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Abstract: With the development of artificial intelligence and deep learning, deep neural networks
have become an important method for predicting the remaining useful life (RUL) of lithium-ion
batteries. In this paper, drawing inspiration from the transformer sequence-to-sequence task’s
transformation capability, we propose a fusion model that integrates the functions of the stacked
denoising autoencoder (SDAE) and the Transformer model in order to improve the performance of
RUL prediction. Firstly, the health factors under three different conditions are extracted from the
measurement data as model inputs. These conditions include constant current and voltage, random
discharge, and the application of principal component analysis (PCA) for dimensionality reduction.
Then, SDAE is responsible for denoising and feature extraction, and the Transformer model is utilized
for sequence modeling and RUL prediction of the processed data. Finally, accurate prediction of
the RUL of the four battery cells is achieved through cross-validation and four sets of comparison
experiments. Three evaluation metrics, MAE, RMSE, and MAPE, are selected, and the values of these
metrics are 0.170, 0.202, and 19.611%, respectively. The results demonstrate that the proposed method
outperforms other prediction models in terms of prediction accuracy, robustness, and generalizability.
This provides a new solution direction for the daily life prediction research of lithium-ion batteries.

Keywords: lithium-ion batteries; health factors; remaining useful life; transformer; stacked denoising
autoencoders

1. Introduction

Lithium-ion batteries are widely used in cell phones, electric vehicles, and other
industries [1]. Due to their high energy density, long cycle life, fast charging and discharg-
ing, and low cost, lithium-ion batteries are the preferred choice for electric vehicles [2].
However, lithium-ion batteries contain flammable organic solvents and corrosive elec-
trolyte salts in their electrolyte, and overcharging can lead to damage to the device, so
it is important to predict their health to prevent overcharging and discharging [3]. The
life of a lithium-ion battery is affected by the number of charge cycles, temperature, and
other factors [4]. Accurately predicting RUL is critical to ensuring equipment reliability,
extending battery life, and reducing replacement costs for electric vehicles and energy
storage systems [5].

Currently, there are two main RUL prediction methods for lithium-ion batteries: statis-
tical modeling methods and machine learning methods [6]. Statistical modeling methods
use sample data to build regression models that make predictions based on physical quan-
tities such as capacity degradation, temperature, and voltage. For example, Xu et al. [7]
used a state-space model to predict RUL by integrating Expectation–Maximization (EM)
and Extended Kalman Filter (EKF) algorithms to enable parameter and state updating. In
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addition, Hu et al. [8] used a simplified electrochemical model and the Moving Horizon
Estimation (MHE) framework for the condition monitoring of batteries. However, statisti-
cal modeling approaches have limitations due to complexity, low dynamic accuracy, and
imperfect electrochemical simulations; therefore, applying machine learning methods on
large historical datasets is more suitable for predicting the RUL of lithium-ion batteries.

Machine learning ranges from time series methods, artificial neural network methods
(ANN), and deep learning (DL) methods, among others. Zhou et al. [9] decoupled degra-
dation trends and capacity regeneration from state of health (SOH) time series through
empirical mode decomposition (EMD), which was combined with the autoregressive in-
tegrated moving average (ARIMA) method and integrated to obtain the final prediction
results. Time series forecasting methods have some problems in predicting RUL values
and dependence on the training set. In contrast, DL, as a newer machine learning method,
solves the above problems well [10]. DL algorithms such as recurrent neural networks
(RNNs), deep neural networks (DNNs), and autoencoders can approximate complex non-
linear models and achieve accurate predictions. Jia et al. proposed a multi-scale RUL
and SOH prediction method combining wavelet neural network (WNN) and untraceable
particle filter (UPF) models. The battery capacity degradation data were decomposed
into low-frequency trends and high-frequency fluctuations by discrete wavelet transform
(DWT), and the WNN-UPF model was utilized to predict the long-term RUL and integrate
the high-frequency fluctuation data to estimate the short-term SOH [11]. Ren et al. [12] pro-
posed an integrated approach combining autoencoder and DNN to improve the prediction
accuracy of RUL for lithium-ion batteries. All these studies have significant advantages in
terms of computational cost and performance metrics.

Although neural networks based on RNN frameworks have proven to be effective in
modeling continuous data, they still face some challenges such as long training times, high
computational burden, and long-term dependencies. However, in the practical application
of RUL prediction for lithium-ion batteries, networks that can perform in parallel and retain
spatial location information of the input data are crucial [13]. In contrast, CNNs are insensi-
tive to the length of the input sequence and can easily achieve parallel computation [14].

The Transformer architecture provides a potential solution to the above problem by us-
ing fully connected networks and a well-designed attention mechanism [15]. Zhou et al. [16]
proposed a location-encoded attention mechanism, CNN, to solve this problem, while taking
advantage of the parallelization of CNNs to improve the accuracy of battery RUL prediction.
Chen et al. [17] developed a new Transformer structure for processing battery capacity data
by learning useful features through input reconstruction sequences. However, the pure
Transformer model is relatively complex and requires a lot of computational resources and
time for training. Therefore, it may lead to high computational costs during the prediction
process and is not suitable for real-time RUL prediction. According to further research,
it has been shown that the Transformer model is very dependent on the quality of the
original dataset. This sensitivity to outliers and noise can cause the model to overreact to
data fluctuations in real-world applications, thus affecting the stability of the predictions.
A stacked denoising autoencoder (SDAE) is a deep learning model suitable for neural
networks and specialized for dealing with data quality problems [18]. It has advantages
in dealing with outliers and noise and is capable of efficiently processing large-scale data
in parallel. Liu et al. [19] proposed an intelligent fault diagnosis method that combines
Local Mean Decomposition (LMD) and the SDAE model. It is able to adaptively learn fault
features, which improves the effectiveness and robustness of the method.

In order to solve the fundamental problem that traditional Transformer models are
too dependent on raw data, this paper proposes a method for accurately predicting the
RUL of lithium-ion batteries in the presence of random discharges. By combining the
SDAE with the Transformer architecture, it can improve the prediction accuracy of the
RUL of lithium-ion batteries and shorten the training time of the prediction model. The
contributions and innovations of this research are as follows:
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(1) In this study, a novel architecture integrating noise reduction and prediction is con-
structed by integrating an SDAE into the Transformer model structure. By reducing
noise and extracting important features, the new structure improves the reliability
and availability of raw data. In addition, for longer time series, it reduces the com-
putational complexity of the Transformer model and improves the model prediction
accuracy.

(2) This study focuses on the data from the downscaled fusion of random discharge
conditions and PCA methods. It focuses more on the performance degradation of
lithium-ion batteries during real-world use than existing lithium-ion battery research.
The experimental data come from the NASA lithium-ion battery random-use dataset,
which contains a wide range of battery operating states and real-world conditions,
which makes the experiment more credible and reliable.

(3) In order to verify the applicability and robustness of the model, this study uses several
different health factors for experimental validation. By training the prediction of these
different health factors, the results marked that the reliability and utility of the model
are further enhanced. It provides sufficient support and assurance for the practical
application of the model in various scenarios.

The rest of the paper is organized as follows. The proposed methodology is explained
in detail in Section 2. Section 3 presents the experimental design. Section 4 discusses the
experimental results. Finally, the conclusions are given in Section 5.

2. Materials and Methods

To address the problems of existing RNN-based methods, we design a deep learning
neural network architecture. The architecture mainly consists of three parts: health factor
extraction, SDAE–Transformer model, and RUL prediction.

2.1. Stacked Denoised Autoencoder

Data denoising is necessary to improve the accuracy and effectiveness of training
models. Lithium-ion battery random use datasets contain a lot of noise. They need to
be denoised before they are provided to the prediction model to ensure the stability and
robustness of the model. Therefore, appropriate methods are needed to remove noise from
the data and ensure that the model can be trained using high-quality input data.

In this section, we propose an approach based on SDAE, which extends from the
denoising autoencoder (DAE). DAE [20] is an extended version of the autoencoder (AE). It
introduces noise into the input data and trains the network to reconstruct the original data
without noise, thereby learning a more robust and resilient feature representation. To solve
this problem, multiple DAEs can be used to reconstruct inputs containing noisy data [21].
The SDAE is engineered to acquire multi-level abstract features of the data [22]. This is
achieved by progressively assembling multiple denoising autoencoders to build a depth
representation. The basic concepts are trained layer by layer to extract more abstract and
advanced features in the data, enhancing the ability of the model to represent and abstract
the data.

The following describes in detail the specific steps to build an SDAE with a three-layer
hidden layer structure:

We pre-train the first DAE unit. The input vector is X = {x1, x2, . . . , xn}, where n
is the total number of samples. The loss vector y is obtained by adding Gaussian noise
to X. Then, the encoder performs a mapping conversion from the vector y to the output
representation h(y) by using an active function. The calculation expression is as follows:

h(y) = σ(W1y + b1) (1)

where W1 is the weight from the input layer to the hidden layer, and b1 is the bias of the
hidden layer. σ(·) is the Sigmoid function.
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Decoding is the procedure of mapping h(y) from a high-dimensional space into a high
low-dimensional space and reconstructing the input sample X into X̂, as in the following
Equation (2):

X̂ = σ
(

W1
Th(y) + b1

)
(2)

The minimum mean squared error is used as the lost function J and the gradient
descent method is utilized for updating the weight vector W1 and bias item b1. The
calculation is as follows:

arg min[J(W1, b1)] =
1
n

n

∑
i=1

∥X − X̂∥2
2 (3)

After pre-training, the output layer and its corresponding weights and biases are
removed, and only W1 and b1 of the input and hidden layers are retained. Then, the hidden
layer of the first DAE unit is used as the input of the second DAE unit. The second DAE unit
is trained in the same way, and so on to the third. After the pre-training of the three DAE
units, the last thing to be performed is the overall inverse tuning training. The structure is
shown in Figure 1.
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Figure 1. Stacked denoising autoencoder structure diagram.

2.2. Transformer Model

In 2017, Google proposed the Transformer model, employing an encoder–decoder
architecture and replacing the traditional RNN structure. The model replaced the traditional
RNN structure with a self-attention mechanism, achieving superior performance [23]. This
marked the first model to rely entirely on self-attention mechanisms for computing input
and output representations. The encoder is employed to process the source language, while
the decoder is used for the target language. In this study, the encoder of the Transformer
model was utilized to analyze the operational records of lithium-ion batteries and predict
the declining trend in battery capacity during random discharges.

The concept of multi-head attention involves mapping the same Query, Key, and
Value to different subspaces for attention computation. This process ultimately merges the
information from these different subspaces. This helps reduce the dimensionality of each
head and prevents overfitting. The structure is illustrated in Figure 2.
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Each set of attention is used to map the input to a different subrepresentation space,
which allows the model to focus on different locations in different subrepresentation spaces.
The whole computational process can be represented as the following:

MultiHead(Q, K, V) = Contcat(head1, · · · , headh)WO (4)

headi = Attention(QWQ
i , KWK

i , VWV
i ) (5)

where WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv , WO ∈ Rdmodel×hdv . Q, K, and V

are three vectors obtained by mapping the input sequence by three linear mapping layers.
h is the number of attention heads, dmodel is denoted as the model dimension, dk is the
dimension of the Key, and dv is the dimension of the Value. The WO is the final output
weight matrix obtained by dimensionality reduction, respectively. The Contact function
represents the concatenation function, which combines the output results of all heads.

With multiple attention, we maintain separate Query, Key, and Value weight matrices
for each group of attention, resulting in different Query, Key, and Value matrices. As shown
in Equation (5), Wi

Q, Wi
K, Wi

V , denote the weight matrices corresponding to the Q, K, and
V vectors of the i-th head.

A positional feedforward network is a fully connected feedforward network (FNN),
where each positional feature individually passes through this identical feedforward neural
network. It consists of two linear transformation layers with a ReLU activation function in
the middle, which can be expressed as:

FFN(x) = ReLU(xW ′ + b f1)W
′′ + b f2 (6)

where W ′, W ′′ , b f1 , b f2 are the weights and biases of the two linear transformations.
Each sublayer of each encoder in the encoder structure has a residual connection and

then performs a layer normalization operation. The whole computation can be represented
as follows:

sub_layer_output = LayerNorm(x + SubLayer(x)) (7)

Since the Transformer model does not have a built-in mechanism for processing
positional information like recurrent neural networks (RNNs) or convolutional neural
networks (CNNs). Therefore, positional encoding is used to add additional information



Electronics 2024, 13, 1423 6 of 20

for each word or position in the input sequence so that the model can capture information
about the position of the word in the input sequence. The mathematical formulas are as
follows:

PE(pos,2i) = sin(pos/100002i/dmodel ) (8)

PE(pos,2i+1) = sin(pos/100002i+1/dmodel ) (9)

where pos denotes the position of the word in the input sequence, and i denotes the index of
the position encoding matrix. The position encoding matrix thus computed is summed with
the word embedding matrix to obtain an input vector containing positional information.

Typically, this position encoding method is standard practice in the Transformer model.
However, other positional encoding methods, such as absolute positional encoding, can be
tried to adapt to different tasks and data characteristics. In some specific scenarios, position
encoding may need to be adapted to meet the needs of a particular task.

2.3. SDAE–Transformer Model Prediction

In our model, there are two tasks: denoising and prediction. We propose an objective
function to solve these two tasks. The learning process optimizes both tasks in a unified
framework that predicts the unknown capacity. A complete connectivity layer is used to
map the representation of the final Transformer unit to obtain the final prediction X̂t, as
shown in Equation (10):

X̂t = f (WpX̂ + bp) (10)

where Wp, bp, X̂, and f (·) denote the mapping functions of weights, biases, inputs, and
map function of the prediction layers, respectively.

The experimental procedure consisted of several key steps. First, historical battery data
were collected, which contained valuable information reflecting trends in battery degradation.
From these data, health factors are extracted as indicators of battery degradation. Second,
the extracted health factors are normalized to ensure comparability and consistency. The
third step is to integrate the SDAE module into the encoder and decoder components of the
Transformer architecture. This integration produces the SDAE–Transformer model, which
combines the noise reduction and feature extraction capabilities of the SDAE. Finally, the
trained model is used to predict the RUL of the battery and optimize the model parameters in
the process. Figure 3 visually depicts the algorithmic framework and overall flow.

Electronics 2024, 13, x FOR PEER REVIEW 7 of 21 
 

 

the SDAE. Finally, the trained model is used to predict the RUL of the battery and opti-
mize the model parameters in the process. Figure 3 visually depicts the algorithmic frame-
work and overall flow. 

Prediction
Outputs

DAE 3

DAE 2

Normalization

Input
Positional Encoding

Transformer

N×

Linear

Add and Norm

Feed Forward

Multi-Head 
Attention

Add and Norm

Stacked Denoising Auto 
Encoder

Output

Hidden size

Gaussian Noise

DAE  1

 
Figure 3. The graphical representation of the SDAE-Transformer model architecture. 

3. Experimental Design 
3.1. Data Description 

The internal structure of lithium-ion batteries is highly intricate, necessitating corre-
sponding parameter acquisition during the research process. The random battery datasets 
from the Ames Excellence Prediction Center of the National Aeronautics and Space Ad-
ministration in the United States were employed in this study due to their abundant and 
diverse battery test data [24]. There are seven datasets in the dataset, and the data contain 
some spurious data, including incorrect temperature measurements (RW2, RW3, and 
RW18), outliers due to experimental noise (RW9), non-normal step durations (RW16 and 
RW17), and incorrect current measurements (RW19) [25]. These anomalies may negatively 
affect data analysis and interpretation. One of the groups of 18,650 lithium-ion batteries 
(RW3, RW4, RW5, and RW6) was selected for the experiments since the study in this paper 
is not temperature-dependent. The data were run continuously by repeatedly charging to 
4.2 V and then discharging to 3.2 V. Discharge currents ranged between 0.5 A and 4 A and 
the order of discharge was randomized. This type of discharge profile is referred to here 
as a random walk (RW) discharge. After every 50 RW cycles, a series of reference charging 
and discharging cycles were performed to provide a reference baseline for battery state 
health. The experimental data use random discharge currents to vividly simulate the un-
certainty of daily battery use. This better represents typical battery usage scenarios and is 
close to real-world usage conditions. 

3.2. Extraction of Health Factors 
The lithium-ion battery constitutes a sophisticated electrochemical system, wherein 

irreversible lithium-ion deposition and subsequent decay in battery capacity take place 
during charge–discharge cycling. Direct quantification of battery capacity to elucidate its 
operational health is unfeasible. However, the aging status of the battery can be indirectly 
inferred through other factors such as charge–discharge voltages, currents, temperature, 
and time. These factors impact the electrochemical processes within the battery, leading 

Figure 3. The graphical representation of the SDAE-Transformer model architecture.



Electronics 2024, 13, 1423 7 of 20

3. Experimental Design
3.1. Data Description

The internal structure of lithium-ion batteries is highly intricate, necessitating corre-
sponding parameter acquisition during the research process. The random battery datasets
from the Ames Excellence Prediction Center of the National Aeronautics and Space Admin-
istration in the United States were employed in this study due to their abundant and diverse
battery test data [24]. There are seven datasets in the dataset, and the data contain some
spurious data, including incorrect temperature measurements (RW2, RW3, and RW18),
outliers due to experimental noise (RW9), non-normal step durations (RW16 and RW17),
and incorrect current measurements (RW19) [25]. These anomalies may negatively affect
data analysis and interpretation. One of the groups of 18,650 lithium-ion batteries (RW3,
RW4, RW5, and RW6) was selected for the experiments since the study in this paper is not
temperature-dependent. The data were run continuously by repeatedly charging to 4.2 V
and then discharging to 3.2 V. Discharge currents ranged between 0.5 A and 4 A and the
order of discharge was randomized. This type of discharge profile is referred to here as a
random walk (RW) discharge. After every 50 RW cycles, a series of reference charging and
discharging cycles were performed to provide a reference baseline for battery state health.
The experimental data use random discharge currents to vividly simulate the uncertainty
of daily battery use. This better represents typical battery usage scenarios and is close to
real-world usage conditions.

3.2. Extraction of Health Factors

The lithium-ion battery constitutes a sophisticated electrochemical system, wherein
irreversible lithium-ion deposition and subsequent decay in battery capacity take place
during charge–discharge cycling. Direct quantification of battery capacity to elucidate its
operational health is unfeasible. However, the aging status of the battery can be indirectly
inferred through other factors such as charge–discharge voltages, currents, temperature,
and time. These factors impact the electrochemical processes within the battery, leading to
changes in its internal structure and performance over time. By monitoring and analyzing
these factors, it is possible to gain insight into the health and remaining lifespan of the
battery, allowing for the development of predictive models and strategies to optimize
battery usage and longevity.

In the random walk (RW) mode of battery cycling under the NASA datasets, there are
two phases. One of these is the “charging (after random walk discharge)” phase, where
the current is adjusted to maintain the battery output at 4.2 V during the charging process,
until the battery current drops below a lower threshold. Depicted in the two figures shown
in Figure 4 are the voltage profiles corresponding to different cycles of the battery during
constant current and constant voltage charging. We have given a zoomed out view of
the details. It can be seen that as the number of cycles of the battery increases, the aging
speed of the battery accelerates and the time to reach the maximum threshold voltage of
constant voltage charging is gradually shortened. The time for the battery to reach the
cutoff voltage (4.2 V) in the first cycle is about 2310s, while the cutoff voltage can be reached
instantaneously after the 600th and 800th cycles. Therefore, the battery capacity calculated
from the charge saturation time is called the health factor H1. Its mathematical formula is
expressed as follows:

H1(i) =
∫ Ti(Vm)

0
Ii(τ)dτ (11)

where Vm is the saturation voltage with a value of 4.2 V, Ti is the charging time of the i-th
cycle in hours, and Ii is the current measured at the i-th RW’s cycle τ moment.
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Figure 5 shows the decay curves of battery capacity during constant-current and
constant-voltage charging. Looking at the whole cycle, the capacities of different battery
monomers all decrease over time, which is consistent with the capacity decay trend of
conventional lithium-ion batteries during actual use. It is worth noting that, due to the
complex physical and chemical processes of batteries, the capacity curves of batteries may
show different fluctuation amplitudes under the same conditions, a phenomenon that is
also consistent with the daily use of batteries. Therefore, H1 can be used as a characteristic
input for predicting the RUL of lithium-ion batteries.
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The discharge capacity in “discharge (random walk)” refers to the amount of power
released by the battery during the random walk phase using a random sequence of dis-
charged loads, which can be found by integrating the current and time of the battery during
discharge. The aging of the battery leads to a gradual reduction in both the actual available
capacity and the discharge time, as well as the loss of lithium. Figure 6 shows the discharge
capacity of one RW cycle. The discharge capacity of a complete randomized discharge
cycle can be obtained by summing the integrals of the current and time of 50 RW cycles
with the following equation:

H2(i) =
∫ ti

0
Ii(τ)dτ (12)

where H2(i) is the discharge capacity obtained in the random discharge cycle, ti is the time
of the i-th RW cycle, and Ii is the current measured at moment τ of the cycle of the i-th RW.
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Meanwhile, we obtained the complete random discharge cycle discharge capacitance
of all four batteries involved, and it can be seen from Figure 6 that the discharge current is
different at different times in the same RW cycle, which corresponds to the actual battery
usage. Therefore, H2 can be used as a characteristic input for predicting the RUL of
lithium-ion batteries.

3.3. PCA Fusion Health Factor
3.3.1. Assessment of Health Factor Correlation

The Pearson correlation coefficient (PCC) is a widely utilized linear correlation measure
in statistical analysis [26]. It is employed to quantify the influence of a health factor, denoted
as γ, on the capacity of the battery. The range of the γ value extends from −1 to 1. Within
this interval, a larger absolute value signifies a higher degree of correlation. In other words,
a higher absolute value implies a stronger correlation. The formula is as follows:

γ =

n
∑

i=1

(
HIi − HI

)(
Ci − C

)
√

n
∑

i=1

(
HIi − HI

)2 n
∑

i=1

(
Ci − C

)2
(13)

where n is the sequence length, HIi is the extracted health factor, and Ci is the battery
capacity. HI and C denote the average values of the health factor and the battery capacity.

Table 1 displays the magnitude of the PCC between the battery capacity at the satu-
ration time of the charging voltage and the battery capacity at random discharge for four
lithium-ion batteries. It is evident from the table that the Pearson correlation coefficient
values for this set of batteries are greater than or equal to 0.995, indicating a very strong
correlation between the two variables. This strong correlation suggests a linear relationship
between the two sets of health factors.

Table 1. Battery health factor correlation assessment form.

Health Factors
PCC Values

RW3 RW4 RW5 RW6

H1 0.995 0.998 0.995 0.996
H2 0.996 0.995 0.994 0.994

3.3.2. PCA Fusion Health Factor

These two extracted health factors are highly correlated, resulting in redundant infor-
mation. Therefore, we used principal component analysis (PCA) to transform these corre-
lated health factors into a set of uncorrelated principal component health factor H3, thus
reducing the dimensionality of the data and optimizing the extracted health factors [27].
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The Kaiser–Meyer–Olkin Measure of Sampling Adequacy (KMO) and Bartlett’s test were
first performed to determine whether principal component analysis could be conducted.
For the KMO value, 0.8 is considered very suitable for principal component analysis, be-
tween 0.7 and 0.8 is generally suitable, between 0.6 and 0.7 is not very suitable, between
0.5 and 0.6 indicates being poorly suitable, and under 0.5 indicates being extremely un-
suitable. If the p value in Bartlett’s test is less than 0.05, the original hypothesis is rejected,
indicating that principal component analysis can be conducted. If the original hypothesis
is not rejected, the variables may provide independent information and are not suitable for
principal component analysis.

From Table 2, the results of the KMO test show that the value of KMO is 0.821, which
is very suitable for principal component analysis. Meanwhile, the results of Bartlett’s
spherical test show that the significance p is 0, which presents significance at that level,
rejects the original hypothesis that there is a correlation between the variables, and the
principal component analysis is valid.

Table 2. KMO and Bartlett sphericity tests.

KMO Test Value
Bartlett’s Test of Sphericity

Approximate Chi-Square df p

0.821 16.072 1 0

In order to make the curve trend clearer, the H3 and battery capacity are normalized
and using Equation (14):

X =
x − xmin

xmax − xmin
(14)

where X denotes normalized data, x denotes raw data., and xmin and xmax are the minimum
and maximum values of the x, respectively.

Figure 7 shows the normalized value curve between H3 and battery capacity. As shown
in Figure 7, the error range between the fused health factor H3 and the reference capacity of
the four lithium-ion batteries is within 0.05. This indicates a strong correlation between the
health factor and battery capacity for the four batteries. Especially for RW5 batteries, the H3
curve matches well with the capacity decay curve. Therefore, the health factor H3 after PCA
fusion can also be used as an input to the lithium-ion battery RUL prediction model.
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3.4. Experimental Setting
3.4.1. Problem Statement

The primary objective of this research methodology is to predict the RUL of lithium-
ion batteries based on historical data. The prediction of remaining useful life involves the
application of certain mathematical techniques to the battery’s historical data to calculate
the remaining life of the battery. The storage life of a lithium-ion battery represents the
time required for the battery to degrade to a certain extent under static or non-operating
conditions [28,29]. On the other hand, the usable lifetime of a battery refers to the number
of cycles experienced under specific charging and discharging conditions [30]. This degra-
dation leads to the battery’s current available capacity to a predetermined failure threshold,
as described with Equation (15).

RUL =
∣∣∣RULpred − RULtrue

∣∣∣ (15)

where RULtrue is the number of lithium battery reference discharge cycles and RULpred is
the number of lithium battery actual discharge cycles.

For batteries, the definition of End of Life (EOL) is closely related to the battery capacity.
When the remaining capacity of the battery reaches 70–80% of its initial capacity, it is considered
to have reached the end of its life, and a measurement can only be obtained from discharge
cycle data [31]. Figure 8 provides an example of predicting RUL based on the datasets.
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3.4.2. Evaluation Indicators

We chose four evaluation metrics to assess model performance, i.e., Relative Error
(RE), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute
Percentage Error (MAPE). Four evaluation metrics are defined as follows:

RE =
|ẑi − zi|

zi
(16)

MAE =
1
n

n

∑
i=1

∣∣∣∣∣ẑi − zi

∣∣∣∣∣ (17)

RMSE =

√
1
n

n

∑
i=1

(ẑi − zi)
2 (18)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ ẑi − zi
zi

∣∣∣∣ (19)

where n is the sequence length, zi is the true value in the RUL prediction, and ẑi is the
predicted value in the RUL prediction.

Then, one battery was randomly selected as a test set and the other three batteries
were used for training sets.

3.4.3. Parameter Setting

There are six key parameters in the model used in this experiment: sampler size
(m), learning rate (τ), depth (l) and hidden layer size (s) of the Transformer, learning
regularization (λ), and the proportion of each task (α). The value of “m” can be set to
approximately 5% of the length of the sequence, and it is fixed at 16 for the NASA datasets.
The rest of the parameters were determined by a grid search on the validation error: τ is
chosen from [10−4, 5 × 10−4, 10−3, 5 × 10−3, 10−2]; s is chosen from [2, 4, 8, 16]; l is chosen
from [1, 2, 3, 4]; λ is chosen from [10−6, 10−5, 10−4, 10−3]; α is set from (0, 1]. The optimal
set of parameters for the four models is presented in Table 3.

Table 3. Optimal parameters of the four models.

Model m τ l λ

MLP 16 0.01 2 10−6

LSTM 16 0.001 2 10−6

Transformer 16 0.001 1 10−6

SDAE–Transformer 16 0.005 1 10−6

Battery capacity was estimated using a GeForce RTX 3050 laptop graphics processor
with NVIDIA. All code runs on Pytorch 1.13.1, Python 3.8, and the win11 operation system.

4. Results and Discussion

In this section, evaluation indicator results for battery RUL estimation based on the
Transformer model with a stacked noise-reducing self-encoder are given and its perfor-
mance is compared with other state-of-the-art neural network methods such as MLP, LSTM,
and Transformers.

4.1. Model Online Validation

We first validate the overall prediction performance of different batteries with different
health factors. We selected a subset of batteries from the datasets and used a cross-validation
method to randomly select one battery for testing, while the rest were used for training,
and finally predicted the RUL of the batteries. For example, in the first experiment, we used
batteries RW4, RW5, and RW6 as training batteries and RW3 as the test battery. The results
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of the final evaluation metrics (MAE, RMSE and MAPE) for these four sets of experiments
are shown in Table 4.

Table 4. Evaluation index values of batteries.

Health Factor Testing Battery MAE RMSE MAPE(%)

H1

RW3 0.178 0.220 20.452
RW4 0.184 0.227 19.847
RW5 0.184 0.227 20.021
RW6 0.184 0.227 20.365

Average value 0.183 0.225 20.171

H2

RW3 0.170 0.210 19.417
RW4 0.167 0.208 18.924
RW5 0.165 0.204 19.187
RW6 0.170 0.211 20.018

Average value 0.168 0.208 19.387

H3

RW3 0.159 0.155 19.492
RW4 0.162 0.198 19.014
RW5 0.157 0.175 19.353
RW6 0.150 0.157 19.241

Average value 0.157 0.171 19.275

According to Table 4, we can calculate the mean values of the three evaluation indi-
cators of the three health factors: MAE is 0.170, RMSE is 0.202, and MAPE is 19.611%.
The results show that the SDAE-Transformer model has high prediction accuracy and can
accurately reflect the actual value. The values of MAE, RMSE and MAPE are close to each
other, indicating that the prediction error of the model is relatively stable with no obvious
deviation. As shown in Table 4, we observed that our model exhibited substantial accuracy
and stability across different individual batteries. Our model consistently and accurately
predicted their performance. This indicates the strong generalization capability of our
model, enabling it to adapt to diverse individual batteries. Furthermore, we observed
minimal discrepancies between the model’s predictions and the actual data. This implies
the model’s adeptness at capturing the performance characteristics and variation trends of
the batteries, thus facilitating accurate predictions.

In battery prediction experiments based on different health factors, our optimization
model similarly made equally accurate predictions for each battery. The results show
that the SDAE-Transformer model is proficient in extracting key features from different
health factors and effectively integrating these features to comprehensively analyze the
RUL status of the battery. The SDAE-Transformer model effectively captures the nonlinear
relationship between battery capacity and various health factors. In addition, it extracts
valuable temporal information from the capacity sequences for accurate prediction.

By comparing and analyzing the predictive evaluation metrics of the three health
factors in Table 4, we can draw the following conclusions: (1) The values of all evaluation
metrics for H2 are higher than those for H1, possibly due to H2 being extracted based
on random discharge, which more accurately reflects the battery’s health status under
random discharge conditions. This also demonstrates that our model is more suitable
for predicting battery remaining life in random states and can provide higher prediction
accuracy. (2) Among the three health factors, H3 has the best predictive performance with
the smallest values of MAE, RMSE, and MAPE. This indicates that H3 possesses the
superior capability to accurately predict the battery’s health status. When a singular set
of feature sequences is presented to the network, the model may encounter challenges in
accommodating the diverse fluctuations within these sequences, consequently constraining
its predictive capability. In order to enhance precision, we integrate supplementary feature
sequences to capture the battery’s dynamic changes. This allows us to establish global
dependencies between different positions, successfully achieving the interaction of global
information.
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4.2. Effects of SDAE-Transformer Hidden Layer

In this section, we discuss the effects of hidden layers on the SDAE-Transformer
model under different health factor input conditions. In the experiment, three evaluation
indicators were used to evaluate it, and the results were shown in Table 5.

Table 5. Effects of SDAE-Transformer hidden layer with different health factors.

Evaluation
Metric Health Factor

Number of Hidden Layer

2 4 8 16

MAE
H1 0.1815 0.1819 0.1820 0.1813
H2 0.1696 0.1697 0.1687 0.1692
H3 0.1536 0.1518 0.1506 0.1529

RMSE
H1 0.2246 0.2246 0.2249 0.2245
H2 0.2104 0.2104 0.2091 0.2097
H3 0.1939 0.1891 0.1826 0.1879

MAPE(%)
H1 20.8617 20.5582 20.1535 21.8911
H2 20.4213 19.9529 19.8371 20.5277
H3 20.8012 20.1981 20.0822 20.4846

The overall trend observed in Table 5 is that all evaluation metrics tend to increase
and then decrease with an increase in hidden layers. The most probable explanation is that
the Transformer’s restricted weight capacity hinders the assimilation of sufficient temporal
information. Consequently, inadequate fitting occurs when the hidden size is too small.
Conversely, when the hidden size is too large, the Transformer becomes burdened with an
excess of weights for learning temporal information. According to the results in Table 5,
when the number of hidden layer is 8, the value of each evaluation index is optimal.

4.3. Comparison with Other Advanced Methods

In order to validate the efficacy of the proposed SDAE–Transformer model, it was
extensively compared with other data-driven approaches such as LSTM, MLP, and the
Transformer.

MLP [32]: It is a feedforward neural network with simpler connectivity. With multiple
fully connected layers, it is used to learn the dynamic and nonlinear degradation trends of
the battery.

LSTM [33]: It is a temporal recurrent neural network that solves the long-term dependency
problem present in general RNNs for learning degradation trends from input sequences.

Transformer [17]: It is a deep learning model based on the attention mechanism, which
utilizes the self-attention mechanism to capture the dependencies between the positions in
the input sequence, thus enabling the modeling and processing of sequence data.

Figure 9 illustrates the predicted values versus H3 health factor curves for the four models.
Figure 9 shows that comparing the predicted and H3 curves, the SDAE-transformer

model has the best performance and is closest to the actual values. This is attributed to
its combination of SDAE and Transformer characteristics, enabling better learning and
feature extraction of the battery RUL, thereby improving predictive accuracy. On the
other hand, LSTM had the largest error. This may be due to the large datasets and high
noise, making it difficult for LSTM to effectively capture complex long-term dependencies,
resulting in significant prediction errors. The Transformer-based models exhibited reduced
prediction errors as a result of the self-attention mechanism’s capacity to capture long-
range dependencies within the sequence data. This enhancement contributed to improved
predictive accuracy for RUL. In general, the models we proposed have shown superior
predictive capabilities and greater precision in handling battery datasets that contain a
substantial amount of noise and outliers. These findings highlight the effectiveness of our
models in dealing with challenging data scenarios.
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Figure 9. Predicted and H3 value curves for the four prediction models.
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Figure 10 shows the RE results for the four batteries with the four different methods.
The curves shows that the improved model achieves the lowest RE value in the predictive
experiments for all four batteries, while the MLP model exhibits the highest RE value.
Notably, the RE prediction curves during the early stages of the experiments exhibit
varying degrees of fluctuation. This observation can be attributed to the limited historical
data available and the insufficient understanding of the intricate and nonlinear degradation
patterns exhibited by lithium-ion batteries in the initial phases of their lifespan. These
factors can introduce inaccuracies in the predictions and result in noticeable fluctuations
in the curves. Additionally, the collection of data under random discharge conditions can
introduce noise and uncertainty, influencing capacitance measurements and data recording.
As the model accumulates more data and gains experience, its understanding deepens,
leading to improved prediction accuracy and stability. Consequently, the fluctuation in
the prediction curves diminishes over time, and the model approaches a more stable
performance.

Figure 10 illustrates that the Transformer model demonstrates a lower degree of
fluctuation in contrast to the MLP and LSTM models. This can be attributed to the inclusion
of the self-attention mechanism. It enables comprehensive interactivity to model the
interconnections between each position and other positions. As a result, this diminishes
fluctuations in the curve. Furthermore, the Transformer model utilizes positional encoding
to encapsulate positional information within the sequence. This facilitates a nuanced
understanding of sequential relationships.
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Figure 10. Comparison curves of RE predictions for the four machine learning methods for each
battery.



Electronics 2024, 13, 1423 17 of 20

Furthermore, it is noteworthy that Figure 10 shows significant differences in the curves
of the SDAE–Transformer model and the Transformer model, whereas the evaluation met-
rics in Table 6 may not exhibit such pronounced distinctions. Several factors contribute
to this observation: (1) The sensitivity of evaluation metrics: RE is highly influenced by
extreme values or outliers, while MAE and RMSE are relatively less sensitive. Conse-
quently, even if there exists a disparity in the performance of the models, the differences
in the metric values may not be readily apparent. (2) Variances in data preprocessing:
The SDAE–Transformer may employ an autoencoder for data dimensionality reduction or
feature extraction, whereas a Transformer may utilize raw data directly. The characteristics
and parameter settings of the autoencoder impact feature extraction and representation.
This discrepancy may result in divergent understandings and processing of the data by the
two models, ultimately affecting the performance of the results. (3) Disparities in model
training: The SDAE–Transformer and Transformer may be subjected to distinct parameter
settings and optimization strategies, such as the learning rate, regularization parameter,
and optimizer selection. These dissimilarities can give rise to performance disparities in
the obtained results. To further evaluate the models, MAPE was also considered.

Table 6. Overall performance of four models under different health factors.

Health
Factor Model MAE RMSE MAPE(%) Time Cost

(s)

H1

SDAE–Transformer 0.183 0.225 20.171 418.102
Transformer 0.184 0.227 19.687 424.343

LSTM 0.330 0.370 21.884 140.726
MLP 0.251 0.295 24.003 40.541

H2

SDAE–Transformer 0.170 0.211 19.388 493.201
Transformer 0.169 0.209 20.479 525.226

LSTM 0.315 0.356 22.382 147.381
MLP 0.213 0.257 24.671 41.928

H3

SDAE–Transformer 0.157 0.171 19.958 512.686
Transformer 0.169 0.210 20.334 496.892

LSTM 0.260 0.305 22.847 145.492
MLP 0.266 0.313 24.651 39.647

Table 6 presents the values of all evaluation metrics for the four models approaches
across different health factors and every battery. From Table 6, the following conclusions
can be drawn: (1) Our model excels across all evaluation metrics among the four models.
This achievement demonstrates its ability to effectively extract valuable information from
the modeled capacity sequences. (2) Both our model and the RNN-based model exhibit
better predictive accuracy than the MLP, indicating the importance of incorporating se-
quence information for accurate RUL prediction. The attention network of the Transformer
captures global trends by simulating the correlations between historical capacity features.
Consequently, our model can effectively simulate the influence of historical capacities on
the sequential state. (3) The optimized SDAE–Transformer demonstrates superior accuracy
in various scenarios compared to the traditional Transformer model. SDAE can assist the
Transformer model in learning feature representations from the data more effectively and
capturing critical information. Introducing a certain degree of noise during the training
process helps the model to better resist overfitting, thereby enhancing its generalization
ability. SDAE also provides greater nonlinear expressive power, enabling the Transformer
model to better adapt to complex data distributions and improve its robustness.

Meanwhile, we delve into the computational cost of various prediction models in the
experiments, as shown in Table 6. The experimental results show that the computational
time of MLP and LSTM models is shorter compared to the other models. The LSTM
model is a variant of RNN that solves the problem of vanishing and exploding RNN
gradients. However, it requires training the weight matrix and bias vector at each time
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step. This increases the number of parameters and lengthens the runtime. Considering
the large number of data sequences and intricate data dependencies in the dataset, the
LSTM model may require a longer run time. However, experimental predictions for
sequential data are not as good, resulting in poor accuracy. The most notable feature of
Transformers is the self-attention mechanism, which speeds up computation by allowing
parallel computation for each position without sequential computation. Compared with
traditional RNN-based models, Transformers directly utilize the self-attention mechanism
to compute all positions, which reduces the number of parameters, decreases computational
complexity, and shortens runtime.

A comparison of the runtimes for SDAE–Transformer and Transformer shows that
they exhibit different efficiencies under different health factor input conditions. Under the
H1 input condition, the runtime of the Transformer model is relatively short due to fewer
outliers and noise in the dataset. In contrast, SDAE–Transformer learns a more compact
data representation through the self-encoder, which reduces the input dimensions of the
Transformer model and produces a more optimized combination of parameters, and thus it
is more efficient and has a shorter runtime than the traditional Transformer model under
the H2 health factor input condition. In the H3 condition, the difference in running time
between the two is not significant, but it is clear that the SDAE-Transformer has a shorter
running time.

The improved SDAE–Transformer shows significant advantages in extracting health
factors, especially in terms of shorter run times for H2 and H3 health factors. This is valuable
for practical applications, especially in random application scenarios such as the daily use
of lithium-ion batteries. The improved model can quickly and accurately predict battery
life, providing timely failure warnings and maintenance guidance to avoid depletion and
potential safety risks. In addition, the model can better adapt to the complex dependencies
of the data and learn a more compact data representation through SDAE, reducing the
number of input dimensions and parameters to further improve computational efficiency.

5. Conclusions

We propose a Transformer model with SDAE optimization for efficiently predicting
the RUL of a battery. To achieve this goal, we consider three health factors: the battery
capacity under constant current and voltage charging, the battery capacity under stochastic
discharging, and the fused sequences after PCA analysis. The fused model structure allows
for denoising and reconstruction of the random battery capacity data. To assess validity,
we performed a cross-validation cycle test on four batteries and calculated four evaluation
metrics. We found that each health factor of the model achieved good prediction results
for each battery, with MAE, RMSE, and MAPE achieving high accuracy. In addition, we
compared the improved model with the MLP, LSTM, and conventional Transformer models.
It is found that the proposed model outperforms the other models in terms of prediction
accuracy and has a shorter runtime. The significance of this work is to provide a new and
effective modeling method for the field of battery life prediction, and the effectiveness
and superiority of the method are verified by experimental results. This has significant
implications for battery management systems and predictive maintenance strategies. The
results of this research enable the accurate prediction of battery health and life, more precise
maintenance schedules, improved resource utilization efficiency, and cost reduction. This
results in optimized battery use and management, extended battery life, and improved
system reliability and efficiency. Therefore, the research results have important practical
significance and potential application prospects in the field of battery RUL and provide
strong support for promoting the development of battery management and predictive
maintenance strategies.

In future research, we can explore methods to optimize the SDAE–Transformer model
for a wider range of battery types and complex operating conditions. Gathering additional
characterization information and integrating it into the model can improve the accuracy
of predicting the RUL and SOH of the battery. Additionally, exploring the combination
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of other deep learning models or integrated learning methods can further enhance pre-
diction accuracy and stability. Challenges such as data availability and quality need to
be addressed in order to advance battery prognostics and enable reliable predictions for
practical applications.
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