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Abstract: In this study, a control scheme is proposed based on Chaotic Particle Swarm Optimization
(CPSO) to enhance the Linear Auto-Disturbance Rejection Controller (LADRC). The focus is on
addressing the challenge of high-precision variations in angle-of-attack through dual-motor coopera-
tive control within the lifting wing of a high-speed train. The scheme initiates with the design of a
dual-loop structure for LADRC, integrating position and current control. The position loop is further
refined. Subsequently, the CPSO algorithm is employed to optimize the parameters of the LADRC
controller. Ultimately, the loop is closed by feeding back the position error in the cross-coupled struc-
ture to the current loop, thereby achieving high-precision control. The performance of the proposed
structure is validated through both Matlab/Simulink simulations and an experimental platform.
The experimental results demonstrate that CPSO-LADRC, in comparison to traditional LADRC and
Proportion-Integration-Differentiation (PID) control, exhibits an increase in the maximum response
time by 3.76 s and 3.3 s, respectively, a reduction in overshoot by 1.12% and 0.8%, as well as a decrease
in the maximum synchronization error by 0.45 cm and 1 cm, respectively. These findings validate
the effectiveness of the proposed synchronous loop controller method in simplifying computational
complexity, enhancing system responsiveness, robustness, and synchronization performance. Ad-
ditionally, our approach facilitates precise angle-of-attack transformation for the lifting wings of
high-speed trains effectively.

Keywords: lifting wing; permanent magnet synchronous motor; auto-disturbance resistant controller
(ADRC); chaotic particle swarm optimization (CPSO); multi-motor control

1. Introduction

The high-speed train lifting wing represents a novel mechanism designed to achieve
train speed reduction and reduce axle weight. This objective is achieved by generating
a lift force through precise control of the angle of attack. The structure of the lifting
wing is composed of three main components: the angle-of-attack conversion section,
the bottom rotation section, and the wing tail contraction section. Notably, the angle of
attack conversion section features an electric actuator that is synchronized precisely using
two motors.

The precision requirements for angle-of-attack control are stringent due to dynamic
load variations on the electric actuator resulting from real-time system changes. Further-
more, the system is subject to numerous internal and external disturbances. Therefore,
it is of great importance to achieve precise synchronization between the two motors and
possess robust abilities in disturbance rejection.

In the early development of multi-motor synchronous control technology, mechanical
linkage-based approaches depended on transmission levers and gear meshing to inter-
connect multiple motors. However, these systems were plagued by numerous internal
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and external disturbances, leading to compromised robustness. Along with this, control
methods such as master-command control [1], master-slave control, cooperative control,
cross-coupling control, and virtual-shaft control [2,3]—well-suited for dual-motor control—
have been proposed. Synchronization control methods aim to enhance the stability of the
system. However, to address the internal and external perturbation issues in this multi-
motor synchronous system, Han [4] proposed the Auto-Disturbance Rejection Control
(ADRC) which effectively resolves these challenges. Beyond selecting superior controllers,
exploring controller optimization methods is also valuable. In the realm of optimizing
conventional controllers, Thor et al. [5] proposed a method for legged robots’ controllers,
termed the CPG-RBF network. This method merges the Central Pattern Generator (CPG)
with the Radial Basis Function (RBF) network for online adaptive control. Makarem et al. [6]
utilized a data-driven approach to iteratively adjust the parameters of the Proportional-
Integral-Derivative (PID) controller, thus enhancing its robustness and diminishing its
dependency on parameters. Gheisarnejad et al. [7] introduced a controller leveraging deep
deterministic policy gradient (DDPG) technology, which minimizes observer estimation
errors and enhances the dynamic characteristics of the controller. Regarding the optimiza-
tion of the ADRC controller, Wang et al. [8] proposed a novel Deep Reinforcement Learning
(DRL)-based ADRC to enhance the performance of Permanent Magnet Synchronous Motors
(PMSMs). Yang et al. [9] introduced an enhanced velocity compensator into a second-order
Linear Auto-Disturbance Rejection Controller (LADRC) deviation coupling control structure,
effectively enhancing system accuracy. Tian et al. [10] optimized the extended state observer
within the ADRC, suppressing the uncertainty ripple in the current loop and improving
the stability of the PMSM system. Nguyen et al. [11] examined the application of a method
combining disturbance observer control (DOBC) and ADRC for speed control in PMSMs,
improving the stability and robustness of the system. Wang et al. [12] designed a speed
controller employing the LADRC with Compensation Function Observer (CFO-LADRC). It
addresses the trade-off between dynamic and immune performance. At the same time, it
enhances the immunity performance of the system. Liu et al. [13] examined how the error in
the velocity loop, when fed back into the ADRC control through a cross-coupling structure.
This enhanced the response speed and robustness of the system. Fang et al. [14] proposed
an ADRC method with an enhanced extended state observer (ESO) to design a cascade
controller for Electromechanical Actuators (EMA) based on PMSM. Wang et al. [15] designed
a novel velocity compensator for the deviation coupling structure to compensate for and
effectively mitigate self-referencing overruns. This novel compensator greatly enhanced
the response and immunity of the system under high-frequency noise conditions. Zhang
et al. [16] considered that motor parameters vary with temperature during the synchronous
operation of multiple motors. They applied a model reference adaptive algorithm to adjust
ADRC parameters online, thereby improving the synchronous control performance of speed
in the system. He et al. [17] developed a ring-coupled structure. This structure uses a
self-resistant compensator for current compensation in motors. Its purpose is to reduce the
synchronization error in a multi-motor system. Abdalla et al. [18] employed Particle Swarm
Optimization (PSO) to self-optimize the ADRC parameters and reduce the coupling be-
tween these parameters. Yin et al. [19] introduced the ant colony algorithm. This algorithm
aims for self-seeking optimization of the ADRC parameters. They proved this approach
results in a more robust ADRC controller than the conventional ADRC. Wang et al. [20]
introduced artificial intelligence algorithms into the parameter optimization process of the
ADRC. They constructed a DRL parameter optimization model. This model automatically
optimizes and adjusts the parameters of the controller in various application scenarios.

This paper centers on controlling the angle-of-attack conversion device in the lifting
wing.The main contributions are summarized as follows:

(a) The ADRC involves designing nonlinear control laws and optimizing parameters,
resulting in a more complex controller design [8–11]. Although the parameter tuning
process of LADRC is relatively straightforward, its linear structure results in poor control
performance under nonlinear conditions [12]. Consequently, addressing the complex
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disturbance issues and high-precision control requirements, the structure of LADRC has
been optimized to enhance control performance under nonlinear conditions.

(b) The parameters of the ADRC system are optimized by using the Chaotic Particle
Swarm Optimization (CPSO) algorithm. Subsequently, a cross-coupling structure is inte-
grated into the improved LADRC double-loop position control of the servo motor. This
structure feeds back the position error to the current loop, thereby enhancing the immunity
and response speed of the system. Furthermore, this method effectively addresses the
challenge of synchronous control, achieving seamless angle-of-attack conversion.

2. Design of the Lifting Wing Angle of Attack Conversion Device

The angle-of-attack conversion component in the lifting wing is crucial for determining
the wing’s angle of attack. This component achieves synchronized reverse movements
through the use of motor-driven electric actuators. The structural configuration is illustrated
in Figure 1. For precise synchronization, both motors must rotate at identical angles
simultaneously, driving the electric actuator to ascend or descend. The input angle of
attack of the system guides the calculation for the required height adjustment (rise or fall)
of the two electric actuators. Subsequently, the two motors perform forward or reverse
rotations at specific angles, effectively controlling the ascent or descent of the electric
actuator. Operational schematic diagrams are presented in Figures 2 and 3.
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among them:
∆h1 = ∆h2

∆h1 =
d·tanθ

2

(1)

where ∆h1, ∆h2 are the distance that the two motorized actuators need to be raised/landed,
respectively. d is the distance between the two actuators. θ is the given angle of attack of
the system. The lift/landing distance of the motorized actuator is determined by inputting
the angle of attack θ, which is subsequently transmitted to the motors through the reducer
to obtain arcs ∆θ1, ∆θ2 rotationally driven by the two motors. These arcs are ultimately
utilized as position inputs for precise motor position control.

3. Control System Modeling
3.1. Permanent Magnet Synchronous Motor Modeling

This system requires precise angle-of-attack control. PMSM offers several advantages,
such as high efficiency, accuracy, rapid response, and cost-effectiveness. Consequently,
we employ the PMSM as the drive motor in this study. First, the mathematical model is
established for the PMSM as follows:

Lq
did
dt = Ud − Rs id + Lqid ωe

Lq
diq
dt = Uq − Rs iq −

(
Ldid + ψ f

)
ωe

(2)

where Ld, Lq is an estimate of the dq-axis inductance, id, iq is the dq-axis current Ud, Uq is
the dq-axis voltage, Rs is the stator resistance of the motor, ψ f is the permanent magnet
chain of the motor rotor, and ωe is the rotor speed of the motors.

Figure 4 is the Direct Current (DC) model of a permanent magnet synchronous motor:
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where i∗q is the current input, G(s) is the current loop controller, for surface-mounted
permanent magnet synchronous motors: L = Ld = Lq, Kt = p0Ψ f is the electromagnetic
torque coefficient, TL is the load torque, B is the viscous damping coefficient, and J is the
equivalent total moment of inertia.

The motor control method employed in this study is the position-current double-
loop LADRC control, complemented by the CPSO for tuning the control parameters.
Compared to traditional three-loop control, this method ensures position control accuracy
and integrates the speed and position loops into the LADRC position loop. This integration
not only simplifies the adjustment of control parameters but also enhances the immunity
and response speed of the system.

3.2. Electric Actuator Modeling

The PMSM-driven ball screw electric actuator is modeled as shown in Figure 5. The
load equivalent combined moment of inertia JL and load equivalent combined torque
TL are:
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
JL = Js + m(

Ph
2π

)
2

TL =
FaPh
2πη

(3)

where Js is the moment of inertia of the balls-crew shaft, and m is the total mass of the
drive and load. Fa is the actuator drive, Ph is the lead of the ball-screw, and η is the positive
efficiency of the feed ball-screw subassembly.
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The relationship between the angular displacement θm of the motor rotation and the
linear displacement y of its ball screw actuator advance can be described as follows:

θm = y
2π

Ph
(4)

The rotational moment of inertia and viscous damping coefficients of the system are
as follows: {

Je = Jm + JL

Be = Bm + BL
(5)

where Je and Be are the equivalent rotational moment of inertia and the equivalent viscous
damping coefficient at the output shaft of the motor, respectively; Jm and Bm are the rotor
moment of inertia and viscous damping coefficient of the motor, respectively. BL is the load
equivalent combined viscous damping factor.

The resulting mathematical model of the system is presented as follows: Tm − TL − Be
.
θm = Je

..
θm

y =
Phθm

2π

(6)

where Tm is the rated torque of the motor,
.
θm = ωr is the mechanical angular velocity of

the motor rotor output, Assuming that ωp is the motor angular velocity, then ωp = pnωr,
where pn is the number of motor pole pairs.

3.3. Linear Auto-Disturbance Resistive Control

The angle-of-attack-driven system for lift wings is extensively utilized in industrial
applications. However, the intricate operational environment and variable loads on the
lift wings necessitate a high disturbance rejection capability and operational precision.
Frequently, the conventional PID control architecture falls short in terms of dynamic
response. Conversely, ADRC provides advantages in analyzing input-output signals and
extracting comprehensive disturbance information, which encompasses both internal and
external interferences, for effective compensation [21]. However, optimal parameter tuning
presents a formidable challenge for controllers designed to counteract self-disturbances.
This requires calibrating multiple parameters, yet a systematic method for calibration
remains elusive. After an in-depth study of self-control techniques, Gao [22] proposed the
LADRC, which demonstrates robustness and adaptability across various systems. Notably,
the parameter tuning process is straightforward. The architecture of the system includes
two main components: the Linear State Error Feedback (LSEF) control rate and the Linear
Expansion State Observer (LESO). The structure of LESO is shown in Figure 6.
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For a specific system of controlled objects, the differential equation can typically be
formulated as follows:

..
y = −a1

.
y + f1 + b0u (7)

where u, y, and f1 are the input, output, and disturbance terms of the system, respec-
tively, a1 and b0 are parameters set in the differential equation of the second order system,
respectively.

If the total disturbance of the system is defined as follows:

f
( .
y, f1, t

)
= −a1

.
y + f1 (8)

where t is the time
Equation (7) then becomes:

..
y = f

( .
y, f1, t

)
+ b0u (9)

By setting the following state variables x1 = y, x2 =
.
y, x3 = f

( .
y, f1, t

)
, the following

continuously expanding state space equation can be obtained:
.
x1 = x2.
x2 = x3 + b0u
.
x3 =

.
f
( .
y, f1, t

)
y = x1

(10)

The LESO corresponding to this system is presented as follows:
.
z1 = z2 − β1(z1 − y)
.
z2 = z3 − β2(z1 − y) + b0.
z3 = −β3(z1 − y)

(11)

where β1, β2, and β3 are the observer gains.
The system utilizes a linear Proportional-Derivative (PD) controller for the LESF:

u0 = kp(R − z1)− kdz2 (12)

where R is the input value, z1 and z2 are the observations of the linearly expanding state
observer, and kp and kd are the proportional and differential coefficients in the PD controller,
respectively.

For the dual-loop control of this system, design the current loop and position loop
controllers based on the structure mentioned above.

3.3.1. Current Loop Controller Design

This paper utilizes the q-axis current as an example for designing the linear active
disturbance rejection controller for the current loop, as it represents the torque current
component. The d-axis current controller can be designed in reference to the q-axis. The
differential equations for the q-axis current loop are as follows:
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diq

dt
= −Rs

Lq
iq +

1
Lq

uq −
ωeψ f

Lq
(13)

The first-order LADRC for the current loop is designed based on the above equation.
Referring to the structure of Equation (7), the given equation can be rewritten as follows:

diq
dt

= fc + bcuq (14)

where, bc = 1/Lq, fc is the total current loop perturbation as shown in the following equation:

fc = −Rs

Lq
iq +

1
Lq

uq −
ωsψ f

Lq
− bcuq (15)

The second-order LESO for the current loop is designed to observe the total current
loop perturbation fc using the following equations:{ .

ziq = βi1
(
iq − ziq

)
+ z f c + bcuq

.
z f c = βi2

(
iq − ziq

) (16)

where
.
ziq and

.
z f c are the values of iq and fc observations, respectively, and β1 and β2 are

the observer gain coefficients.
Based on the pole configuration method in LADRC [22,23], the characteristic equation

for the current loop can be derived from the provided equation:

λ0(s) = s2 + β1s + β2 = (s + ω0)
2 (17)

where ω0 is the bandwidth of the observer.
The gain of the LESO for the current loop can be determined as follows:{

βi1 = 2ω0
βi2 = ω0

2 (18)

The LESF is designed using a proportional (P) control structure with the gain kp = ωc.
The expressions for the control law u0 and the control quantity uq are provided below:

u0 = kip

(
i∗q − z1

)
uq =

u0 − z2

bc

(19)

The overall structure of the current loop is depicted in Figure 7.
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3.3.2. Position Loop Controller Design

Based on the DC model of PMSM, the dynamic equations of the system can be ex-
pressed as follows:
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d2θ

dt2 = −B
J

dθ

dt
+

Kt

J
iq −

TL
J

(20)

where B is the viscous damping coefficient, J is the equivalent total moment of inertia, TL
is the load torque, Kt is the electromagnetic torque coefficient, and Kt = p0ψ f , p0 is the
number of poles of the motor.

Based on the provided equation, the design of a second-order linear active disturbance
rejection controller for the position loop can be formulated. Considering the structure of
Equation (7) and approximating the transfer function of the current closed-loop control
system as 1, the equality i∗q = iq can be derived, thus allowing for the transformation of
Equation (20) as:

d2θ

dt2 = fp + bpi∗q (21)

where bp = Kt/J, fp is the total position loop perturbation as shown in the following equation:

fp = −B
J

dθ

dt
+

Kt

J
iq −

TL
J
− bp i∗q (22)

The total disturbance is observed by designing the third-order LESO for the position
loop with the following equations:

.
zθ = βs1(θ − zθ) + zn
.
zn = βs2(θ − zθ) + z f p + bpi∗q
.
z f p = βs3(θ − zθ)

(23)

where,
.
zθ ,

.
zn and

.
z f p are the observed values of motor angle θ, motor speed n, and total

disturbance fp, respectively. β1, β2 and β3 are all observer gain coefficients.
Utilizing the pole configuration method within the framework of LADRC, the charac-

teristic equation for the position loop can be derived from the provided equation, as shown
in the expression below:

λ0(s) = s3 + β1s2 + β2s + β3 = (s + ω0)
3 (24)

The observer gain in the linear ESO for the position loop can be obtained as follows:
β1 = 3ω0
β2 = 3ω2

0
β3 = ω3

0

(25)

In this context, observations indicate that the conventional LADRC structure leads to
excessively long system regulation times. To address this limitation, considering that the
f al function in the conventional ADRC structure exhibits superior control efficiency and
immunity to disturbances [24,25], an enhanced approach is proposed. To improve input
signal tracking and system performance, the Tracking Differentiator (TD) is introduced.
The TD is combined with the LESO and the LSEF, with the aim of enhancing system
immunity and control performance. The structure of the f al function is represented by the
following equation:

f al(e, α, δ) =


|e|αsign(e), |e| > δ

e
δ1−α

, |e| ≤ δ
(26)

The tuning session of the TD parameter is designed as follows:{ .
z11 = (z11 − θ∗) · k0 · f al(e, α, δ)
z12 =

.
z11

(27)
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where θ∗ is a given angle and z11 is the angle input after parameter adjustment.
The LESF is designed after the session of parameter calibration, as shown in the

following equation: 
u0 = ksp(z11 − z1) + ksd(z12 − z2)

iq∗ = u0 − z3
bP

(28)

where u0 is the control rate and iq∗ is the amount of control.
The overall form of PD control is used, which is generally taken as kp = ω2

c and
kd = 2ωcξ according to the linear ADRC principle. In kd, ξ is the system damping ratio, ωc
is the bandwidth of the controller.

The comparative simulation of the conventional LADRC and the improved structure
is illustrated in Figure 8, while their control performance is presented in Table 1.
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Table 1. Comparison of control indicators.

Traditional LADRC Improved LADRC

First response time in place t1/s 0.58 0.21
Second response time in place t2/s 1.24 0.74

First overshoot in place δ1/% 0.01 0.03
Second overshoot in place δ2/% 0.02 0.04

First steady-state error in place ∆1/cm 0.02 0.01
Second steady-state error in place ∆2/cm 0.01 0.01

In comparison, the response time of the improved LADRC is significantly faster, with
the first and second settling times reduced by 0.27 s and 0.50 s, respectively. Additionally, the
amount of overshoot and steady-state error between each other is essentially comparable.

The overall structure of the position loop is depicted in Figure 9.
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3.3.3. ADRC Parameter Tuning

The performance of the double-loop structure hinges entirely on the efficacy of the
self-immunity controller. Therefore, meticulous selection of the second-order ADRC pa-
rameters is crucial, as their values directly influence the control performance. This, in
turn, determines the overall control effectiveness of the double-loop system. Hence, pa-
rameter optimization and careful tuning of the ADRC controller are essential. Taking
the self-resistant controller designed by this system as an example, the parameters to be
optimized include {βl ,β2, β3} in LESO and {kP, kd} in LESF. Only when these parameter
values are reasonable and well-coordinated as a whole would the ADRC function be
optimal. The interaction among these parameters is intricate, and they exhibit a wide
distribution range. The traditional manual calibration method, which relies predom-
inantly on the expertise of designers and iterative experimentation, is both challeng-
ing and laborious. Under such conditions, achieving the optimal control effect can be
exceedingly challenging.

The PSO algorithm represents a widely studied and applied parallel optimization
technique in science and engineering. Renowned for its simplicity, rapid search speed, and
efficacy in yielding favorable optimization outcomes, PSO frequently serves as the method
of choice for parameter tuning in ADRC systems. In this paper, we introduce the CPSO
as an optimized iteration of the PSO algorithm. The CPSO is specifically employed to
optimize and fine-tune the critical parameters of the self-resistant position controller. This
approach enables a swift exploration of optimal controller parameter values and effectively
tackles the challenge of parameter tuning.

3.4. Chaotic Particle Swarm Optimization Algorithm
3.4.1. Particle Swarm Optimization Algorithm Fundamentals

The PSO algorithm begins by initializing a group of particles in the feasible solution
space. Each particle represents a set of potential solutions and holds position, velocity,
and fitness values. These particles explore the solution space to find an optimal solu-
tion. Throughout the iterative optimization process, each particle updates its position by
following two poles: the individual best pole (Pbest) and the group best pole (Gbest).

Assuming a D-dimensional search space, the population X = (X1, X2, . . . Xn) com-
prises n particles, where the ith particle is represented by the vector Xi = (xi1, xi2, · · · xiD)

T,
which denotes its position in the search space and a potential solution to the problem. The ve-
locity of the ith particle is vi =

(
Vj, Vi2, . . . Vij

)T, its optimal position is Pi = (Pi1, Pi2, . . . PiD)
T,

and the population extreme value is Pg =
(
Pg1, Pg2, . . . PgD

)T. The equations for updating
the velocity and position of the particle are represented as follows:

Vk+1
id = ωVk

id + c1r1

(
Pk

id − Xk
id

)
+ c2r2

(
Pk

gd − Xk
id

)
(29)

Xk+1
id = Xk

id + Vk+1
id (30)

where ω is the inertia weight; d = 1, 2, · · · , D; i = 1, 2, · · · , n; k is the number of current
iterations; νid is the velocity of the particle; c1 and c2 are non-negative constants called
acceleration factors; r1 and r2 are distributed in [0–1] numbers. In order to prevent blind
search of the particle, it is generally recommended to limit its position and velocity to a
certain interval [−Xmax, Xmax], [−Vmax, Vmax].

3.4.2. Improvement of the Algorithm

The CPSO algorithm introduces chaos into the optimization variables to enhance
the search process. This is achieved by mapping the traversal range of chaotic motion to
the range of values in the optimization variables [26]. The algorithm then explores the
cooperation and competition between particles, incorporating small chaotic perturbations,
and updating the particle velocity and position until it finds the optimal solution [27].
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The execution process involves randomly generating the initial population, initiating
a random search, and generating new individuals utilizing the PSO algorithm. If the
historical optimal particle position Gbest remains unchanged or changes very little, the
algorithm conducts a chaotic search within a certain range centered on Gbest. The optimal
solution obtained through this chaotic search is subsequently considered the new Gbest,
continuing the solving process.

The optimization problem’s objective function is defined as follows:

min f (x1, x2, · · · , xn)s.t.ai ≤ x1 ≤ bi (31)

The CPSO algorithm follows the subsequent steps:
Step 1: During initialization, set the maximum allowable number of iterations or the

adaptation error limit and configure parameters related to the CPSO algorithm, such as
inertia weights and learning factors.

Step 2: Chaotic initialization of particle positions and velocities.

(1) Randomly generate an n-dimensional vector, z1 = (z11, z12, · · · , z1n), according to
Equation (32) to get N vectors z1, z2, · · · , zN .

zn+1 = µzn(1 − zn) n = 0, 1, 2, · · · (32)

When µ is set to µ = 4 in Equation (32), the system becomes completely chaotic.
(2) Ensure each component of Z is within the range of values for the corresponding

variable.
(3) Calculate the fitness value of the particle swarm and then select the M solutions

with the better performance as the initial solutions from the N initial populations.
Additionally, M initial velocities are randomly generated.

Step 3: Revise the individual polar value Pbest according to each particle’s fitness value.
Step 4: Revise the global polar value Gbest according to each particle’s fitness value.
Step 5: Update the velocity and position of the particles using Equations (29) and (30).
Step 6: Chaotic optimization of the optimal location Pi = (Pi1, Pi2, · · · PiD)

T. Map Pi to
the definition domain of the Logistic equation [0,1], zi =

(
pgi − ai

)
/(bi − ai), (i = 1, 2, · · · D),

then, iteratively generate the sequence of chaotic variables z(m)
i (m = 1, 2, . . .) by using the

Logistic equation. The generated sequence of chaotic variables should be returned to the
original solution space through the inverse mapping p(m)

gi = ai + (bi − ai)z
(m)
i , resulting in:

P(m)
g =

(
P(m)

i1 , P(m)
i2 , · · · , P(m)

iD

)
, (m = 1, 2, · · ·) (33)

3.4.3. Optimization of ADRC Parameters Using CPSO

The optimization problem for ADRC involves determining an appropriate set of
parameters {βs1, βs2, βs3, ksp, ksd}, {βi1, βi2, kip} to optimize the performance metrics. Com-
monly used error performance metrics include the Integral of Squared Error (ISE), the
Integral of Absolute Error (IAE), the Integral of Time-weighted Absolute Error (ITAE),
and the Integral of Squared Time-weighted Error (ISTE). In this case, the Integral of Time-
weighted Absolute Error (ITAE) metric has been selected, which is defined as:

J =
∫ ∞

0
t|e(t)|dt (34)

The application process of the algorithm employs the chaotic particle swarm algorithm
to optimize the design of classical second-order position ADRC parameters. The current
loop optimization process remains unchanged and is depicted in Figure 10.

The application process of the algorithm utilizes the chaotic particle swarm algorithm
to optimize the design of classical second-order position ADRC parameters. The realization
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process is depicted in Figure 10, and the optimization procedure for the current loop aligns
with that of.
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The overall control structure of the system after CPSO optimization is shown in
Figure 11.
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3.4.4. Simulation Study of CPSO Algorithm Optimization

The CPSO algorithm optimally tunes the eight parameters of the ADRC controller
and compares the results with those obtained by the conventional linear self-immunity
parameter tuning method. The ADRC position controller has eight parameters that need to
be tuned and optimized. These include the {βs1, βs2, βs3, ksp, ksd} of the position loop and
the {βi1, βi2, kip} of the current loop. For both algorithms, the total number of the particle
population is n = 20, the dimension of the search space is D = 8, and the number of iterations
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is T = 30. The acceleration factor is c1 = c2 =2, and the inertia factor is w = 0.6. Table 2
shows the motor parameters.

Table 2. PMSM parameter.

Parameter Name Value

DC side voltage Udc/V 24
Rated torque Tm/N·m 0.2
Rated Power PN/KW 0.064

Back electromotive force Ke/(V/krpm) 4.3
Rated speed nN/rpm 3000
Stator resistor Rs/Ω 0.12

d-axis inductance Ld/mH 0.59
q-axis inductance Lq/mH 0.59

Permanent magnet chain ψf/Wb 0.0175
Moment of inertia J/(kg·m2) 0.00019

Polar logarithm P 4

Optimal controller parameters and performance indicators can be obtained after
operation. Table 3 provides a comparison between the resulting parameters obtained after
operation and the traditional LADRC parameter tuning method.

Table 3. Parameter tuning results of the LADRC for the two algorithms.

Algorithm βs1 βs2 βs3 ksp ksd βi1 βi2 kip

LADRC 227.79 17,296.09 437,764.16 499.97 51.32 996.24 248,123.53 1794.21
CPSO-LADRC 321.63 14,258.64 512,253.36 587.58 54.34 1254.36 386,543.48 2165.22

In Figure 12, the final fitness value obtained from the algorithm optimization is
6.0128. Subsequently, the PMSM position simulation, optimized with CPSO parameters,
is compared with the previously mentioned LADRC for signal tracking, as depicted in
Figures 13 and 14.

The maximum deviation errors of the two algorithms for tracking sine waves and
triangular waves are presented in Table 4. It can be inferred from these results that the signal
tracking performance of CPSO-LADRC significantly outperforms that of the traditionally
parameter-rectified LADRC.
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Figure 14. Comparison image of triangular wave tracking. (a) Triangular wave tracking with CPSO-
LADRC; (b) Triangular wave tracking with LADRC.

Table 4. Maximum deviation error.

LADRC CPSO-LADRC

Sine wave 50.3◦ 1.8◦

Triangular wave 98.2◦ 2.3◦

In Figure 15, the position setting is identical to that depicted in Figure 8. From Figure 15,
it can be observed that the LADRC optimized through CPSO enables reasonable parameter
selection. The PMSM controlled by the controller demonstrates a fast response speed, with a
first response time of 0.09 s and a second response time of 0.68 s. Furthermore, the overshoot
amounts to less than 0.01%, indicating favorable dynamic and static characteristics.
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3.5. Cross-Coupling Control of Dual Motors

To attain synchronous operation between the two motors, a cross-coupling control
structure was selected due to its high suitability for synchronizing two motors. The
fundamental principle of this structure involves compensating for any position or speed
differences between the motors in the input of the controller, thereby achieving coupling of
the motor angle, speed, or current. This study utilizes a structure designed to compensate
for the position differences among the motors within the current loop. The first motor is
subjected to positive feedback, whereas the second motor receives negative feedback. Such
an arrangement guarantees consistency in the positions of both motors, thereby enabling
synchronous operation. The structure is illustrated in Figure 16.
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The positions of the two motors need to be synchronized to rotate to the same position
initially. Subsequently, upon reaching time t0, motor 1 is to rotate forward by a specified
angle θ1, while motor 2 reverses by the same angle θ2, necessitating continued synchroniza-
tion. In this specific structure, corrections to the cross-coupled controller inputs within the
current loop are depicted as follows:{

∆iq1 = (|x − θ1| − |x − θ2|) · k1

∆iq2 = (|x − θ1| − |x − θ2|) · k2
t < t0{

∆iq1 = (|x − θ1| − |x − θ2|) · k1

∆iq2 = −(|x − θ1| − |x − θ2|) · k2
t ≥ t0

(35)

where ∆iq1, ∆iq2 is the correction value of the current loop of the two motors, x is the given
value of the position, k1 and k2 are adjustable parameter. Generally, if the parameters of
two motors are identical, the settings are as follows: k1 = k2 = k0.

4. Simulation Studies and Experimental Verification
4.1. Simulation Studies

For the aforementioned system, the simulation model is developed on the Mat-
lab/Simulink simulation platform. Two PMSMs featuring identical parameters are chosen
to conduct the simulation. The motor parameters are detailed in Table 2.

The ADRC controller parameter settings, both before and after optimization, are
depicted in Table 3 in the cross-coupled controller: x = 35, k0 = 1. In the PI control structure
used as a comparative experiment, the position loop parameters: kp1 = 900, ki1 = 80, the
current loop parameters: kp2 = 100, kp2 = 80.

To verify the system’s immunity and synchronization performance, experiments were
designed as follows: The distance between the two electric actuators was set at d = 150 cm,
the height at h = 35 cm, and the angle of attack at θ = 15◦. Subsequently, different inputs
were administered to the two motors at distinct positions. Initially, the two motors are
synchronized to start both under no load and an asymmetric heavy load (with loads of
5 N·m and 30 N·m, respectively), aiming to simultaneously reach a height of h = 35 cm.
At t0 = 0.6 s, position signals were set for electric actuator 1 and electric actuator 2 at
∆h1 = ∆h2 = 10 cm to observe the effects of reverse synchronization. Figures 17–22 depict
the simulation results.
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The figure above demonstrates that CPSO-LADRC exhibits faster response times and
reduced overshoots compared to the traditional parameterized LADRC and PI control.
Additionally, the synchronization error is rapidly minimized to zero, yielding a more stable
system. To further evaluate the effects of these methods on the synchronization performance
of the system, a comparison of control parameters for each controller is presented in Table 5.
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According to Table 5, under no-load conditions, CPSO-LADRC demonstrates a similar
maximum steady-state error and maximum overshoot as traditional LADRC, both at
relatively low levels. However, it exhibits significant improvement over PI control. At the
same time, with respect to response speed, both traditional LADRC and PI control show
significant improvements. Under asymmetric load conditions, CPSO-LADRC demonstrates
greater improvements in both maximum steady-state error and response speed than the
other two algorithms. Maximum overshoot is comparable to that of traditional LADRC but
also shows significant improvement over PI control. Furthermore, Figure 22b illustrates
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that the two actuators rapidly minimize errors under varying load conditions. These
parameter comparisons indicate that the LADRC controller optimized by CPSO provides
faster response speeds, lower overshoots, enhanced system dynamics, and improved
synchronization performance, demonstrating clear optimization effects.

Table 5. Comparison of control parameters for each controller.

PI LADRC CPSO-LADRC

No-load

Maximum synchronization error 0.357 cm 0.002 cm 0.008 cm
Maximum first response time in place 0.522 s 0.480 s 0.081 s

Maximum second response time in place 0.751 s 0.814 s 0.701 s
Maximum first overshoot in place 0.481% 0.005% 0.004%

Maximum second overshoot in place 0.403% 0.006% 0.003%

Asymmetric load

Maximum synchronization error 1.153 cm 0.793 cm 0.482 cm
Maximum first response time in place 0.535 s 0.471 s 0.073 s

Maximum second response time in place 0.746 s 0.803 s 0.698 s
Maximum first overshoot in place 0.486% 0.007% 0.006%

Maximum second overshoot in place 0.356% 0.005% 0.003%

4.2. Experimental Verification

Utilizing the aforementioned design, we have constructed a multi-motor synchronous
control experimental platform, as shown in Figure 23. This platform is designed to facilitate
position command tracking experiments under varying load conditions. Our primary objec-
tive was to validate the effectiveness of the proposed method in enhancing the performance
of self-resistant control. The experimental validation was conducted using a double-screw
structure without any mechanical coupling. Furthermore, given that saturation and torque
ripple are infrequent in this system, attention to these factors can be deemphasized.
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The optimized algorithm was uploaded to the STM32 control board using Data Acqui-
sition Processor (DAP). The STM32F407 is interfaced with two drive boards, facilitating
parallel control of two motors. The power supply circuit utilizes a common DC bus struc-
ture. Notably, the two motors are directly coupled to the lead screw without mechanical
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coupling, effectively eliminating interference from mechanical coupling effects. The po-
sition information of the motor is captured through a 20-bit high-resolution single-turn
absolute encoder. Considering the proportional relationship between the position of the
electric push rod and the angular displacement of the motor, the encoder-relayed motor
position information undergoes positional data processing via the Digital-to-Analog Con-
verter (DAC), facilitated by the STM32, before being displayed on the oscilloscope. The
experimental setup is illustrated in Figure 24. The inverter utilizes Insulated-Gate Bipolar
Transistors (IGBTs) and functions at a switching frequency of 16 kHz. Comprehensive
details of the motor parameters are presented in Table 2.
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Figure 24. Application schematic.

Similar to the simulations, the experiments were conducted under both no-load condi-
tions and asymmetric large loads (5 N·m and 20 N·m loads, respectively). The remaining
parameters and position settings continued to be consistent with those used in the sim-
ulations. The experimental results are depicted in Figures 25–30. Notably, following
CPSO optimization, the system demonstrated improved response speed, stability, and
synchronization performance.
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Following the completion of the experiment, the comparison of control parameters
under both no-load and asymmetric load conditions is presented in Table 6.

Table 6. Comparisons of control parameters for each controller.

PI LADRC CPSO-LADRC

No-load

Maximum synchronization error 0.36 cm 0.14 cm 0.13 cm
Maximum first response time in place 5.21 s 4.75 s 1.45 s

Maximum second response time in place 7.42 s 8.09 s 6.86 s
Maximum first overshoot in place 0.66% 0.22% 0.29%

Maximum second overshoot in place 0.51% 0.31% 0.21%

Asymmetric load

Maximum synchronization error 0.72 cm 1.27 cm 0.27 cm
Maximum first response time in place 5.32 s 4.61 s 1.44 s

Maximum second response time in place 7.44 s 8.01 s 6.75 s
Maximum first overshoot in place 1.66% 1.34% 0.54%

Maximum second overshoot in place 1.29% 0.82% 0.64%
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Table 6 clearly shows that, under no-load conditions, CPSO-LADRC demonstrates sim-
ilar maximum steady-state error and maximum overshoot to traditional LADRC, though
with slight differences. However, compared to PI control, CPSO-LADRC exhibits signifi-
cant improvements. Additionally, both traditional LADRC and PI control show marked
enhancements in response speed. Under asymmetric load conditions, the CPSO-LADRC
algorithm outperforms the other two regarding maximum steady-state error, response
speed, and maximum overshoot. This comparative analysis indicates that the CPSO-
LADRC achieves faster response speeds and lower overshoots, ensuring robust system
dynamics and improved synchronicity. Experimental validation has confirmed these
optimization outcomes.

5. Discussion

This paper proposes a LADRC cross-coupled control structure, utilizing CPSO for op-
timization. The proposed algorithm underwent subsequent application in both simulation
and experimentation phases. Following satisfactory simulation outcomes, the experiments
yielded results as follows: Compared to traditional LADRC and PID control, CPSO-LADRC
exhibited a maximum increase in response time of 3.76 s and 3.3 s, respectively, along with
a reduction in overshoot of up to 1.12% and 0.8% and a decrease in maximum synchro-
nization error of up to 0.45 cm and 1 cm, respectively. Furthermore, under diverse load
conditions, both push rods rapidly returned to their zero position, thereby validating the
effectiveness of the optimization approach.

Although this approach demonstrates potential for engineering applications, it also
reveals certain shortcomings that necessitate further improvements:

(1) A more refined adaptive parameter tuning method. Although CPSO exhibits a sig-
nificant optimization effect, the exploration of more intelligent parameter tuning
methods represents an important area for improvement. For example, integrating
neural networks for parameter tuning could potentially enhance performance.

(2) Enhanced synchronous loop control. While the ADRC has yielded excellent results,
our experiments indicate that even under ADRC control, the motor does not com-
pletely utilize its dynamic performance potential. Exploring methods to further
enhance the motor’s capabilities emerges as a valuable research direction.

While the ADRC has yielded excellent results, our experiments indicate that even
with the ADRC control, the motor does not completely utilize its dynamic performance
potential. Exploring methods to further enhance the capabilities of the motor is a valuable
research direction.

6. Conclusions

This paper explores the dual-motor cooperative control problem in the lifting wing
angle-of-attack drive device of high-speed trains. Initially, the LADRC structure was
constructed, and a position-current double-loop LADRC control strategy was designed
based on this structure. To optimize the system, the CPSO algorithm was proposed
for tuning the parameters of the LADRC, yielding an optimized position-loop LADRC
controller. Simulation verification has confirmed that the performance of this mechanism
surpasses that of the traditional LADRC.

A cross-coupled synchronization control structure has been employed to synchro-
nize the two motors. The position error in the motor’s position loop was then fed back
to the current loop. Subsequently, a multi-motor cross-coupled synchronization con-
trol strategy, based on the CPSO-optimized LADRC, was designed. The performance
of the two motors under two load conditions (no load and asymmetric load) was com-
pared using the improved LADRC and PID control methods. The results indicate that
the CPSO-optimized LADRC cross-coupled control structure exhibits rapid response,
smoother regulation, reduced system synchronization error, and enhanced overall control
system stability.
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