,m))− 1, which
can obtain F(x) = bξ,mxm + bξ,m−1xm−1 + · · ·+ bξ,1x + bξ,0 by combining similar terms.
Then, select λξ , µξ∈RZq

∗ at random and compute Mξ = λξ Qc. Set Iξ,1 = Mξ − µξ P, Iξ,2 =
λξ P, Vξ,j = µξbξ,j(0 ⩽ j ⩽ m), and thus Wξ = {wξ,1, wξ,2, · · · , wξ,m}’s keyword ciphertext
is IWξ

= {Iξ,1, Iξ,2, Vξ,0, Vξ,1, · · · , Vξ,m}. B returns the challenge ciphertexts IWξ
to the

adversary A2.
Phase 2: Attacker A2 can continue to execute various queries, but there is a limitation

that attacker A2 is not allowed to query the keyword ciphertext or trapdoor of W0 or W1.
Guess: A2 returns ξ ′.
Solve the ECDDDH problem. If ξ ′ = ξ, B returns 1. Otherwise, 0. If X = abP, then

t = (
d
∑

k=1
xk + xl1 +

d
∑

k=2
ek)P♢

u +
d
∑

k=1
xkR♢

u +
d
∑

k=1
xkl♢u Ppub + X

t = (
d
∑

k=1
xk +

d
∑

k=1
ek)P♢

u +
d
∑

k=1
xkR♢

u +
d
∑

k=1
xkl♢u Ppub

= (x0 + e0)P♢
u + x0R♢

u + x0l♢u Ppub
Therefore, IWξ

is a valid keyword ciphertext. Suppose that the advantage of A2 wins
in the above game is ε, so

Pr[ξ ′ = ξ|X = abP] = 1
2 + ε.

If X ̸= abP, then IWξ
is an invalid keyword ciphertext. A2 has no advantage in

distinguishing ξ = 0 from ξ = 1. Hence,
Pr[ξ ′ = ξ|X = abP] = 1

2 .
Probability: Let qu, qr, qs be the number of user public key queries, Replace-Public-Key

queries, and Secret-Value queries, respectively. The two events are as follows:
π1: A2 did not replace ID♢

u ’s public key P♢
u nor perform the Secret-Value query for

ID♢
u .

π2 : ID∗
u = ID♢

u .
It is not hard to obtain the following results.
Pr[π1] =

qu−qr−qs
qu

,

Pr[π2|π1] =
1

qu−qr−qs
,

Pr[B success] = Pr[π1 ∧ π2] =
1
qu

.
If A2 has an ε advantage to win the game, then B has a probability greater than ε

qu
to

determine whether X = abP.

Theorem 2. Our CLVPFC-PEKS scheme is CKCA-CIND secure in a standard model if the
ECDDDH problem is hard.

Electronics 2024, 13, 1449 18 of 29

Proof. Theorem 2 holds from Lemma 1 and Lemma 2.

Lemma 3. Assuming the adversary A1 can win Game 3, then algorithm B can be constructed to
solve the ECDDDH problem.

Proof. Suppose that the tuple (P, aP, bP, X) is an example of an ECDDDH problem. To
determine whether X = abP, B will play the part of the challenger.

Setup: B runs the setup (1k) program to obtain the public parameters Ω = {Fq, E/Fq,
Gq, P, G, H0, H1, H2, Ppub}, where msk = {x} and Ppub = xP. Then, B randomly selects
ru, xC, rC ∈ Z∗

q , and sets
Pu = aP, Ru = ruP PC = xCP, RC = rCP,
eC = rC + xH0(IDC, RC, PC) mod q,
eu = ru + xH0(IDu, Ru, Pu) mod q .

B sends Ω, PKu and PKC to A1, but SKu and SKC are unknown to A1.
Phase 1: Execute the user’s public key query before other queries using the identity

IDi. Set up multiple lists to store the queries and answers. All lists are initially empty.
User public key query: B keeps a list Lo of the tuple (IDi, xiP, riP, ri), and upon

receiving an identity IDi, performs the following steps.
Case 1. IDi = ID♢

i , B randomly chooses a number x♢i ∈ Z∗
q , setting PK♢

i = (x♢i P, bP),
and adds the tuple (ID♢

i , x♢i P, x♢i , bP,♢) to the list Lo, where ♢ represents a null value.
Case 2. IDi ̸= ID♢

i , B randomly chooses two different numbers xi, ri ∈ Z∗
q , setting

PKi = (xiP, riP), and adds the tuple (IDi, xiP, riP, ri) to the list Lo.
Replace-Public-Key query: Same as in Lemma 1.
Secret-Value query: Same as in Lemma 1.
Partial-Private-Key query: B establishes a list Le of tuple (IDj, ej) when A1 asks

for the partial private key of IDj. If IDj = ID♢
i , B fails and stops. Otherwise, B finds

(IDj, xjP, rjP, rj) in the list Lo, and runs the Extract-Partial-Private-Key algorithm, generat-
ing ej. B outputs ej and adds (IDj, ej) to the list Le.

Keyword Ciphertext Query: Same as in Lemma 1.
Keyword Trapdoor Query: Same as in Lemma 1.
Test Query: Same as in Lemma 1.
Challenge: A1 submits a tuple (W′

0, W′
1,{ID1

∗, · · · , IDd
∗},{PK1

∗, · · · , PKd
∗}), where

W′
0 = {w′

0,1, w′
0,2, · · · , w′

0,l} and W′
1 = {w′

1,1, w′
1,2, · · · , w′

1,l} are challenging keywords that are

not requested in the previous trapdoor and keyword ciphertext query. If ID♢
i /∈ {ID1

∗, ID2
∗, · · · ,

IDd
∗}, B aborts. Otherwise, ID♢

i ∈ {ID1
∗, ID2

∗, · · · , IDd
∗}. Without losing generality, it is

better to set ID∗
1 as ID♢

i . B calculates l0∗ =
d
∑

i=1
H0(ID∗

i , R∗
i , P∗

i). B picks ξ ∈ {0, 1} randomly,

and computes

t = eu
d
∑

i=1
Pi

∗ +
d
∑

i=2
xi

∗aP +
d
∑

i=1
ri
∗aP + l0∗xaP + X

B selects an element ηξ∈RZ∗
q and sets TW ′

ξ,m+1
= ηξ P ,

TW ′
ξ,j

= l−1h2(t)j
l

∑
r=1

h1(w′
ξ,j)

jP + ηξ PC, where 0 ⩽ j ⩽ m. Finally, B sends TW ′
ξ
= {Tw′

ξ ,0,

Tw′
ξ ,1, · · · , Tw′

ξ ,m, Tw′
ξ,m+1

} to the adversary A1.
Phase 2: Attacker A1 can continue to execute various queries, but there is a limitation

that attacker A1 is not allowed to query the keyword ciphertext or trapdoor of W0 or W1.
Guess: A1 returns ξ ′.
Solve CDH problem: If ξ ′ = ξ, B returns 1, otherwise 0. If X = abP, then

t = eu
d
∑

i=1
Pi

∗ +
d
∑

i=1
xi

∗aP +
d
∑

i=2
ri
∗aP + l0∗xaP + X

= (xu + eu)P∗
0 +

d
∑

i=2
ri
∗aP + xul∗0 Ppub + abP

= (xu + eu)P∗
0 + xuR∗

0 + xul∗0 Ppub.

Electronics 2024, 13, 1449 19 of 29

Therefore, TW ′
ξ

is a valid keyword ciphertext. Suppose that the advantage of A1

winning in the above game is ε. So,
Pr[ξ ′ = ξ|X = abP] = 1

2 + ε.
If X ̸= abP, thenTW ′

ξ
is an invalid trapdoor. A1 has no advantage in distinguishing

ξ = 0 from ξ = 1. Hence,
Pr[ξ ′ = ξ|X = abP] = 1

2 .
Probability: Let qo, qr, and qe be the number of the User public key queries, Replace-

Public-Key queries, and Partial-Private-Key queries, respectively. The two events are as
follows:

π1: A1 did not replace ID♢
i ’s public key R♢

i and queries the partial-private-key
for ID♢

i .
π2: ID∗

1 = ID♢
i .

It is not hard to obtain the following results.
Pr[π1] =

qo−qr−qe
qo

,

Pr[π2|π1] =
1

qo−qr−qe
,

Pr[B success] = Pr[π1 ∧ π2] =
1
qu

.
If A1 wins Game 1 with an advantage of ε, then B has a probability greater than ε

qo
to

determine whether X = abP.

Lemma 4. Assuming that adversary A2 can win Game 4, then algorithm B can be constructed to
solve the ECDDDH problem.

Proof. Suppose that the tuple (P, aP, bP, X) is an example of an ECDDDH problem. To
determine whether X = abP, B will play the part of the challenger.

Setup: B runs the setup (1k) program to obtain the public parameters Ω = {Fq, E/Fq,
Gq, P, G, H0, H1, H2, Ppub}, where msk = {x} and Ppub = xP. Then, it randomly selects
xu, xC, rC ∈ Z∗

q , and sets
Pu = xuP, Ru = aP PC = xCP, RC = rCP,
eC = rC + xH0(IDC, RC, PC) mod q,
eu = a + xH0(IDu, Ru, Pu) mod q

B sends Ω, PKu, and (PK, SK) to A2, while SKu are unknown to A2.
Phase 1: Execute the user’s public key query before other queries using the identity

IDi. Set up multiple lists to store the queries and answers. All lists are initially empty.
User public key query: B keeps a list Lo of the tuple (IDi, xiP, riP, ri), and upon receiving

an identity IDi, performs the following steps.
Case 1. IDi = ID♢

i , B randomly chooses a number r♢i ∈ Z∗
q , setting PK♢

i = (bP, r♢i P),
and adds the tuple (ID♢

i , bP,♢, r♢i P, r♢i) to the list Lo, where ♢ represents a null value.
Case 2. IDi ̸= ID♢

i , B randomly chooses two different numbers, xi, ri ∈ Z∗
q , setting

PKi = (xiP, riP), and adds the tuple (IDi, xiP, riP, ri) to the list Lo.
Replace-Public-Key query: Same as in Lemma 1.
Secret-Value query: B establishes a list Ls of tuple (IDj, xj). When A2 asks the secret

value of IDj, if IDj = ID♢
i , B fails and stops. Otherwise, B finds (IDj, xjP, rjP, rj) in the list

Lo, and returns xj. If PKj is replaced, B refuses to answer.
Partial-Private-Key query: Same as in Lemma 2.
Keyword Ciphertext Query: Same as in Lemma 1.
Keyword Trapdoor Query: Same as in Lemma 1.
Test Query: Same as in Lemma 1.
Challenge: A2 submits a tuple (W ′

0, W ′
1, {ID1

∗, · · · , IDd
∗},{PK1

∗, · · · , PKd
∗}), where

W ′
0 = {w′

0,1, w′
0,2, · · · , w′

0,l} and W ′
1 = {w′

1,1, w′
1,2, · · · , w′

1,l} are challenging keywords not

requested in the previous trapdoor and keyword ciphertext query. If ID♢
i /∈ {ID1

∗, ID2
∗, · · · ,

Electronics 2024, 13, 1449 20 of 29

IDd
∗}, B aborts. Otherwise, without losing generality, it is better to set ID∗

1 as ID♢
i . B

calculates l0∗ =
d
∑

i=1
H0(ID∗

i , R∗
i , P∗

i). B picks ξ ∈ {0, 1} randomly, and computes

t = xu
d
∑

i=1
Pi

∗ +
d
∑

i=2
xi

∗aP + lux
d
∑

i=1
Pi

∗ +
d
∑

i=1
ri
∗ap + xul0∗Ppub + X

B selects an element ηξ∈RZ∗
q and sets TW ′

ξ,m+1
= ηξ P,

TW ′
ξ,j

= l−1h2(t)j
l

∑
r=1

h1(w′
ξ,j)

jP + ηξ PC, where 0 ⩽ j ⩽ m. Finally, B sends TW ′
ξ
=

{Tw′
ξ ,0, Tw′

ξ ,1, · · · , Tw′
ξ ,m, Tw′

ξ,m+1
} to adversary A2.

Phase 2: Attacker A2 can continue to execute various queries, but there is a limitation
that attacker A2 is not allowed to query the keyword ciphertext or trapdoor of W0 or W1.

Guess: A2 returns ξ ′.
Solve CDH problem: If ξ ′ = ξ, B returns 1, otherwise 0. If X = abP, then

t = xu
d
∑

i=1
Pi

∗ +
d
∑

i=2
xi

∗aP + lux
d
∑

i=1
Pi

∗ +
d
∑

i=1
ri
∗aP + xul0∗Ppub + X

= xuP∗
0 +

d
∑

i=2
xi

∗aP + lux
d
∑

i=1
Pi

∗ + xuR∗
0 + xul∗0 Ppub + abP

= xuP∗
0 +

d
∑

i=1
xi

∗aP + lux
d
∑

i=1
Pi

∗ + xuR∗
0 + xul∗0 Ppub

= xuP∗
0 + (a + lux)

d
∑

i=1
Pi

∗ + xuR∗
0 + xul∗0 Ppub

= (xu + eu)P∗
0 + xuR∗

0 + xul∗0 Ppub.
Therefore, TW ′

ξ
is a valid keyword ciphertext. Suppose that the advantage of

A2 winning the above game is ε. So,
Pr[ξ ′ = ξ|X = abP] = 1

2 + ε.
If X ̸= abP, then TW ′

ξ
is an invalid keyword ciphertext. A2 has no advantage in

distinguishing ξ = 0 from ξ = 1. Hence,
Pr[ξ ′ = ξ|X = abP] = 1

2 .
Probability: Let qo, qr, and qs be the number of user public key queries, Replace-Public-

Key queries, and Secret-Value queries, respectively. The two events are as follows:
π1: A2 did not replace ID♢

i ’s public key P♢
i and queries the secret value for ID♢

i .
π2: ID∗

1 = ID♢
i .

It is not hard to obtain the following results.
Pr[π1] =

qo−qr−qe
qu

,

Pr[π2|π1] =
1

qo−qr−qe
,

Pr[B success] = Pr[π1 ∧ π2] =
1
qu

.
If A2 wins Game 4 with an advantage of ε, then B has a probability greater than ε

qo
to

determine whether X = abP.

Theorem 3. Our CLVPFC-PEKS scheme is CKA-TIND safe in the standard model if the ECDDDH
problem is hard.

Proof. Theorem 3 holds from Lemma 3 and Lemma 4.

Theorem 4. Under the ECDLP assumption, it is not computationally feasible for the CSS to forge
valid proof information through the result verification mechanism.

Proof. The malicious CSS cannot forge a valid multi-signature on each returned record
and pass the verification. Since it does not have the key of multiple data owners, it
is computationally infeasible to forge a valid multi-signature. Therefore, the malicious
CSS can only win the next security game by directly generating valid proof information

Electronics 2024, 13, 1449 21 of 29

according to the wrong search result C∗ instead of winning the next security game by
forging multiple signatures. But, after the following analysis, this is also impossible.

Assume that the correct keyword ciphertext and its identity are C = {c1, c2, · · · , cn}
and sig = {sig1, · · · , sign}, where sigt = {Yt, Vt}. The malicious CSS may forge wrong
proof information (ϕ∗

1 , ϕ∗
2) on false search results C* = {c*

k1
, c*

k2
, · · · , c*

ks
}, where

ϕ1
∗ =

s
∑

τ=1
H1(c∗kτ

, id∗kτ
, Ykτ

, P0),

ϕ2
∗ =

s
∑

τ=1
H1(c∗kτ

, id∗kτ
, Ykτ

, Q0).

If the forged proof information (ϕ∗
1 , ϕ∗

2) can successfully pass the result verification
mechanism, the malicious CSS will win the security game; otherwise, it will fail. Suppose a
malicious CSS wins the game. We then know that

σP =
s

∑
τ=1

Ykτ
+ ϕ∗

1 P0 + ϕ∗
2 Q0 (3)

The proof information of the correct keyword ciphertext C is (ϕ1, ϕ2), where

ϕ1 =
s
∑

τ=1
H1(ckτ

, idkτ
, Ykτ

, P0),

ϕ2 =
s
∑

τ=1
H2(ckτ

, idkτ
, Ykτ

, Q0).

The signature of the correct keyword ciphertext can pass the verification mechanism,
so we have

σP =
s

∑
τ=1

Ykτ
+ ϕ1P0 + ϕ2Q0 (4)

Subtract equation (3) from equation (4) to obtain

(ϕ1 − ϕ1
∗)P0 = (ϕ2

∗ − ϕ2)Q0 (5)

Because (ϕ1, ϕ2) is not equal to (ϕ∗
1 , ϕ∗

2), then ϕ1 ̸= ϕ∗
1 or ϕ2 ̸= ϕ∗

2 . Set ∆ϕ1 = ϕ1 − ϕ1
∗,

∆ϕ2 = ϕ2 − ϕ2
∗, then ∆ϕ1 ̸= 0 or ∆ϕ2 ̸= 0. Suppose ∆ϕ1 is not zero, then P0 = ∆ϕ2

∆ϕ1
Q0. If

the probability of ∆ϕ1 = 0 is 1
q , then the probability that we can break the ECDLP problem

is 1 − 1
q , where q is the length of Gq. This means that if the malicious CSS can pass the

verification, we can break the ECDLP problem.

7. Performance Analysis

We will compare our scheme in depth with other certificateless-based or verifiable
search schemes on computational complexity, storage overhead, and security.

7.1. Security Comparison

Table 3 details the comparison of our scheme with other schemes in terms of security,
where RCCA denotes that the scheme resists the chosen ciphertext attack, ROFFKGA
stands for resists the offline keyword guessing attack, RONKGA stands for resists the
online keyword guessing attack, RIKGA denotes that the scheme protects against the
insider keyword guessing attack, VER denotes that the scheme prevents malicious CSSs
from returning incorrect search results, and PM denotes the model used for the proof. In
Table 3, yes indicates that the scheme satisfies the property, no implies that it does not meet
the property, unknown denotes that it is unknown (the scheme has neither been proven
safe nor unsafe because of the lack of security proof), and “-” means that the scheme does
not have the feature.

Electronics 2024, 13, 1449 22 of 29

Table 3. Comparison of security of different schemes.

Scheme RCCA ROFFKGA RIKGA RONKGA VER PM

[12] yes no no no unknown SM

VCSE [13] yes no no no yes ROM

VCKSM [14] unknown yes unknown unknown yes SM

VMKS [16] yes no unknown unknown yes SM

VMKDO [15] yes yes no no yes SM

[19] unknown no no no - unknown

mCLPECK [17] yes unknown no no - ROM

ours yes yes yes yes yes SM

It is clear from Table 3 that our solution has significant security advantages. Specifically,
Theorem 2 shows that the new scheme is resistant to the adaptive keyword selection attack
in the standard model, i.e., the new scheme is ciphertext-indistinguishable. Theorem 3
shows that our scheme is secure against offline keyword-guessing attacks in the standard
model. Theorem 4 shows that our scheme prevents malicious CSSs from returning incorrect
search results. Wu et al. [55] constructed a PEKS scheme that can resist online keyword
attacks and insider keyword guessing attacks based on the security of the Diffie–Hellman
shared secret key. The new scheme’s shared key t = (x0 + e0)Pu + x0Ru + x0luPpub =
(xu + du)P0 + xuR0 + xul0Ppub is only accessible to the DOs and retrievers. Therefore, any
third party other than the retriever and the DO, including external attackers and malicious
internal servers, cannot generate the correct keyword trapdoor and ciphertext. In other
words, our scheme can resist online and insider keyword-guessing attacks.

Lu et al. [44] demonstrated that if an attacker can generate keyword ciphertext using
the public keys of the CSS and the retriever, then they can perform an online keyword-
guessing attack on PEKS schemes. Later, Shao et al. [47] pointed out that if the SCF-PEKS
scheme can generate keyword ciphertext with only the public keys of the CSS, DO, and
retriever, while the insider attacker (malicious CSS) can run both the keyword encryption
algorithm and the test algorithm, then the insider attacker can try online keyword guessing
attacks on SCF-PEKS scheme. Since the keyword ciphertexts in schemes [12,13,15,17,19] are
all generated using public keys, all of them are insecure against insider keyword-guessing
attacks and online keyword-guessing attacks.

PEKS schemes typically use keywords selected from a low-entropy keyword
space. Therefore, based on this characteristic, offline keyword-guessing attacks can be
launched naturally [41]. By performing this attack, any insider/outsider attacker can
correctly guess the keywords in a given keyword trapdoor using a testing algorithm.

Construct E′ =
t

∑
i=1

H(W ′′
i), where W ′′

i is the guessed keyword set. Verify that the equa-

tion e(T2, E′g + PKs.1) = e(e(PKC,2, T1)
t , g) holds. If the above equation is equal, the

keyword set W ′
i contained in T2 in the trapdoor is the same as the guessed keyword set

W
′′
i . Therefore, the scheme in [13] is insecure under offline keyword attacks. According

to a similar construction idea, the schemes in [12,13,16,19] are also insecure under
offline keyword-guessing attacks.

From the above analysis and the security proof in Section 4, we can see that our
scheme is resistant to offline keyword guessing attacks and keyword selection attacks in
the standard model. Secondly, based on the security of the Diffie–Hellman shared secret
key, our scheme is also secure against insider and online keyword-guessing attacks. In
other words, of all the schemes, ours is the safest.

7.2. Computational Overhead Comparison

Next, we compare the computational complexity. To compare the computational
complexity, we use the operation time of He et al.’s scheme [56] as the benchmark. He

Electronics 2024, 13, 1449 23 of 29

et al. tested the time required for the relevant operations in the experimental environment
of Samsung Galaxy S5 based on the Android 4.4.2 operating system, quad-core 2.45 G
processor, and 2G byte memory. Table 4 shows the exact running time and symbols of
the various operations. The mapping e : G1 × G1 → G2 is a bilinear pair, where G1 is an
additive group of singular elliptic curves of order p defined on a finite field Fq, and G2 is a
multiplicative group of order p. The lengths of p and q are 512 bits and 160 bits, respectively.
G is an additive group of non-singular elliptic curves of order q defined on the prime finite
field Fq. The length of p and q is 160.

Table 4. Symbol definition.

Symbols Definition

Tbp Running time required for a bilinear pairing operation, Tbp ≈ 32.713 ms

Thtp Running time required for a hash-to-operation, Thtp ≈ 33.582 ms

Tsm Running time required for a scalar multiplication operation in G1, Tsm ≈ 13.405 ms

Texp Running time required for an exponentiation operation in G2, Texp ≈ 2.249 ms

T′sm Running time required for a scalar multiplication operation in G, Tsm ≈ 3.335 ms

u Number of data users

d Number of data owners

m Number of keywords in index

l Number of keywords contained in trapdoor

n Number of ciphertexts

s Number of search keywords

Because no SE scheme requires pairing and supports conjunctive keywords, we se-
lected five SE schemes with similar functionalities for comparison. The results are shown in
Table 5. Because each scheme has different settings, making direct horizontal comparisons
is difficult. To ensure objectivity, we have established uniform parameter standards for
comparison. The details are as follows: we assume that there are d data owners, u data
consumers, n ciphertexts, m keywords contained in the keyword ciphertexts, l keywords
contained in the trapdoors, and s keywords contained in the keyword ciphertexts obtained
after the query. For algorithms that are not involved, we mark them with “-” in Table 5.

Table 5. Comparison of calculation complexity of various schemes.

Scheme KeyGen Enc Trap Search Verify

VCKSM [14] (u + d + 1)Tsm
(2nd + n(m + 2))Tsm +
2nTexp + 2nTbp + nThtp

3Tsm
(n + 3)Tsm + (n(m + 1) +
1)Tbp

(2s + 1)Tsm + sThtp + 2Tbp

VMKS [16] (5u+ 5d)Tsm + (u+ d)Thtp nThtp + (6n + mn)Tsm (s + 5)Tsm 4nTbp (s + 2)Tsm + sThtp + 3Tbp

VCSE [13] (2u + 1)Tsm
n(m + 2)Texp + 3nTsm +
2nTbp

Tsm + Texp 2nTsm + 3nTexp + 4nTbp 2sTsm + 3sTexp + 4sTbp

mCLPECK [17] 2uTsm
2unTsm + 2nmTexp +
2nmThtp

2sThtp + 3Tsm 3nTbp —

VMKDO [15] (d + 1)Tsm
(3nm + 2n + 3)Tsm +
3nTexp + nThtp + 3Tbp

2Tsm 2nTsm + 2nTbp + nTexp (2s + 1)Tsm + 2Tbp + sThtp

ours (2d + 2u + 1)T′sm [nd + n(m + 4)]T′sm 6T′sm (1 + n + nm)T′sm 3T′sm

The data presented in Table 5 are theoretical calculations, but to more accurately
evaluate the actual performance of our solution, we also need to simulate real-world
scenarios. In the real world, there is a larger dataset and more participants. Therefore, it is
worthwhile to set the number of ciphertexts from 1 to 100,000 (n ∈ [1, 100000]), the number
of data owners (d), the number of keywords contained in trapdoors (l), and the number of
data ciphertexts contained in query results (s) from 1 to 10,000.

Electronics 2024, 13, 1449 24 of 29

The KeyGen algorithm’s computational overhead for VCKSM [14], VMKS [16], and
our scheme is affected by d and u, while the computational overhead of VCSE [13] is only
affected by d. This is because the VCSE scheme’s signing is performed with the system’s
private key and does not utilize the user’s private key. Additionally, the computational
overhead of VMKDO [15] is only influenced by u, as the keyword encryption of VCSE [13]
is performed using the CSS’s public key and not the user’s public key. For comparison,
assume d = u. Figure 3a illustrates that VMKS [16] has a much higher computational
overhead in KeyGen compared to the other schemes. Our scheme and VMKDO [15] have
roughly equal computational overhead in KeyGen and outperform the others.

In Figure 3b, we evaluate the computational burden of the Enc algorithm in these
schemes by varying the number of ciphertexts from 1 to 100,000 (n ∈ [1, 100000]), assuming
u = d = 100 and m = n. The computational overhead of the Enc algorithm for all the
schemes almost increases with the number of n. Note that the mCLPECK [17] scheme has a
much higher computational overhead in the Enc algorithm than the other schemes; our
scheme and the VCSM [13] scheme have roughly equal computational overheads in the
Enc algorithm, and both outperform the others.

In the Trap algorithm, the computational overhead of the VCKSM [14] scheme with
the mCLPECK [17] scheme is affected by l, and both grow linearly with l, whereas the
computational overheads of the other schemes are fixed values. In Figure 3c, we evaluate
the computational burden of the Trap algorithm by varying the number of keywords
included in the trapdoor from 1 to 10,000 (l ∈ [1, 10000]). Note that the computational
overheads of the VMKS scheme and the mCLPECK [17] scheme in the Trap algorithm are
much higher than those of the other schemes; the computational overheads of our scheme
and the VCSM [13] scheme in the Trap algorithm are roughly equal, and both outperform
the others.

(a) (b) (c)

(d) (e) (f)

Figure 3. Comparison results. (a) Computational overhead of the KeyGen algorithm. (b) Com-
putational overhead of the Enc algorithm. (c) Computational overhead of the Trap algorithm.
(d) Computational overhead of the Search algorithm. (e) Computational overhead of the Verify
algorithm. (f) Communication overheads.

In the Search algorithm, the computational overhead of the VCKSM [14] scheme
and our scheme is affected by n and m, while the other schemes are only affected by
n. In Figure 3d, for ease of discussion, we assume m = n and evaluate the computa-

Electronics 2024, 13, 1449 25 of 29

tional burden of the Search algorithm by varying the number of data owners from 1 to
10,000 (d ∈ [1, 10, 000]). It can be seen that the computational overhead of all schemes
almost always increases with n. Note that the computational overhead of the VCKSM [14]
scheme with our scheme in the Search algorithm is slightly higher than that of the other
schemes, which are roughly equal.

In the Verify algorithm, the computational overhead of all schemes except ours is
affected by s. The computational overhead of our scheme is a fixed value, and the other
schemes grow linearly with s. In Figure 3e, we evaluate the computational overhead of the
Verify algorithm by varying the number of data ciphers contained in the query results from
1 to 10,000 (s ∈ [1, 10, 000]). Note that the computational overhead of the VCSE [13] scheme
in Verify’s algorithm is higher than that of the other schemes, while the computational
overhead of our scheme is fixed. As l1 becomes larger, our scheme is more advantageous.

To sum up, except for the Search algorithm, our scheme has a lower storage cost in the
KeyGen, Trap, and Verify algorithms than the other five schemes, among which our scheme
has a much lower storage cost in the Verify algorithm than the other schemes. Considering
the storage costs of all algorithms, our solution has the lowest storage cost of all solutions.

7.3. Storage Cost Comparison

Below, we compare storage costs. Let |G1|, |G2|, |G|, and |Zq| represent the sizes of
elements in G1, G2, G, and Zq, respectively. Then |G1| = G2= 512 bytes, |G| = 160 bytes,
and |Zq| = 160 bytes. If the conjunctive keyword-searchable encryption scheme has no
verification function, fewer signatures for the keyword ciphertext will be stored. Therefore,
we select only verifiable conjunctive-keyword-searchable encryption schemes to compare
the size of storage costs. Table 6 illustrates the comparison results.

Table 6. Storage cost comparison.

Scheme KeyGen Trap Search Verify

VCKSM [14] (d + u + 1)(|Zp |+ |G1|) + |G1| (m + 2)|G1|+ 2|Zp | (m + 3)|G2|+ |G1| (s + 1)|Zp |+ |G1|+ 2|G2|

VMKS [16] 2(u + d)(|Zp |+ |G1|) (l + 5)|G1|+ l|Zp | (l + 2)|G1|+ 4|G2| (s + 2)|G1|+ (s + 1)|Zp |+ 3|G2|

VCSE [13] (u + 1)(|Zp |+ |G1|+ |G2|) (l + 1)(|Zp |+ |G1|) + |G1| 8|G2|+ 2|G1| 2|Zp |+ (2s + 3)|G1|+ 2|G2|

VMKDO [15] (2d + 1)|G1|+ (d + 1)|Zp | |G1|+ (l + 1)|Zp | 2|G1|+ 3|G2| |Zp |+ (2s + 1)|G1|) + 2|G2|

our (u + d + 1)(|Zp |+ |G|) (m + 6)|G| (m + 2)|G| 3|Zp |+ 6|G|

In the KeyGen algorithm, the storage costs of VCKSM [14], VMKS [16], and our scheme
are all affected by d and u, while the storage cost of the VCSE scheme is only affected by
d and the storage cost of VMKDO [15] is only affected by u. For the sake of discussion,
we assume d = u. So, the storage cost for all scenarios grows linearly with u. Since
|Zq| = |G| = 1

2 |G1|, |G2| = |G1|, our solution has the lowest storage cost of all.
In the Trap algorithm, the storage cost of VCKSM [14] and our scheme is affected by

m1, while the storage cost of VMKS [16], VCSE [13], and VMKDO [15] is affected by l. For
the sake of discussion, we assume l = m. Then, all the above schemes increase linearly
with m. Since |Zq| = |G| = 1

2 |G1|, |G2| = |G1|, our solution, VCSE [13], and VMKDO [15]
are approximately the same and much lower than VCKSM [14] and VMKS [16].

In the Search algorithm, the storage cost of VCKSM [14] and our scheme is af-
fected by m, the storage cost of VMKS [16] is only affected by l, and the storage cost of
VCSE [13] and VMKDO [15] is a fixed value. For the sake of discussion, we assume
l = m. Then, VCKSM [14], VMKS [16], and our scheme increase linearly with l. Because
|Zq| = |G| = 1

2 |G1|, |G2| = |G1|, VCKSM [14], and VMKS [16] have the highest storage
costs, our solution is second, and VCSE [13] and VMKDO [15] have the lowest storage cost.

In the Search algorithm, the storage costs of VCKSM [14] and our scheme are affected
by m, the storage cost of VMKS [16] is only affected by l, and the storage costs of VCSE [13]
and VMKDO [15] are fixed. For the sake of discussion, let us assume l = m. Then,
VCKSM [14], VMKS [16], and our scheme all increase linearly with l. Because |Zq| = |G| =

Electronics 2024, 13, 1449 26 of 29

1
2 |G1|, |G2| = |G1|, VCKSM [14] and VMKS [16] have the highest storage costs, our solution
is second, and VCSE [13] and VMKDO [15] have the lowest storage cost. In the Verify
algorithm, the storage cost of all schemes except ours is affected by s. Therefore, the storage
cost of their solutions increases linearly with s, and the storage cost of our solution is a
fixed value. As a result, our solution has significantly lower storage costs than others.

To sum up, except for the Search algorithm, our scheme has a lower storage cost in
all the algorithms (KeyGen, Trap, and Verify) than the other five schemes, among which
our scheme has a much lower storage cost in the Verify algorithm than the other schemes.
Considering the storage costs of all algorithms, our solution has the lowest storage cost of
all solutions.

7.4. Comparison of Communication Costs

Finally, we compare the communication costs. If the conjunctive keyword-searchable
encryption scheme has no verification function, the communication cost does not need to
consider the signature communication cost in the communication cost. Therefore, we only
select the conjunctive keyword-searchable encryption schemes that support verifiability for
comparison. Table 7 shows the comparison results.

Table 7. Comparison of communication costs.

Scheme Index Size Signature Size Trapdoor Size Total Size

VCKSM [14] n(m + 2)|G1|+ n|G2| n|G1| (m + 2)|G1|+ |Z∗
q |

n(m + 3)|G1| + (m +
2)|G1|+ n|G2|+ |Z∗

q |

VMKS [16] n(m + 4)|G1| n|G1| 5|G1|+ |Z∗
q | n(m + 5)|G1|+ 5|G1|+ |Z∗

q |

VCSE [13] n(m + 2)|G2| n|G1| |G1|+ |G2|+ |Z∗
q |

n(m + 2)|G2| + (n +
1)|G1|+ |G2|+ |Z∗

q |

VMKDO [15] n(m + 2)|G1|+ 2n|G2| n|G1| |G1|+ 2|Z∗
q |

n(m + 3)|G1|) + 2n|G2| +
|G1|+ 2|Z∗

q |

ours n(m + 3)|G| n|G| (m + 2)|G| n(m + 4)|G|+ (m + 2)|G|

As shown in Table 7, our scheme has the shortest signature length. The signature
lengths of the other schemes are the same. VMKS [16] and VMKDO [15] have the longest in-
dex lengths because they are at least 5 bytes larger than the other schemes. The index lengths
of the others are roughly the same. The trapdoor lengths of VCKSM [14] are the longest,
followed by our scheme, and the shortest is of the VMKDO [15] scheme. Assuming m = n,
we compare the total communication cost of these schemes in Figure 3(f). According to
Figure 3f, the total communication cost of our scheme is lower than the total communication
cost of all schemes.

Overall, our solution is more efficient than others in computation, storage, and com-
munication. Most importantly, it excels in security.

8. Conclusions

This article proposes a novel certificateless, verifiable, bilinear, pair-free, conjunctive
keyword search encryption scheme (CLVPFC-PEKS), aiming to provide a secure and
efficient data search method for the Internet of Things healthcare (IoMT) field. Our solution
solves the problems in existing public key searchable encryption technologies, such as
low computational efficiency and susceptibility to keyword guessing attacks. We have
demonstrated under the standard model that the CLVPFC-PEKS scheme can resist both
choosen keyword and ciphertext attacks and offline keyword guessing attacks, and based
on the security of the Diffie–Hellman shared secret key to demonstrate that the CLVPFC-
PEKS scheme can resist online/internal keyword guessing attacks. In addition, we also
conducted a detailed analysis of the performance of the scheme. The results indicate that
our scheme has significant advantages in terms of security, computational complexity,
storage overhead, and communication costs compared to existing schemes. Overall, our
solution provides a new solution for secure and efficient data search in the medical Internet
of Things, meeting the urgent needs for data security and privacy protection.

Electronics 2024, 13, 1449 27 of 29

Author Contributions: Methodology, W.L.; Formal analysis, W.L.; Data curation, Y.W. and H.Z.;
Writing—original draft, W.L.; Writing—review & editing, W.L.; Visualization, Y.W. and Y.G.; Supervi-
sion, J.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This paper was supported by the National Natural Science Foundation of
China (No.61962011); the Guiyang City Science and Technology Plan Project (No.[2021]43-8); Guizhou
Normal University Academic New Seedling Fund Project (QianShiXinMiao[2021]B09).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Iera, L.A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805.

2010.05.010. [CrossRef]
2. Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of Things for Smart Cities. IEEE Internet Things J. 2014, 1,

22–32. [CrossRef]
3. Bellavista, P.; Cardone, G.; Corradi, A.; Foschini, L. Convergence of MANET and WSN in IoT Urban Scenarios. IEEE Sens. J. 2013,

13, 3558–3567. [CrossRef]
4. He, D.J.; Ye, R.; Chan, S.; Guizani, M.; Xu, Y.P. Privacy in the Internet of Things for Smart Healthcare. IEEE Commun. Mag. 2018,

56, 38–44. [CrossRef]
5. Chen, Y.; Lu, J.; Jan, J. A Secure EHR System Based on Hybrid Clouds. J. Med. Syst. 2012, 36, 3375–3384. [CrossRef]
6. Jagadeeswari, V.; Subramaniyaswamy, V.; Logesh, R.; Vijayakumar, V. A study on medical Internet of Things and Big Data in

personalized healthcare system. Health Inf. Sci. Syst. 2018, 6, 14. [CrossRef] [PubMed]
7. Wagner, D.X.S.; Perrig, A. Practical Techniques for Searches on Encrypted Data. In Proceedings of the IEEE Symposium on

Security & Privacy, Berkeley, CA, USA, 12–15 May 2002; pp. 44–55.
8. Li, M.; Yu, S.; Ren, K.; Lou, W. Securing personal health records in cloud computing: Patient-centric and fine-grained data access

control in multi-owner settings. In Proceedings of the ICST Conference Security and Privacy in Communication Networks PP,
Singapore, 7–9 September 2010; pp. 89–106. [CrossRef]

9. Wang, B.Y.; Li, H.; Liu, X.F.; Li, X.Q.; Li, F.H. Preserving identity privacy on multi-owner cloud data during public verification.
Secur. Commun. Netw. 2014, 7, 2104–2113. [CrossRef]

10. Miao, Y.; Liu, X.; Raymond Choo, K.; Deng, R.H.; Li, J.; Li, H.; Ma, J. Privacy-Preserving Attribute-Based Keyword Search in
Shared Multi-owner Setting. IEEE Depend. Secur. 2021, 18, 1080–1094. [CrossRef]

11. Padhya, M.; Jinwala, D.C. CRSQ-KASE: Key Aggregate Searchable Encryption Supporting Conjunctive Range and Sort Query on
Multi-owner Encrypted Data. Arab. J. Sci. Eng. 2020, 45, 3133–3155. [CrossRef]

12. Hwang, M.; Hsu, H.T.; Lee, C.C. A New Public Key Encryption with Conjunctive Field Keyword Search Scheme. Inf. Technol.
Control. 2014, 43, 277–288. [CrossRef]

13. Miao, Y.; Ma, J.; Wei, F.; Liu, Z.; Wang, X.A.; Lu, C. VCSE: Verifiable conjunctive keywords search over encrypted data without
secure-channel. Peer Netw. 2017, 23, 995–1007. [CrossRef]

14. Miao, Y.; Ma, J.; Liu, X.; Jiang, Q.; Zhang, J.; Shen, L.; Liu, Z. VCKSM: Verifiable conjunctive keyword search over mobile e-health
cloud in shared multi-owner settings. Pervasive Mob. Comput. 2017, 40, 205–219. [CrossRef]

15. Miao, Y.; Ma, J.; Liu, X.; Liu, Z.; Wei, F. VMKDO: Verifiable multi-keyword search over encrypted cloud data for dynamic
data-owner. Peer Netw. Appl. 2018, 11, 287–297. [CrossRef]

16. Miao, Y.; Weng, J.; Liu, X.; Choo, K.R.; Liu, Z.; Li, H. Enabling verifiable multiple keywords search over encrypted cloud data.
Inform. Sci. 2018, 465, 21–37. [CrossRef]

17. Fan, M.M.M.Q.; Feng, D.G. Multi-user certificateless public key encryption with conjunctive keyword search for cloud-based
telemedicine. J. Inf. Secur. Appl. 2020, 55, 102652. [CrossRef]

18. Wu, L.; Zhang, Y.; Ma, M.; Kumar, N.; He, D. Certificateless searchable public key authenticated encryption with designated
tester for cloud-assisted medical Internet of Things. Ann. Telecommun. 2019, 74, 423–434. [CrossRef]

19. Wang, Y.L.; Li, J.G. Keyword guessing attacks on a public key encryption with keyword search scheme without random oracle
and its improvement. Inform. Sci. 2019, 479, 270–276. [CrossRef]

20. Liu, X.; Sun, Y.; Dong, H. A pairing-free certificateless searchable public key encryption scheme for IoMT. J. Syst. Architect. 2023,
139, 102885. [CrossRef]

21. Senouci, M.R.; Benkhaddra, I.; Senouci, A.; Li, F.G. A provably secure free-pairing certificateless searchable encryption scheme.
Telecommun. Syst. 2022, 80, 383–395. [CrossRef]

22. Hu, Z.Y.; Deng, L.Z.; Wu, Y.Y.; Shi, H.Y.; Gao, Y. Secure and Efficient Certificateless Searchable Authenticated Encryption Scheme without
Random Oracle for Industrial Internet of Things. IEEE Syst. J. 2023, 17, 1304–1315. [CrossRef]

23. Boneh, D.; Crescenzo, G.D.; Ostrovsky, R.; Persiano, G. Public Key Encryption with Keyword Search. In Advances in Cryptology;
Springer: Berlin/Heidelberg, Germany 2004; pp. 506–522._30. [CrossRef]

http://doi.org/10.1016/j.comnet. 2010.05.010
http://dx.doi.org/10.1109/JIOT.2014.2306328
http://dx.doi.org/10.1109/JSEN.2013.2272099
http://dx.doi.org/10.1109/MCOM.2018.1700809
http://dx.doi.org/10.1007/s10916-012-9830-6
http://dx.doi.org/10.1007/s13755-018-0049-x
http://www.ncbi.nlm.nih.gov/pubmed/30279984
http://dx.doi.org/10.1007/978-3-642-16161-2.6
http://dx.doi.org/10.1002/sec.922
http://dx.doi.org/10.1109/TDSC.2019.2897675
http://dx.doi.org/10.1007/s13369-019-04302-x
http://dx.doi.org/10.5755/j01.itc.43.3.6429
http://dx.doi.org/10.1007/s12083-016-0458-z
http://dx.doi.org/10.1016/j.pmcj.2017.06.016
http://dx.doi.org/10.1007/s12083-016-0487-7
http://dx.doi.org/10.1016/j.ins.2018.06.066
http://dx.doi.org/10.1016/j.jisa.2020.102652
http://dx.doi.org/10.1007/s12243-018-00701-7
http://dx.doi.org/10.1016/j.ins.2018.12.004
http://dx.doi.org/10.1016/j.sysarc.2023.102885
http://dx.doi.org/10.1007/s11235-022-00912-3
http://dx.doi.org/10.1109/JSYST.2022.3197174
http://dx.doi.org/10.1007/978-3-540-24676-3_30

Electronics 2024, 13, 1449 28 of 29

24. Safiavinaini, J.B.; Susilo, W. Public Key Encryption with Keyword Search Revisited. In Proceedings of the International Conference
on Computational Science and Its Applications (ICCSA 2008), Perugia, Italy, 30 June–3 July 2008; pp. 1249–1259.

25. Rhee, H.S.; Park, J.H.; Susilo, W.; Lee, D.H. Improved searchable public key encryption with designated tester. In Proceedings of
the International Symposium on Information, Seoul, Republic of Korea, 28 June–3 July 2009; p. 376.

26. Al-Riyami, S.S.; Paterson, K.G. Certificateless Public Key Cryptography. In Advances in Cryptology—ASIACRYPT 2003; Lecture
Notes in Computer Science (LNCS, Volume 2894); Laih, C.S., Ed.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 452–473.

27. Xu, P.; Jin, H.; Wu, Q.; Wang, W. Public-Key Encryption with Fuzzy Keyword Search: A Provably Secure Scheme under Keyword
Guessing Attack. IEEE Trans. Comput. 2013, 62, 2266–2277. [CrossRef]

28. He, D.; Ma, M.; Zeadall, S.; Kumar, N.; Liang, K. Certificateless Public Key Authenticated Encryption with Keyword Search for
Industrial Internet of Things. IEEE Trans. Ind. Inform. 2018, 14, 3618–3627. [CrossRef]

29. Ma, M.; He, D.; Khurram Khan, M.; Chen, J. Certificateless searchable public key encryption scheme for mobile healthcare system.
Comput. Electr. Eng. 2018, 65, 413–424. [CrossRef]

30. Ma, M.; He, D.; Fan, S.; Feng, D. Certificateless searchable public key encryption scheme secure against keyword guessing attacks
for smart healthcare. J. Inf. Secur. Appl. 2020, 50, 102429. [CrossRef]

31. Golle, P.; Stadon, J.; Waters, B. Secure Conjunctive Keyword Search over Encrypted Data. In Applied Cryptography and Network
Security ; Jakobsson, M., Yung, M., Zhou, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 31–45.

32. Hwang, Y.H.; Lee, P.J. Public Key Encryption with Conjunctive Keyword Search and Its Extension to a Multi-User System. In
Pairing-Based Cryptography—Pairing 2007; Lecture Notes in Computer Science (LNSC,Volume 4575); Springer: Berlin/Heidelberg,
Germany, 2007; p. 2.

33. Yang, Y.; Ma, M.D. Conjunctive Keyword Search With Designated Tester and Timing Enabled Proxy Re-Encryption Function for
E-Health Clouds. IEEE Inf. Foren. Sec. 2016, 11, 746–759. [CrossRef]

34. Heng, S.H.; Kurosawa, K. K-Resilient Identity-Based Encryption in the Standard Model. In Topics in Cryptology—CT-RSA 2004
2964; Lecture Notes in Computer Science (LNCS, Volume 2964); Okamoto, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2004;
pp. 67–80.

35. Khader, D. Public Key Encryption with Keyword Search Based on K-Resilient IBE. In Computational Science and Its Applications—ICCSA
2006; Lecture Notes in Computer Science (LNTCS, Volume 3982); Gavrilova, M., Ed.; Springer: Berlin/Heidelberg, Germany,
2006; pp. 298–308.

36. Xu, H.M.Y.X.; Zhao, H.T. An Efficient Public Key Encryption with Keyword Scheme Not Using Pairing. In Proceedings of the
First International Conference on Instrumentation, Nagpur, Maharashtra, India, 21–22 April 2011.

37. Vallent, T.F.; Kim, H. A Pairing-Free Public Key Encryption with Keyword Searching for Cloud Storage Services. In e-Infrastructure
and e-Services for Developing Countries; Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommuni-
cations Engineering (LNICST, Volume 135); Springer: Berlin/Heidelberg, Germany, 2014; p. 70.

38. Yang, N.; Xu, S.; Quan, Z. An Efficient Public Key Searchable Encryption Scheme for Mobile Smart Terminal. IEEE Access 2020, 8,
77940–77950. [CrossRef]

39. Lu, Y.; Li, J. Constructing pairing-free certificateless public key encryption with keyword search. Front. Inf. Technol. Electron. Eng.
2019, 20, 1049–1060. [CrossRef]

40. Ma, M.; Luo, M.; Fan, S.; Feng, D. An Efficient Pairing-Free Certificateless Searchable Public Key Encryption for Cloud-Based IIoT.
Wirel. Commun. Mob. Com. 2020, 2020, 8850520. [CrossRef]

41. Byun, J.W.; Rhee, H.S.; Park, H.A.; Lee, D.H. Off-line keyword guessing attacks on recent keyword search schemes over encrypted
data. In Secure Data Management; Lecture Notes in Computer Science (LNISA, Volume 4165); Springer: Berlin/Heidelberg,
Germany, Jonker, W., Petkovic, M., Eds.; 2006; pp. 75–83.

42. Lin, X.J.; Sun, L.; Qu, H.P.; Liu, D.X. On the Security of Secure Server-Designation Public Key Encryption with Keyword Search.
Comput. J. 2018, 61, 1791–1793. [CrossRef]

43. Huang, Q.; Li, H.B. An efficient public-key searchable encryption scheme secure against inside keyword guessing attacks. Inform.
Sci. 2017, 403, 1–14. [CrossRef]

44. Wang, Y.L.; Li, J. On Security of a Secure Channel Free Public Key Encryption with Conjunctive Field Keyword Search Scheme.
Inf. Technol. Control 2018, 47, 56–62. [CrossRef]

45. Jeong, I.R.; Kwon, J.O.; Hong, D.; Lee, D.H. Constructing PEKS schemes secure against keyword guessing attacks is possible?
Comput. Commun. 2009, 32, 394–396. [CrossRef]

46. Wang, B.J.; Chen, T.H.; Jeng, F.G. Security Improvement against Malicious Servers in dPEKS Scheme. Int. J. Inf. Educ. Technol.
2011, 1, 4.

47. Shao, Z.Y.; Yang, B. On security against the server in designated tester public key encryption with keyword search. Inform. Process.
Lett. 2015, 115, 957–961. [CrossRef]

48. Chai, Q.; Gong, G. Verifiable symmetric searchable encryption for semi-honest-but-curious cloud servers. In Proceedings of the
IEEE International Conference on Communications, Ottawa, ON, Canada, 10–15 June 2012.

49. Sun, W.; Liu, X.; Lou, W.; Hou, Y.T.; Li, H. Catch You If You Lie to Me: Efficient Verifiable Conjunctive Keyword Search over
Large Dynamic Encrypted Cloud Data. In Proceedings of the 34th IEEE Conference on Computer Communications (INFOCOM),
Hong Kong, China, 26 April–1 May 2015.

50. Ismail, M.; Abd El-Gawad, A.F. Revisiting Zero-Trust Security for Internet of Things. Sustain. Mach. Intell. J. 2023, 3. [CrossRef]

http://dx.doi.org/10.1109/TC.2012.215
http://dx.doi.org/10.1109/TII.2017.2771382
http://dx.doi.org/10.1016/j.compeleceng.2017.05.014
http://dx.doi.org/10.1016/j.jisa.2019.102429
http://dx.doi.org/10.1109/TIFS.2015.2509912
http://dx.doi.org/10.1109/ACCESS.2020.2989628
http://dx.doi.org/10.1631/FITEE.1700534
http://dx.doi.org/10.1155/2020/8850520
http://dx.doi.org/10.1093/comjnl/bxy073
http://dx.doi.org/10.1016/j.ins.2017.03.038
http://dx.doi.org/10.5755/j01.itc.47.1.16137
http://dx.doi.org/10.1016/j.comcom.2008.11.018
http://dx.doi.org/10.1016/j.ipl.2015.07.006
http://dx.doi.org/10.61185/SMIJ.2023.33106

Electronics 2024, 13, 1449 29 of 29

51. Alenizi1, J.A.; Alrashdi, I. SFMR-SH: Secure Framework for Mitigating Ransomware Attacks in Smart Healthcare Using Blockchain
Technology. Sustain. Mach. Intell. J. 2023, 2, 1–19. [CrossRef]

52. Hu, C.; Liu, P. An Enhanced Searchable Public Key Encryption Scheme with a Designated Tester and Its Extensions. J. Comput.
2012, 7, 716–723. [CrossRef]

53. Rhee, H.S.; Park, J.H.; Susilo, W.; Lee, D.H. Trapdoor security in a searchable public-key encryption scheme with a designated
tester. Syst. Softw. 2010, 83, 763–771. [CrossRef]

54. Fang, L.; Susilo, W.; Ge, C.; Wang, J. Public key encryption with keyword search secure against keyword guessing attacks without
random oracle. Inform. Sci. 2013, 238, 221–241. [CrossRef]

55. Wu, L.; Chen, B.; Zeadally, S.; He, D. An efficient and secure searchable public key encryption scheme with privacy protection for
cloud storage. Soft Comput. 2018, 22, 7685–7696. [CrossRef]

56. He, D.B.; Wang, H.Q.; Wang, L.N.; Shen, J.; Yang, X.Z. Efficient certificateless anonymous multi-receiver encryption scheme for
mobile devices. Soft Comput. 2017, 21, 6801–6810. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.61185/SMIJ.2023.22104
http://dx.doi.org/10.4304/jcp.7.3.716-723
http://dx.doi.org/10.1016/j.jss.2009.11.726
http://dx.doi.org/10.1016/j.ins.2013.03.008
http://dx.doi.org/10.1007/s00500-018-3224-8
http://dx.doi.org/10.1007/s00500-016-2231-x

	Introduction
	Our Contribution
	Organization

	Related Work
	Preliminaries
	The System Model and Security Model of CLVPFC-PEKS
	System Model
	Solution Framework
	Security Model
	Ciphertext Indistinguishability against Chosen Keyword Ciphertext Attack
	Safety of Trapdoor

	The Proposed CLVPFC-PEKS
	Security of Scheme
	Correctness
	Security

	Performance Analysis
	Security Comparison
	Computational Overhead Comparison
	 Storage Cost Comparison
	 Comparison of Communication Costs

	Conclusions
	References

