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Abstract: Multimodal open question answering involves retrieving relevant information from both
images and their corresponding texts given a question and then generating the answer. The quality
of the generated answer heavily depends on the quality of the retrieved image–text pairs. Existing
methods encode and retrieve images and texts, inputting the retrieved results into a language model
to generate answers. These methods overlook the semantic alignment of image–text pairs within
the information source, which affects the encoding and retrieval performance. Furthermore, these
methods are highly dependent on retrieval performance, and poor retrieval quality can lead to
poor generation performance. To address these issues, we propose a prompt-enhanced generation
model, PEG, which includes generating supplementary descriptions for images to provide ample
material for image–text alignment while also utilizing vision–language joint encoding to improve
encoding effects and thereby enhance retrieval performance. Contrastive learning is used to enhance
the model’s ability to discriminate between relevant and irrelevant information sources. Moreover,
we further explore the knowledge within pre-trained model parameters through prefix-tuning to
generate background knowledge relevant to the questions, offering additional input for answer
generation and reducing the model’s dependency on retrieval performance. Experiments conducted
on the WebQA and MultimodalQA datasets demonstrate that our model outperforms other baseline
models in retrieval and generation performance.

Keywords: multimodal question answering; retrieval augmented generation; prompt learning;
vision–language alignment

1. Introduction

Multimodal question answering represents a significant advancement in the field of ar-
tificial intelligence, merging computer vision, natural language processing, and knowledge
representation. This integration allows models to understand and process information from
both visual and textual inputs, mimicking human-like abilities to interpret and respond
to complex queries that require cross-modal comprehension and reasoning. Multimodal
question answering datasets [1,2] require models to answer questions based on given
images and texts. Furthermore, multimodal open question answering datasets [3,4] require
models to retrieve relevant evidence from image and text information sources based on the
question and integrate evidence to generate answers.

Existing works follow a retrieval and generation pipeline. Some works [3,5] concate-
nate the question with information sources and evaluate the probability of information
sources being selected. The question and the selected information sources are then con-
catenated and input into the model to generate an answer to the question. Methods [2,4]
initially employ a question-type classifier to identify the modality (image or text) that may
contain the answer. Subsequently, the question and input sources are allocated to different
unimodal sub-models to generate answers. MuRAG [6] uses a joint encoder for images and
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text and retrieves the top-k nearest neighbors from the memory of image–text pairs based
on the question.

Previous methods, when encoding images and texts, overlook the semantic alignment
between images and text. As shown in Figure 1, the description of the image is usually
information such as the location and time of the image, which the image itself cannot
describe and is not related to the content of the image. Whether encoding separately or
jointly across modalities, the inability to semantically align images and their descriptive
texts affects the semantic interaction alignment between them. This results in the image–
text pairs not being well associated with the questions, thereby reducing encoding and
retrieval performance. Furthermore, these models use the retrieved results as the only
question-related information input, resulting in a heavy dependence on the quality of
retrieval. If irrelevant images and texts are retrieved, the accuracy of the model-generated
answers will significantly decrease. Recent research has shown that large pre-trained
model parameters carry world knowledge [7,8], which can be applied to downstream
tasks through appropriate prompt learning [9,10]. Mining question-related background
knowledge from the information in pre-trained model parameters can mitigate the issue of
answer generation is heavily dependent on the quality of retrieved information sources.

Description: Gage Park High School, Chicago

Quetsion：What color are the doors of Gage Park High School

in Chicago?

Figure 1. Example of image description in webQA dataset. While the image and description
correspond to elements in the question, there is no semantic relevance between them.

To address the limitations mentioned above, we propose a prompt-enhanced gener-
ation model, PEG, for multimodal open question answering. First, to address the issue
of insufficient image descriptions that do not easily semantically correspond to the image
content, we employ prompt learning to generate supplementary descriptions for images,
ensuring semantic consistency between image and text content. Subsequently, we use
vision–language joint encoding to finely align the semantics of images and texts, enhancing
the representations of both vision and language. Improvement in encoding capacity, in
turn, leads to improved retrieval results. To enhance the model’s ability to discriminate
information sources, we treat question-related information sources as positive examples
and irrelevant ones as negative examples, adopting contrastive learning to further enhance
the model’s representation and discrimination capabilities. To address the issue of heavy re-
liance on retrieval quality, we utilize prefix-tuning in prompt learning to mine background
knowledge contained within model parameters, providing additional information input
for answer generation. This enables the model to generate answers based on background
knowledge, even when irrelevant information is retrieved.

Our contributions can be summarized as follows:

• We propose a prompt-enhanced generation model, PEG, for multimodal open question
answering. By employing prompt learning to generate supplementary descriptions
for images, ample material is provided for semantic alignment of vision and language.
Subsequently, vision–language joint encoding is utilized for fine-grained alignment of
visual and linguistic semantics, thereby enhancing encoding and retrieval performance.

• We employ prefix-tuning to mine the knowledge within pre-trained model parameters,
generating background knowledge related to the question. This provides an additional
input for answer generation, thereby reducing the model’s dependency on retrieval
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results. Thus, the model can generate answers to the question, even if it retrieves
irrelevant information.

• The experimental results for two datasets demonstrate that our model, utilizing prompt
learning, can enhance encoding and retrieval capabilities, generating more accurate answers.

2. Related work
2.1. Multimodal Question Answering

Antol et al. [11] first introduced the Visual Question Answering (VQA) task, which
requires models to answer questions based on image inputs. OK-VQA [12] extends the task
to knowledge-seeking questions, where the content of the image alone is insufficient to
answer the question, encouraging models to rely on external knowledge resources. In Many-
ModalQA [1], the context for each question includes information from multiple modalities.
However, the answer to each question can only be derived from a single modality, elim-
inating the need for cross-modal reasoning. MuMuQA [2] requires models to perform
reasoning within given images and text without the need for retrieval. MIMOQA [13]
proposes a new concept of multimodal input and multimodal output, which requires the
model to output text answers and a related image. The aforementioned datasets do not
require models to perform retrieval. They only need to process the given text and images,
resembling multimodal input reading comprehension rather than open-book question
answering. WebQA [3] and MultimodalQA [4] are two multimodal open-book question
answering datasets. Models are required to retrieve relevant images and texts from informa-
tion sources based on the question, and through logical or numerical reasoning, aggregate
information from multiple sources to generate an answer to the question.

Some works [3,5] concatenate the question with information sources and evaluate the
probability of information sources being selected. The question and the selected information
sources are then concatenated and input into the model to generate an answer to the
question. Methods [2,4] initially employ a question-type classifier to identify the modality
(image or text) that may contain the answer. Subsequently, the question and input sources
are allocated to different unimodal sub-models to generate answers. MuRAG [6] uses the
maximum inner product to retrieve the top-k nearest neighbors from the memory of image–
text pairs based on the question. The retrieved results and the question are concatenated
and input into an encoder–decoder to generate an answer. Lin et al. [14] convert the
image into text and propose a joint training scheme which includes differentiable DPR
integrated with answer generation so that the system can be trained in an end-to-end
fashion. Yang et. al. [15] convert the image into captions (or tags) that GPT-3 can understand
then adapt GPT-3 to solve the VQA task in a few-shot manner by just providing a few
in-context VQA examples. Yu et al. [16] convert images and tables into a unified linguistic
representation, thereby simplifying the task into a simpler text-based QA problem, which
is solved using three steps: retrieval, ranking, and generation. Research [17] has been
conducted to explore using prompts with GPT-4 to solve multimodal question-answering.

2.2. Retrieval Augmented Generation

Retrieval-Augmented Generation combines parametric models with external relevant
knowledge to inject world knowledge into language models, thereby generating more
accurate and knowledge-rich answers. Dense Passage Retrieval (DPR) [18] includes a
question encoder and a document encoder for encoding questions and documents into
separate dense representations. The training objective of the DPR is to assign higher scores
to documents that can help answer the question, thereby enabling the retrieval of a set of
documents to be passed to the answer generation module. REALM [19] is an encoder-only
model that integrates Wikipedia as a database to support downstream knowledge-intensive
tasks. RAG [20] utilizes a pre-trained BART model as its reader, generating answers by
inputting the question along with documents retrieved by DPR. FID [21] first independently
encodes each retrieved document using a BART encoder, then uses a decoder to perform
attention calculation on all output representations to generate the final answer. We will
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apply retrieval enhanced generation to multimodal open question answering, using vision
and language joint encoding to retrieve knowledge from both image and text modalities,
rather than only text knowledge.

3. Method
3.1. Task Formulation

Given a question Q and input information sources S = {S1, S2, . . . , Sn}, where n
represents the number of information sources, each information source can be a text with a
title or an image with captions. The task’s target is to retrieve relevant source data from S
based on the question Q and generate a natural language answer A = a1, a2, . . . , an, where
ai is a word in the answer sentence. Ŝ is the result retrieved based on question Q from S,
represented as:

Ŝ = TopK(S | Q) (1)

The task objective is to train a neural network generative model p(A | Q, Ŝ) that can
generate an answer Â that is both consistent with the retrieved source data Ŝ and fluent.

3.2. Model Overview

We show the main architecture of our PEG model in Figure 2. For the input information
sources of a given question, an image usually includes a text description. However, the
text description often serves as a supplement to the image, and their semantic information
does not correspond directly. Therefore, we first generate a supplementary description
for the image through prompt-based learning, providing a corpus for full alignment of
visual and linguistic information. Since the input information sources include image–text
pairs, we adopt a joint vision–language encoding approach to capture the features of both
images and texts. The information source index refers to the encoded vector database of
the information source (image–text pair), which facilitates the use of question vectors to
retrieval related information sources through MIPS. To further provide the background
knowledge required by the question, we utilize the knowledge contained in the parameters
of large pre-trained models and generate background knowledge related to the question
using prefix-tuning as an additional input relevant to the question. After obtaining the
representations of the question and information sources, we retrieve information related to
the question from the information sources. The question, relevant information sources, and
background knowledge are then fed into an answer generator to produce the answer.

Is the fence in front of The Glass House in Fulham
taller or shorter than a bicycle?

Vision-Language Joint 

Encoder

Information Source

St. Patricks
Festival, Dublin

Description Generator

Information Source Index

Knowledge GeneratorMIPS

Answer Generator

 Bikes rest against
railings closeby.

The Glass House,
Fulham 05

The Glass House,
Fulham 05

Is the fence ... taller or
shorter than a bicycle?

The fence in front of The Glass House appears to be
slightly taller than a bicycle.

Figure 2. The main architecture of our proposed PEG model.
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3.3. Prompt-Based Image Supplementary Description Generation

For each image–text pair in the input information sources, the text is often a very
simple description of the image, typically the location and time associated with the image,
as shown in Figure 3. Due to the lack of semantic connection between the text descriptions
and the image content, there can be insufficient alignment between the semantics of images
and texts. This misalignment can lead to poor encoding effectiveness for image–text pairs,
which in turn affects the retrieval performance. To better describe the content of the images,
we first use the pre-trained caption generation model OFA [22] to generate descriptions of
the images.

Gage Park High School Chicago Gage Park High School,

Chicago

The image describes an old brick building with Gothic

architectural elements. The school has multiple windows

and doors, as well as decorative details on its facade. There

is also some scaffolding visible around certain parts of the

structure.

Text

Supplementary
description:

Original
description:

Figure 3. Example of image supplementary description in webQA dataset.

OFA is a large, multimodal model that unifies language tasks, visual tasks, and tasks
involving both vision and language, encompassing both multimodal understanding and
generation tasks such as text-to-image generation, visual question answering, and visual
reasoning. The model employs a sequence-to-sequence learning architecture with task
representation based on prompts. For visual inputs, OFA utilizes a ResNet module to
convert images into feature representations through convolutional operations. For textual
inputs, OFA employs Byte Pair Encoding (BPE) to transform given text sequences into
subword sequences and then into embedding features. OFA uses a Transformer as its
backbone architecture, with an encoder–decoder framework serving as the unified structure
for all tasks.

OFA sets different prompts for different tasks. For the image captioning task, the model
generates descriptions of the image based on the given image and the prompt “What does
the image describe?”. The generated supplementary descriptions are relatively consistent
with the image content, such as elements like school, buildings, bricks, windows, doors, etc.,
facilitating the alignment of image and text semantics in the next step of vision–language
joint representation.

3.4. Vision–Language Joint Representation

The vision–language joint encoder we used is shown in Figure 4. Firstly, we employ a
backbone network as the image tokenizer to convert images into visual token embeddings
in Figure 4b. Then, text embeddings and visual token embeddings are concatenated as the
input of the main encoder–decoder framework in Figure 4a.

Text Embeddings: Each text in the information sources is firstly converted into the
sequence of tokens {t1, t2, . . . , tT} and then two special tokens “〈s〉” and “〈\s〉” are added
to represent the start and end of the document. After that, we map each token into vector
representation ET = {estart, e1, . . . , eT , eend} with the text-embedding layer.

Image Embeddings: Different from previous methods, which extract many image
features via existing object detection models, we employ ViT [23] as the backbone, which
splits each image into several patches and then encodes them. The details of the image
tokenizer are shown in Figure 4b.
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Transformer Encoder

Image Tokenizer

Embedding

Text Tokenizer

Linear Projecter

0 1 2 3 4 5 6 7 8 9

Image Encoder

Projector

...

Patch + Position
Embedding

Extra Learnable Class
Embedding

The lion (Panthera leo) is a large
felid of the genus Panthera native to
Africa and India ...

（a) （b)  

...

Figure 4. (a) is Vision–language joint encoder architecture and (b) represents the image tokenizer.

Firstly, we reshape image img ∈ RH×W×C into a sequence of flattened 2D patches
{imgp ∈ RN×(P2·C)}N

p=1, where (H, W) is the resolution of the original image, C is the
number of channels, (P, P) is the resolution of each image patch, and N = HW/P2 is the
resulting number of patches. Then, we can obtain a sequence of image patches {imgp}N

p=1
as the input of the image tokenizer.

Secondly, the patches are linearly projected to patch embeddings ep = E× imgp
i , where

E ∈ R(P2·D)×C. We also add a special token “[class]” with learnable embedding e0. Then,
position embeddings and patch embeddings are attached as input Z0 for the image encoder
to retain positional information of images:

Z0 = [e0
i ; e1

i ; . . . ; eN
i ] + Epos (2)

where Z0, Epos ∈ R(N+1)×D, and Epos are position embeddings.
Finally, we employ the pre-trained ViT as the backbone to encode these patches of

each image. This backbone also can be replaced by any other encoders (e.g., a linear
projection layer).

Z`+1 = TransformerEncoderLayer(Z`), ` = 1, 2, ..., L (3)

The global max-pooling of output vectors is obtained as the visual token embedding Ei of
image imgi, where Ei ∈ RD.

Multi-Modal Encoder: The input of the multi-modal encoder is the concatenation of
visual token embeddings Ei and token embeddings ET . We can formalize the input as
H0 = {Ei; ED} and then encode visual and text embeddings with 12 transformer blocks.
Finally, we can obtain vision–language representation HL from the last layer output of
this encoder.

HL = {hv1 , . . . , hvM , hstart, h1, . . . , hend} (4)

The vision and language semantics interact with the self-attention mechanism of the
transformer structure during the encoding process. It should be noted that the encoder
takes image–text pairs as input, but either the image or text sequence can be empty to
accommodate scenarios where only text or only images are provided as input.
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3.5. Information Source Retrieval

The retriever is implemented based on DPR [18]. Given a question Q and input
information sources S encoded by the vision–language joint encoder to obtain their vector
representations, Maximum Inner Product Search (MIPS) [24] is used to iterate through
S ∈ S to find the top-k input sources Ŝ:

Ŝ = {S1, S2, . . . , Sk} = TopK
S∈S

Encoder(Q) · Encoder(S) (5)

In the information sources S for a given question Q, there are inputs Sp that are rel-
evant to the question and distracting inputs Sn that are irrelevant. (The datasets include
annotations indicating whether the information source is relevant to the question.) By treat-
ing the input source Sp as a positive example and Sn as a negative example, a contrastive
learning loss Lcon can be constructed as follows:

Lcon = −log
exp

(
Encoder(Q) · Encoder

(
Sp

))
∑

S∈S
exp(Encoder(Q) · Encoder(S))

(6)

In the answer generation phase, the question Q and the retrieved sources Ŝ are con-
catenated {S1, S2, . . . , Sk, Q} as input. They are then encoded by the vision–language joint
encoder to obtain a retrieval-enhanced vector representation.

3.6. Prefix-Tuning for Background Knowledge Generation

Recent studies have shown that large pre-trained models (PrLMs) contain a wealth of
information within their vast number of parameters. This information can be leveraged for
downstream tasks through the use of appropriate prompts, achieving notable results [25].
To further enhance the quality of answer generation, we explore the use of prefix-tuning to
mine the parameter information within PrLMs, generating background knowledge related
to the question as supplementary input for answer generation. Prefix-tuning [26] is a
lightweight training paradigm that freezes the model parameters of PrLMs during training
and only trains task-specific prefixes, avoiding the need to train all parameters of the large
pre-trained model.

The knowledge generator takes a question Q as input and outputs background knowl-
edge K related to the question. During the training process, the text T from the information
source Sp = (I, T) related to the question is used as the target knowledge K. As shown in
Figure 5, the knowledge generator selects a pre-trained model with an encoder–decoder
architecture and adds prefixes [Pre f ix0; Q; Pre f ix1; K] in both the encoder and decoder,
where Pre0 and Pre1 are the prefixes for the encoder and decoder, respectively. The prefix
at the encoder side can guide the encoding of the input sequence, while the prefix at
the decoder side can guide the generation of the subsequent target sequence. To avoid
training instability and performance degradation caused by direct updates to the prefix
parameters Preθ , a mapping matrix Eθ and a feedforward neural network MLPθ are added,
represented as:

Preθ = MLPθ(Eθ(Pre f ix)) (7)

The loss function for background knowledge generation is represented as follows:

LK = −
|K|

∑
j=1

log P(k j|k<j; θLMK , θK) (8)

where θLMK represents the parameters of the knowledge generation model, which remain
unchanged during training, and θK represents the learnable prefix parameters.
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Encoder Decoder

Prefix0 Prefix1Q K

Figure 5. Encoder–decoder architecture prefix-tuning.

3.7. Answer Generation

We employ a generative model such as BART to generate answers and modify the
encoder of BART to serve as the vision–language joint encoder. The input to the model
comprises the concatenation of the question, retrieved information sources, and generated
background knowledge. For a given question Q, through information source retrieval, we
obtain related information sources Ŝ = {S1, S2, . . . , Sk}. By inputting the question into the
knowledge generator, we obtain background knowledge K related to the question. We
then concatenate these elements {Q; I1, T1; . . . ; Ik, Tk; K} as the input. After encoding by
the vision–language joint encoder, we pass the obtained representation HL to the decoder
to generate an answer A = a1, a2, . . . , an, where aj is a word in the answer sentence. The
answer token is generated by the token with questions Q, related information sources Ŝ,
and background knowledge K as input, the loss function for the answer generation task is
as follows:

LA = −
|A|

∑
j=1

log Pθ(aj|a<j; Q, Ŝ, K) (9)

where |A| denotes the length of the answer, aj represents the j-th token, Pθ represents the
parameters of the model.

We use the answer generation task, contrastive learning for relevant information
sources, and background knowledge generation task to jointly train our PEG model. In
previous sections, we have introduced their details. Finally, PEG is trained with three tasks
by simultaneously minimizing the following three loss functions:

L = LA + Lcon + LK (10)

4. Experiments

To verify the effectiveness of our model, this section will detail the experiments
conducted and related specifics. It will be divided into subsections on relevant datasets, ex-
perimental design, baseline models, evaluation metrics, experimental results, and analysis
for a comprehensive introduction.

4.1. Datasets

We utilized two representative datasets in the field of multimodal question answering:
the WebQA [3] and MultimodalQA [4] datasets.

• WebQA is a multimodal, multi-hop reasoning dataset where all questions require
the retrieval of one to two images or text segments as knowledge for answering.
Each question in the dataset is associated with a set of visual and textual distractors,
necessitating the retrieval of relevant visual and textual sources as knowledge input.
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The answers in this dataset are typically complete sentences, facilitating a better
evaluation of the model’s generative capabilities.

• MultimodalQA contains multimodal question-answer pairs in text, image, and table
formats. This dataset features 16 types of questions, most of which require multimodal
retrieval and reasoning. Unlike WebQA, the answers in MultimodalQA are in the
form of text fragments or phrases. The dataset initially generates questions through
templates, then asks crowd workers to filter and interpret the generated questions.
Each question is also associated with a set of visual and textual distractors. Following
MuRAG [6], we have only considered text and image questions.

4.2. Implementation Details

Image description generation employed the OFA-large model (https://github.com/
OFA-Sys/OFA (accessed on 9 April 2024)). The vision–language joint encoder and the
decoder for answer generation were initialized using ViT-B/16 and BART-base [27], re-
spectively, published on Hugging Face (https://huggingface.co/ (accessed on 9 April
2024)). The image tokenizer used the same configuration as in ViT. The batch size used
during training was set to 16, the number of retrieved information sources (top-k) was set
to 4, and the decoding process used beam search with a beam size of 3. The background
knowledge generator was initialized with BART-large, with the prefix sequence length
set to 20. The model training process was optimized using the Adam [28] algorithm and
a Linear Learning Rate Scheduler. The model was trained on four NVIDIA Tesla V100
32G GPUs.

4.3. Baselines

We compare our approach with the following baseline models with WebQA and
MultimodalQA datasets:

• Question-Only: This method does not search for information sources related to the
question but directly inputs the question into the BART model to generate an answer.

• VLP [5]: Models such as Oscar [29] and VinVL [30] are typically used as standard base-
line models. These models are based on transformer encoder–decoder architectures.
They concatenate the question and information sources and evaluate the probability of
information sources being selected. The question and the selected information sources
are concatenated and inputted into the model to generate answers to the question.

• AutoRouting [4]: This method initially employs a question-type classifier to identify
the modality (image or text) that may contain the answer. Subsequently, the ques-
tion and input sources are allocated to different unimodal sub-models to generate
answers, transforming multimodal question answering into several unimodal ques-
tion answering tasks. This approach uses the RoBERTa [31] model to answer text
questions, VilBERT [32] to answer image questions, and FasterRCNN [33] to extract
image features.

• CLIP [34]: This model is used to encode questions and image–text input sources
separately. It employs Approximated Nearest Neighbor Search (ANN) to find k
candidate input sources. Then, through re-ranking, one to two sources are selected
and input into the question-answering model to generate answers.

• ImplicitDec [4]: Similar to AutoRouting, this model calls different sub-models for
different information source modalities but generates answers to multi-hop questions
in a stepwise manner. It uses a question-type classifier to determine the modality of
the question-related information sources, the order of the modalities, and the logical
operations required to be called. During each hop, the corresponding sub-model
generates an answer based on the question, the information source of the current
modality, and the answers generated in previous hops. The sub-models applied for
each modality are similar to those used in AutoRouting.

• MuRAG [6]: This model is pre-trained on a large-scale corpus of image–text pairs and
pure text. It retrieves the top-k nearest neighbors from the memory of image–text pairs

https://github.com/OFA-Sys/OFA
https://github.com/OFA-Sys/OFA
https://huggingface.co/
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based on the question. The retrieved results and the question are concatenated and
input into an encoder–decoder to generate an answer. The model uses ViT to encode
images and T5 [35] to encode text and generate answers.

4.4. Evaluation Metrics

Due to the difference in answer formats within the MultimodalQA dataset (text
fragments or phrases) and the WebQA dataset (natural language sentences), different
evaluation metrics are used for the two datasets. For the MultimodalQA dataset, the
evaluation metrics include Exact Match (EM) and F1. For the WebQA dataset, the evaluation
metrics include retrieval results F1, QA-FL, QA-Acc, and QA-Overall. Exact Match (EM)
is used to assess whether the generated answer is completely identical to the reference
answer. The EM value is 1 only if the two are exactly the same; otherwise, it is 0. The
F1 score is the harmonic mean of precision and recall between the candidate answer
and the standard answer. QA-FL measures the fluency (syntactic and semantic relevance)
between the generated answer and the reference answer, with its core being BARTScore [36].
BARTScore is a natural language generation evaluation metric based on paraphrase quality
measurement, that is, evaluating the quality of generated text by the probability of text
generation. BARTScore(A,B) indicates the probability of generating text B from text A.
Given a reference answer r and a generated candidate answer c, BARTScore(r,c) represents
the probability of generating the candidate answer from the reference answer. QA-FL
prioritizes semantic consistency and is somewhat robust to the misplacement of function
words. It penalizes the rearrangement of words and expressions of disfluency. Considering
the presence of multiple reference answers, the QA-FL score for the generated candidate
answer c is represented as follows:

FL(c, R) = max
{

min(1, (
BARTScore(r, c)
BARTScore(r, r)

))

}
(11)

QA-Acc is used to measure the overlap of key entities between the generated answer and
the reference answer. To ensure the accuracy of the answer, it is necessary to ensure the
presence of specific key entities in the answer and penalize any incorrect entities present.
For different question categories (qc), different answer domains (Dqc) are defined, which
are the sets of keywords related to the category. Given a candidate answer c and reference
answer keywords K, the QA-Acc metric is calculated as follows:

Acc(c, K) =
{

F1(c ∩ Dqc, K ∩ Dqc) qc ∈ [color, shape, number, Y/N]
Recall(c, K) otherwise :

(12)

QA-Overall is used to measure the model’s overall performance for the dataset. It is
calculated as the average of the product of QA-FL and QA-Acc for each sample across the
entire test set.

4.5. Results

The results of our model (PEG) and baseline models for the WebQA dataset are shown
in Table 1. Compared to baseline models, our model achieves leading results across all
metrics. For the Retrieval-F1, our model outperforms the MuRAG model by 3.8. For
the QA-FL, which measures the fluency of the answers, our model exceeds the MuRAG
model by 0.4. For the QA-Acc, assessing the accuracy of the answers, our model surpasses
the MuRAG model by 1.9. For the QA-Overall, which represents the overall score of
the answers, our model leads the MuRAG model by 1.7. This indicates that the PEG
model demonstrates superior performance in both retrieval effectiveness and the quality of
generated answers, highlighting its effectiveness in multimodal question answering tasks
for the WebQA dataset.
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Table 1. Experiment results for WebQA dataset.

Model Retrieval-F1 QA-FL QA-Acc QA-Overall

Question-Only - 34.9 22.2 13.4
VLP (Oscar) 68.9 42.6 36.7 22.6

VLP + ResNeXt 69.0 43.0 37.0 23.0
VLP + VinVL 70.9 44.2 38.9 24.1

MuRAG 74.6 55.7 54.6 36.1

PEG 79.4 56.1 56.7 37.8

The results of our model and baseline models for the MultimodalQA dataset are
shown in Table 2. Compared to the baseline models, our model achieves the best results
across all metrics. For text questions, our model shows a significant improvement over
the previously best-performing MuRAG model, with an increase of 3.9 for the F1 and an
increase of 3.0 for the EM. For image questions, the proposed model shows an improvement
of 2.1 for the F1 over the MuRAG model.

Table 2. Experiment results for MultimodalQA dataset.

Model Text Image All
EM F1 EM F1 EM

Question-Only 15.4 18.4 11.0 15.6 13.8
AutoRouting 49.5 56.9 37.8 37.8 46.6

MuRAG 60.8 67.5 58.2 58.2 60.2

PEG 64.7 70.5 60.3 60.3 63.8

The experimental results for both datasets indicate that our model outperforms base-
line models. Generating supplementary descriptions for images allows the model to better
understand and align images and text, thereby achieving better retrieval results. By gen-
erating background knowledge for questions and pairing it with more accurate input
information sources, the model can generate higher quality answers.

4.6. Ablation Study

To better analyze the effectiveness of each module within our proposed model, we
conducted ablation experiments by removing one of the three key parts at a time for ablation
analysis. PEG w/o IC: By removing the image supplementary description generation
module, the texts within the image–text pairs of the input information sources are no
longer expanded. During information source retrieval and answer generation, the textual
content in the relevant information sources remains as the original image descriptions,
without any supplementary descriptions. PEG w/o CON: During the training process of
the PEG model, answers are generated directly using question-related information sources,
and the contrastive learning loss is removed. PEG w/o BK: The background knowledge
generation module is removed. When generating answers, the model only inputs the
question and relevant information sources, without including background knowledge
related to the question.

Apart from the modifications to the aforementioned modules, all other modules and
experimental settings are consistent with the PEG model. Tables 3 and 4 present the results
of ablation experiments for the WebQA and MultimodalQA datasets, respectively.

Comparing the two tables, it is evident that the model performance significantly
decreases after removing the contrastive learning component. With the WebQA dataset,
the Retrieval-F1 metric drops by 6.3, QA-FL by 1.2, QA-Acc by 2.6, and QA-Overall by
2.4. With the MultimodalQA dataset, for text-related questions, F1 and EM decrease by
4.5 and 3.5, respectively, and for image-related questions, F1 and EM each decrease by 2.2.
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This decline is attributed to the crucial role of contrastive learning in the vision–language
joint encoding process, which promotes the encoder’s alignment and understanding of
images and texts. The encoder’s capability directly affects the quality of information source
retrieval and thereby the quality of answer generation.

Table 3. Ablation study results for WebQA dataset.

Model Retrieval-F1 QA-FL QA-Acc QA-Overall

PEG 79.4 56.1 56.7 37.8

PEG w/o IC 76.0 55.7 55.3 36.3
PEG w/o CON 73.1 54.9 54.1 35.4
PEG w/o BK 78.8 55.9 55.8 36.8

Table 4. Ablation study results for MultimodalQA dataset.

Model Text Image All
EM F1 EM F1 EM

PEG 64.7 70.5 60.3 60.3 63.8

PEG w/o IC 62.4 68.9 59.5 59.5 61.7
PEG w/o CON 60.2 67.0 58.1 58.1 60.1
PEG w/o BK 63.3 69.6 59.8 59.8 62.5

After removing the image supplementary description generation, for the WebQA
dataset, the Retrieval-F1 metric decreased by 3.4, QA-FL by 0.4, QA-Acc by 1.4, and QA-
Overall by 1.5. For the MultimodalQA dataset, for text-related questions, F1 and EM
decreased by 2.3 and 1.6, respectively, and for image-related questions, F1 and EM each
decreased by 0.8. With the removal of supplementary descriptions, the vision–language
joint encoder experiences a reduction in text information, which in turn diminishes its
encoding capability, leading to a decrease in retrieval performance. Additionally, the
reduction in input text information weakens the model’s ability to generate answers, as the
encoder has less contextual data to work with, impacting the overall effectiveness of the
model in generating accurate and relevant answers.

After removing the background knowledge generation, for the WebQA dataset, the
Retrieval-F1 metric decreased by 0.6, QA-FL by 0.2, QA-Acc by 0.9, and QA-Overall by 0.8.
For the MultimodalQA dataset, for text-related questions, F1 and EM decreased by 1.4
and 0.9, respectively, and for image-related questions, F1 and EM each decreased by 0.5.
Removing background knowledge results in a reduction in input for the vision–language
joint encoder, slightly diminishing its encoding capability, which leads to a minor decrease
in retrieval performance. Additionally, reducing the input of background knowledge causes
a decline in the model’s ability to generate answers.

The results of the ablation experiments demonstrate that the image supplementary de-
scription generation, contrastive learning in information source encoding, and background
knowledge generation modules included in the proposed model significantly enhance the
model’s capability to retrieve information sources and generate answers effectively.

To analyze the impact of different prompt learning methods, we replaced prefix-
tuning with P-tuning [37] and P-tuning v2 [38] in background knowledge generation. The
experimental results are shown in Tables 5 and 6. PEG: Our proposed model includes
all modules and utilizes prefix-tuning to generate background knowledge. PEG w/o BK:
The background knowledge generation module is removed. When generating answers,
the model only inputs the question and relevant information sources, without including
background knowledge related to the question. PEG with P-tuning: In the PEG model, we
replace prefix-tuning with P-tuning to generate background knowledge, while keeping
the other modules unchanged. PEG with P-tuning v2: In the PEG model, we replace
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prefix-tuning with P-tuning v2 to generate background knowledge, while keeping the other
modules unchanged.

Table 5. Results of Different prompt learning methods for WebQA dataset.

Model Retrieval-F1 QA-FL QA-Acc QA-Overall

PEG 79.4 56.1 56.7 37.8

PEG w/o BK 78.8 55.9 55.8 36.8
PEG with P-tuning 79.1 56.0 56.2 37.1

PEG with P-tuning v2 79.8 56.4 57.1 38.1

Table 6. Results of Different prompt learning methods for MultimodalQA dataset.

Model Text Image All
EM F1 EM F1 EM

PEG 64.7 70.5 60.3 60.3 63.8

PEG w/o BK 63.3 69.6 59.8 59.8 62.5
PEG with P-tuning 63.7 70.0 59.9 59.9 63.0

PEG with P-tuning v2 65.2 70.9 60.5 60.5 64.2

From the experimental results, it is evident that using any prompt learning method
is better than not using any prompt learning method to generate background knowledge.
The effect of using P-tuning v2 is better than using prefix-tuning and P-tuning. However,
the effect of using prefix-tuning is better than P-tuning. This is because P-tuning introduces
learnable parameters in the input without changing the main weights of the language
model, and it adjusts the minimal number of parameters. On the other hand, prefix-tuning
optimizes prefix parameters for all layers. P-tuning v2, based on P-tuning, incorporates
the idea of prefix-tuning by inserting continuous prompts into each layer, with prompts
between layers being independent of each other. It can be seen as an optimized version
of prefix-tuning.

To verify the impact of the number of information sources retrieved (top-k) on the
retrieval results and the quality of answer generation, Figure 6 illustrates how the re-
trieval performance metric Retrieval-F1 and the answer generation performance metric
QA-Overall change as the number of retrieved information sources (top-k) varies. In the
WebQA dataset, the number of information sources related to a question is mostly more
than two but rarely exceeds four. Therefore, as top-k gradually increases from 2, both
Retrieval-F1 and QA-Overall metrics improve. However, when top-k exceeds 4, the input
of excessive information sources introduces noise, leading to a decline in both Retrieval-F1
and QA-Overall metrics.

Figure 6. The impact of top-k on retrieval and answer generation.
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4.7. Case Study

Figure 7 presents an example of an answer generated by our proposed model. It can
be observed that the original textual description in the information source provides the
location of the image but does not describe any content within the image. The model,
through image supplementary description generation, broadly describes the image content
(building, cars, bikes). The correspondence between the image and text significantly aids
the vision–language joint encoder in aligning and understanding the image content. The
answer generated by our model is essentially consistent with the reference answer, proving
the effectiveness of the model.

Quetion: Is the fence in front of The Glass House in Fulham
taller or shorter than a bicycle?

Description: The Glass House, Fulham 05

Supplementary Description：It occupies a brick building
graced with three large windows trimmed in white. Cars park
neatly on the street ahead, bikes rest against railings closeby.

Generated answer: The fence in front of the Glass House
appears to be slightly taller than a bicycle.
.
Ground truth: The fence in font of the building is taller than a
typical bicycle.

Figure 7. Examples of PEG-generated answers.

Table 7 shows example of a text-only question in the WebQA dataset. In this case,
the relevant input information sources for the given questions do not contain images,
only textual content. The text related to the question retrieved by the model, Text 1, is
inaccurate and does not contain knowledge relevant to the question; it only has keyword
overlap. However, the generated background knowledge provides information related to
the question, which is beneficial for the model to generate the correct answer.

Table 7. Example of PEG-generated answer to text-only question.

Question: What Body of Water Is Both Trinidad and the Petites Antilles in?

Relatex text 1:
Major bodies of water on Trinidad include the Hollis Reservoir, Navet
Reservoir, Caroni Reservoir. Trinidad is made up of a variety of soil
types, the majority being fine sands and heavy clays.

Relatex text 2:

The Lesser Antilles (Spanish: Pequeas Antillas; French: Petites An-
tilles; Papiamento: Antias Menor; Dutch: Kleine Antillen) is a group of
islands in the Caribbean Sea. Most form a long, partly volcanic island
arc between the Greater Antilles to the north-west and the continent
of South America.

Background knowledge: Trinidad is situated in the Caribbean Sea, which is a part of the western
Atlantic Ocean.

Genarated answer: Both Trinidad and the Petites Antilles are in the Caribbean Sea.

Ground truth: The Caribbean.

5. Conclusions

In this paper, we propose a prompt-enhanced generation model for multimodal ques-
tion answering. To address the issue of insufficient image descriptions in datasets, which
leads to inadequate understanding and alignment between images and texts, we utilize a
multimodal pre-trained model to generate supplementary captions for images. By employ-
ing a vision–language joint encoder that fully interacts and aligns images with texts, we
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improve the encoding effectiveness, which in turn enhances retrieval capabilities. Since the
quality of generated answers is closely related to the ability to retrieve relevant information
sources, inputting unrelated information sources into the model can prevent it from cor-
rectly answering questions. To solve this issue, we adopt a prefix-tuning approach to mine
knowledge present in the parameters of pre-trained language models, generating related
background knowledge for the question as a supplement to the information sources for
retrieval. We conducted experiments and analysis on two datasets to verify the effectiveness
of our model and its related modules.

For future work, we will focus on more efficiently integrating prompt learning with
retrieval to minimize the computational cost of retrieval as much as possible, avoid the
hallucinations brought about by model prompt learning, and retrieve relevant information
when necessary to enhance the accuracy of generated answers.
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