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Abstract: The prediction horizon is a key parameter in model predictive control (MPC), which is
related to the effectiveness and stability of model predictive control. In vehicle control, the selection
of a prediction horizon is influenced by factors such as speed, path curvature, and target point density.
To accommodate varying conditions such as road curvature and vehicle speed, we proposed a control
strategy using the proximal policy optimization (PPO) algorithm to adjust the prediction horizon,
enabling MPC to achieve optimal performance, and called it PPO-MPC. We established a state space
related to the path information and vehicle state, regarded the prediction horizon as actions, and
designed a reward function to optimize the policy and value function. We conducted simulation
verifications at various speeds and compared them with an MPC with fixed prediction horizons. The
simulation demonstrates that the PPO-MPC proposed in this article exhibits strong adaptability and
trajectory tracking capability.

Keywords: trajectory tracking; MPC; prediction horizon; PPO reinforcement

1. Introduction

Nowadays, advancements in autonomous driving technology have led to significant
enhancements in road safety and driving efficiency [1–3]. As a pivotal technology, the
effectiveness of trajectory tracking control directly affects the overall performance and
safety of vehicles during operation [4]. Despite significant progress in autonomous driving
technology, optimizing trajectory tracking control remains a challenging but crucial task [5].
Moreover, as the demand for autonomous vehicles continues to increase, it is crucial to
refine trajectory tracking control algorithms to effectively address complex and various
road scenarios [6,7], achieving a good balance between responsiveness, accuracy, and com-
putational efficiency in dynamic driving environments and ensuring real-time adaptability.

One main method to solve trajectory tracking control problems is model predictive
control (MPC) [7,8]. MPC is a method for solving optimal control problems (OCPs) using
the current state of the controlled system as the initial condition. This method uses a
controlled object model to predict the controlled variable’s response [9,10]. Solving an
OCP involves finding a sequence of control inputs that minimize the objective function
within the specified prediction horizons. Simultaneously, it maintains feasibility while the
trajectory stays within the defined limitations. The linear time-varying model predictive
control (LTV-MPC) proposed by [11,12] is an MPC based on the discrete linear state space
model, which can reduce the amount of calculation and improve efficiency. The LPV-MPC
presented in [13] takes into account future inputs and scheduling parameters, predicting
future outputs accordingly. Ref. [14] presents a customized genetic algorithm for real-time
optimization of a nonlinear model predictive control (NMPC) path-tracking controller,
specifically designed for lower vehicle speeds.

With increasing computing power, sensing, and communication capabilities and
advances in the field of machine learning, automating controller design and adaptation
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based on data collected during operations are being studied [15], such as by improving
performance, facilitating deployment, and reducing the need for manual controller tuning.
In refs. [16–18], Gaussian Process Regression and neural networks were used as predictive
models of controlled systems, which were prediction models adaptively adjusted in a
data-driven manner to improve control accuracy and reduce computing costs. The concept
of using reinforcement learning (RL) to learn MPC cost function parameters is introduced
in ref. [19]. Ref. [20] proposes a weights-varying MPC using a deep reinforcement learning
(DRL) algorithm to adjust cost function weights in different situations. Ref. [21] proposed
a novel approach limiting DRL actions within a safe learning space, and the proposed
DRL algorithm can automatically learn context-dependent optimal parameter sets and
dynamically adapt for a weights-varying MPC. Ref. [22] has introduced a novel control
algorithm based around an event-triggered MPC, using RL with a configurable objective to
automatically tune the control algorithm’s meta-parameters: the prediction horizon and
the re-computation (triggering) problem. In ref. [23], a RLMPC scheme was introduced
integrating MPC and RL through policy iteration (PI), where MPC is a policy generator
and the RL technique is employed to evaluate the policy. This RLMPC scheme has great
potential in reducing computational burden.

Prediction horizon is the key parameter affecting both performance and computational
burden of the control system in MPC. It denotes the time range used to predict the system’s
future behavior during the control process [24]. Shorter horizons offer better control but less
stability, while longer horizons provide stability but should not be excessively long [25]. In
ref. [26], a dual-mode receding horizon controller eliminates the danger of interference that
is always present in nonlinear optimal control algorithms and greatly reduces the amount
of online calculation required. Two adaptive prediction horizons for MPC were proposed
in ref. [27]. One is based on heuristics, which is idealized but not feasible, and the other is
more practical and uses iterative deepening, where each iteration will check stability criteria
and find out the minimum horizon of stability. Ref. [28] adjusted the prediction horizon
range to a positive integral discrete time variable and introduced an NMPC to achieve
velocity control, incorporating a self-correction method for the prediction horizons. Studies
in refs. [29,30] proposed an event-triggered MPC, which dynamically adjusts the prediction
horizon using event-triggering mechanisms to facilitate the optimization process. A finite
control set MPC with an adaptive prediction horizon is proposed [31], and neural networks
are trained to calculate the optimal prediction horizon at runtime. Ref. [9] proposed an
RLMPC which learns the optimal prediction horizon length of an MPC scheme using RL.

Proximal policy optimization (PPO) is a policy-based RL algorithm, clipping the
probability ratio to modify the agent’s objective and constraining the magnitude of policy
change at each step to enhance training stability. In this paper, we propose an adaptive
MPC, combining the PPO algorithm and MPC to adjust the prediction horizon. To ac-
commodate dynamic conditions such as road curvature and vehicle speed, we leverage
the PPO algorithm to adaptively adjust the prediction horizon within the MPC frame-
work. This integration empowers MPC to achieve optimal performance under varying
environmental circumstances.

Unlike other research that combines reinforcement learning with MPC for autonomous
driving—such as using RL for planning, MPC for control, and RL to adjust MPC weight
parameters—our proposed PPO-MPC deeply considers the impact of prediction horizon
selection on control performance, offering a dynamic prediction horizon that enhances
MPC’s adaptability. And the PPO-MPC strategy we propose enables the vehicle to achieve
adaptive tracking control at different speeds and curvatures.
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2. Methodology

This section outlines the methodology of our proposed PPO-MPC framework, encom-
passing the establishment of the vehicle dynamics model, the design of the MPC strategy,
and the adaptation of prediction horizons within the PPO algorithm. Specifically, we
introduce a novel approach called “prediction horizon-varying model predictive control”
to optimize the prediction horizon for MPC. This involves formulating a hybrid PPO-MPC
prediction horizon optimization problem. To improve the adaptive performance of au-
tonomous driving trajectory tracking control, we use the PPO algorithm to dynamically
adjust the MPC prediction horizon, exploring the intricate relationship between the pre-
diction horizon and variables such as vehicle speed, lateral deviation, and curvature. A
visual representation of the architectural concept of PPO-MPC is provided in Figure 1.
Figure 1 shows that the vehicle dynamics model is used to analyze the vehicle’s motion
state; the lateral error model and the longitudinal acceleration model are coupled, with the
front wheel steering angle and acceleration serving as control variables. And the model
predictive control algorithm is used to solve the problem. In this structure, a state space
related to the MPC controller and vehicle motion status is established, and the prediction
horizon is set as the action space. Based on the PPO algorithm, the optimal prediction
horizon is dynamically adjusted through iterative training. In addition, the speed control
strategy can be interpreted as calculating the desired acceleration through model predic-
tive control, switching the driving mode through the desired acceleration corresponding
control strategy and then controlling the vehicle’s accelerator opening and brake pressure
to achieve speed control.
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2.1. Vehicle Dynamic Model

As shown in Figure 2, this study considers the vehicle dynamics model of both
longitudinal and lateral motion.
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2.1.1. Lateral Dynamics

In this paper, the model for lateral movement is constructed on the foundational
principles of the bicycle model. This approach presumes symmetry in the steering angles
on both the left and right sides, which effectively reduces the complexity of the vehicle’s
dynamic model to that of a two-wheeled bicycle. Leveraging Newton’s second law of
motion, simplified Equations (1a)–(1c) can be derived to quantify the lateral force exerted
by the vehicle.

m
..
y = m

.
x

..
φ + 2Fx f + 2Fxr (1a)

m
..
x = m

.
y

.
φ + 2Fy f + 2Fyr (1b)

Iz
..
φ = 2l f Fy f − 2lrFyr (1c)

where m is the vehicle mass and
.
x and

.
y are the longitudinal and lateral velocity, respectively.

..
x and

..
y denote the longitudinal and lateral acceleration, respectively. Fy f and Fyr are

the lateral tire forces at the front and the rear wheels, respectively; Fx f and Fxr are the
longitudinal tire forces at the front and the rear wheels, respectively;

.
φ is the yaw rate; Iz

denotes the yaw inertia of the vehicle; and l f and lr are the distances from the front and
rear axles to the center of gravity, respectively.

Considering the tire turning characteristics, Equations (2a) and (2b) represent the
lateral force of the front and rear tires at a small sideslip angle:

Fy f = 2C f a f (2a)

Fyr = 2Crar (2b)

where C f and Cr are the cornering stiffness of the front tire and rear tire, respectively; α f is
the sideslip angle of the front tire; and αr is the sideslip angle of the rear tire.

Given that the angles of the two front wheels of the vehicle are equal, the vehicle’s
lateral acceleration should meet the criteria for the small angle assumption. In this case, the
subsequent approximate relationship can be utilized:

a f = δ f −
l f

.
φ +

.
y

.
x

(3a)

ar =
b

.
φ − .

y
.
x

(3b)
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Upon substituting Equations (2a), (2b) and Equations (3a), (3b) into Equations (1a)–(1c),
the resulting expressions are obtained:

m
..
y = −mVx

.
φ + 2

[
Cc f (δ f −

.
y + l f

.
φ

.
x

) + Ccr
lr

.
φ − .

y
.
x

]
(4a)

m
..
x = m

.
y

.
φ + 2

[
Cc f (δ f −

.
y + l f

.
φ

.
x

) + Cl f S f + ClrS f

]
(4b)

Iz
..
φ = 2

[
l f Cc f (d f −

.
y + l f

.
φ

.
x

)− lrCcr
lr

.
φ − .

y
.
x

]
(4c)

2.1.2. Longitudinal Dynamics

Vehicle longitudinal dynamics studies the motion and mechanical characteristics of
a vehicle in the longitudinal direction (i.e., the direction of the vehicle’s forward motion).
In longitudinal dynamics, the vehicle’s acceleration, braking, traction, resistance, and
other factors are primarily considered. Newton’s second law provides a framework for
understanding these forces and their impact on motion. Considering the computational
complexity, the effect of partial resistance is not taken into account.

m
..
x = Ft − Fw − Rx (5)

where Ft, Fw, and Rx respectively represent driving force, air resistance, and rolling resis-
tance. The expression for air resistance Fw is as follows.

Fw = 1
2 ρairCd A f νx

2 (6)

where ρair represents air density. Cd stands for the drag coefficient. A f denotes the frontal
area of the vehicle.

Torque is based on the sum of the forces multiplied by the wheel radius; according
to Gillespie’s “Fundamentals of Vehicle Dynamics” [32], we can obtain the calculation of
torque in the context of vehicle dynamics, denoted as Equation (7).

Tt = rtire(m
..
x + 1

2 ρairCd A f νx
2 + Rx) (7)

where Tt is the driving torque and rtire represents the effective tire radius.
Taking into account the transmission ratio and motor efficiency, the relationship

between driving force and motor torque is:

Tm =
rtire(m

..
x + 1

2 ρairCd A f νx
2 + Rx)

i0ηt
(8)

where Tm denotes the motor torque, i0 is the transmission ratio, and ηt is the motor efficiency.
The braking force can be expressed as:

Fd = −mades −
1
2

ρairCd A f v2
x − Rx (9)

Considering that the braking and driving modes cannot work at the same time, and
the braking and driving modes cannot be switched frequently, the driving and braking
switching strategy of the vehicle is designed as:

mode =


1(driving), ades ⩾ athre + 0.1 m/s2;
0(nochange), athre − 0.1 m/s2 < ades < athre + 0.1 m/s2;
−1(braking), ades ⩽ athre − 0.1 m/s2

(10)
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2.2. MPC System Definition

MPC is a control system approach employing a predictive model. In each discrete
sampling time, MPC solves an open-loop OCP over a predetermined finite horizon. This
is an iterative process of predicting the future system behavior within the future horizon
through the plant’s predictive model. The current state of the system is considered the
initial condition for each optimization cycle. An optimizer solves the optimization problem
and returns a control sequence for the prediction horizon. The plant only adopts the initial
control in the optimal sequence, and on subsequent samples, the initial control is used to
solve the system optimization problem again [33]. This refers to the “receding horizon”
principle [34]. Indeed, the horizon recedes as time passes. A key feature of MPC is its
ability to integrate hard constraints on control variables and states during the design phase.

In this study, we divide longitudinal control into two parts: upper-level and lower-
level control. Upper-level control uses MPC, producing acceleration as its output. Lower-
level control is deduced using Equation (7), which establishes a throttle and brake con-
trol map.

According to Ref. [35], the longitudinal accelerating system is modeled as a linear
first-order system; the relationship between the desired vehicle acceleration ades and the
actual acceleration is as follows in Equation (11).

..
x =

K
τs + 1

ades (11)

where K = 1 is the gain coefficient, τ is the delay time, and τ = 0.5.
The longitudinal accelerating and lateral steering combined system model of the

vehicle can be described as Equation (12).

d
dt



..
x
.
x
y
.
y
φ
.
φ

 =



− 1
τ 0 0 0 0 0

1 0 0 0 0 0
0 0 0 1 0 0

0 0 0 − 2C f +2Cr

m
.
x

0 − .
x − 2l f C f −2lrCr

m
.
x

0 0 0 0 0 1

0 0 0 − 2l f C f −2lrCr

Iz
.
x

0 − 2l f
2C f +2lr2Cr

Iz
.
x





..
x
.
x
y
.
y
φ
.
φ

+



1
τ 0
0 0
0 0

0
2C f
m

0 0

0
2l f C f

Iz


[

ades
δ f

]
(12)

The full system model consists of the longitudinal and lateral model. Equation (13)
represents the system’s state space expression,{ .

ξ = Aξ + Bu
y(ξ) = Cξ

(13)

where A =



− 1
τ 0 0 0 0 0

1 0 0 0 0 0
0 0 0 1 0 0

0 0 0 − 2C f +2Cr

m
.
x

0 − .
x − 2l f C f −2lrCr

m
.
x

0 0 0 0 0 1

0 0 0 − 2l f C f −2lrCr

Iz
.
x

0 − 2l f
2C f +2lr2Cr

Iz
.
x


, B =



1
τ 0
0 0
0 0

0
2C f
m

0 0

0
2l f C f

Iz


,

C =



0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

.

Where ξ =
[ ..
x

.
x e1

.
e1 e2

.
e2
]T is the state vector and u = [ades, δ]T is the control

input vector of the vehicle model.
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Equation (13) can be linearized and discretized as follows:{
x(k + 1) = (I + T1 A)x(k) + T1Bu(k)

h(k) = Cx(k)
(14)

where T1 denotes the sample time; I is the identity matrix; and A, B, and C are matrices
of coefficients.

Based on the known vehicle model and the deviation between the current measure-
ment value and the expected value, the MPC controller predicts the output of the system
within Np. By solving the objective function and optimizing the output, a control quan-
tity array in Nc is obtained, and control elements in the first-time interval ∆t are used
as the output quantity. This process is repeated to achieve vehicle tracking along the
desired trajectory.

According to the control requirements, the basic principle of MPC is to minimize the per-
formance evaluation function while satisfying the control constraints. Equations (15a)–(15c)
represent the objective function.

min
∆u(k)

J(η(k), ∆u(k)) (15a)

J
(
η(k), u(k)

)
= J1 + J2 + ρε2 (15b)

J1 =
Np

∑
i=1

∥η(k + i | k)− ηre f (k + i)∥2
Q, J2 =

Nc−1

∑
i=0

∥∆u(k + i | k)∥2
R (15c)

where J1 reflects the system’s ability to track reference trajectory within prediction horizon
Np. This reflects the system’s requirement for a smooth change in the control increment
within control horizon Nc. Q and R are the weight matrices, ρ is the weight coefficient, ε is
the relaxation factor, and ∆u is the control input increment.

Considering safety constraints and vehicle actuator constraints, the constraint condi-
tions can be expressed as Equation (16).

s.t.


umin ≤ u(k + i|k) ≤ umax, i = 0, 1, · · · , Nc − 1

∆umin ≤ ∆u(k + i|k) ≤ ∆umax, i = 0, 1, · · · , Nc − 1
ηmin ≤ η(k + i

∣∣k) ≤ ηmax, i = 1, 2, · · · , Np

(16)

2.3. PPO Horizon Policy
2.3.1. Proximal Policy Optimization (PPO)

The PPO algorithm is an online policy gradient RL algorithm which can deal with
problems in continuous state–action spaces. This DRL algorithm learns optimal strategies
in interaction with the environment and uses stochastic gradient ascension to optimize
the agent objective function [36]. To achieve high cumulative rewards, the PPO algorithm
seeks optimal decisions in complex environments by constructing and optimizing policies,
generally represented by neural networks. The policy, a parameterized function, maps
states to probability distributions of actions. To improve the policy, PPO uses proximal
policy optimization and maximizes the objective function. The objective function comprises
a loss term for current policy updates and a KL divergence term, ensuring stability by
controlling the magnitude of policy updates.

In PPO, the problem is represented as a Markov Decision Process (MDP), which is
defined as (S, A, T2, R, γ). S represents the state space, which encompasses the complete
set of potential states that the environment can occupy. And A represents the action space,
which contains a collection of all possible actions. T2 represents the state transition function,
which defines the probability distribution of the environment transitioning to the next state.
R is the reward function, which is specified in the given state and represents an immediate
reward. γ is the discount factor, which determines the importance of future rewards. The
pseudocode of PPO is shown in Algorithm 1.
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The goal of PPO is to maximize the anticipated total reward while limiting changes
in the policy during each update. In this study, Equation (17) is the objective function
expression of PPO.

LPPO(θ) = E
[
min

(
rt2(θ) · Ât2 , clip(rt2(θ), 1 − ϵ, 1 + ϵ) · Ât2

)]
(17)

where rt2(θ) denotes the ratio of the new strategy to the old strategy and Ât indicates the
advantage function.

Algorithm 1 PPO algorithm

For iteration i = 1 : N do
For episode j = 1 : M do

Initialize the weight parameters of the policy network (actor) and value function network
(critic). The initial state is determined by the discount factor γ and the greedy factor g;
Collect experiences D = {(s, a, r, s′) · · ·};
For optimization step k = 1 : K do

Calculate the expected advantage function of the current strategy A(s, a; θ);
Calculate the advantage function A(s, a; θ)− r for each experience (s, a, r, s′);
Update the policy θ;
Update proximal policy πθ ;

End
End

End for

The framework of PPO-MPC is shown in Figure 3, which includes the environment
and PPO network. The state given in the environment is input into the PPO network for
learning and training. The state quantity is scored through the critic network, and then the
appropriate action is selected.
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Figure 3. PPO-MPC framework.

2.3.2. Action and State Space

Considering that the prediction horizon is related to historical trajectory informa-
tion and road curvature, a state space S(t) = [c(t), v(t), δ(t), acc(t), e(t), cos t(t)] was es-
tablished in this section. c(t), v(t), δ(t), acc(t), e(t), cos t(t) represent the curvature of the
reference trajectory, velocity, steering angle, acceleration, lateral error, and cost of the MPC
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system at time t, respectively. Our strategy trains a PPO policy πN
θ to determine Np for

MPC. At each time step, the system’s state is measured, and the policy outputs Np is used
to solve the MPC problem.

The prediction horizon, denoted as Np, is defined as a positive integer representing
the maximum value Nmax of the prediction horizon. In order to adjust the output of the
PPO policy, we employ linear scaling. Specifically, we limit the output to [−1, 1], which is
associated with the hyperbolic tangent (tanh) function, to a new range of 1 to Nmax. This
adjustment ensures that the policy output aligns with the requirements of the MPC scheme.

2.3.3. Reward Function

The policy and value function in PPO are learned directly from the reward signal.
Thus, an appropriate reward function plays a crucial role in enabling the neural network in
PPO to effectively converge towards the optimal solution. Our designed reward function
aims to strike a balance between promoting smooth driving and maintaining an acceptable
range of tracking deviation. Tracking error is closely related to control performance, and
limiting the control output within the constraint range is related to the stability of MPC
control. To coordinate MPC and PPO to achieve optimal performance, we design a reward
function that takes into account tracking error and control output, and the reward function
is denoted as follows:

R(t) = w1e−(λ1|e1|+λ2|e2|+λ3|e3|) − w2H1 − w3H2 (18)

where e is a natural index, e1 is the lateral tracking deviation, e2 is the longitudinal velocity
deviation, and e3 is the relative yaw angle error. H1 and H2 are penalty terms. H1 = 1
when either the steering angle or acceleration exceeds the constraint; if both exceed the
constraint, H1 = 2, else H1 = 0. H2 = 1 when the lateral tracking deviation is greater than
0.15, else H2 = 0. λ1, λ2, and λ3 are the weights of the tracking error, respectively, and w1,
w2, and w3 are the weights of each reward, respectively. Equation (18) adopts the form of
an exponential function, which makes the gradient change more drastic, which is beneficial
to the training process. The reward increases when the total tracking error decreases, and
when errors are 0, the instant reward can be obtained by corresponding points.

3. Simulation and Training

In this section, to verify the validity of the strategy we proposed, we conduct training
and verification at various speeds using the MATLAB/Simulink simulation platform. In
addition, trajectory tracking comparisons are conducted between the PPO-MPC algorithm
proposed in this article and MPC with fixed horizons. The vehicle parameters used in the
simulation are outlined in Table 1.

Table 1. Vehicle parameters.

Symbol Description Value [Units]

m Vehicle mass 1600 [kg]
Iz Yaw inertia of vehicle 2875 [kg·m2]
C f Cornering stiffness of front tire 12 × 103 [N/rad]
Cr Cornering stiffness of rear tire 11 × 103 [N/rad]
l f Distance from rear axle to center of gravity 1.4 m
lr Distance from rear axle to center of gravity 1.6 m

The PPO algorithm involves a set of hyperparameters that significantly influence the
algorithm’s performance and training stability. The hyperparameter settings in reinforce-
ment learning must be customized to the specific problem and environment to achieve
optimal performance. In this study, the agent collects experiences based on the training set
and stops when it reaches a 500-steps experience horizon or the terminal episode. Then it
is trained for three epochs using mini-batches of 128 experiences. The objective function
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clip factor is set to 0.2 to enhance the stability of training, while the discount factor is set to
0.998 to promote long-term rewards. The Generalized Advantage Estimate (GAE) method
reduces the variance in critic output with a GAE factor of 0.95.

Based on the aforementioned simulation environment, training was conducted for
up to 10,000 episodes, with each episode spanning up to 500 steps. Figure 4 depicts the
training results. The light blue line represents the cumulative reward obtained by the agent
at the end of each round; the thick line describes the average reward value of all rounds
during the training process. In the early stages of training, PPO reinforcement learning
explores various actions through interactions with the environment to achieve the overall
optimal outcome. In this experiment, after 300 rounds, the model finally converged stably,
showing good training effects.
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4. Results and Discussion

PPO-MPC is simulated and verified at different speeds, and its trajectory tracking
performance is analyzed in this section. In addition, PPO-MPC was compared with MPC
under fixed prediction horizons at different speeds, and their performance was discussed.
The pre-calculated reference path is shown in Figure 5, with a total length of 12,000 m.
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4.1. Performance of Trajectory Tracking Using PPO-MPC

In this section, simulation verification of PPO-MPC was performed at various velocities
(v = 10 m/s, v = 15 m/s, and v = 20 m/s, respectively), and an analysis of its trajectory
tracking performance during operation was conducted.

Figures 6–8 illustrate the vehicle control results of our proposed control strategy at
v = 10 m/s, v = 15 m/s, and v = 20 m/s. The PPO-MPC controller showed excellent
performance by effectively adjusting the acceleration and steering angle output within the
predefined constraint range, except for some fluctuations at the beginning of the simulation
in Figure 8, which quickly stabilized. Figures 6a, 7a and 8a reveal the vehicle’s lateral
deviation changes. Large lateral errors may occur where the curvature suddenly changes,
and otherwise remain near 0, indicating that the control system has a good ability to keep
the vehicle close to the desired trajectory. Figures 6b, 7b and 8b illustrate heading angle
error changes, with the maximum value not exceeding 0.05. This shows that the vehicle has
good performance in tracking the expected direction. Changes in the yaw rate, as depicted
in Figures 6c, 7c and 8c, generally demonstrate low values, suggesting smooth steering
operations, mitigated risk of abrupt rolling or sharp turning, and enhanced driving stability.
Moreover, Figures 6d, 7d and 8d illustrate speed error changes; even at maximum speed,
the speed error for stable operation always remains small, with the error limited within
0.2 m/s.

From the above analysis, it can be concluded that the PPO-MPC controller shows
good performance at various speeds. And PPO-MPC effectively maintains the trajectory,
direction, and stability of the vehicle, indicating that the strategy has good adaptability in
different scenarios.
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4.2. Performance Comparison of the Trajectory Tracking Using PPO-MPC and Model Predictive
Control

To further illustrate the advantages of the PPO-MPC strategy, we conducted a compar-
ison between PPO-MPC and the conventional MPC strategy with fixed prediction horizons.
In the simulated design, we conducted a comparison between PPO-MPC and MPC with
fixed horizons of 10, 20, and 30 and the control horizon set to 3.

Comparisons of the simulation data are shown in Figures 9–11. As shown in Figure 11,
it is easy to see that MPC with a fixed range of 10 fails to converge and is unstable at
v = 20 m/s. Figures 9a, 10a and 11a clearly show that compared with MPC with static
prediction horizons, PPO-MPC generally has better lateral deviation and exhibits superior
trajectory tracking capabilities. The maximal lateral deviation of MPC may even be twice
that of PPO-MPC, suggesting that the MPC with fixed prediction horizons may be subject
to have greater lateral disturbance or challenges under certain circumstances. Figures 9b,
10b and 11b show that the heading error of PPO-MPC is almost the same as MPC with
static prediction horizons at v = 10 m/s, and the PPO-MPC heading error at v = 15 m/s is
smaller. Moreover, although PPO-MPC jittered at the beginning at v = 20 m/s, it quickly
stabilized and resulted in a smaller heading error. Figures 9c, 10c and 11c show that, except
for the jitter that occurs at the beginning of the simulation when v = 20 m/s, the overall
performance of the PPO-MPC speed error is smaller.
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According to [37], we introduce an index which quantitatively measures the tracking
performance and is achieved as

Qtrack_i =
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(
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)2

T/Ts − 1
(19)

where T represents the simulation duration time and Ts represents the controller sampling
step. The tracking performance indexes of simulations are provided in Table 2.

Table 2. Tracking accuracy indexes of simulations.

Velocity v=10 m/s v=15 m/s v=20 m/s

Index Qtr−lat Qtr_yaw Qtr_v Qtr−lat Qtr_yaw Qtr_v Qtr−lat Qtr_yaw Qtr_v

PPO-MPC 0.0022 0.0019 0.0749 0.0107 0.0004 0.0339 0.0343 0.0035 0.0536
Np = 10 0.0036 0.0019 0.0763 0.0119 0.0005 0.0345 0.0814 0.0585 1.7936
Np = 20 0.0043 0.0020 0.0826 0.0163 0.0006 0.0374 0.0415 0.0036 0.0436
Np = 30 0.0057 0.0020 0.0843 0.0221 0.0006 0.0474 0.0443 0.0035 0.0443

Qtr− lat, Qtr_yaw, and Qtr_v denote the lateral, heading, and speed tracking accuracy,
respectively. While ensuring dynamic stability, it is not difficult to find that, compared
with MPC, the PPO-MPC tracking accuracy is improved, except that the speed tracking
accuracy of PPO-MPC at v = 20 m/s is smaller than MPC, with Np = 30. Analysis shows
the superiority of the proposed PPO-MPC path-tracking controller.

5. Conclusions

In this paper, we present a novel PPO-MPC strategy, which integrates proximal policy
optimization (PPO) with model predictive control (MPC), using the PPO reinforcement
learning algorithm to dynamically adapt the prediction horizon of MPC. The proposed
strategy was evaluated and validated using the MATLAB/Simulink simulation environ-
ment across three distinct operating speeds. Additionally, comparations were conducted
against conventional MPC employing static prediction horizons under analogous condi-
tions. From the analysis of simulation results, it can be seen that the PPO-MPC framework
is better than the traditional model predictive controller with a fixed prediction range, and
has superior tracking performance and robustness.
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In the future, PPO-MPC can be explored through multi-objective optimization meth-
ods. Co-optimizing the prediction horizon with other key MPC parameters (such as control
weights and constraints) is expected to achieve more powerful and efficient vehicle control
strategies. And it may achieve adaptive trajectory control in various scenarios. In addition,
adding the RL differential prediction model to the MPC prediction model to achieve better
adaptive control is also a major idea for improving automatic driving control performance.
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