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Abstract: Design patterns provide solutions to recurring problems in software design and devel-
opment, promoting scalability, readability, and maintainability. While past research focused on
the utilization of the design patterns and performance, there is limited insight into their impact
on program evolution. Dependency signifies relationships between program elements, reflecting a
program’s structure and interaction. High dependencies indicate complexity and potential flaws,
hampering system quality and maintenance. This paper presents how design patterns influence
software evolution by analyzing dependencies using the Abstract Syntax Tree (AST) to examine
dependency patterns during evolution. We employed three widely adopted design patterns from
the Gang of Four (GoF) as experimental examples. The results show that design patterns effectively
reduce dependencies, lowering system complexity and enhancing quality.

Keywords: design pattern; dependency relationships; abstract syntax tree; software quality;
software evolution

1. Introduction

Design patterns offer significant advantages in software development and have be-
come essential standards for high-quality software design. Software engineers widely
adopt them to enhance flexibility, reusability, and maintainability [1,2]. Current research
mainly delves into pattern selection and implementation and their impact on systems [3–5].
Despite the extensive research on the impact of design patterns on software evolution, there
remains a notable research gap in understanding the comprehensive influence of various
design patterns on real-world software systems. Existing studies often focus on a limited
set of design patterns within specific system versions, neglecting the broader spectrum of
design patterns and their effects on long-term software evolution.

Dependency relationships represent the associations, interactions, and behaviors
among program elements within a software system [6–8]. An evaluation of the impact
and utility of design patterns in software systems often considers how design patterns
influence dependency relationships, as such effects may have implications for software
quality metrics such as complexity, maintainability, and scalability [9,10].

A total of 804 studies published between 2000 and 2018 were examined by Wedyan
et al. [11]. The statistical analysis determined that the Factory Pattern, Decorator Pattern,
and Observer Pattern are the most commonly used design patterns in three categories:
Creational Pattern, Structural Pattern, and Behavioral Pattern. McNatt et al. [12] also men-
tioned that the Factory Pattern and Observer Pattern are the most frequently referenced
design patterns. Similarly, Prechelt et al. [13] conducted research focusing on the Factory
Pattern, Observer Pattern, and Decorator Pattern. Therefore, in this study, our attention
was directed toward these three widely acknowledged design patterns sourced from the
Gang of Four (GoF) [14]: the Factory Pattern, Decorator Pattern, and Observer Pattern. We
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designed individual experiments for each of the selected design patterns. To present the
results generated by these design patterns in the experiments, we chose 39 dependency
relationships from the 56 proposed by Huang [7] that are commonly associated with the
three selected design patterns. By observing the variations in these dependency relation-
ships in the experiment, the influence of these design patterns on different experimental
environments can be determined. Additionally, we created a computational tool with
Java Parser [15] to assist in minimizing the interference of the experimental environment
during the calculation of dependency relationships. The assistance tool scans example
programs employing the specified design patterns and those that do not and identifies
code dependency relationships. Furthermore, our investigation included simulations of
alterations in dependency relationships during program evolution. This allowed us to
illustrate how design patterns can effectively diminish dependencies that arise throughout
the evolution of a system, ultimately leading to the optimization of the software system.

In the following sections, we explore background knowledge (Section 2), detail our
methodology for identifying dependency relationships (Section 3), present and discuss ex-
perimental results (Section 4), and conclude by outlining contributions and future research
plans (Section 5).

2. Background Knowledge and Related Work

This section introduces the background knowledge and research context for this
study, categorized into three subsections: Design Patterns, Dependency Relationships, and
Abstract Syntax Trees (ASTs).

2.1. Design Patterns

Design patterns [14] are crucial principles in software engineering, providing reusable
solutions to common design problems. They offer a structured approach to tackling typical
design challenges in software development and bring various advantages to the process.
Beyond resolving issues in system design, design patterns contribute to enhancing key
software quality metrics, including readability, reusability, extensibility, maintainability,
cohesion, and coupling [1,16,17].

Nanthaamornphong et al. [1] conducted a statistical survey on the Visitor Pattern,
demonstrating that the complexity of software design was effectively reduced through the
Visitor Pattern. Tahvildari et al. [16] found that utilizing design patterns in the system can
enhance software system maintainability, whether creational, structural, or behavioral. In
addition, Ampatzoglou et al. [17] revealed that, while incorporating GoF design patterns
into a system may increase system size (including lines of code and the number of classes),
all identified GoF design patterns improved system cohesion, reduced coupling, and
decreased complexity. However, Khomh et al. [4] argued that not all design patterns are
advantageous to system quality and may even reduce system extensibility or readability.

The Factory Pattern is a creational design pattern that defines an interface for creating
objects in a superclass. However, it allows subclasses to modify the type of objects to
be created. This pattern encourages loose coupling by removing the necessity to bind
application-specific classes into the code directly. The Decorator Pattern is a structural
design pattern that enables the addition of behavior to an individual object, either statically
or dynamically, without impacting the behavior of other objects within the same class. This
is accomplished by creating a series of decorator classes to encapsulate concrete components.
The Observer Pattern is a behavioral design pattern in which an object, referred to as the
subject, manages a list of dependents, known as observers, who should be informed of
changes to the subject’s state. It establishes a one-to-many dependency between objects,
ensuring that all its dependents are notified when one object changes its state. In this study,
the experiment focused on the Factory Pattern, Decorator Pattern, and Observer Pattern,
the results of which will be presented in Section 4.
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2.2. Dependency Relationships

Dependency relationships describe interactions between program elements, such as
package names, field names, types, etc. These elements are nodes in the program. Bichsel [6]
classified 28 types of dependencies into method relationships and structural relationships.
Method relationships explain the semantic behavior of methods. For instance, in the
method call field.foo().bar(), two receiver-type dependencies emerge: (foo, bar, receiver)
and (field, foo, receiver). Structural relationships capture connections between nodes. For
example, the study introduced “read-before” and “written-before” relationships to depict
the order of reading or writing fields. Huang [7] increased the number of dependency
relationships to 56 and classified them into three types based on object-oriented concepts:
encapsulation, abstraction, and delegation.

Encapsulation is a method to protect data from unauthorized access and modification
by bundling data and methods in the program into a single unit. In addition to making
programs easier to maintain and extend, encapsulation provides a clean and user-friendly
interface due to its ability to hide details. When there are more encapsulation dependency
relationships in the program, it typically means that not only is the structure of the program
more closed and independent, but unit testing and refactoring are also easier to perform,
making the program easier to maintain, extend, and understand. However, excessive
encapsulation dependency relationships may lead to a high degree of coupling in the
program, making it more difficult to modify and extend. If all parts of the program depend
on each other, changing one part may require changing other parts simultaneously. This
kind of dependency relationship may not only lead to the program design becoming more
complex but also increase the difficulty of maintenance.

Abstraction is the process of hiding complexity, focusing on key details, and simpli-
fying the functionality of the object or system into interfaces. It is usually used to hide
details, making the program easier to maintain and extend. When there are more abstrac-
tion dependency relationships, it typically means that the program has a higher level of
abstraction and lower dependency. Because the program can be easily changed with little
effect on others, it may be easier to maintain and extend. However, excessive abstraction
dependency relationships may lead to an unduly high level of abstraction in the program,
not only making the program difficult to understand and maintain but also making the
dependency relationships hard to manage.

Delegation is the process of distributing and entrusting work from one object to an-
other. When a proxy object needs to provide a specific work, it entrusts the work to another
rather than implementing it by itself. This typically means that the structure of the program
becomes more complex when there are lots of delegation dependency relationships in the
program. Because each object needs to be understood and managed, a large number of
objects that depend on each other may require more maintenance and testing. Furthermore,
multiple layers of delegation may also lead to reduced execution efficiency because each
object needs to process and transmit information. However, because it makes the imple-
mentation of proxy objects easy to replace with other objects, programs can be made easier
to extend and modify by using delegation appropriately. Moreover, delegation can also
separate different works, making the program more modular and readable.

In this paper, we have selected 39 dependency relationships for our experiment. These
selected dependencies are re-categorized into three types, encapsulation, abstraction, and
delegation, forming the basis of our research. When analyzing the quality of software
systems, dependency relationships are often considered as one of the factors [9,10]. In [9],
Iyapparaja et al. mention that dependency relationships influence the complexity of the
program. The more complex the interactions within a system, the harder the readability of
specific designs, leading to a higher likelihood of faults and making testing more difficult.
Dependency relationships are also utilized in research on software system refactoring.
Maruyama et al. [18] proposed a mechanism for automating the refactoring of object-
oriented frameworks through a weighted dependency relationship graph. Experiments
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demonstrated that the number of statements developers need to write when creating
multiple applications can be reduced by up to 22 percent.

2.3. Abstract Syntax Tree (AST)

An Abstract Syntax Tree (AST) is an abstract representation used to describe the
syntactic structure of code. It is a data structure employed by Java parsers to parse code
into a format that is easier to understand and manipulate. ASTs represent the syntax of a
programming language in a tree-like structure composed of nodes and edges. Each node
represents an element in the code, such as a variable, operator, function call, and so on.
Each node may also have additional attributes like values or child nodes to store the specific
content or related sub-elements of that element. Edges denote the relationships between
these elements, such as the parent–child relationships between nodes. The construction of
an AST is implemented through the syntax analysis process, commonly known as parsing.
A Java parser takes the source code and parses it into a series of syntactic units, such as
tokens or abstract syntax units. It then uses these syntactic units to build the AST [19].
During the syntax analysis process, the code is validated according to the syntax rules of
the programming language, and the corresponding AST structure is generated.

The AST can be used for syntax checking, error detection, code transformation, and
more. For example, compilers can traverse the AST and perform various analyses and
transformation operations, while parsers can use the AST to understand and perform
a syntax analysis of program code. Developers can also utilize the AST for tasks like
code refactoring and static code analysis [20]. Fauzi et al. [21] employed the AST to
transform source code into sequence diagrams through reverse engineering. In [22], Tao
et al. proposed a code plagiarism detection algorithm based on the AST. These examples
demonstrate the versatility and utility of ASTs in various software engineering tasks.

3. Methodology

This section outlines our research methodology, structured into two parts: identifying
dependency relationships and designing experimental procedures. The first part introduces
dependency relationships related to design patterns and the computational tools developed
to discover these relationships. Once the relationships are defined, the second part outlines
the experimental procedure tailored to these relationships.

3.1. Identifying the Dependency Relationships

To assess software quality, this study evaluated dependency relationships in a software
system. The upcoming subsection will detail the process of identifying these relationships.

3.1.1. Dependency Relationships Related to Design Patterns

This research specifically focuses on programs within the same package and design
pattern. Therefore, certain types of dependency relationships are excluded: ‘contained-in-
package’, ‘direct-subpackage-of’, ‘subpackage-of’, ‘innerClass-of’, ‘inner-type’, ‘performs-
cast’, ‘instance-of’, and ‘use-known’. Additionally, dependencies related to the Android
System, such as ‘indirect-invocation’, ‘intent’, ‘register-receiver’, and ‘filter’, will not be
discussed. Furthermore, we categorized the dependency relationships with similar charac-
teristics for the organization, such as ‘modifier’, ‘access-attribute’, and ‘self-delegation’. As
a result, out of the 56 dependency relationships proposed by Huang [7], 39 relationships
were selected in this research, as illustrated in Figure 1 (Dependency relationships with un-
derlines indicate that they were excluded from this research). These chosen dependencies
will be categorized into encapsulation, abstraction, and delegation.
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Figure 1. Categorization of dependency relationships.

3.1.2. Dependency Relationship Calculation Tool

In order to calculate dependency relationships in the system, we developed a cal-
culation tool using the API provided by JavaParser [15]. This tool is capable of not only
parsing Java source code but also generating the Abstract Syntax Tree (AST). This AST is
analyzed to identify whether the program contains the aforementioned 39 types of depen-
dency relationships and calculate their quantity. Next, the following is elucidated through
illustrative examples. In terms of the system architecture of this assistance tool, as shown
in Figure 2, the AST of this program is generated by first passing the source code to Logic
Positivizer. Next, the AST is passed separately to Encapsulation Finder, Abstraction Finder,
and Delegation Finder for scanning. Finally, the number of dependency relationships for
encapsulation, abstraction, and delegation types can be obtained.

Figure 2. System architecture.

We elucidate the calculation method for each type of dependency relationship through
mathematical expressions in Table 1, and the signification of the constituent elements within
these mathematical formulations is shown in Table 2. Field-in in Table 2, for example, means
all the fields declared in the package. By utilizing the mathematical expressions mentioned
above within the tool, various dependencies within the code can be effectively identified,
making subsequent experiments more convenient.
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Table 1. The mathematical expressions of the dependency relationships.

Encapsulation dependency relationships Mathematical expression

f ield-in |x|, x ∈ FD, x ∈ P, x is declared in P
method-in |x|, x ∈ MD, x ∈ P, x is declared in P
modi f ier A = MD ∪ FD, |(a, m)|, m is the modi f ier o f a, a ∈ A, b ∈ M
initialized-by |(a, b)|, attribute a is initialized in class b, a ∈ Ab, b ∈ C
gets A = Ab ∪ MD ∪ FD, |(a, b)|, b is an attribute assigned with a, a ∈ A, b ∈ Ab
read-be f ore |(a, b)|, a is a f ield which is read be f ore b in the same method, a ∈ FD, b ∈ FD, a ̸= b
written-be f ore |(a, b)|, a is a f ield which is written be f ore b in the same method, a ∈ FD, b ∈ FD, a ̸= b
f ield-type |x|, x ∈ FD, x ∈ P, x is declared in P
per f orms-op |x|, x ∈ op, x ⊆ C
returns |(a, b)|, b has a return value a, a ∈ Vb, b ∈ M
uses |(a, b)|, a is used in b, a ∈ A, b ∈ MD
writes |(a, b)|, a is written in b, a ∈ FD, b ∈ MD
f lows-into |(a, b)|, a is an argument o f b, a ∈ Vb, b ∈ MCD
loop-read |x|, x ∈ Ab ∪ MD ∪ C, x is read in L, L ̸= C
loop-write |x|, x ∈ Ab ∪ MD ∪ C, x is read in L, L ̸= C
return-type |(a, b)|, b has a return value a, a ∈ Vb, b ∈ MD
argtype-N |(a, b)|, a is an argument o f b, a ∈ Vb, b ∈ MD
element-type |x|, x ∈ FD ∩ Ar
expression-type |x|, x ∈ FD ∪ Vb

Abstraction dependency relationships Mathematical expression

implement |(a, b)|, b implements inter f ace a, a ∈ I, b ∈ C, a ̸= b
extends |(a, b)|, b extends a, a ∈ C, b ∈ C, a ̸= b
overrides |(A, B)|, a method in class B overrides a method in class A, A ∈ C, B ∈ C, A ̸= B
override-concrete-method |(a, b)|, method a overrides a concrete method b, a ∈ MD, a ⊆ C, b ∈ MD, b ⊆ C
override-abstract-method |(a, b)|, method a overrides a abstract method b, a ∈ MD, a ⊆ C, b ∈ MD, b ⊆ C
overloads |(A, B)|, a method in class B overloads a method in class A, A ∈ C, B ∈ C, A ̸= B
overload-static-method |(a, b)|, method a overloads a static method b, a ∈ MD, a ⊆ C, b ∈ MD, b ⊆ C
overload-nonstatic-method |(a, b)|, method a overloads a non − static method b, a ∈ MD, a ⊆ C, b ∈ MD, b ⊆ C

Delegation dependency relationships Mathematical expression

read-class f ield |(a, b)|, method a reads a f ield o f class b, a ∈ MD, b ∈ C
call-classmethod |(a, b)|, method a calls a method o f class b, a ∈ MD, b ∈ C
access-attribute |(a, b)|, method a accesses a f ield o f class b, a ∈ MD, b ∈ C
creation |(a, b)|, method a creates an instance o f class b, a ∈ MD, b ∈ C
eager-creation |(a, b)|, f ield a creates an instance o f class b, a ∈ FD, b ∈ C
order-N |(a, b)|, b is an argument o f method a, a ∈ MD, b ∈ Arg, Arg = FD ∪ MD ∪ C
invoke-nonstatic-method |(a, b)|, non − static method b is called by method a, a ∈ MD, b ∈ MDC
invoke-static-method |(a, b)|, static method b is called by method a, a ∈ MD, b ∈ MD
invoke-abstractc-method |(a, b)|, abstract method b is called by method a, a ∈ MD, b ∈ MD
delegation |(a, b)|, an object o f class a f orwards an operation to an object o f class b, a ∈ C, b ∈ C
sel f -delegation |(a, a)|, an object o f class a f orwards an operation to itsel f , a ∈ C
receiver |(a, b)|, a receives in f ormation f rom method b, a ∈ A, b ∈ MD, A = It ∪ MD ∪ Ab

Table 2. Terms and Explanations table.

Term Definition

Package (P) the set of all program packages
Class (C) the set of all program classes
Field (FD) the set of all program fields across all classes
Method (MD) the set of all program methods across all classes
Attribute (Ab) the set of all attributes across all classes
Variable(Vb) the set of all variables in the program
Loop (L) the set of all loops in the program
MethodCall (MCD) the set of all method calls in the program
Static-Method (SMD) the set of all static methods across all classes
nonStatic-Method (nSMD) the set of all non-static methods across all classes
Modifier (M) the set of all modifiers in the program
Array (Ar) the set of all arrays in the program
Interfaces (I) the set of all program interfaces
Instance (It) the set of all instances in the program

3.2. Design Experiment Steps

In order to investigate the relationship between design patterns and software quality,
we designed the following experimental procedure. It is divided into four steps, as shown
in Figure 3. The first step involves designing a sample program written without the use of
design patterns. In the second step, a new sample program is designed by applying design
patterns to refactor the initial program from step one. Step three simulates the evolution of
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both sample programs. In step four, the analysis tool is employed to scan the program to
identify the number of dependency relationships in the code.

Figure 3. Experimental steps.

Take the Decorator Pattern as an example. The program for the experiment implements
a pizza-ordering system, as shown in Figure 4. First, an initial design without the use of
design patterns is created, as shown in Figure 4a. In step two, the initial code is refactored
using the Decorator design pattern, as shown in Figure 4b. Step three simulates the
evolution of both programs, as shown in Figure 4c,d. Finally, the dependency relationship
calculation tool is used to scan and calculate the number of dependency relationships in
these programs for comparison.

Figure 4. Decorator program design.

This study performed calculations for three types of dependency relationships: en-
capsulation, abstraction, and delegation. The total number of dependency relationships
for each type is identified, as well as the average number of these contained in each class
within the program. The results are presented as line charts in the next section.

4. Experiment and Results

This experiment focused on the aforementioned three types of design patterns: Factory
Pattern, Decorator Pattern, and Observer Pattern. The purpose of this experiment was
to compare the changes in dependency relationships within a program containing these
design patterns with the changes in the program without these design patterns.

4.1. Factory Pattern

For the experiment with the Factory Pattern, this study designed a simple beverage
store system as an example, with its program design illustrated in Figure 5. Figure 5a
represents the initial design of the system, with a BeverageStore offering both GreenTea
and BlackTea. With the continual addition of beverage items, this design requires frequent
changes in the BeverageStore class to incorporate code for new items. The demand for
frequent changes in program elements can be achieved by refactoring with the Factory
Pattern, as shown in Figure 5b. Because of the abstraction of beverages through the
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use of the class SimpleBeverageFactory and the interface IBeverageProvider, it becomes
unnecessary to modify the existing BeverageStores’s code when adding new beverage
items. Two continuous versions of the BeverageStore system are represented in Figure 5c,d.

The following section presents our experimental results for the dependency relation-
ships (encapsulation, abstraction, and delegation) in the Factory Pattern.

Figure 5. Factory program design.

4.1.1. Encapsulation Dependency Relationships in Factory Pattern

The total number of encapsulation dependency relationships is shown in Table 3, and
the average number of encapsulation dependency relationships within each class in the
program is displayed in Table 4. By visualizing the experimental results as line charts, it can
be observed that, though using the Factory Pattern leads to more encapsulation dependency
relationships in the early stages of development, as the program evolves into later stages,
the Factory Pattern continues to effectively reduce the number of these relationships and
results in lower system complexity. The line representing the Factory Pattern is color-coded
in red, as shown in Figures 6 and 7.

Table 3. Total encapsulation dependencies in Factory Pattern.

Tea Number Initial Design Factory Pattern

2 28 50
3 42 61
4 56 72
5 70 83
6 84 94
7 98 105
8 112 116
9 126 127
10 140 138
11 154 149
12 168 160
13 182 171
14 196 182
15 210 193
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Figure 6. Factory Pattern: total encapsulation dependencies.

Table 4. Avg. encapsulation dependencies per class in Factory Pattern.

Tea Number Initial Design Factory Pattern

2 9.333 10
3 10.5 10.167
4 11.2 10.286
5 11.667 10.375
6 12 10.444
7 12.25 10.5
8 12.444 10.545
9 12.6 10.583
10 12.727 10.615
11 12.833 10.643
12 12.923 10.667
13 13 10.688
14 13.067 10.706
15 13.125 10.722

Figure 7. Factory Pattern: avg. encapsulation dependencies per class.

4.1.2. Abstraction Dependency Relationships in Factory Pattern

The total number of abstraction dependency relationships is shown in Table 5, and the
average number of abstraction dependency relationships within each class in the program
is displayed in Table 6. Although the use of the Factory Pattern generates additional
abstraction dependency relationships, the number of these dependency relationships still
remains within a reasonable range, as shown in Figures 8 and 9. Furthermore, based on the
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easy modification of its details without causing significant impacts on other parts, moderate
abstraction can make the program easier to maintain and extend.

Table 5. Total abstraction dependencies in Factory Pattern.

Tea Number Initial Design Factory Pattern

2 0 2
3 0 3
4 0 4
5 0 5
6 0 6
7 0 7
8 0 8
9 0 9
10 0 10
11 0 11
12 0 12
13 0 13
14 0 14
15 0 15

Figure 8. Factory Pattern: total abstraction dependencies.

Table 6. Avg. abstraction dependencies per class in Factory Pattern.

Tea Number Initial Design Factory Pattern

2 0 0.4
3 0 0.5
4 0 0.571
5 0 0.625
6 0 0.667
7 0 0.7
8 0 0.727
9 0 0.75
10 0 0.769
11 0 0.786
12 0 0.8
13 0 0.813
14 0 0.824
15 0 0.833
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Figure 9. Factory Pattern: avg. abstraction dependencies per class.

4.1.3. Delegation Dependency Relationships in Factory Pattern

The total number of delegation dependency relationships is shown in Table 7, and the
average number of abstraction dependency relationships within each class in the program
is displayed in Table 8. By visualizing the experimental results as line charts, it can be
observed that a significant increase in delegation dependency relationships is caused in
the program by not using the Factory Pattern, as shown in Figures 10 and 11. Moreover,
excessive delegation dependency relationships may lead to higher program coupling,
making modifications and extensions more challenging.

Table 7. Total delegation dependencies in Factory Pattern.

Tea Number Initial Design Factory Pattern

2 16 9
3 24 10
4 32 11
5 40 12
6 48 13
7 56 14
8 64 15
9 72 16
10 80 17
11 88 18
12 96 19
13 104 20
14 112 21
15 120 22

Figure 10. Factory Pattern: total delegation dependencies.
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Table 8. Avg. delegation dependencies per class in Factory Pattern.

Tea Number Initial Design Factory Pattern

2 5.333 1.8
3 6 1.667
4 6.4 1.571
5 6.667 1.5
6 6.857 1.444
7 7 1.4
8 7.111 1.364
9 7.2 1.333
10 7.272 1.308
11 7.333 1.286
12 7.385 1.267
13 7.428 1.25
14 7.467 1.235
15 7.5 1.222

Figure 11. Factory Pattern: avg. delegation dependencies per class.

4.2. Decorator Pattern

For the experiment involving the Decorator Pattern, this study designed a pizza-
ordering system calculating the corresponding price based on the selected topping as
an example, with its program design illustrated previously in Figure 4a. There are two
toppings available, Cheese and Egg, which results in four different combinations and
their corresponding prices: Classic, Cheese, Egg, or Cheese and Egg. However, when the
restaurant decides to add a third topping, the number of available combinations to choose
from will increase significantly, leading to an overly large and excessively complex system,
as shown in Figure 4c. This issue can be improved by using the Decorator Pattern. Treating
various toppings as different decorators can prevent the proliferation of numerous classes
during the initial program evolution, as shown in Figure 4b,d.

The following section presents our experimental results for the dependency relation-
ships (encapsulation, abstraction, and delegation) in the Decorator Pattern.

4.2.1. Encapsulation Dependency Relationships in Decorator Pattern

The total number of encapsulation dependency relationships is shown in Table 9, and
the average number of encapsulation dependency relationships within each class in the
program is displayed in Table 10. By visualizing the experimental results as line charts, it
can be observed that the number of encapsulation dependency relationships in the program
that does not contain the Decorator Pattern is significantly higher than that in the one
with the Decorator Pattern, as shown in Figures 12 and 13. As mentioned in Section 3.1.1,
an excessive number of encapsulation dependency relationships leads to high program
complexity, making modifications and extensions challenging.
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Table 9. Total encapsulation dependencies in Decorator Pattern.

Ingredient Number Initial Design Decorator Pattern

2 20 19
3 36 23
4 68 27
5 132 31
6 260 35
7 516 39
8 1028 43

Figure 12. Decorator Pattern: total encapsulation dependencies.

Table 10. Avg. encapsulation dependencies per class in Decorator Pattern.

Ingredient Number Initial Design Decorator Pattern

2 4 3.8
3 4 3.833
4 4 3.857
5 4 3.875
6 4 3.889
7 4 3.9
8 4 3.909

Figure 13. Decorator Pattern: avg. encapsulation dependencies per class.
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4.2.2. Abstraction Dependency Relationships in Decorator Pattern

The total number of abstraction dependency relationships is shown in Table 11, and the
average number of abstraction dependency relationships within each class in the program
is displayed in Table 12. By visualizing the experimental results as line charts, it can be
observed that the number of abstraction dependency relationships in the program that
does not contain the Decorator Pattern is significantly higher than that in the one with
the Decorator Pattern, as shown in Figures 14 and 15. As mentioned in Section 3.1.1, high
levels of abstraction dependency relationships make program maintenance and manage-
ment challenging.

Table 11. Total abstraction dependencies in Decorator Pattern.

Ingredient Number Initial Design Decorator Pattern

2 12 6
3 24 7
4 48 8
5 96 9
6 192 10
7 384 11
8 768 12

Table 12. Avg. abstraction dependencies per class in Decorator Pattern.

Ingredient Number Initial Design Decorator Pattern

2 2.4 1.2
3 2.667 1.167
4 2.824 1.143
5 2.909 1.125
6 2.954 1.111
7 2.977 1.1
8 2.988 1.091

Figure 14. Decorator Pattern: total abstraction dependencies.
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Figure 15. Decorator Pattern: avg. abstraction dependencies per class.

4.2.3. Delegation Dependency Relationships in Decorator Pattern

The total number of delegation dependency relationships is shown in Table 13, and the
average number of abstraction dependency relationships within each class in the program
is displayed in Table 14. Although programs using the Decorator Pattern have more
delegation dependency relationships, their number still remains within a reasonable range,
as shown in Figures 16 and 17. As mentioned in Section 3.1.1, moderate delegation can make
the program easier to evolve and modify while also enhancing modularity and readability.

Figure 16. Decorator Pattern: total delegation dependencies.

Table 13. Total delegation dependencies in Decorator Pattern.

Ingredient Number Initial Design Decorator Pattern

2 0 4
3 0 6
4 0 8
5 0 10
6 0 12
7 0 14
8 0 16
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Table 14. Avg. delegation dependencies per class in Decorator Pattern.

Ingredient Number Initial Design Decorator Pattern

2 0 0.8
3 0 1
4 0 1.143
5 0 1.25
6 0 1.333
7 0 1.4
8 0 1.455

Figure 17. Decorator Pattern: avg. delegation dependencies per class.

4.3. Observer Pattern

For the experiment involving the Observer Pattern, this study designed a simple
subscription notification system as an example, with its program design illustrated in
Figure 18. When the Youtuber class updates its status, the Subscriber class will be notified,
as shown in Figure 18a. However, the Youtuber class and Subscriber class are highly
coupled in this design, and the Youtuber must know which Subscribers it has in order to
notify them. Furthermore, as the number of Subscribers increases, the program will also
become overly large.

Figure 18. Observer program design.
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This issue can be improved by using the Observer Pattern. The Youtuber can notify
all Subscribers without needing to know the details of individual Subscribers through the
interfaces IYoutuber and ISubscriber. Additionally, when adding new Subscribers, there
is no need for repeated modifications to the existing program, as shown in Figure 18b.
Finally, we depict the scenarios before and after system evolution following the refactoring
in Figure 18c,d.

The following section presents our experimental results for the dependency relation-
ships (encapsulation, abstraction, and delegation) in the Observer Pattern.

4.3.1. Encapsulation Dependency Relationships in Observer Pattern

The total number of encapsulation dependency relationships is shown in Table 15,
and the average number of encapsulation dependency relationships within each class
in the program is displayed in Table 16. By visualizing the experimental results as line
charts, it can be observed that as the program extends into subsequent stages, using the
Observer Pattern allows the refactored program to have a lower number of encapsulation
dependency relationships compared to the initial program. It exhibits better performance
in terms of system complexity, as shown in Figures 19 and 20.

Table 15. Total encapsulation dependencies in Observer Pattern.

Subscriber Number Initial Design Observer Pattern

2 50 60
3 66 67
4 82 74
5 98 81
6 114 88
7 130 95
8 146 102
9 162 109
10 178 116
11 194 123
12 210 130
13 226 137
14 242 144
15 258 151

Figure 19. Observer Pattern: total encapsulation dependencies.
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Table 16. Avg. encapsulation dependencies per class in Observer Pattern.

Subscriber Number Initial Design Observer Pattern

2 16.667 12
3 16.5 11.167
4 16.4 10.571
5 16.333 10.125
6 16.286 9.778
7 16.25 9.5
8 16.222 9.273
9 16.2 9.083
10 16.182 8.923
11 16.167 8.786
12 16.154 8.667
13 16.143 8.563
14 16.133 8.471
15 16.125 8.389

Figure 20. Observer Pattern: avg. encapsulation dependencies per class.

4.3.2. Abstraction Dependency Relationships in Observer Pattern

The total number of abstraction dependency relationships is shown in Table 17, and the
average number of abstraction dependency relationships within each class in the program
is displayed in Table 18. By visualizing the experimental results as line charts, it can be
observed that appropriately elevating the program’s abstraction level not only reduces the
dependence on the program but also makes it easier to extend and maintain, as shown in
Figures 21 and 22.

Figure 21. Observer Pattern: total abstraction dependencies.
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Table 17. Total abstraction dependencies in Observer Pattern.

Subscriber Number Initial Design Observer Pattern

2 0 3
3 0 4
4 0 5
5 0 6
6 0 7
7 0 8
8 0 9
9 0 10
10 0 11
11 0 12
12 0 13
13 0 14
14 0 15
15 0 16

Table 18. Avg. abstraction dependencies per class in Observer Pattern.

Subscriber Number Initial Design Observer Pattern

2 0 0.6
3 0 0.667
4 0 0.714
5 0 0.75
6 0 0.778
7 0 0.8
8 0 0.818
9 0 0.833
10 0 0.846
11 0 0.857
12 0 0.867
13 0 0.875
14 0 0.882
15 0 0.889

Figure 22. Observer Pattern: avg. abstraction dependencies per class.

4.3.3. Delegation Dependency Relationships in Observer Pattern

The total number of delegation dependency relationships is shown in Table 19, and the
average number of abstraction dependency relationships within each class in the program
is displayed in Table 20. Although the use of the Observer Pattern may result in more
delegation dependency relationships during the early stages of system development, as
its evolution progresses, these dependency relationships are still reduced compared to
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the beginning, as shown in Figures 23 and 24. This method can not only maintain the
program’s structure but also enhance its maintainability and scalability.

Table 19. Total delegation dependencies in Observer Pattern.

Subscriber Number Initial Design Observer Pattern

2 14 20
3 19 22
4 24 24
5 29 26
6 34 28
7 39 30
8 44 32
9 49 34
10 54 36
11 59 38
12 64 40
13 69 42
14 74 44
15 79 46

Figure 23. Observer Pattern: total delegation dependencies.

Figure 24. Observer Pattern: avg. delegation dependencies per class.
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Table 20. Avg. delegation dependencies per class in Observer Pattern.

Subscriber Number Initial Design Observer Pattern

2 4.667 4
3 4.75 3.667
4 4.8 3.429
5 4.833 3.25
6 4.857 3.111
7 4.875 3
8 4.889 2.909
9 4.9 2.833
10 4.909 2.769
11 4.917 2.714
12 4.923 2.667
13 4.929 2.625
14 4.933 2.588
15 4.938 2.556

4.4. Threats to Validity

This research opted to examine only a restricted set of design patterns in the experiment
and analyzed the results based on a subset of dependency relationships. Expanding the
scope of the experiment would bolster the assertions. Furthermore, it is essential to select
high-quality studies from the literature as references for the experimental sample programs
and tools to yield more comprehensive results. In summary, there is still ample room for
improvement regarding both credibility and comprehensiveness in this study.

5. Conclusions

The purpose of this study was to analyze the impact of design patterns on system qual-
ity during software system evolution. We employed dependency relationships as a gauge
of program complexity. By designing a tool to compute the number of these dependency re-
lationships, it became possible to analyze the changes in these dependencies throughout the
evolution process. The evaluation of the three frequently utilized design patterns proposed
by the Gang of Four (GoF) as experimental examples led to the following conclusions.

Firstly, the use of design patterns effectively reduces the dependencies generated
during system evolution. By introducing appropriate abstractions and decoupling mecha-
nisms, design patterns help reduce direct inter-module dependencies, thereby reducing
system complexity. This reduction in dependency has a positive impact by enhancing
system scalability and readability, making the system more amenable to modifications
and extensions.

Secondly, design patterns also have a positive impact on system quality. Through
the judicious use of design patterns, the system’s structure becomes clearer and easier
to understand, thus enhancing code readability. Furthermore, design patterns provide a
generic solution that enables developers to more easily comprehend and design system
architectures, thereby increasing system maintainability.

In summary, the results of this study indicate that design patterns play a significant
role in software system evolution. By reducing dependencies and enhancing system quality,
design patterns provide software developers with effective methods and guidelines to
make systems more scalable, readable, and maintainable. In future research, it would be
valuable to explore additional design patterns, conduct in-depth, real-world case studies,
and develop refined methods for measuring dependencies, contributing to a more compre-
hensive understanding of the broader impact and benefits of diverse design patterns in
software evolution.
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