
Citation: Paul, R.; Sarkar, S.; Sau, S.;

Roy, S.; Chakraborty, K.; Chakrabarti,

A. Voltage Scaled Low Power DNN

Accelerator Design on Reconfigurable

Platform. Electronics 2024, 13, 1431.

https://doi.org/10.3390/

electronics13081431

Academic Editor: Sunggu Lee

Received: 4 March 2024

Revised: 31 March 2024

Accepted: 7 April 2024

Published: 10 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Voltage Scaled Low Power DNN Accelerator Design on
Reconfigurable Platform
Rourab Paul 1,2,*, Sreetama Sarkar 3 , Suman Sau 4, Sanghamitra Roy 5, Koushik Chakraborty 5

and Amlan Chakrabarti 6

1 Computer Science & Engineering, Siksha O Anusandhan, Bhubaneswar 751030, India
2 Computer Science, University of Pisa, 56127 Pisa, Italy
3 Department of Electrical and Computer Engineering, University of Southern California,

Los Angeles, CA 90089, USA; sreetama@usc.edu
4 Computer Science & Information Technology, Siksha O Anusandhan, Bhubaneswar 751030, India;

sumansau@soa.ac.in
5 Department Electrical and Computer Engineering, Utah State University, Logan, UT 84322, USA;

sanghamitra.roy@usu.edu (S.R.); koushik.chakraborty@usu.edu (K.C.)
6 School of IT, University of Calcutta, Kolkata 700019, India; acakcs@caluniv.ac.in
* Correspondence: rourabpaul@soa.ac.in

Abstract: The exponential emergence of Field-Programmable Gate Arrays (FPGAs) has accelerated re-
search on hardware implementation of Deep Neural Networks (DNNs). Among all DNN processors,
domain-specific architectures such as Google’s Tensor Processor Unit (TPU) have outperformed conven-
tional GPUs (Graphics Processing Units) and CPUs (Central Processing Units). However, implementing
low-power TPUs in reconfigurable hardware remains a challenge in this field. Voltage scaling, a pop-
ular approach for energy savings, can be challenging in FPGAs, as it may lead to timing failures if not
implemented appropriately. This work presents an ultra-low-power FPGA implementation of a TPU
for edge applications. We divide the systolic array of a TPU into different FPGA partitions based on
the minimum slack value of different design paths of Multiplier Accumulators (MACs). Each partition
uses different near-threshold (NTC) biasing voltages to run its FPGA cores. The biasing voltage for each
partition is roughly calculated by the proposed static schemes. However, further calibration of biasing
voltage is performed by the proposed runtime scheme. To overcome the timing failure caused by NTC,
the MACs with higher minimum slack are placed in lower-voltage partitions, while the MACs with lower
minimum slack paths are placed in higher-voltage partitions. The proposed architecture is implemented
in a commercial platform, namely Vivado with Xilinx Artix-7 FPGA and academic platform VTR with
22 nm, 45 nm and 130 nm FPGAs. Any timing error caused by NTC can be caught by the Razor flipflop
used in each MAC. The proposed voltage-scaled, partitioned systolic array can save 3.1% to 11.6% of
dynamic power in Vivado and VTR tools, respectively, depending on the FPGA technology, partition size,
number of partitions and biasing voltages. The normalized performance and accuracy of benchmark
models running on our low-power TPU are very competitive compared to existing literature.

Keywords: FPGA partition; low power; TPU; voltage scaling

1. Introduction

The popularity of TPU-based neural network implementations is increasing due to
shorter training times, faster inference, energy efficiency and scalability compared to CPU
and GPU solutions [1]. Additionally, the integration of TensorFlow with TPU enables users to
run their neural network models on TPUs without extensive modifications to their code. On
the other hand, the configurable logic block (CLB) and switch matrix of FPGAs are power-
hungry, which makes FPGAs energy-inefficient when compared to ASICs. Recently many
researchers [2,3] have reported CPU-FPGA-based hybrid data center architectures, which
provide hardware acceleration facility for deep neural networks (DNNs). Despite power

Electronics 2024, 13, 1431. https://doi.org/10.3390/electronics13081431 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13081431
https://doi.org/10.3390/electronics13081431
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0009-2182-6200
https://orcid.org/0000-0003-4380-3172
https://doi.org/10.3390/electronics13081431
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13081431?type=check_update&version=1

Electronics 2024, 13, 1431 2 of 23

inefficiency, FPGA has become popular in the cloud-scale acceleration architecture due to its
computational efficiency, specialized hardware and the economic benefits of homogeneity.
Therefore, reducing power in FPGA for DNN applications becomes a very relevant topic
of research.

1.1. Literature

B Salami et al. [4] studied the timing failure vs. biasing voltage of a DNN implementa-
tion in FPGA. They under-scaled the biasing voltage (Vccint) of the entire FPGA to increase
the power efficiency of the convolutional neural network (CNN) accelerator by a factor of
3. A single Vccint for the entire FPGA might not be the most power-efficient solution. Parti-
tioning an FPGA according to the slacks and feeding different biasing voltages for different
partitions can cause a further reduction in power for CNN implementations. In [5], the
authors implemented a systolic array using a near-threshold (NTC) biasing voltage in an
ASIC, which can predict the timing failure of multiplier accumulators (MACs) placed inside
the systolic array of a TPU. The prediction of timing failure is based on Razor flipflop [6].
Higher fluctuation of input bits increases the possibility of timing failure in NTC conditions.
In [5], once the timing failure of a MAC was predicted by its internal Razor flipflop, the
biasing voltage of the MAC was boosted. In the literature, there are three types of timing
error controlling techniques used to predict timing errors for systolic arrays.

1.1.1. Timing Error Detection and Recovery (TED)

TED was first proposed in [7], the authors of which used Razor flipflops to sample the
outputs. The outputs are executed by a regular clock and a delayed clock. If the outputs
from these two different clocks are different, an error flag is indicated, and the inputs are
re-executed with a reduced clock frequency. The TED scheme has three variants, as follows:
TED Clock Gating (TEDCG), TED Counterflow(TEDCF) and TED Rollback (TEDRB) [8].

1.1.2. Timing Error Propagation (TEP)

Timing Error Propagation (TEP) [8] allows timing errors to propagate subsequent
computation stages instead of re-executing inputs of erroneous MACs. TEP expects the
algorithm itself to be error-resilient. This approach explores the noise tolerance of the
algorithm. The authors of [8] showed the accuracy of DNN falls when the timing error
rate crosses 0.1%. The authors of [9] showed that algorithmic noise tolerance (ANT)
hardware can tolerate a 21.3% error rate, with performance degradation of only 3.5% at a
97.4% overhead.

1.1.3. Timing Error Drop (TE-Drop)

Like TED, Timing Error Drop [5,10] also uses Razor flipflop to detect timing error.
However, Unlike TED, TE-Drop can recover timing errors without re-executing the logic
of fallacious MACs. TE-Drop shows that weight distribution is biased towards small
values. Therefore, the logical participation of individual MACs to output neurons is very
insignificant. When a MAC detects a timing error, TE-Drop steals the next clock cycle from
its previous MAC to compute the correct partial sum and drops the update of the previous
MAC. TE-Drop uses an MUX, which is controlled by an error flag from the previous MAC.
If the previous MAC detects error, the MUX passes the sum correctly computed partial by
the Razor flipflop; otherwise, the current MAC passes the actual partial sum. Table 1 shows
different neural network architectures.

Electronics 2024, 13, 1431 3 of 23

Table 1. Comparison with the literature.

Static Runtime Runtime Name of Transistor Power Reduction Remarks

Paper Offline
Calibration

Error
Correction
(REC)

Error Prediction
and Correction
(REPC)

Error Detection Error Correction
Technique Platform Technology Strategy

J. Zhang
et al. [10], 2018 × × × ✓ TE-Drop ASIC 45 nm Underscaling

single Vccint

Underscaling of Vccint, accuracy study of
DNN, Razor-based timing error detection,
correction with TE-Drop

Pandey er al. [5],
2019 × × ✓ ✓ TE-Drop ASIC 15 nm Underscaling

multiple Vccint

Underscaling of Vccint, accuracy study of
CNN, Razor-based timing error detection,
heuristic error prediction, correction with
TE-Drop

Salami et al. [4],
2020 × × × × ×

Xilinx
ZCU-102
FPGA

16 nm Underscaling
single Vccint

Underscaling of Vccint, accuracy study of
CNN

Ernst et al. [7],
2006 × × × ✓ TED ASIC 180 nm Underscaling

single Vccint

Underscaling of Vccint, accuracy study of
DNN, Razor-based timing error detection,
correction with TED

Jiao et al. [8] × × × ✓ TEP ASIC 45 nm Underscaling
single Vccint

Underscaling of Vccint with variation of
temperature, changing training set accuracy
study of CNN

Azghadi
et al. [11], 2020 × × × × × Virtex-VU9

FPGA 28 nm Architectural
optimization

Resource-optimized hardware architecture
for DNN

Zhao et al. [12],
2020 × × × × × Intel Aria10

FPGA 18 nm Architectural
optimization

Resource-optimized hardware architecture
for CNN, accuracy study of CNN

Kim et al. [13],
2020 × × × × × Xilinx Zynq

FPGA 28 nm Clock gating Low-power CNN architecture, clock gating
used to optimize power

Duvindu
et al. [14], 2020 × × × × × Xilinx Zynq

FPGA 28 nm Clock gating Power savings with minimal accuracy and
performance loss

Pandey
et al. [15], 2021 × × × × × ASIC 15 nm Power gating

It addresses a significant hardware
underutilization problem in
weight-stationary systolic arrays

Our ✓ ✓ ✓ ✓ TE-Drop Xilinx Artix 7
FPGA 28 nm Underscaling

multiple Vccint

Underscaling of Vccint, partitioning FPGA
based on critical paths of MACs, accuracy
study of DNN, Razor-based timing error
detection, heuristic error prediction,
correction with TE-Drop

Electronics 2024, 13, 1431 4 of 23

The authors of [11–14] implemented power-optimized hardware accelerators for neural
networks on FPGA platforms. These hardware accelerators optimized power consumption
through clock gating and various conventional architectural optimization approaches. The
authors of [15] reduced power consumption of TPUs on a 15 nm ASIC platform using a power
gating methodology. However, these articles did not explore voltage underscaling approaches.
The authors of [4] explored underscaled biasing voltage for CNNs on FPGA platforms but did
not address timing error detection and correction measures. Conversely, the authors of [5,7,8,10]
focused on ASIC implementations of neural networks and underscaled biasing voltage and
also investigated solutions for timing error detection and correction. As shown in Table 1,
refs. [7,8] used TED and TEP, respectively. However, refs. [5,10] used TE-Drop to correct runtime
timing errors.

1.2. Contribution

Targeting FPGA-based DNN applications [2], our work investigates voltage scaling
techniques for systolic arrays in TPUs on the FPGA platform, employing the TE-Drop
error correction method. Similar to ASICs, implementing different Vccint values for each
of the MACs in a systolic array is unrealistic for FPGA platforms. Therefore, this work
partitions the FPGA floor according to the minimum slack value of design paths of MACs.
Each partition consists of a group of MACs with similar minimum slacks. Each partition is
connected with different Vccint values. The proposed methodology abstracts the synthesis
timing report from the Vivado and VTR tools. In a synthesized design, the Vivado and
VTR timing engines estimate the net delays of paths based on connectivity and fanout.
The clustering algorithms create clusters or groups based on the minimum slack of all
MACs. The clusters consist of MACs that have lower minimum slacks placed in FPGA
partitions with higher Vccint values and clusters of MACs with higher minimum slacks
placed in FPGA partitions with lower Vccint values. Here, the Vccint provides power to an
FPGA core. The timing errors caused in the proposed systolic array for the Vccint values are
handled a Timing Error Control Unit (TECU) using razor flipflop. By discarding the MAC
operation after an incorrect MAC due to timing errors and using the additional clock cycle to
accurately compute the incorrect MAC’s result, TE-Drop prevents the performance penalty
of re-execution. The tuning of Vccint with slack is performed by unique static and runtime
strategies. The circuit-level challenges in the implementation of voltage scaling in the FPGA
platform are beyond the scope of our article. However, the feasibility of implementing
the necessary hardware for voltage scaling support is evident, considering the successful
implementations in other ASIC technologies. Due to the unavailability of multiple Vccint
supports in a single FPGA device, our entire design with multiple partitions cannot be
implemented on FPGA. However, for the proof of concept, the design is implemented
on FPGA with one partition at a time. The power measurements are performed using
the Xilinx Vivado probe. Furthermore, the timing parameters are taken from synthesis
and implementation processes, which take into account the actual timing reality of FPGA
devices. On the other hand, the VTR-based results are taken from simulation. The proposed
method does not impact the logic of design paths. Hence, it can be implemented in any
existing low-power neural network architecture for additional power reduction. The
contributions of this paper are described as follows:

• This paper proposes a new CAD flow to create voltage-scaled TPUs on FPGA-based
platforms considering the trade-off between circuit delay and biasing voltage. The pro-
posed CAD flow can be used in any existing low-power neural network architecture
for additional power reduction.

• The cluster algorithms divide the systolic array of a TPU into different partitions
(groups or clusters) based on the minimum slacks (critical paths) of MACs. Instead
of applying uniform Vccint across all MACs in the systolic array, the group of MACs
with shorter critical paths is connected with lower Vccint, and the group of MACs with
longer critical paths is connected with higher Vccint.

Electronics 2024, 13, 1431 5 of 23

• The calibration of the Vccint of different partitions is performed by the proposed
runtime and static schemes. The timing errors caused by voltage reduction are detected
by a heuristic-based timing error prediction method.

The organization of this article is described as follows. Section 2 outlines our back-
ground of the FPGA environment. The working principle of Razor flipflop to detect
runtime timing failure is discussed in Section 2.5. The methodology of the proposed work
is described in Section 3. Section 4 discusses the clustering algorithms. Results of the
implementation and conclusions are presented in Section 5 and Section 6, respectively.

2. Background: FPGA Environment

The proposed scheme was implemented in Xilinx FPGAs using the Vivado commercial
tool flow and in academic FPGAs using VTR CAD tools. In our first approach, we used
the Xilinx Vivado tool with an Artix-7 FPGA and the VTR tool flow with 22 nm, 45 nm and
130 nm academic FPGAs. The VTR supports Vccint in the critical voltage region, which is
not available in Vivado.

2.1. Vivado Environment

A typical Xilinx FPGA in the Vivado environment has three conventional steps, namely
synthesis, implementation and bit file generation, whereas the adopted tool flow of the
proposed partitioned FPGA is divided into the following two environments: (i) the Vivado
environment for synthesis, implementation and bit file generation and (ii) the Python
environment for clustering of similar slacks. The entire tool flow is shown in Figure 1. The
Vivado environment involves the following three sub-steps:

Figure 1. Vivado tool flow.

2.1.1. Synthesis

The Vivado synthesis process transforms register transistor logic (RTL) to a gate-level
representation. The synthesis process generates delays of all possible paths of the design.
The timing report of the synthesis process contains 12 pieces of information, namely the
name of the path, slack value, level, high fanout, path from, path to, total delay of path,
logic delay, net delay, time requirement source clock and destination clock. It is to be noted
that the estimation of the slacks of each logic block is performed at a high level. The actual
timing behavior of the design depends on the net delays after placement and routing.

2.1.2. Implementation

The Vivado implementation process is a timing-driven flow that transforms a logical
netlist and constraints (Xilinx design constraints format) into a placed and routed design to
make it ready for the bitstream generation process. In our proposed tool flow, the logical
netlist is provided by the Vivado synthesis process, but the Xilinx Design Constraints
(XDCs) are generated by a Python script. The clustered MACs are considered for placement
in a specific location on the FPGA floor.

Electronics 2024, 13, 1431 6 of 23

2.1.3. Bit File Generation

Once placement and routing are completed by the implementation process, the flow
generates a bitstream of the systolic array. The Xilinx bitstream generation program
produces a bitstream for Xilinx device configuration. CPUs typically accompany TPUs
as hardware accelerators. CPUs in this context are responsible for providing application
libraries and input data to the TPU.

2.2. VTR Environment

In a commercial CAD environment, biasing voltage is fixed. The Verilog to Routing
(VTR) [16] tool is an open-source academic CAD tool flow for the FPGA architecture that
allows for voltage scaling technology. The VTR contains three separate tools, namely
Odin II [17], ABC [18] and VPR [19]. The entire tool flow is shown in Figure 2. The VTR
environment involves the following three sub-steps.

Synthesis

 Report

Cluster

Algorithms

Clusters

Report

Generate

Constraint File

VPR

Implementation

VTR Environment Python Enviornment

HDL Odin II ABC

Yes

No

is

ranklist of

minimumslack

of any MAC

changed

?

Figure 2. VTR tool flow.

2.2.1. Synthesis

The synthesis process of the proposed VTR tool flow is processed by Odin I I and
ABC. Odin I I elaborates and synthesizes HDL into FPGA architectural primitives like
FFs, multipliers and adders. Thereafter, the circuit logic is handled by ABC to perform
technology-independent logic optimizations; then, the technology maps the soft logic to
LUTs. The information in the timing report generated by ABC is similar to the Vivado
synthesis report. The different slack values of different design paths in the synthesis report
are used in cluster algorithms.

2.2.2. Implementation

The VPR [19] tool is a part of the VTR flow, which is used for the physical imple-
mentation of the circuit in the target FPGA architecture, along with Synopsys Design
Constraint (SDC) file . In the VTR flow, the logical netlist is provided by Odin I I and the
ABC synthesis process, but the SDC is generated by a Python script. The clustered slack
values generated by the Python script are considered for placement of the logic paths in a
specific location on the FPGA floor. At the end, VPR analyzes the circuit implementation
to generate area, speed and power data, as well as a post-implementation netlist. Many
commercial CAD tools like Titan Flow use Intel’s Quartus, while Yosys uses VPR for logic
synthesis, optimization and technology mapping.

There is a possibility that after the partitioning of the systolic array, delays of design
paths from the implementation process may differ from delays of design paths from the
synthesis process. Therefore, changes in the delay of the design path may affect the
minimum slack of MACs; as a consequence, the entire design needs to re-cluster based on
the new minimum slacks of MACs. Figures 3 and 4 report the differences in delays of the
100 worst design paths of the synthesis process and the implementation (after partition)
process, respectively. Figures 3 and 4 show that the partitioning process does not affect

Electronics 2024, 13, 1431 7 of 23

the design paths significantly. The proportional changes in the delays of design paths
in Figures 3 and 4 affect the minimum slacks of MACs in each partition proportionally.
Therefore, the rank list of design paths based on minimum slack remains unaffected and
the partition process remains unchanged.

Figure 3. Slacks of the 100 worst setup paths in Vivado for a 16 × 16 systolic array.

Figure 4. Slacks of the 100 worst hold paths in Vivado for a 16 × 16 systolic array.

2.3. Python Environment

The contribution of this paper lies in augmenting the standard FPGA design tool
flow by incorporating a Python-based environment, which consists of a script to run three
subsequent processes, namely the choice of Clustering Algorithms, Cluster Generation and
Constraint Generation.

2.3.1. Choice of Clustering Algorithms

A clustering algorithm suited to the requirements is chosen at this step. As stated
in Section 3, this paper investigates four commonly used clustering algorithms, namely
hierarchical, K-means, mean-shift and DBSCAN algorithms.

2.3.2. Cluster Generation

We assume that the FPGA is divided into a few partitions and each partition has a
different biasing voltage (Vccint). The clustering algorithms create few groups of MACs.
The MACs with similar minimum slacks form a group, and they are placed in the same
FPGA partition. It is to be noted that groups of MACs and clusters are represented using
rectangle or square shapes, respectively, for improved readability and comprehension.

Electronics 2024, 13, 1431 8 of 23

2.3.3. Constraint Generation

Xilinx uses a constraint file format (XDC) to specify the coordinates of different paths
of the proposed systolic array. The XDC file is generated by the Python script.

2.4. Clustering MACs Based on Their Minimum Slacks

The idea of voltage scaling for a partitioned systolic array was initially based on the
slacks generated from the synthesis report. Slack-based clustering can group different or
similar design paths belonging to different MACs, which may be placed in the different
physical locations of the FPGA floor by the placement and routing algorithm. For the
slack-based design path partitioning approach, the intervention of the proposed tool script
is far greater than the placement and routing process of existing EDA tools. As a result,
the timing parameters reported by the synthesis process are varied significantly after the
placement and routing process of existing EDA tools at the implementation level. For four
partitions with a 16 × 16 systolic array, the Vivado tool generates a 4.23 ns critical path.
The same design has a 11.93 ns critical path after placement routing, which is almost two
times the critical path generated from the synthesis report. We note that the placement and
routing process of slack-based partitioning of a 64 × 64 systolic array takes 10 to 14 h on an
i5, 8 GB Linux platform. Later, instead of clustering design paths based on slack, clustering
is performed on MACs using their minimum slack values. We find that clustering MACs
based on their minimum slack is reasonable and better compared to the previous method
for the following reasons:

• For the clustering of MACs based on their minimum slack, the intervention of the
vendor’s technology-dependent placement and routing algorithm is far greater com-
pared to the previous idea. As a result, the critical path variation in the synthesis and
implementation process is very minimal.

• Placing all design paths in a constraint file is much more complicated compared to
placing entire MACs in a constraint file.

• The routing of wires on the FPGA floor is comparatively simpler for MAC clustering
based on their minimum slacks.

2.5. Razor Flipflop

Razor flipflop can be implemented in FPGA [6] by inserting a shadow flipflop running
on a delayed clock. It is assumed that a circuit register (R) is lying at the end of one or
more timing paths originating from any of the source registers. The shadow register (S)
samples the same data as R but on a delayed clock (DCLK) that is lagged by Tdel from the
main clock (CLK). Any data that arrive after R samples but before S samples will cause a
discrepancy between the two registers, which is detected by the error flag (F). This Razor
flipflop is placed in each MAC unit of our systolic array. The multiplication and addition
process in each MAC of our design is computed using the rising edges of CLK and DLK.
The CLK-driven output of the multiplication and addition process of each MAC is stored
in the R register. The DCLK-driven output of the multiplication and addition process of
each MAC is stored in the shadow register (S). The inclusion of Razor doubles the number
of multipliers and adders required for the systolic array, but it can detect whether runtime
failure occurred in MACs due to the near-threshold biasing voltage. The timing diagram of
the Razor is shown in Figure 5.

CLK

R

DCLK

S

F

del
T

Figure 5. Timing diagram of fault detection.

Electronics 2024, 13, 1431 9 of 23

3. Hybrid Configuration: Static and Runtime Schemes

To mitigate timing failure issues in the critical voltage region, we adopt two sequential
schemes. (i) The static scheme involves FPGA partitioning and rough Vccinti estimation
depending on the FPGA technology. (ii) The runtime scheme is divided into two separate
processes, namely timing error correction to calibrate the suitable Vccinti for each partition
of FPGA using Razor flipflop and (B) timing error correction and prediction based on
heuristics for determination of input sequence family [5] and calibration of the suitable
Vccinti . Each partition of FPGA consists of a group of MACs. All the groups of MACs form
a systolic array of the TPU. Apart from the systolic array, the TPU has memory to store
active and weight inputs, the PCI interface, controlling circuitry, etc.

3.1. Static Scheme

The proposed static scheme operates within the Vivado/VTR and Python environ-
ments when the TPU is offline. As shown in Figure 1, synthesis is the first step of the
proposed tool flow, which takes a netlist of complex logic blocks (CLBs) of the systolic array
generated by the Vivado or VTR tool. This netlist from the synthesis report is generated
after technology mapping and packing stages, which contain time slacks of all the possible
paths of the systolic array. The proposed approach considers only nodes along paths
because (i) the nodes along the path have data dependencies, which should be placed
in the same FPGA partition even without considering the voltage scaling [20]. (ii) The
slack values of the nodes along paths are usually close to each other. The second step
of the proposed methodology involves the choice of the clustering algorithm and cluster
generation. As stated in Section 4, the four clustering algorithms, namely the hierarchy,
K-means, mean-shift and DBSCAN algorithms, create multiple clusters of MACs with the
paths available in the synthesis report. Even for the same number of clusters, different
algorithms classify the data points slightly differently.

The primary concern is to identify clusters of MACs that can share the minimum
slacks available across the other MACs. Even for the same number of clusters, different
algorithms classify the data points slightly differently. Unlike the K-means algorithm, the
hierarchical, mean-shift and DBSCAN algorithms do not need the number of clusters to
be specified beforehand. DBSCAN is found to perform the best in this case, as it groups
together nearby data points, has a reasonable time complexity and can also identify outliers.
Hence, clustered paths returned by DBSCAN are chosen for subsequent processes.

Once the number of clusters is fixed, we need to decide the voltage values of different
FPGA partitions. In Figure 6, we illustrate three voltage regions in an FPGA, which are also
supported by the research work reported in [4]. A voltage below the FPGA crashing voltage
(Vcrash) causes timing failure, which reduces the DNN accuracy to near zero. The region
between minimum voltage (Vmin) and nominal voltage (Vnom) is called the guard-band
region, where the DNN accuracy is 100% but power efficiency is the least. In the critical
region, the closer the voltage is to Vcrash, the higher the power efficiency and the lower
the DNN accuracy. Similarly, if Vccint is closer to Vmin in the critical region, the power
efficiency decreases and DNN accuracy increases. In our proposed architecture, we assume
the operating voltage range for the systolic array is Vcrash to Vmin. If we have P clusters
computed by the chosen clustering algorithm, we need P partitions in FPGA. The primary
Vccint estimation for each FPGA partition is computed by Algorithm 1. In Xilinx FPGA,
the coordinates of circuit components are specified by two slice parameters (Xi, Yj). Each
FPGA partition has a range within these coordinates. The clustered MACs are placed in
the same FPGA partition by mentioning the slice parameters (Xi, Yj).

In the third step of the proposed methodology, each clustered path computed by
the clustering algorithms is placed in a particular FPGA partition, which is restricted
by specific Xi, Yj ranges. This restriction is applied to the xdc file during the Generate
Constraint File process.

Electronics 2024, 13, 1431 10 of 23

Critical

Region
Crash

Region

Guardband

Region

Vmin VnomVcrash

Accuaracy of Design

Power Efficiency

Figure 6. Voltage behavior for Vccint.

Algorithm 1 Static Voltage Scaling

Require: Vccint, Vmin, Vcrash & P
1: Vs=

Vmin−Vcrash
P

2: Vl = Vcrash
3: for i = 1 to P do
4: Vccinti = Vl+Vl+Vs

2
5: Vl = Vl + Vs
6: end for

The rough Vccint calculation is performed by the static voltage scaling algorithm shown
in Algorithm 1, which calculates a stepping voltage (Vs) from Vmin and Vcrash. Thereafter,
the Vccinti of the ith partition is calculated based on the stepping voltage (Vs). The static
voltage scaling algorithm distributes Vccint.

3.2. Runtime Scheme

Runtime scheme is divided into two processes.

3.2.1. Runtime Error Correction (REC)

The Vccinti of the ith FPGA partition calculated by Algorithm 1 is calibrated to the
Vccinti pin of the ith FPGA partition. The calculation of Vccinti by Algorithm 1 is based on
the number of partitions (P) and the critical voltage region (Vmin − Vcrash), which solely
depends on the type of FPGA technology. However, the appropriate Vccinti of the ith FPGA
partition should also depend on the minimum slack values of MACs of that partition.
The static strategy calculates a rough estimation of Vccinti , whereas the runtime strategy
calibrates Vccinti according to the runtime timing failure of the systolic array. In the runtime
scheme, we use one of the most popular runtime timing error detection schemes, Razor,
which uses double-sampling flipflop to detect timing violations of pipeline stages. The
Razor flipflops are connected with every MAC of the systolic array to indicate timing failure.
Each MAC has a timing failure flag, which is controlled by the Razor flipflop. If any timing
failure flag of any MAC placed in the ith FPGA partition is high, the Vccinti of that ith FPGA
partition is increased by one step. If all the timing failure flags of all MACs placed in the
ith FPGA partition are low, the Vccinti of that ith FPGA partition is decreased by one step.
Before starting the actual run of the proposed systolic array, if we have a trial run, all the
Vccinti of all partitions are tuned accurately by this runtime process. The voltage-boosting
circuit inside the VCU can be implemented externally following the technique proposed
in [21].

In Figure 7, we show that the cluster algorithm partitions the FPGA into four islands.
The static scheme described in Section 3.1 calculates four Vccinti values, namely Vccint1 ,Vccint2 ,
Vccint3 and Vccint4 , for FPGA partition-1, partition-2, partition-3 and partition-4, respectively.
The Voltage Control Unit (VCU) distributes Vccinti values, namely Vccint1 , Vccint2 , Vccint3 and
Vccint4 to FPGA partition-1, partition-2, partition-3 and partition-4, respectively. Thereafter,
the TPU circuit can be on, and the runtime scheme becomes functional. In the first step of the
runtime scheme, as shown in Figure 7, four FPGA partitions, namely partition-1, partition-2,
partition-3 and partition-4, have four flags form Razor flipflops, namely timing_ f ail-part-1,

Electronics 2024, 13, 1431 11 of 23

timing_ f ail-part-2, timing_ f ail-part-3 and timing_ f ail-part-4, respectively, to detect the
timing failure of the available partition of the FPGA. Each timing_ f ail-part-i flag is the
ANDed value of all error detection flags of all MACs placed in the ith partition. As shown
in Algorithm 2, if the ith timing failure flag from the ith FPGA partition becomes high, the
VCU steps up the Vccinti of that partition by Vs; otherwise, Vccinti is stepped down by Vs.
The mode input of timing error control unit (TECU) for the entire first step of the runtime
scheme is logic ‘0’.

Figure 7. Example: partitioned FPGA; n = 4.

Algorithm 2 Runtime Voltage Scaling

Require: Vccint, Vs
1: for i = 1 to P do
2: if timing_ f ail-part-i == 1 then
3: Vccinti = Vccinti + Vs
4: else
5: Vccinti = Vccinti − Vs
6: end if
7: end for

3.2.2. Runtime Error Prediction and Correction (REPC)

This process predicts timing error based on heuristics to determine the input sequence
family. Apart from Vccint, timing error also depends on the fluctuation of input sequences.
It is noticed that input sequences that have similar delay characteristics can be grouped into
the same family. The sequence of inputs from a family may have similar bit flips, which
can cause similar delays. This paper adopts the algorithm from [5], which creates groups of
input sequences with similar delays. Instead of storing each input sequence as a separate
entry in memory, the algorithm proposed in [5] stores a single entry for input sequences
wiht similar delays. These input sequences that cause similar delays are considered a group
or family. This solution makes it hardware-efficient. In the second step of the runtime
scheme, the mode input is made to logic ‘1’, which indicates that the TECU is active for
timing error prediction.

Algorithm 3 correlates different input sequences and delays and makes some groups
or families. It divides the changes in bits of an input sequence into three different families,
namely (i) dynamic bit positions, which have the highest president; (ii) static bit positions,
which are not flipped; and (iii) insignificant bit positions, which are flipped but insignificant
in terms of causing delay. Therefore, one input sequence can represent a group of input
sequences that produce a similar delay. We designed FPGA-based dedicated hardware
for Algorithm 2 proposed in article [5]. When Razor indicates the timing error, lines 1

Electronics 2024, 13, 1431 12 of 23

to line 4 of Algorithm 3 store the XORed value of the current active(s) (cur_active) and
previous active(s) (prev_active) in the Error Logic Memory (ELM), along with the coor-
dinate(s) of any erroneous MAC(s). In line 6 of Algorithm 3, new_pat stores the XORed
value of cur_active and prev_active, while new_pat stores the dynamic bit position. In
line 8, similar stores the domination of dynamic bit positions, which contributes to delay
characteristics. In line 9 and line 10, num_zero_saved_patt and num_zero_similar count
the number of zeros in the specific saved pattern of the ELM and the number of zeros in
similar, respectively. If num_zero_similar is greater than num_zero_saved_patt, the specific
cur_active and prev_active can cause error. This situation is termed as Match Found, as
stated in line 12. Match Found signifies that new_pat has a similar delay to that of the
particular saved_patt stored in the ELM. Thereafter, the corresponding coordinate(s) of any
MAC(s) stored in the ELM for the matched saved_patt is (are) sent to the voltage control
unit (VCU). The VCU increases the voltage(s) of any particular FPGA partition(s) where an
erroneous MAC(s) is (are) placed. This voltage control unit is similar to the voltage control
unit (VCU) described in [5]. We designed a TECU for Algorithm 3. The ELM is mounted
inside the TECU. The resource usage of the TECU unit for various sizes of systolic array is
shown in Table 2.

Algorithm 3 Pattern Storing/Matching Heuristic

1: Store ELM(cur_active, prev_active){
2: xor_pat=cur_active xor prev_active
3: Store xor_pat
4: }
5: MATCH(cur_active, prev_active){
6: new_pat=cur_active xor prev_active
7: for all saved_patt do
8: similar= new_pat or saved_patt
9: num_zero_saved_patt=number of reset bits in saved_patt

10: num_zero_similar=number of reset bits in similar
11: if num_zero_similar>num_zero_saved_patt then
12: match found
13: end if
14: end for
15: }

Table 2. Overhead of timing error control unit.

Dimension of Systolic Array
Systolic Array

TECU

ELM Size = 32 ELM Size = 64 ELM Size = 128 ELM Size = 256

LUT FF LUT FF LUT FF LUT FF LUT FF

16 × 16 4892 3040 866 404 858 455 949 477 1254 603

32 × 32 19,563 12,163 2256 404 2346 455 2570 477 2982 603

64 × 64 34,234 21,282 3631 404 3836 455 4189 477 4711 603

4. Clustering Algorithms

We investigated four clustering algorithms to group the MACs with similar minimum
slacks. Algorithms can be chosen based on the design requirements if we want to set
a predefined number of clusters or set hyperparameters to automatically determine the
number of clusters. Different algorithms work well for different data distributions. The
hierarchical, K-means, mean-shift and DBSCAN cluster algorithms create varying numbers
of clusters, as shown in Figure 8, Figure 9, Figure 10 and Figure 11, respectively. Different
colors represent different clusters, while the x-axis represents the minimum slack values of
different MACs of the 16 × 16 systolic array. Depending on our design requirements, we
choose among the following four algorithms:

Electronics 2024, 13, 1431 13 of 23

4.1. Hierarchical

The hierarchical clustering [22] algorithm considers each data point as a single cluster
and measures the distance between two clusters based on a chosen distance measure (in
this case, Euclidean distance). The two clusters that are closest to each other are merged.
The process is continued until all clusters have been merged into a single cluster (root of
the dendrogram). A dendrogram is a tree-like structure used for visualization the hierarchy
of clusters. The number of clusters can be decided from the dendrogram. The hierarchical
algorithm is computationally expensive for large datasets, having a time complexity of
O(n3), where n is the number of data points. As is evident from the dendrogram, the
length of the branch joining the last two clusters is the highest, indicating they are the most
dissimilar, followed by the third and fourth clusters. The result of classifying the MACs
based on their minimum slack values into three and four clusters is illustrated in Figure 8a
and Figure 8b, respectively.

Figure 8. Hierarchical cluster of the slacks of a 16× 16 systolic array: (a) #clusters = 3; (b) #clusters = 4.

4.2. K-Means Clustering

K-means clustering can cluster data into a predefined number of groups (k). At the
beginning, k cluster centers are randomly initialized [23]. The algorithm computes the
distance between each data point and the cluster centers and assigns data points to the
cluster whose center is closest. The cluster centers are then recomputed as the mean of
the data points belonging to that cluster. The process is repeated for a predefined number
of steps or until cluster centers do not change significantly. K-means clustering is simple
and fast, and its time complexity is O(n). Figure 9 illustrates the results of applying the
K-means clustering algorithm to the minimum slack values of a 16 × 16 systolic array
(256 MACs) for four and five clusters.

Figure 9. K-means cluster of the slacks of a 16 × 16 systolic array: (a) #clusters = 4; (b) #clusters = 5.

4.3. Mean-Shift Clustering

Mean-shift clustering [24] is based on the idea of Kernel Density Estimation (KDE).
KDE assumes that the data points are generated from an underlying distribution and tries
to estimate the distribution by assigning a kernel to each data point. The most commonly
used kernel is the Gaussian or RBF kernel. The mean-shift algorithm is designed in a way

Electronics 2024, 13, 1431 14 of 23

such that the points iteratively climb the KDE surface and are shifted to the nearest KDE
peaks. It starts with a randomly selected point as the center of the RBF kernel. Thereafter, it
proceeds by moving the kernel towards regions of higher density by shifting the center of
the kernel to the mean of the points within the window (hence, the algorithm is termed
mean-shift). This is continued until shifting the kernel no longer includes more points.
This algorithm does not need the number of clusters to be specified beforehand, but it
is computationally expensive compared to K-means (time complexity of O(n ∗ log(n))
in lower dimensions for Python sklearn implementation). The selection of the window
size/radius (r) can be non-trivial and plays a key role in the success of the algorithm.
Setting the radius as 0.4 for the slack values of a 16 × 16 systolic array yields five clusters,
as observed in Figure 10.

Figure 10. Mean-shift clustering of the slacks of a 16 × 16 systolic array.

4.4. DBSCAN

The DBSCAN algorithm has two important hyperparameters based on which it de-
termines the number of clusters [25], namely epsilon, which is the maximum distance
between two samples for one to be considered as in the neighborhood of the other, and
minpoints, which is the number of samples in a neighborhood for a point to be considered
as a core point. At each step, a data point that has not been visited before is taken. If
there are more data points than minpoints within its epsilon radius, all the data points are
marked as belonging to a cluster; otherwise, the first point is marked as noise. For all
points in the newly formed cluster, points within their ‘epsilon’ neighborhood are checked
and labeled as either belonging to a cluster or as noise. The process is continued until all
data points have been labeled. The greatest advantage of DBSCAN is that it can identify
outliers as noise, unlike other algorithms, which throw all points into a cluster even if one
data point is significantly different from the rest. The time complexity of this algorithm is
O(n) for reasonable epsilon values. This algorithm is not effective for clusters with varying
density, since epsilon and minpoints are different for different clusters. Figure 11 illustrates
how the DBSCAN algorithm creates three clusters of the MACs of a 16 × 16 systolic array.
Each of the three different colors represents a distinct cluster of MACs.

Figure 11. DB scan clustering of the slacks of a 16 × 16 systolic array.

Electronics 2024, 13, 1431 15 of 23

5. Implementation and Result

As mentioned in Section 2, the two proposed tool flows have two environments. The
clustering algorithms for both Vivado and VTR are implemented in Python using the
Scikit-learn library. The synthesis, implementation and bit f ile generation of the Vivado
flow are performed by the board support package of the Artix-7 FPGA. The synthesis and
implementation of the VTR flow are performed by the board support package of 22 nm,
45 nm and 130 nm academic FPGAs. As shown in Figure 12, the cluster algorithm generates
P partitions, and the dimensions of each partition are (n × m). The static scheme generates
biasing voltages as follows:

P × (n × m){Vccint1 , Vccint2 , ..., Vccinti , ..., Vccintp} (1)

for P partitions. The runtime scheme calibrates the biasing voltage according to the timing
failure detected by Razor placed in every MAC. The runtime scheme provides the following
final set of biasing voltages:

Vccint1 + C1.Vs, Vccint2 + C2.Vs, ..., Vccinti + Ci.Vs, ...,

Vccintp + CP.Vs
(2)

Here, C1, C2, .. Cp are integers starts from 0 to any positive value.

Cluster

Algorithm

Offline

Vccint

Online

Vccint at

trial run

PX(nXm)

P

Vccint1, Vccin2, .. , Vccintp

Vccint1 C1.Vs, Vccin2 C2.Vs, .. , Vccintp Cp.Vs

active

Online

Vccint at

actual run

Offline Online

Figure 12. Flow diagram of the proposed framework.

5.1. Implementational Challenges

The proposed design could not be fully implemented, as none of the present-day
FPGA devices support variable-voltage scaling in the different logic partitions. The imple-
mentation issues of a VCU with multiple Vccint values in different partitions are beyond
the scope of our paper. However, we consider that the implementation of voltage scaling
technology in ASICs [5] establishes the feasibility of implementation of voltage scaling
technology in FPGAs.

5.2. Our Validation Strategy

To validate the claim of the proposal, we implemented the proposed scheme using
Vivado and VTR flows. We designed a systolic array with the following three different
dimensions: 16× 16, 32× 32 and 64× 64. Let us take the example of a 16× 16 systolic array
where 16 × 16 = 256 MACs are placed in the FPGA. As shown in Figure 9b, the K-means
clustering algorithm mentioned in Section 4 divides the 16 × 16 systolic array into four par-
titions, namely partition-1, partition-2, partition-3 and partition-4, based on the silhouette
coefficient. The sizes of the partitions are partition-1 = 10× 10 = 100, partition-2 = 6 × 6 = 36,
partition-3 = 3 × 23 = 69 and partition-4 = 3 × 17 = 51. As the current Vivado tool does
not allow the design to operated in the critical voltage region, our 16 × 16 systolic array
is tested in the guard-band region. Due to the unavailability of multiple Vccint supports
in a single FPGA deviceat the same time, our design is implemented in one partition at a
time. Therefore, the power measurement of the four partitions is also performed separately,

Electronics 2024, 13, 1431 16 of 23

where each partition is considered as an individual circuit. Due to the unavailability of
multiple Vccinti values at a time in a single FPGA device, our runtime voltage calibration
strategy is capable of scaling a single Vccinti for a partition. Current FPGAs do not have any
voltage scaling standard. However, Artix-7 can perform voltage scaling by Inter-Integrated
Circuit (I2C) command. Although VTR allows the design to operated in critical regions, for
the sake of a better comparative study, we have also use the same voltage ranges used in
Vivado. The FPGA floor after clustering the MACs of the 16 × 16 systolic array is depicted
in Figure 13. Here, the coordinates are the row and column addresses of MACs in the
systolic array.

Figure 13. FPGA Floor of 16 × 16 systolic array.

5.3. Results

This section studies how different sizes and architectures of systolic arrays, as well as
parameters such as P, Vccint and n × m, affect the proposed partition-based voltage-scaled
architecture. It also compares the normalized performance of our architecture with that
reported in [5]. The results of our implementations are based on three different sizes of
systolic arrays, namely test 1, with a size of 16 × 16; test 2, with a size of 32 × 32; and test 3,
with a size of 64 × 64. All these tests are conducted using Artix-7 (D1), VTR-22 nm (D2),
VTR-45 nm (D3) and VTR-130 nm (D4) FPGAs. Test 1 is also implemented with different
variants of systolic arrays.

5.3.1. Different Sizes of Systolic Arrays

Table 3 shows the dynamic power consumption of 16 × 16 (test 1), 32 × 32 (test 2)
and 64 × 64 (test 3) systolic arrays with different sizes of partitions. The dynamic power
measurements of Vivado and VTR implementations are carried out by a Xilinx Vivado
probe and VTR, respectively. The guard-band region for the Artix-7 FPGA in Vivado
implementations ranges from 0.95 volts to 1.00 volts. For test 1, the number of partitions is
P = 4, Vmin = Vnom = 1.00 volts and Vcrash = Vmin = 0.95 volts; therefore, Vs = 0.0125 volts.
Algorithm 1 calculates the Vccinti of the four FPGA partitions of this design, which are
Vccint1 = 0.956 for partition-1, Vccint2 = 0.968 for partition-2, Vccint3 = 0.985 for partition-3
and Vccint4 = 0.993 for partition-4. We observe that when the partial sums are moved to the
bottom rows of the systolic array, the timing error increases significantly [5].

As depicted in Figure 13, the K-means clustering algorithm is divides test 1, which
consists of a 16 × 16 systolic array, into four partitions. The top-left partition-1 consists
of a 10 × 10 systolic array that has Vccint1 = 0.956 ≈ 0.96. Similarly, top-right partition-2
consists of a 6 × 6 array with Vccint2 = 0.968 ≈ 0.97, bottom-left partition-3 consists of
a 3 × 23 array and has Vccint3 = 0.985 ≈ 0.98 and bottom-right partition-4 consists of a
3 × 17 array and has Vccint4 = 0.993 ≈ 0.99. As depicted in Table 3, the adoption of voltage

Electronics 2024, 13, 1431 17 of 23

scaling technology in the design of test 1 reduces dynamic power consumption for Vivado
commercial FPGAs by 6.4% and reduces dynamic power for VTR academic FPGAs of
22 nm, 45 nm and 130 nm by 5.4%, 4.9% and 3.1%, respectively. The design of test 2 has
five partitions, which reduces dynamic power for Vivado by 8.2% and reduces dynamic
power for VTR from 6.6% to 3.5%. Finally, the design of test 3 has seven partitions, which
reduces dynamic power from 11.6% to 8.7% on the VTR platform. Due to the limited range
of biasing voltage in Vivado, test 1 and test 2 have lower bounds on improvements. In
test 3, biasing voltage drops to closer to NTC for VTR. As expected, the power reduction
increases substantially from 11.6% to 8.7%. It is observed that the percentage of dynamic
power reduction is less for longer transistor channels. Table 3 demonstrates that among
all the designs (D1, D2, D3 and D4) in test 1, test 2 and test 3, test 3-D2 (VTR 22nm FPGA)
exhibits the highest reduction in dynamic power percentage compared to all other designs
with NTC. This is because shorter channel lengths generally result in lower gate capacitance
and faster switching speeds, which can reduce dynamic power consumption. The Razor
logic overhead costs 453 LUTs and 89 flipflops for a 16 × 16 systolic array.

Table 3. Comparison of dynamic power (mw) for Vivado and VTR flows.

Dynamic Power (mw)

25 ◦C Ambient
Temperature

and 100 MHz Clock

Size of
Systolic
Array

Partition
No.

Vccinti

(Volts)

Vivado
28 nm
Artix-7

(D1)

VTR
22 nm
(D2)

VTR
45 nm
(D3)

VTR
130 nm

(D3)
Remarks

Without
Voltage
Scaling

16 × 16 NA 1.00 408 328 469 1808
D1, D2,

D3 and D4
required

10 × 10 partition-1 0.96

382 310 446 1753
1 stage

K-Means
clustering

Voltage 6 × 6 partition-2 0.97
Scaled 3 × 23 partition-3 0.98

3 × 17 partition-4 0.99

Test:1 ∗: % of Dynamic Power Reduction 6.4 5.4 4.9 3.1

% of timing overhead of our tool flow 11 15 12 13

Without
Voltage
Scaling

32 × 32 NA 1.00 1538 1072 1549 6172
D1, D2,

D3 and D4
required

Voltage
Scaled

18 × 16 partition-1 0.96

1411 1001 1472 5956
1 stage

K-Means
clustering

18 × 18 partition-2 0.97
6 × 6 partition-3 0.98

16 × 17 partition-4 0.99
8 × 13 partition-5 1.00

Test:2 ∗: % of Dynamic Power Reduction 8.2 6.6 4.8 3.5

% of timing overhead of our tool flow 15 16 17 17

Without
Voltage
Scaling

64 × 64 NA 1.1
not

supported 4127 6023 24,896

D2, D3 and
D4 required

2 stages
K-Means

Voltage
Scaled

43 × 16 partition-1 0.7

Not
Supported 3648 5402 22,716

clustering; D1
Not supported,

Vccint < 0.95
NA in Artix-7

22 × 22 partition-2 0.78
18 × 18 partition-3 0.86
28 × 28 partition-4 0.92
28 × 27 partition-5 0.98
20 × 23 partition-6 1.04
24 × 25 partition-7 1.1

Test:3: % of Dynamic Power Reduction - 11.6 10.3 8.7

% of timing overhead of our tool flow - 29 28 30
∗ Lower bounds of improvement due to the constraint of Vccint.

Electronics 2024, 13, 1431 18 of 23

5.3.2. Variants of Systolic Array Architecture

We have use the voltage scaling technique in four variants of systolic arrays, namely a
One-Dimensional Systolic Array (1DSA0) [26], a Modified One-Dimensional Systolic Array
(1DSA0) [27], a Two-Dimensional Systolic Array (2DSA) [28] and tree architecture [28].
As shown in Table 4, the adoption of voltage scaling in all these existing variants of
systolic arrays reduces the dynamic power by 3.12% to 8.27%. Table 4 demonstrates
that the proposed voltage scaling methodology not only reduces a significant amount of
dynamic power consumption in TPU-based systolic arrays but that it may also be equally
effective with one-dimensional systolic arrays, modified one-dimensional systolic arrays,
two-dimensional systolic arrays and tree architectures.

5.3.3. Effects of P, Vccint and n × m in Dynamic Power

In Figures 14 and 15, we show the dynamic power consumption of different variants of
64 × 64 systolic arrays on 22 nm, 45 nm and 130 nm academic FPGAs using the VTR flow.
Figures 14 and 15 show that variation of three parameters, such as the number of partitions
(P), the biasing voltage (Vccinti) of each partition and the dimensions of each FPGA partition
(n × m) changes the dynamic power consumption of 64 × 64 systolic arrays by 18%, 21%
and 39% for 22 nm, 45 nm and 130 nm academic FPGAs, respectively. Here, the number
of clusters or partitions (P) and the dimensions of each partition (n × m) are calculated by
cluster algorithms. The biasing voltage (Vccinti) of each FPGA partition is roughly calculated
by a static scheme, and further calibration of accurate Vccinti is performed by the runtime
scheme. Such significant effects of P, n × m and Vccinti on dynamic power consumption
show that the cluster algorithm and the static and runtime schemes are very crucial steps
of proposed framework. As an example, in Figures 14 and 15, the name of one variant of
the systolic array is 4 × (32 × 32){0.8, 1.0, 1.2, 1.3} (the rightmost bar in Figure 15), where
P = 4, n × m = 32 × 32 and the biasing voltages of the four partitions are 0.8 volts, 1.0 volts,
1.2 volts and 1.3 volts. In Figures 14 and 15, the Vccinti for 130 nm varies the threshold
voltage from 0.7 volts to 1.3 volts, whereas for 22 nm and 45 nm, Vccinti varies from 0.5 volts
to 1.2 volts. Although the threshold voltage of 45 nm is 0.5 volts and for 22 nm, it is
0.45 volts, for comparative purposes, in both cases, we measure it form 0.5 volts. It is
known that the dynamic power reduces by the square of the supply voltage (Vccinti). Also,
the 2 × (32 × 64){0.5, 0.6} variant of the systolic array implemented in 22 nm and 45 nm
technology has the maximum number of MACs running with minimum Vccinti values as
compared to other reported variants, as shown in Figure 14. Thus, the aforementioned
variant consumes minimum dynamic power as compared to other variants reported in
Figure 14. Going by the same reasoning, the 2 × (32 × 64){0.7, 0.8} variant in 135 nm
technology consumes minimum dynamic power when compared to the other variants, as
reported in Figure 15. The minimum voltage step of the power supply [21] is considered as
0.1 volt. We observe that the timing reports of 16 × 16 and 32 × 32 systolic arrays before
partitioning and after partitioning show very insignificant effects on delay in wires, as well
as placement and routing difficulties. Hence, the reclustering process is not required for
the aforementioned systolic arrays. However, for 64×64 systolic arrays, delays of design
paths vary. Therefore, a reclustering (second stage) process is required.

Electronics 2024, 13, 1431 19 of 23

Table 4. Power consumption of different of voltage-scaled systolic array architectures.

Tool
Size = 16 × 16,

Temp—25 ◦C, Clock =
100 MGhz, # MAC = 256

Dynamic
Power (mw)

% Dynamic
Power

Reduction

Accessed
Data

Load
Clock

Idle
Clock

Working
Clock

Total
Clock

Vivado-Artix7
1DSA0 489

6.14

1024 512 256 256 1024

1DSA0-VS 459

VTR-22 nm
1DSA0 387

7.24
1DSA0-VS 359

VTR-45 nm
1DSA0 502

5.17
1DSA0-VS 476

VTR-130 nm
1DSA0 2251

4.35
1DSA0-VS 2153

Vivado-Artix7
1DSA1 481

6.65

256 1024 240 256 752

1DSA1-VS 449

VTR-22 nm
1DSA1 381

7.87
1DSA1-VS 351

VTR-45 nm
1DSA1 496

5.24
1DSA1-VS 470

VTR-130 nm
1DSA1 2242

3.92
1DSA1-VS 2154

Vivado-Artix7
2DSA 509

6.87

8192 16 240 256 512

2DSA-VS 474

VTR-22 nm
2DSA 411

8.27
2DSA-VS 377

VTR-45 nm
2DSA 596

5.2
2DSA-VS 565

VTR-130 nm
2DSA 2311

4.28
2DSA-VS 2212

Vivado-Artix7
Tree 528

6.25

8192 16 240 256 512

Tree-VS 495

VTR-22 nm
Tree 431

7.65
Tree-VS 398

VTR-45 nm
Tree 613

5.22
Tree-VS 581

VTR-130 nm
Tree 2423

4.29
Tree-VS 2319

Vivado-Artix7
Proposed TPU SA 408

6.37

1024 16 0 256 272

Proposed TPU SA-VS 382

VTR-22 nm
Proposed TPU SA 328

5.8
Proposed TPU SA-VS 310

VTR-45 nm
Proposed TPU SA 469

5.15
Proposed TPU SA-VS 446

VTR-130 nm
Proposed TPU SA 1808

3.13
Proposed TPU SA-VS 1753

Electronics 2024, 13, 1431 20 of 23

0

1000

2000

3000

4000

5000

6000

7000

8 x (8 X 64)
{ 0.5,0.6,
0.7,0.8,

 0.9, 1.0, 1.1,
1.2 }

4 x (16 X 64)
{ 0.5, 0.7,0.9,

1.1 }

4 x (16 X 64)
{ 0.6,0.8,1.0,

1.2 }

4 x (16 X 64)
{ 0.9, 1.0, 1.1,

1.2 }

4 x (16X64)
{ 0.5, 0.6,
0.7,0.8 }

4 x (16 X 64)
{ 0.7,0.8, 0.9,

1.0 }

2 x (32 X 64)
{ 0.5, 0.6 }

2 x (32 X 64)
{ 0.6, 0.7 }

2 x (32 X 64)
{ 0.7, 0.8 }

2 x (32 X 64)
{ 0.8, 0.9 }

2 x (32 X 64)
{ 0.9, 1.0 }

2 x (32 X 64)
{ 1.0, 1.1 }

2 x (32 X 64)
{ 1.1, 1.2 }

2 x (32 X 64)
{ 0.5, 0.9 }

2 x (32 X 64)
{ 0.7, 1.1 }

2 x (32 X 64)
{ 0.8, 1.2 }

4 x (32 X 32)
{ 0.5, 0.7, 0.9,

1.1 }

4 x (32 X 32)
{ 0.6, 0.8, 1.0,

1.2 }

D
yn

am
ic

 P
o

w
er

 (
m

w
)

22nm 45nm

Figure 14. Comparison of dynamic power (mw) of various variants of 64 × 64 systolic arrays on
22 nm and 45 nm.

Figure 15. Comparison of dynamic power (mw) of various variants of 64 × 64 systolic arrays on
130 nm.

5.3.4. Normalized Performance

Figure 16 shows that the number of timing errors increases with the clock frequency
of the design. The normalized performance of our proposed 256 × 256 systolic array is
compared with the four variants designed in [5]. We designed three variants of systolic
arrays, namely (i) a systolic array with a prediction model described in Section 3.2.2 in
which the ELM size is 10 (REC + REPC + offline), (ii) a systolic array without a prediction
(REC + offline) model and (iii) a systolic array with offline calibration only. In [5], V1
incorporates TE-Drop error correction, while V2 does not include a prediction model. V3
is a lighter variant with only one error-causing pattern in the ELM, whereas the V4 is a
variant with 10 error-causing patterns in the ELM. In Figure 16, it is noticed that our 28 nm
FPGA-based systolic array faces more timing errors compared to the 15 nm ASIC-based
implementation reported in [5]. The configurable switches and longer channel lengths of
the transistors used in FPGAs cause more delays, which affect timing error significantly.
As shown in Table 3, the timing overhead of the proposed CAD flow is insignificant. The
proposed CAD flow is executed on an Intel i5, Linux, 8GB RAM platform. A comparison of
CIFAR-10 benchmarks with the results of [5] is shown in Table 5.

Table 5. Comparison of benchmarks with [5].

Ref. Model Dataset Input Size Output Size # Layers Accuracy

Our
Goggle Net Cifar-10 32 × 32 32 × 32 6 84%

VGG Net Cifar-10 32 × 32 32 × 32 6 89%

[5] Goggle Net Cifar-10 NR * NR * NR * 77%
* NR = Not Reported.

Electronics 2024, 13, 1431 21 of 23

Figure 16. Normalized Performance [5].

6. Conclusions

This paper proposes a systolic array where the MACs are placed in different partitions
of FPGAs based on the minimum slacks of different MACs. Each partition of the FPGA
uses a different biasing voltage (Vccint). The proposed runtime and static schemes can tune
appropriate Vccint values, MACs with similar minimum slacks placed in the same partitions.
The proposed error correction and prediction mechanism, utilizing Razor flipflops and a
matching heuristic algorithm, effectively addresses timing failures resulting from lower
Vccint levels that are close to NTC. The experimental results demonstrate that a voltage-
scaled systolic array can significantly reduce power consumption. The proposed technique
does not affect the logic of design paths. Therefore, this method can be applied to any
existing low-power neural network architecture to reduce additional power consumption.
Similarly, partition-based voltage scaling can be utilized for other high-performance hard-
ware accelerators to decrease power consumption. In our future efforts, we will explore the
development of an automated tool flow to enable near-threshold computation for diverse
high-processing algorithms, with the aim of minimizing power consumption.

Author Contributions: Methodology, R.P. and A.C.; Validation, R.P., S.S. (Sreetama Sarkar) and
S.R.; Investigation, R.P. and S.S. (Suman Sau); Data curation, R.P. and S.S. (Sreetama Sarkar);
Writing—original draft, R.P., S.S. (Suman Sau), K.C., S.R. and A.C.; Writing—review & editing,
K.C. and S.R.; Visualization, K.C.; Supervision, K.C., S.R. and A.C. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was supported in part by the National Science Foundation under grant
number CNS-2106237.

Data Availability Statement: The original data presented in the study are openly available at
https://github.com/rourabpaul1986/TPU on 6 April 2024.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Kimm, H.; Paik, I.; Kimm, H. Performance Comparision of TPU, GPU, CPU on Google Colaboratory Over Distributed Deep

Learning. In Proceedings of the 2021 IEEE 14th International Symposium on Embedded Multicore/Many-Core Systems-on-Chip
(MCSoC), Singapore, 20–23 December 2021; pp. 312–319. [CrossRef]

2. Caulfield, A.M.; Chung, E.S.; Putnam, A.; Angepat, H.; Fowers, J.; Haselman, M.; Heil, S.; Humphrey, M.; Kaur, P.; Kim, J.Y.; et.
al. A cloud-scale acceleration architecture. In Proceedings of the 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), Taipei, Taiwan, 15–19 October 2016; pp. 1–13. [CrossRef]

3. Putnam, A.; Caulfield, A.M.; Chung, E.S.; Chiou, D.; Constantinides, K.; Demme, J.; Esmaeilzadeh, H.; Fowers, J.; Gopal, G.P.;
Gray, J.; et al. A Reconfigurable Fabric for Accelerating Large-Scale Datacenter Services. IEEE Micro 2015, 35, 10–22. [CrossRef]

https://github.com/rourabpaul1986/TPU
http://doi.org/10.1109/MCSoC51149.2021.00053
http://dx.doi.org/10.1109/MICRO.2016.7783710
http://dx.doi.org/10.1109/MM.2015.42

Electronics 2024, 13, 1431 22 of 23

4. Salami, B.; Onural, E.B.; Yuksel, I.E.; Koc, F.; Ergin, O.; Cristal Kestelman, A.; Unsal, O.; Sarbazi-Azad, H.; Mutlu, O. An
Experimental Study of Reduced-Voltage Operation in Modern FPGAs for Neural Network Acceleration. In Proceedings of the
2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Valencia, Spain, 29 June–2
July 2020; pp. 138–149. [CrossRef]

5. Pandey, P.; Basu, P.; Chakraborty, K.; Roy, S. GreenTPU: Predictive Design Paradigm for Improving Timing Error Resilience of a
Near-Threshold Tensor Processing Unit. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2020, 28, 1557–1566. [CrossRef]

6. Ernst, D.; Kim, N.S.; Das, S.; Pant, S.; Rao, R.; Pham, T.; Ziesler, C.; Blaauw, D.; Austin, T.; Flautner, K.; et al. Razor: A low-power
pipeline based on circuit-level timing speculation. In Proceedings of the 36th Annual IEEE/ACM International Symposium on
Microarchitecture, 2003, MICRO-36, San Diego, CA, USA, 5 December 2003; pp. 7–18. [CrossRef]

7. Ernst, D.; Das, S.; Lee, S.; Blaauw, D.; Austin, T.; Mudge, T.; Kim, N.S.; Flautner, K. Razor: Circuit-level correction of timing errors
for low-power operation. IEEE Micro 2004, 24, 10–20. [CrossRef]

8. Jiao, X.; Luo, M.; Lin, J.H.; Gupta, R.K. An Assessment of Vulnerability of Hardware Neural Networks to Dynamic Voltage and
Temperature Variations. In Proceedings of the 36th International Conference on Computer-Aided Design, Irvine, CA, USA, 13–16
November 2017; pp. 945–950.

9. Kim, E.P.; Choi, J.; Shanbhag, N.R.; Rutenbar, R.A. Error Resilient and Energy Efficient MRF Message-Passing-Based Stereo
Matching. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2016, 24, 897–908. [CrossRef]

10. Zhang, J.; Rangineni, K.; Ghodsi, Z.; Garg, S. ThUnderVolt: Enabling Aggressive Voltage Underscaling and Timing Error
Resilience for Energy Efficient Deep Learning Accelerators. In Proceedings of the 2018 55th ACM/ESDA/IEEE Design
Automation Conference (DAC), San Francisco, CA, USA, 24–28 June 2018; pp. 1–6. [CrossRef]

11. Azghadi, M.R.; Lammie, C.; Eshraghian, J.K.; Payvand, M.; Donati, E.; Linares-Barranco, B.; Indiveri, G. Hardware Implementation
of Deep Network Accelerators Towards Healthcare and Biomedical Applications. IEEE Trans. Biomed. Circuits Syst. 2020, 14,
1138–1159. [CrossRef] [PubMed]

12. Zhao, H.; Kan, H.; Wang, Y.; Zhao, Q.; Su, D.; Huang, G. A Specification That Supports FPGA Devices on the TensorFlow
Framework. In Proceedings of the 2020 4th International Conference on Electronic Information Technology and Computer
Engineering, Xiamen, China, 6–8 November 2020; pp. 819–823. [CrossRef]

13. Kim, Y.; Kim, H.; Yadav, N.; Li, S.; Choi, K.K. Low-Power RTL Code Generation for Advanced CNN Algorithms toward Object
Detection in Autonomous Vehicles. Electronics 2020, 9, 478. [CrossRef]

14. Piyasena, D.; Wickramasinghe, R.; Paul, D.; Lam, S.K.; Wu, M. Reducing Dynamic Power in Streaming CNN Hardware
Accelerators by Exploiting Computational Redundancies. In Proceedings of the 2019 29th International Conference on Field
Programmable Logic and Applications (FPL), Barcelona, Spain, 8–12 September 2019; pp. 354–359. [CrossRef]

15. Pandey, P.; Gundi, N.D.; Chakraborty, K.; Roy, S. UPTPU: Improving Energy Efficiency of a Tensor Processing Unit through
Underutilization Based Power-Gating. In Proceedings of the 2021 58th ACM/IEEE Design Automation Conference (DAC),
San Francisco, CA, USA, 8–12 September 2021; pp. 325–330. [CrossRef]

16. Murray, K.E.; Petelin, O.; Zhong, S.; Wang, J.M.; Eldafrawy, M.; Legault, J.P.; Sha, E.; Graham, A.G.; Wu, J.; Walker, M.J.P.; et al.
VTR 8: High-Performance CAD and Customizable FPGA Architecture Modelling. ACM Trans. Reconfig. Technol. Syst. 2020, 13,
1–55. [CrossRef]

17. Jamieson, P.; Kent, K.B.; Gharibian, F.; Shannon, L. Odin II—An Open-Source Verilog HDL Synthesis Tool for CAD Research.
In Proceedings of the 2010 18th IEEE Annual International Symposium on Field-Programmable Custom Computing Machines,
Charlotte, NC, USA, 2–4 May 2010; pp. 149–156. [CrossRef]

18. Synthesis, B.L.; Verification Group. ABC: A System for Sequential Synthesis and Verification. 2018. Available online: https:
//people.eecs.berkeley.edu/~alanmi/abc/ (accessed on 6 April 2024).

19. Luu, J.; Kuon, I.; Jamieson, P.; Campbell, T.; Ye, A.; Fang, W.M.; Kent, K.; Rose, J. VPR 5.0: FPGA CAD and Architecture
Exploration Tools with Single-Driver Routing, Heterogeneity and Process Scaling. ACM Trans. Reconfig. Technol. Syst. 2011, 4,
1–23. [CrossRef]

20. Mukherjee, R.; Memik, S.O. Realizing Low Power FPGAs: A Design Partitioning Algorithm for Voltage Scaling and a Comparative
Evaluation of Voltage Scaling Techniques for FPGAs; Semanticschola, 2005. Available online: https://api.semanticscholar.org/
CorpusID:14769411 (accessed on 6 April 2024).

21. Miller, T.N.; Pan, X.; Thomas, R.; Sedaghati, N.; Teodorescu, R. Booster: Reactive core acceleration for mitigating the effects
of process variation and application imbalance in low-voltage chips. In Proceedings of the IEEE International Symposium on
High-Performance Comp Architecture, New Orleans, LA, USA, 25–29 February 2012; pp. 1–12. [CrossRef]

22. Stanford University, Hierarchical Agglomerative Clustering; 2008. Available online: https://nlp.stanford.edu/IR-book/html/
htmledition/hierarchical-agglomerative-clustering-1.html (accessed on 6 April 2024).

23. Arthur, D.; Vassilvitskii, S. K-means++: The advantages of careful seeding. In Proceedings of the 18th Annual ACM-SIAM
Symposium on Discrete Algorithms, New Orleans, LA, USA, 7–9 January 2007.

24. Comaniciu, D.; Meer, P. Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2002,
24, 603–619. [CrossRef]

25. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with
Noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA,
2–4 August 1996; pp. 226–231.

http://dx.doi.org/10.1109/DSN48063.2020.00032
http://dx.doi.org/10.1109/TVLSI.2020.2985057
http://dx.doi.org/10.1109/MICRO.2003.1253179
http://dx.doi.org/10.1109/MM.2004.85
http://dx.doi.org/10.1109/TVLSI.2015.2437331
http://dx.doi.org/10.1109/DAC.2018.8465918
http://dx.doi.org/10.1109/TBCAS.2020.3036081
http://www.ncbi.nlm.nih.gov/pubmed/33156792
http://dx.doi.org/10.1145/3443467.3443860
http://dx.doi.org/10.3390/electronics9030478
http://dx.doi.org/10.1109/FPL.2019.00063
http://dx.doi.org/10.1109/DAC18074.2021.9586224
http://dx.doi.org/10.1145/3388617
http://dx.doi.org/10.1109/FCCM.2010.31
https://people.eecs.berkeley.edu/~alanmi/abc/
https://people.eecs.berkeley.edu/~alanmi/abc/
http://dx.doi.org/10.1145/2068716.2068718
https://api.semanticscholar.org/CorpusID:14769411
https://api.semanticscholar.org/CorpusID:14769411
http://dx.doi.org/10.1109/HPCA.2012.6168942
https://nlp.stanford.edu/IR-book/html/htmledition/hierarchical-agglomerative-clustering-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/hierarchical-agglomerative-clustering-1.html
http://dx.doi.org/10.1109/34.1000236

Electronics 2024, 13, 1431 23 of 23

26. Uramoto, S.i.; Takabatake, A.; Suzuki, M.; Sakurai, H.; Yoshimoto, M. A half-pel precision motion estimation processor for
NTSC-resolution video. In Proceedings of the IEEE Custom Integrated Circuits Conference—CICC ’93, San Diego, CA, USA,
9–12 May 1993; pp. 11.2.1–11.2.4. [CrossRef]

27. Kung, H.; Picard, R. One-Dimensional Systolic Arrays for Multidimensional Convolution and Resampling. In VLSI for Pattern
Recognition and Image Processing; Springer: Berlin/Heidelberg, Germany, 1984; pp. 9–24. [CrossRef]

28. Jehng, Y.S.; Chen, L.G.; Chiueh, T.D. An efficient and simple VLSI tree architecture for motion estimation algorithms. IEEE Trans.
Signal Process. 1993, 41, 889–900. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/CICC.1993.590693
http://dx.doi.org/10.1007/978-3-642-47523-8_2
http://dx.doi.org/10.1109/78.193224

	Introduction
	Literature
	Timing Error Detection and Recovery (TED)
	Timing Error Propagation (TEP)
	Timing Error Drop (TE-Drop)

	Contribution

	Background: FPGA Environment
	Vivado Environment
	Synthesis
	Implementation
	Bit File Generation

	VTR Environment
	Synthesis
	Implementation

	Python Environment
	Choice of Clustering Algorithms
	Cluster Generation
	Constraint Generation

	Clustering MACs Based on Their Minimum Slacks
	Razor Flipflop

	Hybrid Configuration: Static and Runtime Schemes
	Static Scheme
	Runtime Scheme
	Runtime Error Correction (REC)
	Runtime Error Prediction and Correction (REPC)

	Clustering Algorithms
	Hierarchical
	K-Means Clustering
	Mean-Shift Clustering
	DBSCAN

	Implementation and Result
	Implementational Challenges
	Our Validation Strategy
	Results
	Different Sizes of Systolic Arrays
	Variants of Systolic Array Architecture
	Effects of P, Vccint and n m in Dynamic Power
	Normalized Performance

	Conclusions
	References

