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Abstract: In order to achieve peak carbon and carbon neutrality targets, a high number of distributed
power sources have been connected to distribution networks. How to realize the planning of
a distribution network containing integrated energy under the condition of carbon capture and
complete the exceedance test of the distribution network under the condition of accessing a large
number of distributed generators has become an urgent problem. To solve the above problem while
promoting sustainable development, this work proposes an active distribution network risk-planning
model based on multisource data from carbon capture and the Power Internet of Things. The model
calculates the semi-invariants of each order of the node state vectors and branch circuit current vectors
and then utilizes Gram–Charlier-level expansion to obtain the exceeding probability density function
and the probability distribution functions of the node voltages and line powers in the distribution
network. Combined with multisource data, an active distribution network with an integrated energy
system designed for carbon capture was modeled. According to the risk scenario of the distribution
network, the nonconvex constraints in the model were simplified by second-order cone relaxation,
and the optimal planning scheme of the distribution network was solved by combining the Gurobi
solver with the risk index as the first-level objective and the economic benefit as the second-level
objective. The simulation results of a coupled network consisting of a 39-node distribution network
and an 11-node transportation network verified the effectiveness of the proposed model.

Keywords: active distribution networks; exceedance testing and risk planning; Power Internet of
Things; semi-invariant method; integrated energy; second-order cone; probability flow

1. Introduction

Distribution networks directly affect power users and are responsible for the important
task of power distribution, which plays a key role in the economics, security, and stability
of power grids and facilitates the integration of distributed equipment into the grid. The
development of digital technologies likewise poses significant challenges to the security and
reliability of smart grid networks [1–4]. With integrated energy systems, traditional power
data collection platforms have fewer monitorable points, require a single type of monitoring
data, and lack multivariate data-processing functions. Existing distribution network risk-
planning techniques are becoming increasingly difficult to adapt and apply in relation to the
special requirements of smart and transparent distribution networks. Applying the Power
Internet of Things requires multiple monitoring nodes [5]; it is characterized by multiple
connected nodes and multiple data types. By use of many monitoring nodes, the Power
Internet of Things can develop the same data in multiple dimensions, thus improving
the accuracy and real-time performance of distribution network modeling [6]. In order to
improve the distribution network’s security system, in combination with Power Internet
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of Things-related technology, when multiple source loads must access the distribution
network, it is necessary to carry out risk-related research in order to develop an active
distribution network that comprises an integrated energy system, involving the calculation
of the high risk of the distribution network.

The traditional deterministic power flow calculation method [7] requires several calcu-
lations when used to analyze the distribution network’s operation risk in a quantitative
way, and references [8–12] have described a variety of probabilistic power flow algorithms
that are commonly used. References [13,14] analyzed the accuracy of Monte Carlo meth-
ods based on specific scenarios. References [15,16] considered the correlation between
wind farms that are close together when analyzing the probabilistic power flow operation
characteristics of power systems. Reference [17] illustrated that the semi-invariant method
can be used to effectively resolve the probability distribution of different state quantities.
Reference [18] utilized linear relationships in developing probabilistic power flow calculations
for distribution networks containing integrated energy sources and combined them with level
expansion to quickly obtain the probability distribution functions of various state quantities.

At present, integrated energy systems making use of multienergy coupling are in-
creasingly being connected to distribution grids, producing a close connection between the
integrated energy systems and distribution grids in relation to the supply and conversion
of, and demand for, energy. References [19–21] explained the role of integrated energy
systems and carbon capture technologies in reducing grid carbon emissions and improving
the operational stability of distribution grids. Reference [22] proposed the introduction of
a carbon trading mechanism in distribution grids containing integrated energy sources
and suggested that distribution grids reduce carbon emissions through stepped carbon
pricing. Reference [23] introduced a power-to-gas (P2G) device into an integrated energy
system and used the CO2 emitted by a gas unit in a methane synthesis reaction through
carbon capture to improve the system’s economic qualities. Reference [24] pointed out that
active distribution network planning is relevant to the optimal power flow of distribution
networks; optimal power flow research is currently focused on AC optimal power flow [25].
Developing optimal AC currents is relevant to nonlinear planning because of the nonlinear
characteristics of its constraints. The earliest validation of its effectiveness when used to
optimize distribution network power flow was given in relation to the use of evolution-
ary algorithms, such as the genetic algorithm [26,27] or particle swarm algorithm [28–30].
However, evolutionary algorithms also carry obvious defects, such as their inability to
guarantee global optimization when used to solve nonlinear models. To address this need,
reference [31] established a systematic branch flow model to solve the optimal flow model
framework. Meanwhile, references [32–34] provided relaxation accuracy proofs. Second-order
cone programming has been used to obtain globally optimal solutions, which offer faster
solution speeds, by transforming the original model into its convex programming form.

Distribution network risk-planning research also needs to consider the strong correla-
tion amongst random variables and the fact that the distribution network improvement
planning program is highly random. Therefore, to address the above problems, this paper
uses Gram–Charlier series expansion to obtain the exceeding probability density function
and probability distribution function of a distribution network’s node voltage and line power,
establishes a two-layer planning model, and optimizes the planning scheme of the distribution
network through second-order cone relaxation combined with the Gurobi solver, with the
premise of ensuring that the risk probability of the distribution network is controllable.

In order to realize the safe access of new energy generators, electric vehicles, and inte-
grated energy systems to the distribution network, this paper establishes a risk planning
model that can realize the address selection and capacity determination of new energy
generators and electric vehicles and, at the same time, regulate the energy storage equip-
ment to realize the efficient utilization of diversified energy. Finally, the exceedance testing
model can assess the risk of the completed distribution network framework and calculate
the exceedance probability of voltage at each node of the distribution network and the
exceedance probability of power at each branch under different scenarios. In this paper,
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simulations are conducted on the IEEE examples with total loads of 5.57 MW and 6.47 MW,
respectively, to verify the effectiveness of the model.

Figure 1 shows a coupling model related to the power grid and traffic grid used in
this work. Using multisource data derived from the Power Internet of Things, distribution
network status assessment and risk classification were carried out. Based on the second-order
cone planning method, used to adjust the existing distribution network’s frame structure and
test its characteristic indexes, the main features of the data structure were used to construct an
evaluation system for the distribution network’s risk characteristics.
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2. Model Descriptions
2.1. Semi-Invariant-Based Risk-Prediction Model for Distribution Networks

Complex convolutional operations can be simplified using the numerical feature of
semi-invariance. The semi-invariants of the load margin are obtained by solving the semi-
invariants of the input variables and the sensitivity matrix. A semi-invariant has two
important properties: additivity and homogeneity. As a result of these two properties,
linear combinations of random variables can be transformed into linear operations of
their semi-invariants; this is essential when simplifying stochastic analysis calculations.
Compared with other probabilistic power flow methods, the analytical method represented
by the Gram–Charlier algorithm has faster solution speed and computational accuracy.

In this paper, a probabilistic power flow algorithm based on semi-invariance and level
expansion is used to calculate the expectation and sensitivity matrices of the node voltages
and branch currents. Then, the semi-invariants of each order of load and distributed unit
output are calculated to obtain the semi-invariants of the injected power at each node, which
are converted into the semi-invariants of each order of the node state vectors and tributary
current vectors. The probability density function and probability distribution function of the
node voltage and branch current can be obtained after one calculation using level expansion.

The semi-invariants of each order of the variable can be obtained by applying certain
mathematical transformations to the characteristic function of the distribution function
F(x). The characteristic function can be expressed as

φ(t) = E
(

eitx
)
=

∫ +∞

−∞
eitx f (x)dx (1)

Taking the natural logarithm of the above equation and expanding it according to the
McLaughlin series formula, we derive the following equation:

lnφ(t) =
s

∑
r=1

yr

r!
(it)r + o(ts) (2)



Electronics 2024, 13, 1413 4 of 19

where the coefficient yr is an r-order semi-invariant, s denotes the number of terms in the
expanded expression, and o(ts) denotes the remaining terms.

For normally distributed load power, the first-order semi-invariant is mathematically
expected, the second-order semi-invariant is equal to the variance, and the third- and
higher-order semi-invariants have a value of zero:

γ1 = µ
γ2 = σ2

γ3 = γ4 = · · · = 0
(3)

To derive a discretely distributed load power, we must first find its center moments in
each order. The Gram–Charlier series can be grade-expanded according to the orthogonal
expansion of Hermite polynomials. According to Gram–Charlier series expansion, the
cumulative distribution function of a random variable can be expressed as

FG(x) = ϕ(xs) + φ(xs)[
f3
3! H2(xs) +

f4
4! H3(xs) +

f5
5! H4(xs) + . . .

f6+10 f3
2

6! H5(xs)]
(4)

where xs is the specified random quantity; φ(xs) and ϕ(xs) are the probability density
function and the cumulative distribution function of a standard normally distributed
random variable, respectively; fr is the r-order specified semi-invariant; and hi(xs) is the
i-order Hermite polynomial.

When polar coordinates are used to represent the nodal voltages, the equation for the
current of the power system can be expressed as

PF = VF

n

∑
T=1

VT(GFTcosθFT + BFTsinθFT)

QF = VF

n

∑
T=1

VT(GFTsinθFT − BFTcosθFT)

(5)

where PF and QF are the active and reactive power of node F, respectively; VF and VT are
the voltage amplitude between the two nodes; θFT is the phase difference between the two
nodes; and GFT and BFT are the real and imaginary parts of the node admittance matrix
YFT, respectively.

Each order semi-invariant of the node’s injected power ∆Sr can be expressed as the
algebraic sum of each order of semi-invariant of the point load’s injected power ∆Sr

load and
each order of the semi-invariant of the distributed injected power ∆Sr

wind:

∆Sr = ∆Sr
wind ⊕ ∆Sr

load (6)

Based on linearized power flow equations and using the properties of semi-invariants
instead of convolution calculations, r-order semi-invariants can be found for the node
voltages and branch currents, respectively, of the variables to be solved.

2.2. Second-Order Cone-Based Active Distribution Network Planning Model with Integrated
Energy Sources

In the context of peak carbon targets, carbon neutrality targets, and the development
of a distributed smart grid, the supply and demand sides of the distribution network
change greatly. In addition to the original basic elements, distributed devices and electric
vehicles have been gradually incorporated into the distribution network, which means
that a method for the optimization of the distribution network needs to be further devel-
oped [35]. Planning improvements in distribution networks is a kind of distribution network
optimization measure, undertaken through line optimization and upgrading, and is intended
to optimize the distribution network’s operation indexes, such as its stability and economy,
under the premise of ensuring the stability of the distribution network’s grid topology.
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2.2.1. Queuing Model for Fast Charging Stations

Assuming each fast charging station is simplified by the application of a queuing
system and that the driving routes of EVs are simulated via the Monte Carlo method
when the battery SOC of EVs, buses, and cabs in the driving state is lower than the user’s
threshold, the user can select the optimal charging station for fast replenishment based on
a charging station decision-making model. In addition, private electric cars and cabs can be
connected to charging piles in their local areas to enable slow replenishment immediately
after finishing a trip. Assuming that electric vehicles generate a charging demand as soon
as they drive into the planning area, the sum of time spent searching for and arriving at the
fast charging station and the queuing time is the waiting cost. The actual situation can be
simplified as follows: we establish a road section impedance model according to the road’s
saturation, as well as a traffic node impedance model according to the signal cycle, green
letter ratio, and road section vehicle arrival rate, and then simulate the dynamic traffic
network. Planning for the improvement of distribution networks can limit the problem of
increasing network losses caused by large-scale EV and wind power access.

The roadway impedance can be modeled as

Lvij(t) =

 t0

(
1 + a(H)b

)
, 0 < H ≤ 1.0

t0

(
1 + a(2 − H)b

)
, 1.0 < H ≤ 2.0

(7)

where a and b are roadway impedance impact factors, t0 is the zero-flow travel time, and H
is the roadway saturation.

The transportation node impedance model is

Kvi(t) =


9

10

[
c(1−α)2

2(1−αH)
+ H2

2q(1−H)

]
, 0 < H ≤ 0.6

c(1−α)2

2(1−αH)
+ 1.5(H−0.6)

1−H H, 0.6 ≤ H
(8)

where q is the vehicle arrival rate, α is the green signal ratio, and c is the traffic signal cycle.
Equations (7) and (8) can be merged to obtain the actual impedance model of the road.

Electric vehicles arrive at a frequency of

λj =
∑i ωiyij

tc
(9)

where λj is the rate of arrival of users at a fast charging station at point j, tc is the segment
duration, and ωi is the charging demand at point i.

The probability that a charging post in a fast charging station will be empty is

Pj0 =

mj−1

∑
k=0

(mj pj)
k

k!
+

(mj pj)
mj

mj!(1 − pj)

−1

(10)

where mj is the number of fast charging piles in the fast charging station at point j, pj is the
service intensity of the fast charging station at point j, and Pj0 is the probability that the
charging pile in the fast charging station at point j will be idle.

The expected user queue time is

Wjq =
pj0 pj

mj+1

mj!mj(1 −
pj
mj
)

2
λj

(11)

where Wjq is the expected user queuing time at the fast charging station at point j. According
to the charging pile idle probability and expected time of user queuing at the fast charging
station, an electric vehicle charging scenario model can be obtained.
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2.2.2. Integrated Energy Station Planning Model with Carbon Capture Consideration

In this work, the carbon capture device, P2G, hydrogen fuel cell, and gas unit are
aggregated into a carbon capture power-to-gas hydrogen fuel cell (HFC)–gas unit system,
which fixes and feeds CO2 from gas boilers (GB) into a methane synthesizer (MR). The
hydrogen generated by the electrolyzer (EL) is utilized to generate natural gas in addition
to the CO2 fixed in the carbon capture device, which is supplied to the gas unit, and the
difference between the amounts of natural gas generated and demanded on the part of the gas
unit contributes to the natural gas market, while another section of the hydrogen is employed
in the fuel cell reaction that supplies power via synergy [36]. This model improves system
economy and balances the energy flow through electrical energy storage (EES), gas energy
storage (G-EES), heat energy storage (H-EES), and hydrogen energy storage (H2-EES) devices
accompanied by photovoltaic (PV) and wind turbine generators (WTG). The specific methods
employed in the interconversion of energy are shown in Figure 2.
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The cogeneration unit can be modeled as
Pe

CHP(t) = Re
CHPPg

CHP(t)
Ph

CHP(t) = Rh
CHPPg

CHP(t)
Pg,min

CHP ⩽ Pg
CHP(t) ⩽ Pg,max

CHP
∆Pg,min

CHP ⩽ Pg
CHP(t + 1)− Pg

CHP(t) ⩽ ∆Pg,max
CHP

(12)

where Pe
CHP(t) and Ph

CHP(t) are the electrical and thermal energy output of the CHP unit in
time period t, respectively; Re

CHP and Rh
CHP are the energy conversion rates of the electrical

and thermal energy in the CHP unit, respectively; Pg
CHP(t) is the natural gas power input

into the CHP unit in time period t; and ∆Pg,max
CHP and ∆Pg,min

CHP are the upper and lower limits
of the CHP unit climbing, respectively. The P2G unit operating model is

PH2

EL (t) = RELPe
EL(t)

Pg
MR(t) = RMRPH2

MR(t)
Pe,min

EL ⩽ Pe
EL(t) ⩽ Pe,max

EL
PH2,min

MR ⩽ PH2

MR(t) ⩽ PH2,max
MR

∆Pe,min
EL ⩽ Pe

EL(t + 1)− Pe
EL(t) ⩽ ∆Pe,max

EL
∆PH2,min

MR ⩽ PH2

MR(t + 1)− Pe
EL(t) ⩽ ∆PH2,max

MR

(13)

where Pe
EL(t) is the electrical energy input into the electrolyzer in time period t; PH2

MR(t)
is the hydrogen energy input to the methane synthesis unit in time period t; Pg

MR(t) is
the natural gas power output by the methane synthesis unit in time period t; PH2

EL (t) is
the hydrogen energy output from the electrolyzer in time period t; REL and RMR are
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the energy conversion ratios between the electrolyzer and the methane synthesis unit,
respectively; Pe,max

EL and Pe,min
EL are the upper and lower limits of the electrical energy input

into the electrolyzer, respectively; ∆Pe,max
EL and ∆Pe,min

EL are the upper and lower limits of

the electrolyzer climb, respectively; PH2,max
MR and PH2,min

MR are the upper and lower limits of

the hydrogen energy input into the methane synthesis unit, respectively; and ∆PH2,max
MR and

∆PH2,min
MR are the upper and lower limits of the methane synthesis unit climb, respectively.

The working of hydrogen fuel cells can be modeled as

Pe
HFC(t) = Re

HFCPH2

HFC(t)

Ph
HFC(t) = Rh

HFCPH2

HFC(t)

PH2,min
HFC ⩽ PH2

HFC(t) ⩽ PH2,max
HFC

∆PH2,min
HFC ⩽ PH2

HFC(t + 1)− PH2

HFC(t) ⩽ ∆PH2,max
HFC

(14)

where PH2

HFC(t) is the hydrogen energy input into the hydrogen fuel cell in time period t;
Pe

HFC(t) and Ph
HFC(t) are the electric and thermal energy output from the hydrogen fuel

cell in time period t, respectively; Re
HFC and Rh

HFC are the conversion rates of the two types

of energies (electricity and heat) in the hydrogen fuel cell, respectively; PH2,max
HFC and PH2,min

HFC
are the upper and lower limits of the hydrogen energy input into the hydrogen fuel cell,
respectively; and ∆PH2,max

HFC and ∆PH2,min
HFC are the upper and lower limits of the climb of the

hydrogen fuel cell, respectively.
The mode of operation of the gas boiler can be modeled as

Ph
GB(t) = Rh

GBPg
GB(t)

Pg,min
GB ⩽ Pg

GB(t) ⩽ Pg,max
GB

∆Pg,min
GB ⩽ Pg

GB(t + 1)− Pg
GB(t) ⩽ ∆Pg,max

GB

(15)

where Pg
GB(t) is the natural gas power input into the gas boiler in time period t; Ph

GB(t) is
the thermal energy output from the gas boiler in time period t; Rh

GB is the thermal energy

conversion rate of the gas boiler; Pg,max
GB and Pg,min

GB are the upper and lower limits of the

natural gas power input into the gas boiler, respectively; and ∆Pg,max
GB and ∆Pg,min

GB are the
upper and lower limits of the creep of the gas boiler, respectively.

The energy storage device’s operation can be modeled as

0 ⩽ Pc
ES(t) ⩽ Bc

ESPmax
ES (t)

0 ⩽ Pd
ES(t) ⩽ Bd

ESPmax
ES (t)

PES(t) = Pc
ES(t)Rc

ES − Pd
ES(t)/Rd

ES

Bc
ES + Bd

ES = 1
Sn(t) = Sn(t − 1) + PES(t)

(16)

where Pc
ES(t) is the charging power of the electric, heat, gas, and hydrogen energy storage

devices in time period t; Pd
ES(t) is the power output by the four types of energy storage

devices in time period t; Bc
ES and Bd

ES are the state parameters of the energy storage devices;
PES(t) is the final power output by the four types of energy storage devices in time period t;
and Sn(t) is the capacity of the four types of energy storage devices in time period t.
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3. Model Constraints

When assessing economic and security features, the distribution network’s risk of
exceedance is the main focus, and its economy features are a secondary focus. The objective
function can be expressed as

Min(φ0∑
∣∣Uav − U

∣∣+φ1∑(P − Pmax))

Min(φ2∑I2R + φ3∑CwdSwd + φ4∑CES,eSES,e + φ5∑CxjSxj + . . .

+φ6∑CpvSpv + φ7CIES + Cbuy + Cccs)

(17)

where φ0 is the distribution network’s voltage exceeding coefficient, φ1 is the distribution
network’s power exceeding coefficient, φ2 is the distribution network’s loss coefficient, φ3
is the annualized coefficient of investment in wind power, φ4 is the annualized coefficient of
investment in charging stations, φ5 is the annualized coefficient of investment in new lines,
φ6 is the annualized coefficient of investment in photovoltaic energy, φ7 is the annualized
coefficient of investment in integrated energy stations, Uav is the reference voltage, and Pmax is
the maximum risk capacity of the lines. Cwd, Cpv, CES, Cxj, and CIES are the construction costs
of wind power, photovoltaic energy, charging piles, lines, and integrated energy stations per
unit, respectively, and Cbuy and Cccs are the costs of purchasing electricity from the distribution
grid and carbon capture, respectively. Swd, Spv, SES, and Sxj are the quantities of wind power,
photovoltaic energy, charging piles, and lines per unit, respectively.

The optimal power flow constraints for the branch circuit power flow model are

U2
F,t − U2

T,t − 2RFT PFT,t − 2XFTQFT,t + 2I2
FT,t

(
R2

FT + X2
FT

)
= 0

∀t ∈ A, ∀FT ∈ B
(18)

P2
FT,t + Q2

FT,t

U2
F,t

= I2
FT,t, ∀t ∈ A, ∀FT ∈ B (19)



pT,t = ∑
k∈δ(T)

PTk,t − ∑
F∈π(T)

(PFT,t − I2
FT,tRFT ) + gTU2

T,t + Pg,t + Pwd,t + Ppv,t − PES,t

∀T ∈ C
qT,t = ∑

k∈δ(T)
QTk,t − ∑

F∈π(T)
(QFT,t − I2

FT,tXFT ) + bTU2
T,t + Qg,t + Qwd,t + Qpv,t − QES,t

∀T ∈ C

(20)


Umin ≤ Ui,t ≤ Umax

Imin ≤ Ij,t ≤ Imax
Pg,min ≤ Pg,t ≤ Pg,max

Qg,min ≤ Qg,t ≤ Qg,max

∀i ∈ C, ∀j ∈ B (21)

{
Sj,wdmin ≤ Sj,wd ≤ Sj,wdmax
Sj,cdmin ≤ Sj,cd ≤ Sj,cdmax

∀j ∈ C (22)

where UF,t and UT,t are the node voltage of the line inflow node and outflow node at
moment t, respectively; RFT and XFT are the impedance values of the line between the
two nodes; PFT,t and QFT,t are the active and reactive power on the line at moment t,
respectively; IFT,t is the current on the line at moment t; Umin and Umax are the lower and
upper limits of node voltage, respectively; Imin and Imax are the upper and lower limits of
the line current, respectively; Pg,min and Pg,max are the upper and lower limits of the active
power output from the transformer in the distribution network, respectively; Qg,min and
Qg,max are the upper and lower limits of the output from the transformer in the distribution
network, respectively. Sj,wdmin and Sj,wdmax are the upper and lower limits of the number
of node turbine accesses, respectively; Sj,cdmin and Sj,cdmax are the upper and lower limits
on the number of node accesses to the charging piles, respectively; δ(T) is the ensemble
of line outflow nodes with node T as the inflow end; π(T) is the ensemble of line inflow



Electronics 2024, 13, 1413 9 of 19

nodes with node T as the outflow end; A is the collection of time series; B is the collection
of line inflow and outflow nodes in the distribution grid; and C is the set of all nodes in the
distribution network.

The electrical power balance constraints in the integrated energy station are{
Pe

buy(t) = Pe
Load(t) + Pe

EL(t) + Pe
ES,e(t)− PDG(t)− PPV(t)− Pe

CHP(t)− Pe
HFC(t)

0 ⩽ Pe
buy(t) ⩽ Pe,max

buy
(23)

where Pe
buy(t) is the electrical energy purchased from the grid by the integrated energy

station in time period t; Pe
Load(t) is the load on the node at the point where the integrated

energy station is located in time period t; PDG(t) and PPV(t) are the wind turbine output
and photovoltaic output in the integrated energy station at time period t, respectively;
Pe,max

buy (t) is the limit placed on the electrical energy that can be purchased from the grid
by the integrated energy station at time period t; and Pe

ES,e(t) is the amount of electricity
charged to the energy storage device in the integrated energy station at time period t.

The hydrogen energy balance and heat energy balance constraints in the integrated
energy station are {

PH2

EL (t) = PH2

MR(t) + PH2

HFC(t) + PH2

ES,H2(t)
Ph

HFC(t) + Ph
GB(t) + Ph

CHP(t) = Ph
Load(t) + Ph

ES,h(t)
(24)

where Ph
Load(t) is the heat load of the node where the integrated energy station is located in

time period t; Ph
GB(t) is the heat energy provided by the gas boiler in the integrated energy

station in time period t; Ph
ES,h(t) is the heat energy charged to the thermal storage device in

the integrated energy station in time period t; and PH2

ES,H2(t) is the hydrogen energy charged
to the hydrogen storage device in the integrated energy station in time period t.

The natural gas balance constraints in the integrated energy station are{
Pg

buy(t) = Pg
Load(t) + Pg

GB(t) + Pg
ES,g(t) + Pg

CHP(t)− Pg
MR(t)

0 ⩽ Pg
buy(t) ⩽ Pg,max

buy
(25)

where Pg
buy(t) is the natural gas purchased at the integrated energy station in time period t;

Pg
Load(t) is the natural gas load at the node where the integrated energy station is located

in time period t; Pg,max
buy is the limit placed on the natural gas that can be purchased at the

integrated energy station in time period t; and Pg
ES,g(t) is the gas energy charged to the

natural gas energy storage device in the integrated energy station in time period t.
The stepped carbon trading mechanism model mainly comprises a carbon emission

rights quota model, an actual carbon emission model, and a stepped carbon emission
trading model. For the certification of the quota of carbon emission rights, we here obtain a
carbon emission quota by weighting the power purchased from the greater grid against
the energy output by the gas boiler and cogeneration unit. When calculating the actual
carbon emission model, the absorption of CO2 by carbon capture devices needs to be
taken into account, and the difference between the two is used to obtain the actual carbon
trading quota.

Second-order cone relaxation is a nonlinear optimization method, which mainly
involves transforming the original model into a convex programming form and then
obtaining an optimal global solution as well as a fast solution speed. The risk-planning
model contains constraints of the optimal power flow, where the nonlinear term leads to
the creation of nonconvex constraints. Due to the strong nonlinearity and nonconvexity of
the constraints of the risk-planning model, it is difficult to solve the model directly, and the
convergence of the solution cannot be guaranteed. Therefore, it is necessary to linearize
the nonlinear elements of the model or perform second-order cone relaxation to transform
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it into a mixed-integer second-order cone programming model so that it can be solved
efficiently using numerical methods.

The polarized AC power flow constraint introduces nonlinearity and nonconvexity
into the distribution network planning model, which makes solving it more difficult. The
introduction of intermediate variables transforms the power flow equation into a second-
order conic form, which, thus, becomes a nonlinear convex planning problem, and the
global optimal solution can then be obtained according to the theory of convex planning,
such that Equation (19) can be transformed into∥∥∥∥∥∥

2PFT,t
2QFT,t

I2
FT,t − U2

F,t

∥∥∥∥∥∥
2

≤ I2
FT,t + U2

F,t, ∀FT ∈ B (26)

{
U2

min ≤ U j,t ≤ U2
max

I2
min ≤ I j,t ≤ I2

max
∀t ∈ A, ∀j ∈ C (27)

The steps for solving the risk planning and exceedance testing model are shown in
Figure 3, and they are as follows: import multiple types of load data into the algorithm
and find the semi-invariance of each order according to the probability distribution of the
injected power at each node. The probability distribution of state variables and branch
currents is obtained through the level expansion equation. Using the original node data
of the distribution network and related constraints, the improved planning model of AC
power flow distribution network based on mixed integer second-order conic planning
is established, and the distribution network risk value is compared with that of the dis-
tribution network before the improved planning to determine the distribution network
planning scheme.
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4. Case Study
4.1. Distribution Network Exceedance Testing Based on the Semi-Invariant Approach

The aggregated multiple load data collected and summarized through the Power In-
ternet of Things were input into the probabilistic power flow model, via the semi-invariant
method, to calculate the probability of risk in the state distribution network. The exemplar
data were derived from an urban distribution network in northern China; the time span of
the data is one year, the sampling frequency is every hour, and the load curve in Figure 4 is
derived from the historical data.
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Figure 4. Integrated energy system source and load data.

The IEEE 33-node distribution network model was used for validation. This distri-
bution network has 33 nodes and 32 branches, with a total load of 5.57 MW. There are 12
and 19 nodes that are connected to the wind turbines. The combined capacity of the nodes’
wind turbines in this system is 300 kW.

The steps taken in solving the risk prediction model are as follows. Multiple types
of load data are imported into the arithmetic example, and the semi-invariants of each
order are found based on the probability distribution of the injected power at each node.
The probability distribution of the state variables and branch currents is obtained by ap-
plication of the level expansion equation. Using the original node data regarding the
distribution network and related constraints, an improved planning model for the AC
power distribution network based on mixed-integer second-order conic planning is estab-
lished, and the distribution network’s risk value is compared with that of the distribution
network before the application of improved planning to determine the distribution network
planning scheme.

The list of risk probabilities associated with the distribution network is shown in
Table 1, and the probability of the power exceedance risk for each line is shown in Table 2.

Table 1. The comparison of three nonlinear planning methods.

Arithmetic Type of Search for Excellence Solution Time

Genetic algorithm Local optimality Slow
Particle swarm algorithm Local optimality Slow

Second-order cone algorithm Global optimality Quick
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Table 2. Risk associated with the probability of the distribution network’s voltage exceedance.

Node Number Exceeding Lower
Limit Probability Node Number Exceeding Lower

Limit Probability Node Number Exceeding Lower
Limit Probability

1 -- 12 0 23 0
2 0 13 0.24% 24 0
3 0 14 1.33% 25 0
4 0 15 3.46% 26 0
5 0 16 7.51% 27 0
6 0 17 17.76% 28 0
7 0 18 20.36% 29 0

. . . 0 . . . 0 . . . 0
11 0 22 0 33 0

We used Gram–Charlier series expansion to find the distribution network node volt-
age exceedance and line power exceedance probability density function, as well as the
probability distribution function, after calculating the exemplary node voltage exceedance
probability, as shown in Table 2. In the distribution network, nodes 13–18 show varying
probabilities of their voltage exceeding the lower limit. Nodes 14–16 show a probability of
their voltage exceeding the limit by more than 1%, indicating a higher risk level. Nodes 17
and 18 show a probability of the voltage exceeding the limit by more than 10%, indicating
a serious risk. In the calculation example, the probability of the power exceeding the limit
of the line is shown in Table 3. Lines 6, 22, and 23 are all associated with the possibility of
their power exceeding the limit. These probabilities for lines 6 and 22 exceed 1%, indicating
a higher risk level. After the application of the method outlined in Section 2.1, the results of
voltage testing at the 14th node of the distribution network are shown in Figure 5.

Table 3. Probability of power exceedance risk in the distribution network.

Line
Number

Exceeding
Probability

Line
Number

Exceeding
Probability

Line
Number

Exceeding
Probability

1 0 12 0 23 0.37%
2 0 13 0 24 0
3 0 14 0 25 0
4 0 15 0 26 0
5 0 16 0 27 0
6 1.96% 17 0 28 0

. . . 0 . . . 0 . . . 0
10 0 21 0 32 0
11 0 22 1.72%
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4.2. Validation of a Two-Tier Planning Model Based on Second-Order Cones for Integrated
Energy-Containing Distribution Networks

The historical load data were imported into the improved IEEE-33 node, the topology
of which is shown in Figure 6; the distribution network contains 39 nodes and 56 branch
roads, and the transportation network contains 22 traffic lines. The last six green nodes
are new nodes, and the last 24 routes are planned for construction, with a total load of
6.47 MW. The numbers of the nodes planned for connection to wind turbine generators are
12, 19, 23, 35, 36, 37, 38, and 39.
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Figure 6. Topology of the improved IEEE-33 distribution (top) and transportation (bottom) net-
works. 

The capacity of a single wind generator in the system is 50 kW, and its maximum 
allowable penetration rate is 40%. In this case, there is a charging demand for 4200 EVs 
during service hours, and each EV charging post can provide 48 kW of charging power. 
The transportation network features four main vehicle source points, A to D. It is planned 
to connect three of the seven EV fast charging station sites to the new nodes 37–39. In order 
to validate the impact of carbon capture and integrated energy systems on security and 
economic features of the distribution network planning, four schemes have been em-
ployed in this work: 

Scheme 1—Only wind turbine generators are considered in the integrated energy 
system, without carbon capture; 

Scheme 2—Only photovoltaic generators are considered in the integrated energy sys-
tem, without carbon capture; 

Scheme 3—Only wind turbine and photovoltaic generators are considered in the in-
tegrated energy system, without carbon capture; 

Scheme 4—Integrated energy systems considering both wind turbine and photovol-
taic generators along with carbon capture. 

Two optimization methods: second-order cone algorithm and genetic algorithm are 
chosen to solve the four schemes, and the results are shown in Tables 4 and 5. 

  

Figure 6. Topology of the improved IEEE-33 distribution (top) and transportation (bottom) networks.

The capacity of a single wind generator in the system is 50 kW, and its maximum
allowable penetration rate is 40%. In this case, there is a charging demand for 4200 EVs
during service hours, and each EV charging post can provide 48 kW of charging power.
The transportation network features four main vehicle source points, A to D. It is planned
to connect three of the seven EV fast charging station sites to the new nodes 37–39. In order
to validate the impact of carbon capture and integrated energy systems on security and
economic features of the distribution network planning, four schemes have been employed
in this work:

Scheme 1—Only wind turbine generators are considered in the integrated energy
system, without carbon capture;

Scheme 2—Only photovoltaic generators are considered in the integrated energy
system, without carbon capture;

Scheme 3—Only wind turbine and photovoltaic generators are considered in the
integrated energy system, without carbon capture;

Scheme 4—Integrated energy systems considering both wind turbine and photovoltaic
generators along with carbon capture.
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Two optimization methods: second-order cone algorithm and genetic algorithm are
chosen to solve the four schemes, and the results are shown in Tables 4 and 5.

Table 4. Distribution network improvement planning program by second-order cone algorithm.

Scheme Voltage Exceedance
Probability

Power Exceedance
Probability

Investment Cost
(USD Million)

Carbon Fixation
(kg)

1(S) 12.21% 0.35% 4.82 0
2(S) 24.13% 1.51% 4.41 0
3(S) 8.42% 0.11% 4.18 0
4(S) 0.05% 0 4.25 461.5

Table 5. Distribution network improvement planning program by genetic algorithm (NSGA-II).

Scheme Voltage Exceedance
Probability

Power Exceedance
Probability

Investment Cost
(USD Million)

Carbon Fixation
(kg)

1(N) 15.32% 1.95% 5.27 0
2(N) 28.77% 3.70% 4.89 0
3(N) 9.37% 0.86% 4.58 0
4(N) 0.12% 0.04% 4.63 386.3

From the results of the four planning schemes laid out above, it can be seen that
considering only wind turbine generators or photovoltaic generators would result in the
probability of the voltage exceeding the limit by more than 10%, indicating a serious
risk level. If both wind turbines and photovoltaic generators are considered, the voltage
exceedance probability decreases to 8.42%, but this risk is still too high. After incorporating
carbon capture technology, the voltage exceedance probability decreases to 0.05%; thus, the
risk level is safe. Furthermore, considering wind turbine and photovoltaic generators can
enhance the economic benefits of the system and the annual investment costs decrease from
USD 4.82 million and 4.41 million to 4.18 million and 4.25 million. If the genetic algorithm
is used for optimization, it can be found that the optimization results of each scheme cannot
reach the effect of second-order cone optimization, and at the same time, the optimization
time is greater, so the second-order cone algorithm is chosen as the main optimization
method of the model. Improving the distribution network will require access to both wind
turbines and photovoltaic generators; otherwise, there will be a high risk of the lower
limit of the distribution network’s node voltage being exceeded. At the same time, there
remains a certain risk that the upper limit will be crossed, and incorporating carbon capture
technology in the improvement of the network can improve the overall energy utilization
efficiency of the system, which not only resolves part of the carbon dioxide emitted by
the gas turbine but also through energy conversion and storage, reducing the impact of
integrated energy nodes on the entire network. Although carbon capture devices increase
investment costs from the security and environmental points of view, Scheme 4 should be
selected as the planning program.

In the 48 h scenario, the integrated energy system meets the load needs by regulating
the storage of electrical energy in fuel cells with fewer power purchase credits. The
charging and discharging behaviors of the energy storage device are determined based on
the photovoltaic generators’ output characteristics. The calculated electric power balance
of the integrated energy system in the distribution network is shown in Figure 7.

An example planning scheme for wind turbines is shown in Table 6, in which the
planned capacities of nodes 19, 23, 35, and 37 are 0.50, 0.50, 0.35, and 0.50 MW. An example
planning scheme for EV fast charging stations is shown in Table 7, which also shows the
charging demand and the queuing algorithm; here, the corresponding EV fast charging
station site numbers of nodes 37–39 are 1, 4, and 6, respectively. The numbers of planned
50 kW charging piles are 14, 16, and 15, respectively.
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Table 6. Distribution network wind turbine planning program.

Installation Node
Position

Installed Capacity
(MW)

Installation Node
Position

Installed Capacity
(MW)

12 0 36 0
19 0.5 37 0.5
23 0.5 38 0
35 0.35 39 0

Table 7. Electric vehicle fast charging station planning scheme for distribution grids.

Access Node Location Number of Charging Piles

1 14
4 16
6 15

The probability of tested node voltage exceedance in the exemplary case is shown in
Figure 8. Warmer color means higher voltage. The voltage at each node of the distribution
network is 95% to 105% of the rated value. The voltage exceedance probability at each node
in the distribution network is negligible.
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The probability of line power exceedance in the example is shown in Table 8, and there
is no risk of power exceedance in each line in the distribution network. The planning of the
distribution network was improved to meet security requirements.

Table 8. The risk associated with the probability of power exceedance in the distribution network
after improved planning.

Line
Number

Exceedance
Probability

Line
Number

Exceedance
Probability

Line
Number

Exceedance
Probability

1 0 14 0 27 0
2 0 15 0 28 0
3 0 16 0 29 0
4 0 17 0 30 0

. . . 0 . . . 0 . . . 0
10 0 23 0 36 0
11 0 24 0 37 0
12 0 25 0 38 0
13 0 26 0

After improvements in the planning, the topology of the resulting 39-node distribution
network is shown in Figure 9, where the red lines are new lines, and the integrated energy
station access node is the 24th node.
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5. Conclusions

This work utilizes Power Internet of Things multisource data by comprehensively
considering the most influential factors contributing to the exceedance of distribution
network voltage and power, combined with the mixed access of multiple loads, a rising
penetration rate of electric vehicles, the massive degree of access of distributed equipment
such as wind power generation, and integrated energy stations, in addition to a laddered
carbon trading mechanism. We analyzed the mechanistic pattern of the generation of
distribution network faults and simulated a real-life situation using scenario modeling to
provide data relevant to risk planning.

A distribution network risk test was carried out on a distribution network with a
frame structure and multisource load data, based on the expected values and the sensitivity
matrix of the node voltage and branch currents, the loads, the conventional generators,
and the wind turbine outputs. The semi-invariants of each order of the injected power at
each node were calculated, the probability density function and the probability distribution
function were obtained through level expansion, and a probabilistic distribution network
risk model was constructed, which together constituted a test and calibration methodology
that could be applied to the subsequent planning of risk improvement in the distribution
network. After considering economic and social factors, such as the distribution network’s
source and load allocation, integrated energy system access, electric vehicles, and load
types, and taking the probabilities of distribution network voltage and power exceedance
as the first-level objective function and economic benefit as the second-level objective
function, a scheme for improving upon the planning of the original distribution network
was established using a commercial solver to perform risk localization prejudgment and
quantification. Finally, the planning scheme was incorporated into the distribution network
risk prejudgment model to test the feasibility of the method through the analysis of a
calculation example. The following conclusions were obtained:

1. The test of distribution network voltage and power exceedance utilizes the probabilis-
tic power flow method, which can be used to effectively calculate the risk related to the
node voltage and line power of the active distribution network containing integrated
energy sources. In comparison with the original deterministic test method, the risk
probabilities of the nodes and lines of the distribution network have been visually
displayed after Gram–Charlier-level expansion to enable a quantitative analysis of
the risk of the distribution network;

2. The distribution networks need to be rearranged to facilitate risk planning after cou-
pling with transportation networks, distributed generation equipment, and integrated
energy systems. The application of the Power Internet of Things can enable the use
of multidimensional data to increase the reliability of planning and changing the
network structure and, along with rationally planning the distribution of generation
equipment, fast charging stations, and energy storage devices, it can effectively reduce
the probability of risk in relation to distribution networks;

3. The two-layer planning model can take the security and economic features of the dis-
tribution network into account. The integrated energy system improves the efficiency
of energy utilization through the interconversion of multiple energy sources, and
carbon capture combined with a ladder carbon trading mechanism collects the CO2
emitted from gas turbines so that it can be employed in methane synthesis, which
improves the economic and security features of the system. At the same time, the
use of energy storage equipment enables the utilization of renewable energy and
promotes sustainable development;

4. This paper combines distribution network exceedance testing with risk planning by
performing exceedance tests on the existing network structure, and, thus, it provides
a basis for distribution network risk planning. In the distribution network planning
model, the transportation network, integrated energy, carbon capture, and carbon
trading are comprehensively considered, and the planning results here have been
verified by further testing, which introduced the above elements into risk planning



Electronics 2024, 13, 1413 18 of 19

for the distribution network. This integrated energy model can be further optimized,
and travel patterns related to different types of electric vehicles can be considered in
future research.
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