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Abstract: In this paper, a fully distributed strategy for the economic dispatch problem (EDP) in the
smart grid is proposed. The economic dispatch model considers both traditional thermal generators
and wind turbines (WTs), integrating generation costs, carbon trading expenses, and the expected
costs associated with the unpredictability of wind power. The EDP is transformed into an equivalent
optimization problem with only an equality constraint and thus can be solved by an alternating-
direction method of multipliers (ADMM). Then, to tackle this problem in a distributed manner, the
outer-layer framework of the proposed strategy adopts a parallel ADMM, where different variables
can be calculated simultaneously. And the inner-layer framework adopts a finite-step consensus
algorithm. Convergence to the optimal solution is achieved within a finite number of communication
iterations, which depends on the scale of the communication network. In addition, leveraging local
and neighbor information, a distributed algorithm is designed to compute the eigenvalues of the
Laplacian matrix essential for the finite-step algorithm. Finally, several numerical examples are
presented to verify the correctness and effectiveness of the proposed strategy.

Keywords: distributed economic dispatch; parallel ADMM; finite-step consensus; random wind power

1. Introduction

Economic dispatch (ED) is a well-studied and critical problem in power system re-
search, involving the efficient allocation of power among generators while satisfying total
load demand and generator constraints. Various algorithms have been proposed to address
the economic dispatch problem (EDP), including dynamic programming methods [1–3],
heuristic algorithms such as particle swarm optimization [4–6], genetic algorithms [7,8],
and deep-learning-based algorithms [9–11]. However, these methods traditionally operate
in a centralized manner, gathering global information from all generators for optimization
at a central node. As noted in previous studies, this centralized approach can be computa-
tionally and communicatively intensive, particularly as power systems grow larger, and
may not align with the dynamic needs of modern smart grid systems. The reconfiguration
process for new or decommissioned generators under such centralized optimization may
also necessitate redesign.

To address the mentioned drawbacks, recent research has introduced distributed
algorithms [12–20]. The multi-agent consensus algorithm is a typical distributed algorithm.
Many researchers apply it to the optimal scheduling of power systems. The basic idea is
to relax the power balance constraints using the Lagrange multiplier method and treat
the incremental cost as a consensus variable. By using the consensus algorithm, the
incremental costs of each generator agent converge to a consensus value. Then, based on
the incremental costs obtained, the output power of generators that satisfies operational
constraints is determined. For example, in [21], a consensus-based algorithm is proposed to
solve economic dispatch problems and calculate the supply-demand power deviation using
virtual nodes. In [22], using point-to-point communication, a consensus-based algorithm
is presented to solve economic dispatch problems involving flexible loads. In [23], a
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“consensus + innovations” method is proposed to handle supply-demand balance global
equality constraints and solve the energy management problems with flexible loads and
energy storage units. A double-layer distributed control strategy based on the consensus
algorithm is proposed in [24], effectively addressing distributed energy optimal dispatch
problems. These algorithms aim to partition the central optimization process into multiple
localized optimizations. By enabling communication among neighboring agents, the global
objective cost function can be minimized. Distributed algorithms offer distinct advantages
over centralized approaches, including: (1) reduced computational and communication
costs; (2) compatibility with the plug-and-play nature of smart grid systems for enhanced
flexibility in algorithm design; (3) resilience against single-point failures.

Recently, the integration of renewable energy generators into power systems has
emerged as a strategic response to energy and environmental challenges [25–28]. Among
the various types of renewable energy sources, wind turbines (WTs) have gained promi-
nence due to the abundant availability and eco-friendly nature of wind energy, coupled
with the advanced maturity of turbine technologies. Consequently, the EDP necessitates
a reformulation that encompasses not only traditional generators (TGs) but also includes
renewable energy sources like WTs. However, the intermittent and stochastic nature of
wind speeds introduces uncertainty into wind power output, thus posing a challenge in
designing efficient distributed economic dispatch strategies. The integration of energy
storage devices within wind farms enables the bridging of the gap between scheduled
and actual wind power outputs, thereby allowing for the scheduling of stochastic wind
power akin to TGs. Addressing this scenario, a deterministic model proposed in [29] was
employed to define the cost function associated with wind power, incorporating both
underestimation and overestimation costs related to the available wind power.

The alternating direction method of multipliers (ADMM) is an optimization algorithm
that combines the advantages of dual decomposition and augmented Lagrangian methods.
Many scholars apply the ADMM algorithm in power systems, especially in the area of
distributed optimal dispatch. In [30], a distributed ADMM algorithm is proposed to solve
the economic dispatch problem of isolated microgrids, taking into account non-quadratic
cost convex functions. In [31], the environmental cost term in the objective function is
considered in a non-quadratic form, and time-coupled ramp constraints are included
in the constraints. The optimal scheduling problem is solved in a distributed manner
using the ADMM algorithm. Flexible loads and line losses are considered in [32]. A
strategy combining the consensus algorithm and the serial ADMM algorithm is proposed
to achieve a distributed solution to dynamic economic dispatch problems. In [33], an
ADMM-based distributed economic dispatch strategy considering time delays and packet
drops is proposed. This approach can address the EDP with local constraints of generators
and nonquadratic convex cost functions.

However, few studies consider the communication times, which are associated with
the iterations of the algorithm. The above ADMM algorithms typically demand a consid-
erable amount of time and communications to achieve convergence, so the compute cost
and communication cost are relatively high. In this paper, for EDP with random wind
power, a parallel and finite-step consensus-based ADMM algorithm is proposed. The main
contributions of this paper are as follows:

(1) An economic dispatch model considering random wind power is established. A
fully distributed strategy combining the parallel ADMM algorithm and a finite-step
consensus approach is proposed.

(2) The outer layer framework of the strategy adopts a parallel ADMM algorithm, where
different variables can be iteratively calculated simultaneously to improve computa-
tional efficiency.

(3) The inner layer of the strategy adopts a finite-step consensus algorithm, which does
not require a central controller. Agents in the network communicate with each other
and perform local computations. The algorithm converges to the optimal value after a



Electronics 2024, 13, 1437 3 of 17

finite number of communication iterations. The number of communication iterations
depends on the size of the network.

(4) The finite-step consensus algorithm in the inner layer requires agents to obtain in-
formation about the eigenvalues of the communication network Laplacian matrix.
A distributed algorithm is designed to calculate the eigenvalues based on local and
neighbor information.

The rest of this paper is organized as follows: Section 2 introduces the graph theory
and describes the EDP model with random wind power. A fully distributed parallel and
finite-step consensus-based algorithm is proposed in Section 3. Simulation cases are carried
out in Section 4 to demonstrate the effectiveness of the proposed method. Finally, Section 5
concludes this paper.

2. Problem Formulation
2.1. Graph Theory

G = (V, E) describes the network topology of a communication graph, where
V = {1, 2, . . . , n} denotes the set of communication nodes and E ⊆ V × V denotes commu-
nication links. The graph G here refers to an undirected graph with no graph loops. The
adjacency matrix A = {aij}n×n describes the connectivity between communication nodes.
The diagonal element aii = 0, and aij = 1 if nodes i and j are connected; otherwise, aij = 0.
Ni = {Vj ∈ V | (Vj, Vi) ∈ E} denotes the neighbor nodes of node i. |Ni| is the number of
neighbor nodes. di = ∑

j∈Ni

aij represents the degree of node i. The corresponding Laplacian

matrix L is given as [34] lii = ∑
i ̸=j

aij for diagonal elements

lij = −aij for off-diagonal elements
(1)

where lij denotes the element of the ith row and jth column of L. The Laplancian matrix L
of an undirected graph with n nodes has n eigenvalues, including one zero eigenvalue, and
the others are all positive, i.e., λ1 = 0, 0 < λ2 ≤ · · · ≤ λn.

2.2. Economic Dispatch Model with Random Wind Power

In this section, an economic dispatch model with random wind power is proposed. For
traditional generators, the cost function is usually modeled as the following quadratic function:

Ci(Pi) = aiP2
i + biPi + ci (2)

where Pi denotes the output power of the ith generator. ai, bi, and ci are the corresponding
cost coefficients.

In addition to considering the generation costs, it is also important to consider the
environmental benefits. To account for the carbon trading costs. Traditional power plants
need to pay a certain penalty for greenhouse gas emissions. The carbon trading cost
function is defined as follows:

Gi(Pi) = Uc ×
(
Gr,i(Pi)− Gq,i(Pi)

)
(3)

where Uc denotes the carbon trading price. Gr,i(Pi) and Gq,i(Pi) represent the actual carbon
emissions and the carbon emission standard quota of the power plant, respectively. The
expressions for Gr,i(Pi) and Gq,i(Pi) are defined as follows:

Gr,i(Pi) = αiP2
i + βiPi + γi (4)

Gq,i(Pi) = δPi (5)
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where αi, βi, and γi are the carbon emission coefficients of the generator i, respectively. δ
represents the standard carbon emission coefficient.

Due to the randomness of wind power output, there is often a deviation between the
planned and actual wind power output, resulting in underestimation and overestimation
phenomena. When underestimation occurs, meaning that the planned wind power output
is less than the actual available wind power, the system needs to call upon the lower reserve
capacity or charge the energy storage devices to balance the power. The cost incurred due
to the underestimation is referred to as the underestimation penalty cost. Similarly, when
overestimation occurs, meaning that the planned wind power output is greater than the
actual available wind power, the system needs to call upon the upper reserve capacity or
have the energy storage devices compensate for some of the power, which is referred to
as the overestimation penalty cost. Additionally, the direct operating costs should also be
considered. Based on this, the expected cost model for stochastic wind power is established
as follows:

Hj
(
Wj
)
= ηd

j Wj + ηue
j E
(

Wue
j

)
+ ηoe

j E
(

Woe
j

)
(6)

where Wj denotes the scheduled output power of the jth WT unit. The first term on
the right side of the equation is the direct operating cost. The last two terms denote the
underestimation and overestimation penalty costs, respectively. ηd

j , ηue
j , and ηoe

j are the

corresponding cost coefficients. The expressions for E
(

Wue
j

)
and E

(
Woe

j

)
are defined

as follows.

E
(

Wue
j

)
=
∫ Wr

j

Wj

(
wav,j − Wj

)
fW
(
wav,j

)
dwav,j (7)

E
(

Woe
j

)
=
∫ Wj

0

(
Wj − wav,j

)
fW
(
wav,j

)
dwav,j (8)

where Wr
j denotes the rated output power of the jth WT unit. wav,j is the random variable

of the available output power of the jth WT unit. And fW
(
wav,j

)
denotes the probability

distribution function of the available wind power wav,j, which is described by the Weibull
distribution in this paper. The closed forms of E

(
Wue

l
)

and E
(
Woe

l
)

are given as follows:

E
(

Wue
j

)
=
(

Wr
j − Wj

)(
exp

(
−vκ

r
cκ

)
− exp

(
−vκ

out
cκ

))
+

(
Wr

j vin

vr − vin
+ Wj

)(
exp

(
−vκ

r
cκ

)
− exp

(
−

vκ
j

cκ

))

+
Wr

j c

vr − vin

(
Γ
(

1 +
1
κ

,
(vj

c

)κ)
− Γ

(
1 +

1
κ

,
(vr

c

)κ
)) (9)

E
(

Woe
j

)
= Wj

(
1 − exp

(
−

vκ
in

cκ

)
+ exp

(
−vκ

out
cκ

))
+

(
Wr

j vin

vr − vin
+ Wj

)(
exp

(
−

vκ
in

cκ

)
− exp

(
−

vκ
j

cκ

))

+
Wr

j c

vr − vin

(
Γ
(

1 +
1
κ

,
(vj

c

)κ)
− Γ

(
1 +

1
κ

,
(vin

c

)κ
)) (10)

The optimization objective of the EDP is to minimize the total cost, including the
generation cost and the carbon trading cost of TG units, and the expected cost of WT units.
The objective function can be written as follows:

min
m

∑
i=1

Ci(Pi) +
m

∑
i=1

Gi(Pi) +
n

∑
j=1

Hj
(
Wj
)

(11)
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where m and n denote the amount of the TG units and WT units in the power grid,
respectively.

The operation of the power systems required to satisfy certain constraints, which are
as follows:

(1) Supply-demand balance constraint
m

∑
i=1

Pi,t +
n

∑
j=1

Wj = D (12)

(2) Individual generator capacity constraint

Pmin
i,t ≤ Pi,t ≤ Pmax

i,t , i = 1, 2, · · · , m (13)

0 ≤ Wj,t ≤ Wr
j,t, j = 1, 2, · · · , n (14)

Represent the output power of each generator unit uniformly as a vector:

X = [P1, · · · , Pm, W1, · · · , Wn]
T (15)

The cost of each item in the objective function is only related to the output power of
the unit itself, so it can be decomposed into individual m + n sub-functions. Define the
united form of the objective function as:

Ji(Xi) =

{
Ci(Pi) + Gi(Pi), i = 1, 2, · · · , m
Hj
(
Wj
)
, i = m + 1, · · ·m + j, · · · , m + n (16)

Therefore, the EDP is modeled as:

minX J(X) = ∑m+n
i=1 Ji(Xi)

s.t.

∑m
i=1 Pi + ∑n

j=1 Wj = D

Pmin
i ≤ Xi ≤ Pmax

i , i = 1, 2, · · · , m
0 ≤ Xm+j ≤ Wr

j , j = 1, 2, · · · , n

(17)

3. Distributed Implementation by Parallel and Finite-Step Consensus-Based
ADMM Algorithm

In this section, we will propose a distributed ADMM algorithm to solve the EDP with
random wind power. Each generation unit achieves overall optimization through mutual
communication and cooperation.

3.1. Parallel ADMM Algorithm

To facilitate the algorithm design, the EDP model (17) is transformed into a standard
form for ADMM. Define two closed convex sets as:

Ω1 =

{
X ∈ Rm+n : Pmin

i ≤ Xi ≤ Pmax
i , i = 1, · · · , m;

0 ≤ Xm+j ≤ Wr
j , j = 1, · · · , n;

}
(18)

Ω2 =

{
Y ∈ Rm+n :

m

∑
i=1

Pi +
n

∑
j=1

Wj = D

}
(19)

where Ω1 and Ω2 are the closed convex sets. Then, define the indicator functions of the
two convex sets as:

h̄1(X) =

{
0 : X ∈ Ω1

∞ : X /∈ Ω1
(20)
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h̄2(Y) =

{
0 : Y ∈ Ω2

∞ : Y /∈ Ω2
(21)

Therefore, the alternative formulation of the EDP model (17) can be written as

min J(X) + h̄1(X) + h̄2(Y)
s.t. X − Y = 0

(22)

The cost function is strongly convex, and the defined indicator function is a non-empty
closed convex function. Therefore, the EDP model is convex. The ADMM algorithm can be
used to solve the EDP.

Lθ(X, Y, λ) = J(X) + h̄1(X) + h̄2(Y) + λT(X − Y) +
θ

2
∥X − Y∥2

2 (23)

where λ is the Lagrange multiplier and θ is the coefficient of the regularization term.
Let ρ = λ

θ ∈ Rm+n, which is called the scaling dual variable. Equation (23) can be
rewritten as:

Lθ(X, Y, ρ) = J(X) + h̄1(X) + h̄2(Y) +
θ

2
∥X − Y + ρ∥2

2 −
λTλ

2θ
(24)

Different from the traditional Gauss-Seidel ADMM algorithm, a parallel ADMM
algorithm is proposed, which requires adding proximal terms to the Lagrangian function
during solving. The update protocol is as follows:

Xk+1 = arg min
X

Lθ

(
X, Yk, ρk

)
+

1
2

(
X − Xk

)T
Φ
(

X − Xk
)

(25)

Yk+1 = arg min
Y

Lθ

(
Xk, Y, ρk

)
+

1
2

(
Y − Yk

)T
Ψ
(

Y − Yk
)

(26)

ρk+1 = ρk + σθ
(

Xk − Yk
)

(27)

where Φ and Ψ are the coefficient matrix of the proximal terms regarding X and Y. σ is the
update coefficients for scaling dual variables. They should satisfy

Φ ≻ θ

(
1

µ1
− 1
)

I, Ψ ≻ θ

(
1

µ2
− 1
)

I, µ1 + µ2 < 2 − σ (28)

For convenience, let Φ = ϕI and Ψ = ψI, which satisfy the following constraints:

ϕ > θ

(
1

µ1
− 1
)

, ψ > θ

(
1

µ2
− 1
)

, µ1 + µ2 < 2 − σ (29)

3.2. Distributed Implementation Based on Finite-Step Consensus Algorithm

From Equations (25)–(27), it can be seen that ρk+1 can be directly distributed locally
after Xk and Yk are obtained; what needs to be solved next is how to calculate Xk and Yk in
a distribute way.
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(1) X-update step

According to Equation (25), one has

Xk+1 = arg min
X

Lθ

(
X, Yk, ρk

)
+

1
2

(
X − Xk

)T
Φ
(

X − Xk
)

= arg min
X

J(X) + h̄1(X) +
θ

2

∥∥∥X − Yk + ρk
∥∥∥2

2
+

1
2

(
X − Xk

)T
Φ
(

X − Xk
)

= arg min
X∈Ω1

J(X) +
θ

2

∥∥∥X − Yk + ρk
∥∥∥2

2
+

1
2

(
X − Xk

)T
Φ
(

X − Xk
)

= arg min
X∈Ω1

f (X)

(30)

where f (X) can be expressed as

f (X) = J(X) +
θ

2

∥∥∥X − Yk + ρk
∥∥∥2

2
+

1
2

(
X − Xk

)T
Φ
(

X − Xk
)

(31)

f (X) can be decomposed into the summation form of m + n local functions, which can be
written as

fi(Xi) = Ji(Xi) +
θ

2

(
Xi − Yk

i + ρk
i

)2
+

ϕ

2

(
Xi − Xk

i

)2
(32)

It is easily seen that Xk + 1 is actually the solution to the following equivalent opti-
mization problem

min ∑m+n
i=1 fi(Xi)

s.t. Pmin
i ≤ Xi ≤ Pmax

i , i = 1, · · · , m;
0 ≤ Xm+j ≤ Wr

j , j = 1, · · · , n;
(33)

whose analytical solution is easily found by

Xk+1
i =

 Pk+1
i = min

{
max

{
∇ f−1

i (0), Pmin
i

}
, Pmax

i

}
, i = 1, · · · , m;

Wk+1
j = min

{
max

{
∇ f−1

m+j(0), 0
}

, Wr
j

}
, j = 1, · · · , n;

(34)

(2) Y-update step

According to Equation (26), one has

Yk+1 = arg min
Y

Lθ

(
Xk, Y, ρk

)
+

1
2

(
Y − Yk

)T
Ψ
(

Y − Yk
)

= arg min
Y

h̄2(Y) +
θ

2

∥∥∥Xk − Y + ρk
∥∥∥2

2
+

ψ

2

∥∥∥Y − Yk
∥∥∥2

2

= arg min
Y∈Ω2

θ

2

∥∥∥Xk − Y + ρk
∥∥∥2

2
+

ψ

2

∥∥∥Y − Yk
∥∥∥2

2

= arg min
Y∈Ω2

m+n

∑
i=1

θ

2

(
Xk

i − Yi + ρk
i

)2
+

ψ

2

(
Yi − Yk

i

)2

= arg min
Y∈Ω2

m+n

∑
i=1

gi(Yi)

(35)

where gi(Yi) is expressed as

gi(Yi) =
θ

2

(
Xk

i − Yi + ρk
i

)2
+

ψ

2

(
Yi − Yk

i

)2
(36)
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Similarly, it can be seen that Yk+1 is actually the solution to the following equivalent
optimization problem

min ∑m+n
i=1 gi(Yi)

s.t. ∑m
i=1 Pi + ∑n

j=1 Wj = D (37)

For problem (37), the Lagrangian multiplier method is used to transform it into an
unconstrained optimization problem, and the Lagrangian function is constructed as follows:

LY =
m+n

∑
i=1

gi(Yi) + λY

(
D −

m+n

∑
i=1

Yi

)
(38)

where λY is the Lagrangian multiplier of the optimization problem. According to the KKT
(Karush-Kuhn-Tucker) condition, one has

∂LY
∂Yi

= θ
(

Yi −
(

Xk
i + ρk

i

))
+ ψ

(
Yi − Yk

i

)
− λY = 0, i = 1, · · ·m + n (39)

D −
m+n

∑
i=1

Yi = 0 (40)

By solving the above two equations, the optimal Lagrange multiplier can be ob-
tained as

λ∗
Y =

(θ + ψ)D − ∑m+n
i=1

[
θ
(

Xk
i + ρk

i

)
+ ψYk

i

]
m + n

(41)

Then, the optimal solution to the optimization problem (37) can be obtained, which is
expressed as

Yk+1
i =

λ∗
Y + θ

(
Xk

i + ρk
i

)
+ ψYk

i

θ + ψ
(42)

Next, the finite-step consensus algorithm is utilized to calculate λ∗
Y so that Yk+1

i can be
updated locally. The iterative protocol of the finite-step consensus algorithm is as follows{

τk
i (r + 1) = wii(r)τk

i (r) + ∑j∈Ni
wij(r)τk

j (r), i = 1, · · ·m + n

ηk
i (r + 1) = wii(r)ηk

i (r) + ∑j∈Ni
wij(r)ηk

j (r), i = 1, · · ·m + n
(43)

where τk
i (r) and ηk

i (r) are auxiliary variables. wij(r) is the weight coefficient at kth iteration,
which is updated by the following protocol

wij(r) =


1 − |Ni |

λr+1
, j = i

0, j /∈ Ni ∪ {i}
1

λr+1
, j ∈ Ni, r = 1, · · · , K

(44)

where K = m + n. And the initial values of τk
i (r) and ηk

i (r) are set as

τk
i (0) = Dk

i , ηk
i (0) = θ

(
Xk

i + ρk
i

)
+ ψYk

i (45)

After K iterations, both auxiliary variables converge to the consensus values as follows. τk
i = τk

i (K) =
∑m+n

i=1 Di
m+n

ηk
i = ηk

i (K) =
∑m+n

i=1 [θ(Xk
i +ρk

i )+ψYk
i ]

m+n

(46)
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Therefore, the optimal value of the Lagrange multiplier λ∗
Yt

is given by

λ∗
Yt

= (θ + ψ)τk
i − ηk

i (47)

(3) ρ-update step

ρk+1
i = ρk

i + σθ
(

Xk
i − Yk

i

)
(48)

(4) Algorithm convergence

The optimal output power and optimal Lagrange multiplier of the optimization
problem (17) can be obtained through the above distributed algorithm. When both the
primal and dual residuals of the ADMM algorithm meet certain threshold conditions,
the algorithm terminates the iterative process. Define the primal residual and the dual
residual as

resk
p ≜

∥∥∥Xk − Yk
∥∥∥

2
, resk

d ≜
∥∥∥−θ

(
Yk − Yk−1

)∥∥∥
2

(49)

The primal and dual residuals must meet the following threshold conditions:

resk
p ≤ εpri, resk

d ≤ εdual (50)

where εpri and εdual are the convergence thresholds for the primal residual and the dual
residual, respectively.

3.3. Distributed Calculation for Eigenvalues of Laplacian Matrix

It can be seen that the iteration of the finite-step consensus algorithm requires knowl-
edge of the eigenvalues of the Laplacian matrix of the communication network. In litera-
ture [35], a graph discovery algorithm is proposed to obtain network topology information.
This algorithm identifies topology information by assigning device numbers to intelligent
agents and using broadcast algorithms. However, the iteration process of this algorithm is
cumbersome and computationally intensive, especially when the scale of the network is
relatively large. In this section, a distributed consensus algorithm is proposed to calculate
the eigenvalues of the Laplacian matrix.

Firstly, transform the Laplace matrix into a nonsingular matrix through an elementary
transformation.

L̄ = L + εIn (51)

where ε is a positive constant and In is the identity matrix.
Since L̄ is nonsingular, we then have the following linear problem of calculating L̄−1

L̄L̄−1 = In (52)

The eigenvalues and eigenvectors of matrices L̄ and L̄−1 satisfy the following equation:

λi(L) =
1

λi(L̄−1)
− ε, vi(L) = vi

(
L̄−1

)
(53)

Then, a distributed consensus algorithm is used to calculate L̄−1. The update protocol
of the algorithm is as follows:

Zi(s + 1) = Zi(s)−
1

|Ni|
P⊥,i

(
|Ni|Zi(s)− ∑

j∈Ni

Zj(s)

)
(54)
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where Zi(s) is the state variable of the node i at sth iteration. P⊥,i = PT
⊥,i ∈ Rn×n is the

orthogonal projection matrix of the kernel of [L̄]i∗. P⊥,i can be expressed as

P⊥,i = In −
1

[L̄]Ti∗[L̄]i∗
[L̄]i∗[L̄]Ti∗ (55)

where [L̄]i∗ denotes the ith row vector of L̄.
The initial value Zi(0) satisfies

[L̄]Ti∗Zi(0) = [In]
T
i∗ (56)

The state values converge when satisfying

∥Zi(s + 1)− Zi(s)∥ ≤ εL (57)

where εL is the convergence threshold.
Then, we can obtain that

λi(L) =
1

λi
(
Z∗

i
) − ε (58)

where Z∗
i is the final steady-state consensus value of Equation (54).

Therefore, the eigenvalues of Laplacian matrix of the communication network can be
calculated in a distributed manner, only requiring the local information.

4. Simulation Results

In this section, several case studies are presented in order to illustrate and validate the
proposed algorithm. The case studies are simulated in the MATLAB R2021a environment
on a laptop with Intel Core i5-7300U CPU @2.60 GHz and 8 GB RAM. The test systems are
based on the IEEE 39-bus system, which includes 10 generator units. Generators 1 to 9 are
TG units, while Generator 10 is replaced with a WT unit. The communication topology is an
undirected network. The entire system including the power network and communication
network is shown in Figure 1. The orange nodes represent the communication nodes. The
red dashed lines indicate the connectivity between communication nodes.

In this case study, the generation cost parameters, operating parameters, and carbon
emission coefficients of TG units are shown in Table 1. The relevant cost and operating
parameters of WT units, as well as the parameters of the Weibull distribution function,
are shown in Table 2. The power unit is MW, the currency unit is $, and the carbon
emission unit is t. The unit of wind speed is m/s, the carbon emission standard coefficient
is δ = 0.7 t/(MW · h), and the carbon trading price is Uc = 1 $/(tCO2).

The local load values are set as 250 MW, 250 MW, 250 MW, 250 MW, 250 MW, 50 MW,
50 MW, 50 MW, 50 MW, 50 MW, and respectively. Thus, the total power demand is 1500 MW.
The stepsizes of the parallel ADMM algorithm are set as θ = 0.06, σ = 0.5. The coefficients
of the proximal terms are set as ϕ = 0.06, ψ = 0.06. The convergence threshold for the
distributed consensus algorithm when calculating the eigenvalues of the Laplacian matrix
is set as εL = 0.001. The convergence thresholds for primal and dual residuals are set as
εpri = 0.001 and εdual = 0.001, respectively.

The topology of the communication network is shown in Figure 1. The corresponding
Laplacian matrix L is:
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4 −1 −1 0 0 0 0 0 −1 −1
−1 5 −1 −1 −1 0 0 0 0 −1
−1 −1 4 −1 −1 0 0 0 0 0
0 −1 −1 5 −1 −1 −1 0 0 0
0 −1 −1 −1 6 −1 −1 −1 0 0
0 0 0 −1 −1 4 −1 −1 0 0
0 0 0 −1 −1 −1 5 −1 −1 0
0 0 0 0 −1 −1 −1 5 −1 −1
−1 0 0 0 0 0 −1 −1 4 −1
−1 −1 0 0 0 0 0 −1 −1 4


The positive constant is set as ε = 1. The eigenvalues of the Laplacian matrix can be

calculated by the proposed distributed consensus algorithm. From λ1 to λ10, the values
are 0, 2.1085, 2.4775, 4.4875, 5.0000, 5.3666, 6.0000, 6.3258, 6.8359, and 7.3982. Based on
the obtained eigenvalues, the finite-step consensus algorithm is used to calculate λ∗

Y. The
iteration result of τk

i is shown in Figure 2. After 10 iterations, all agents converge to

the average value of total load demand, i.e., 150 MW. Similarly, ηk
i can be obtained by

10 iterations. Then, the optimal value of the Lagrange multiplier for each iteration can be
obtained, allowing for the calculation of Yk

i .

Figure 1. IEEE 39-bus system and undirected communication network.
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Table 1. Parameters of TG units in IEEE 39-bus system.

Unit
ai bi ci αi βi γi Pmin

i Pmax
i

($/MW2h) ($/MWh) ($/h) (t/MW2h) (t/MWh) (t/h) (MW) (MW)

G1 0.0024 5.56 30 0.00155 1.0347 0 60 339.69
G2 0.0056 4.32 25 0.00122 1.0314 0 25 479.10
G3 0.0072 6.60 25 0.00144 0.9836 0 28 290.40
G4 0.0047 3.14 16 0.00161 1.2423 0 40 306.34
G5 0.0091 7.54 6 0.00168 1.0836 0 35 593.80
G6 0.0018 3.28 54 0.00156 1.1727 0 29 137.19
G7 0.0053 7.31 23 0.00126 1.0878 0 45 595.40
G8 0.0063 2.45 15 0.00159 0.9115 0 56 162.17
G9 0.0028 7.63 20 0.00168 0.9162 0 12 165.10

Table 2. Parameters of WT units.

Wind Turbine
vin vout vr (c, κ)

5 45 15 (8, 2)

Wind Power
dj ηue

j ηoe
j W r

j
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Figure 2. Local demand calculation based on finite-step consensus algorithm.

The simulation results of output power X and Y are shown in Figures 3 and 4. It can be
seen that the iterative curve of X is smoother and has smaller fluctuations, which is because
in the sub-optimization problem, the inequality constraints limit the range of variation.
The power supply and demand relationship diagram is shown in Figure 5. It can be seen
that after a certain number of iterations, the sum of X is equal to the total load demand
value, while the sum of Y is always equal to the total load demand during the iteration
calculation process. This is because in the sub-optimization problem, the equality constraint
of supply and demand balance restricts the sum of Y. The residual results are shown in
Figure 6. The dual residual first converges below the threshold, and after 508 iterations,
the primal residual also converges below the threshold. Thus, the results converge to the
optimal value.
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Figure 3. Simulation result of output power X.
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Figure 4. Simulation result of output power Y.

To verify the accuracy and effectiveness of the proposed PFC-ADMM algorithm, it is
compared with the centralized algorithm, which is solved using the fmincon solver based
on the interior point method. Furthermore, it is also compared with the consensus-based
parallel ADMM (C-PADMM) algorithm proposed in reference [36] and the distributed gra-
dient descent ADMM (DGD-ADMM) algorithm proposed in reference [37]. The comparison
results are shown in Table 3.
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Figure 6. Primal and dual residuals.

It should be noted that the total number of communications here refers to the number
of communications among agents when the algorithm converges to the optimal, rather than
the cumulative number of communications between individual nodes and other nodes, nor
the total number of communications that occurred in the communication network, because
the latter two are closely related to the topology connectivity of the communication network.
It can be seen that the simulation results of the three distributed algorithms, i.e., the optimal
output power and the optimal incremental cost, both approach the centralized algorithm
with very small errors. The proposed PFC-ADMM algorithm and the C-PADMM algorithm
are both parallel ADMM algorithms, so they have the same number of outer-layer iterations.
Due to using the finite-step consensus algorithm in this paper, the number of iterations is
significantly reduced, so the total number of communications is correspondingly reduced.
The DGD-ADMM algorithm uses a serial ADMM algorithm, so it has fewer outer-layer
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iterations. A distributed gradient descent algorithm is used in its inner-layer optimization,
and the number of iterations gradually decreases as the outer-layer optimization approaches
the optimal solution, decreasing from 144 times to 5 times in this case study. The total
number of communications is slightly higher than the PFC-ADMM algorithm. As the
network size expands and the number of nodes increases, the advantages of the algorithm
proposed in this paper will become more significant. It is worth noting that the outer-layer
framework of the algorithm proposed in this paper can also adopt the serial ADMM, further
reducing the total number of communications. Although parallel ADMM algorithms
are slower in convergence speed than serial ADMM, they also have their advantages.
When computing variables Xk+1

i , Yk+1
i , and ρk+1

i during a single-round calculation, there
is no need to wait for the update of the previous variables. Instead, they are updated
simultaneously in parallel, saving computation time. Therefore, the overall convergence
time is a balanced issue concerning the convergence speed and computation time, which
can be measured based on the computational complexity of the sub-optimization problem.
Generally, the greater the number of nodes, the more obvious the advantages of adopting
parallel ADMM algorithms.

Table 3. Algorithm comparison results.

Our Algorithm C-PADMM [36] DGD-
ADMM [37]

Centralized
Algorithm

P1 305.8952 305.8843 305.4740 305.8961
P2 268.3193 268.3550 268.3043 268.3197
P3 82.6201 82.6697 82.6160 82.6200
P4 306.3400 306.3400 306.3400 306.3400
P5 35.0000 35.0000 35.0000 35.0000
P6 137.1900 137.1900 137.1899 137.1900
P7 46.7588 46.7773 46.8605 46.7593
P8 162.1700 162.1700 162.1699 162.1700
P9 51.9055 51.8389 52.1444 51.9061
W 103.7987 103.7718 103.9011 103.7989

Incremental cost 8.3113 8.3115 8.3116 8.3113
Outer layer iterations 508 508 147

39
Inner layer iterations 10 26 [5,144]
Total number of

5080 13,208 5404 —
communications

5. Conclusions

In this paper, an economic dispatch model with random wind power is established.
The generation cost, the carbon trading cost of TGs, and the stochastic expected cost of
wind power are considered. A fully distributed strategy is proposed to deal with the EDP.
The out-layer framework of the strategy is based on the parallel ADMM, where different
variables can be calculated simultaneously. The inner-layer framework adopts a finite-step
consensus algorithm. The algorithm converges to the optimal value after a finite number
of communication iterations. In addition, based on local and neighbor information, a
distributed algorithm is designed to calculate the eigenvalues of the Laplacian matrix.
Thus, the algorithm has been fully distributed.

The optimal dispatch model studied in this paper only considered TGs and WTs. In
future work, the coordinated optimization problem of distributed energy sources such as
energy storage equipment and photovoltaic generation units needs further investigation. In
addition, power flow constraints such as line power capacity limitations and node voltage
limitations have not been considered. More security constraints during the actual operation
can be further considered.
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