
Citation: Kuczmann, M.; Horváth, K.

Tensor Product Alternatives for

Nonlinear Field-Oriented Control of

Induction Machines. Electronics 2024,

13, 1405. https://doi.org/10.3390/

electronics13071405

Academic Editor: Pedro J. Villegas

Received: 6 March 2024

Revised: 5 April 2024

Accepted: 6 April 2024

Published: 8 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Tensor Product Alternatives for Nonlinear Field-Oriented
Control of Induction Machines
Miklós Kuczmann * and Krisztián Horváth

Department of Power Electronics and E-Drives, Audi Hungaria Faculty of Vehicle Engineering,
Széchenyi István University, H-9026 Győr, Hungary; krisztian.horvath@sze.hu
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Abstract: The paper presents a nonlinear field-oriented control technique based on the tensor prod-
uct representation of the nonlinear induction machine model and the solvability of linear matrix
inequalities. The nonlinear model has 32 quasi linear parameter-varying equivalent variants, and
it is shown that only half of the models result in feasible controller. Two control goals are realized:
torque control and speed control. The controller is a nonlinear state feedback controller completed
by integral action. A new block diagram is investigated for speed control. The controller gains are
designed by the solution of linear matrix inequalities to solve the Lyapunov inequality to obtain a
stable and fast response and constraints on the control signal. The presented methods are verified
and compared by simulations.

Keywords: induction machine model; field-oriented control; nonlinear control; tensor product model;
state feedback; linear matrix inequality

1. Introduction

Induction machines with a squirrel-cage rotor type have a simple and robust structure
due to the lack of a commutator and brushes. In addition, these machines do not contain
permanent magnets, resulting in a relatively low price and increased reliability since the
demagnetization problem does not occur. These features make induction machines the
most common in industrial drives [1], and also an attractive solution for automotive electric
propulsion systems [2–4]. However, the performance of induction machine drives depends
significantly on the control method used.

The earliest control approaches for induction machines are the so-called scalar con-
trol methods. By using them, the frequency and magnitude of the sinusoidal excitation
voltages or currents can be adjusted. This allows the steady-state speed or torque to be
controlled while keeping flux at the desired level. Since scalar control methods are based
on steady-state equations of the machine, the control algorithms are simple and require low
computational effort. In addition, an adequate steady-state characteristic can be achieved
by using them. However, the scalar control has no effect on transients, so only weak or
moderate dynamics are provided. Nevertheless, scalar control is widely used in low-cost
and low-performance industrial applications such as pumps, compressors and fans [5,6].

Unlike scalar control, vector control techniques affect not only the frequency and
magnitude of stator voltages or currents but also the direction of the space vectors since
vector control methods are based on the transient description of the machine. As a result,
much better dynamics can be achieved than with scalar control. The first vector control
method is the well-known field-oriented control (FOC) introduced in [7,8]. The FOC
principle is the indirect control of flux and torque through current controls, similar to the
control of a separately excited DC machine. To separate the flux- and torque-producing
componentsof the stator current vector, the coordinate system of the magnetic field is
used for FOC. Originally, the rotor flux vector was used for field orientation, and it is still
the most widespread. As alternatives to rotor flux orientation, stator flux [9] or air gap
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flux [10] reference frames can also be applied. However, these are rarely used in practical
applications. Note that these traditional FOCs use linear control design, although induction
machine models are nonlinear in nature. To compensate for the effects of nonlinearity, an
additional decoupling algorithm is required, and the control performance depends on how
accurately this algorithm works [11,12]. In contrast to scalar control, FOC provides better
dynamics and very good properties at both low and high speeds [13]. It is also particularly
important that the torque ripple is low over the entire speed range. The main drawbacks of
FOC are its relatively high computational burden due to the coordinate transformations
and its sensitivity to parameter mismatches as discussed in [1].

The second group of vector control includes the direct torque control (DTC) methods,
which were introduced parallel to each other in [14,15]. The basic principles used in [14,15]
are very similar, but the stator flux vector follows a circular trajectory in [14]; it is the
so-called classical DTC, while direct self control (DSC) in [15] operates with a hexagonal
stator flux vector trajectory. Both DTC methods are based on the effect of the possible
switching states of the inverter on the behavior of the machine. Instead of using inner
current control loops, DTCs directly control the stator flux and torque. To determine
flux and torque feedback signals without direct measurement, estimators are applied in
general. The main advantage of the conventional DTC and DSC methods is the extremely
fast transient operation. In addition, these techniques do not require the information of
the rotor angular velocity for torque control. In other words, the traditional DTCs are
inherently rotary senorless methods, unlike FOC. Nevertheless, both FOC and DTC require
angular velocity feedback for speed control. To replace the rotary sensors, fundamental
frequency model-based estimators [16–19] and signal injection-based estimators [20–22] are
also widely used. Due to the absence of coordinate transformation, pulse width modulation
and inner current control loops, the conventional DTCs have a very simple structure and
lower computational time than the FOC as presented in [23]. Furthermore, DTCs are
less sensitive to parameter variations than FOC techniques. However, the original DTC
methods are mostly not applicable in practice due to the extremely high current and torque
ripples. To reduce current and torque ripples, several improvements have been developed
for DTC, which are reviewed in [24,25]. But solving this problem increases the complexity
of the control algorithm as discussed in [12].

In commercial drives, scalar control, FOC and improved DTC methods are the most
popular due to their simplicity and easy tuning. However, more sophisticated control
methods can be found in the literature. Since the difficulty of control design for induction
machines is caused by the nonlinear description, nonlinear control theory offers attractive
solutions. Among these, feedback linearization control (FLC) is used for induction machine
drives in [26–30]. By using FLC, nonlinear transformation can be defined to represent the
nonlinear induction machine model by independent linear subsystems. For these linear
subsystems, advanced state feedback controllers, such as optimal or robust controllers, can
be easily synthesized. It is important to highlight a theoretical similarity between FOC
and FLC, namely that both control strategies use transformations to achieve a favorable
mathematical description for control design. However, induction machine models in
different coordinate systems can also be used for FLC. For example, Refs. [26–28] use
stationary reference frame models, while rotor flux-oriented models are applied in [29,30].
The most significant disadvantages of FLC are the complex design procedure and the
relative high computational burden.

A further promising approach in control design for nonlinear systems is the tensor
product (TP) transformation [31–34]. TP model transformation is a modern framework to
numerically approximate the linear time invariant (LTI), linear parameter varying (LPV)
and quasi LPV (qLPV) representations of state-space models. The framework can replace
the complicated derivations of the closed formulae of the state-space models with straight-
forward and numerically appealing solutions. Furthermore, it should be irrelevant how the
state-space model is given (e.g., a set of closed formulae and a black box model). All in all,
the nonlinear model is represented by the parameter-varying combination of LTI models;
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moreover, the TP model transformation was introduced as the higher-order singular value
decomposition (HOSVD) of LPV models.

The TP model representation belongs to the class of polytopic models. The polytopic
model-based state-space control design has three key steps:

1. Defining the state-space model;
2. Finding the optimal polytopic model (TP model in this paper);
3. Deriving the controller.

The crucial point is that the model structure of steps 1 and 2 has a key role in determin-
ing the effectiveness of the controller design in step 3. The system matrix elements influence
the controller design process in a strong sense. The convex hull defined by the polytopic
structure in step 2 also directly influences the design. The system matrix elements can be
obtained in a systematic way to check all the possible model representations. Controller
design is usually carried out by the appropriate linear matrix inequalities (LMIs) based on
the Lyapunov stability condition and constraint on the control input and on the control
value [35].

Papers [36–38] deal with the fuzzy-state feedback controller design of induction ma-
chine with optimal performance. The Takagi–Sugeno fuzzy model is employed to ap-
proximate the nonlinear machine model in the FOC representation. A fuzzy controller is
designed to stabilize the machine, and minimum disturbance attenuation is guaranteed via
the H∞-controller design. The LMI method is used to find controller gains.

Paper [39] presents a FOC-based technique; however, a nonlinear controller is derived
using TP model transformation methodology. The classical FOC method and TP modeling
are merged to control permanent magnet synchronous motors. Speed control is designed by
the TP model approach, but the d-component of the current is controlled by a PI-controller.
Simulation results show better performance in terms of overshoot, speed and disturbance
rejection when compared to the results of conventional cascade PI + PI control solution.

The paper [40] proposes the design of an induction machine controller based on
the TP method, and the sum of square (SOS) method is used to set up performance
criterion constraints in polynomial form instead of the LMIs. Reference signal tracking is
realized efficiently.

The induction machine nonlinear TP-based controller is complemented by an integral
action and observer in [41,42]. The designed controller ensures stable and accurate opera-
tion over the full operating range of the machine, taking into account the wide range of
temperature values, and possible variations in inductances, which are outside the range of
the parameters under consideration.

In summary, the main challenge in the control of induction machines is caused by the
nonlinear mathematical description. To solve the problem of nonlinear models, different
solutions are used in FOC, DTC, FLC and the above discussed TP-based control methods.
Among them, the FOC is the most widespread, which uses simple linear controllers and
compensates for nonlinear effects by decoupling. Therefore, the performance depends on
the decoupling algorithm. The conventional DTCs use nonlinear hysteresis controllers,
which result in high current and torque ripples. Although FLC avoids decoupling, as well
as high current and torque ripples, it requires complex formulae to be defined. In con-
trast, the TP model transformation-based control is numerical and easy to algorithmize.
Therefore, high performance and easy to implement control methods can be achieved by
combining FOC and TP transformation, similarly to [40–42]. However, the idea of [43]
shows that a TP model has a huge number of alternatives. These variants can be read-
ily derived by the TP model transformation that can variate the number of fuzzy rules,
the number of antecedent and consequent sets, and, further, the shape of the antecedent
fuzzy sets. The goal of this paper is to analyze the behavior of model alternatives from the
controller design viewpoint. The FOC-based state-space model is used in the frame of TP
modeling and LMI-based control synthesis for torque control and speed control.
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Although this paper focuses on the control of induction machines, the proposed
methodology can be applied in general to other problems of which the TP model represen-
tation can be used for control design.

2. Materials and Methods
2.1. Tensor Product Model Transformation

The most important results of the TP model transformation will be summarized shortly
based on the papers [31–34].

Consider the linear parameter-varying state-space model

ẋ(t) =A(p(t))x(t) + B(p(t))u(t),

y(t) =C(p(t))x(t) + D(p(t))u(t),
(1)

where x = x(t) ∈ Rm, u = u(t) ∈ Rk and y = y(t) ∈ Rl are the state vector, the input
vector, and the output vector with the dimension of m, k, and l, respectively. Matrices A, B,
C, and D depend on the parameter vector p = p(t) ∈ Ω. The parameter vector consists
of N parameters, depending on the model description, p = [p1 p2 · · · pN ]

T. The set Ω
is a hyper space, i.e., Ω = ω1 × ω2 × · · · × ωN , where ωi is an interval of the according
parameter pi, i.e., ωi = [ωmin

i , ωmax
i ]. The applied hyper space Ω as well as the selected

parameter vector p are discussed later in Sections 2.2 and 2.4.
The system matrix is defined by

S = S(p) =
[

A(p(t)) B(p(t))
C(p(t)) D(p(t))

]
∈ R(m+l)×(m+k). (2)

The main idea of TP model transformation is to discretize the given model state-space
representation over a hyper rectangular grid M in Ω, then the tensor product structure of
the model is obtained via executing higher-order singular value decomposition. By ignoring
singular values, the TP model of reduced complexity and accuracy can be obtained.

The tensor product structure can be written as follows:

S = S ⊠N
n=1 wn(pn) =

I1

∑
i1=1

I2

∑
i2=1

· · ·
IN

∑
iN=1

N

∏
n=1

wn,in(pn)Si1,i2,···iN , (3)

where S ∈ RI1×I2×···×IN×(m+l)×(m+k) is the core tensor, the vector wn contains the weight-
ing functions wn,in(pn), In denotes the number of LTI systems in the nth dimension of the
domain Ω, and Si1,i2,···iN is a LTI system. The symbol ⊠ denotes multiple n-mode products
of a tensor by a matrix.

The transformation steps and the corresponding controller design scheme are de-
tailed below.

2.2. Induction Machine Model

The nonlinear ordinary differential equations of a set of nonlinear systems have the
following general formula [44]:

ẋ = f(x) + g(x)u, (4)

where x is the state variable vector, the nonlinear mapping f(x) has the special form
of f(x) = A(x)x, and g(x) is constant, denoted by the matrix B, i.e., systems with the
differential equations ẋ = A(x)x+Bu are studied in this paper, meaning that the parameter
vector p can be equal to the state vector p = x or a part of the state vector—furthermore, a
function of state vector elements. The system input is denoted by u.
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The nonlinear mapping and the constant matrix of an induction machine can be
written in the rotor flux-oriented model as [45–48]

f(x) =


− RsL2

r+RrL2
m

σLsL2
r

isd + RrLm
σLsL2

r
ψrd + pωmisq +

RrLm
Lr

i2sq
ψrd

− RsL2
r+RrL2

m
σLsL2

r
isq − pLm

σLsLr
ωmψrd − pωmisd − RrLm

Lr

isdisq
ψrd

RrLm
Lr

isd − Rr
Lr

ψrd
3
2

p
J

Lm
Lr

isqψrd − Df
J ωm − 1

J TL

, (5)

and

g(x) = B =


1

σLs
0

0 1
σLs

0 0
0 0

. (6)

The resistance and self-induction coefficient of the three windings of the stator and
of the rotor are denoted by Rs, Ls, Rr and Lr; furthermore, Lm is the mutual inductance
between the stator and rotor coils, and σ is a parameter depending on the the inductances

σ = 1− L2
m

LsLr
. The pole pair number is denoted by p, and J and Df are the moment of inertia

and the viscous friction coefficient. The state variables are the d and q components of the
stator current, denoted by isd and isq, the d component is of the rotor flux ψrd, and ωm is
the mechanical speed of the rotor, i.e.,

x =
[
isd isq ψrd ωm

]T. (7)

The load torque TL is a disturbance model input. Finally, the motor torque is obtained
by

T =
3
2

p
Lm

Lr
isqψrd. (8)

Dividing by ψrd is replaced by variable p5, i.e., p5 = 1/ψrd is a new model parameter
(element of the parameter vector p), which, by dividing by zero, can be handled.

Varying the state vector elements, the matrix A = A(p) of the model (5) can be
rewritten as the following general form:

A =


− RsL2

r+RrL2
m

σLsL2
r

RrLm
Lr

isq p5 + pωm A · · ·

−pωmB − RrLm
Lr

isq p5C − RsL2
r+RrL2

m
σLsL2

r
− RrLm

Lr
isd p5(1 − C) · · ·

RrLm
Lr

0 · · ·
0 3

2
p
J

Lm
Lr

ψrdE · · ·

· · · RrLm
σLsL2

r
pisq(1 − A)

· · · − pLm
σLsLr

ωmD −pisd(1 − B)− pLm
σLsLr

ψrd(1 − D)

· · · − Rr
Lr

0
· · · 3

2
p
J

Lm
Lr

isq(1 − E) −Df
J

.

(9)

With the five new parameters A, B, C, D and E, all the possible 32 qLPV models can
be analyzed from the viewpoint of modeling and controller design. The new parameters
can be selected from the discrete set of {0, 1}. Table 1 depicts all the 32 qLPV models,
where the dependency of the matrix A on the parameters can also be seen (for example,
p = [isd isq ψrd p5]

T for model #1, or p = [isq ωm p5]
T for model #15, i.e., the

parameter vector contains state variables, functions of state variables, or other relevant
parameters).

The following output matrices Ci (i = 0, 1, 2, 3) are chosen in the analysis to define
the output vector y = Cix = [y1 y2]

T. The index i represents the different output vectors
as follows.
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The classical field-oriented control scheme can be given by

C0 =

[
1 0 0 0
0 1 0 0

]
, (10)

i.e., y1 = isd and y2 = isq. The reference currents along the d and q axes can be obtained
from the reference flux and torque as it will be presented later.

Table 1. The 32 qLPV models of the studied induction machine.

# E D C B A isd isq ψrd ωm p5 R

0 0 0 0 0 0 x a x x - x 16
1 0 0 0 0 1 x x x x x 32
2 0 0 0 1 0 x x x x x 32
3 0 0 0 1 1 x x x x x 32
4 0 0 1 0 0 x x x - x 16
5 0 0 1 0 1 x x x x x 32
6 0 0 1 1 0 - x x x x 16
7 0 0 1 1 1 - x x x x 16
8 0 1 0 0 0 x x - x x 16
9 0 1 0 0 1 x x - x x 16

10 0 1 0 1 0 x x - x x 16
11 0 1 0 1 1 x x - x x 16
12 0 1 1 0 0 x x - x x 16
13 0 1 1 0 1 x x - x x 16
14 0 1 1 1 0 - x - x x 8
15 0 1 1 1 1 - x - x x 8
16 1 0 0 0 0 x x x - x 16
17 1 0 0 0 1 x - x x x 16
18 1 0 0 1 0 x x x x x 32
19 1 0 0 1 1 x - x x x 16
20 1 0 1 0 0 x x x - x 16
21 1 0 1 0 1 x x x x x 32
22 1 0 1 1 0 - x x x x 16
23 1 0 1 1 1 - x x x x 16
24 1 1 0 0 0 x x x x x 32
25 1 1 0 0 1 x - x x x 16
26 1 1 0 1 0 x x x x x 32
27 1 1 0 1 1 x - x x x 16
28 1 1 1 0 0 x x x x x 32
29 1 1 1 0 1 x x x x x 32
30 1 1 1 1 0 - x x x x 16
31 1 1 1 1 1 - x x x x 16

a Notation x means that the variable appears in the system model.

The reference flux and torque can be directly controlled by the output matrices

C1 =

[
0 0 1 0
0 3

2 p Lm
Lr

ψrd 0 0

]
, (11)

and

C2 =

[
0 0 1 0
0 0 3

2 p Lm
Lr

isq 0

]
, (12)

i.e., y1 = ψrd and y2 = T = 3
2 p Lm

Lr
isqψrd.

The reference flux and speed can be directly controlled by the output matrix of

C3 =

[
0 0 1 0
0 0 0 1

]
, (13)
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i.e., y1 = ψrd and y2 = ωm.
The matrix D is zero.
All in all, 32 × 4 = 128 models are set up and analyzed.

2.3. Model Parameters

The asynchronous motor model nominal parameters are chosen as follows, where
their physical meaning is also given [49]:

• Number of pole pairs, p = 2;
• Stator resistance, Rs = 4.7 Ω;
• Rotor resistance, Rr = 5.2 Ω;
• Stator self inductance, Ls = 0.1788 H;
• Rotor self inductance, Lr = 0.1790 H;
• Mutual inductance, Lm = 0.1690 H;
• Moment of inertia, J = 0.00108 kg m2;
• Viscous friction coefficient, Df = 0.00475 Nms.

and σ = 1 − L2
m

LsLr
is the leakage coefficient.

2.4. Model Discretization Parameters

The following parameters are set when the model matrices are discretized in the grid
M. Here, the problem region Ω as well as the region limits are listed:

• The problem region for models 0, 4, 16, and 20 is

Ω = [imin
sd , imax

sd ]× [imin
sq , imax

sq ]× [ψmin
rd , ψmax

rd ]× [pmin
5 , pmax

5 ];

• The problem region for models 8, 9, 10, 11, 12, and 13 is

Ω = [imin
sd , imax

sd ]× [imin
sq , imax

sq ]× [ωmin, ωmax]× [pmin
5 , pmax

5 ];

• The problem region for models 1, 2, 3, 5, 17, 18, 19, 21, 24, 25, 26, 27, 28, and 29 is

Ω = [imin
sd , imax

sd ]× [imin
sq , imax

sq ]× [ψmin
rd , ψmax

rd ]× [ωmin, ωmax]× [pmin
5 , pmax

5 ];

• The problem region for models 6, 7, 22, 23, 30, and 31 is

Ω = [imin
sq , imax

sq ]× [ψmin
rd , ψmax

rd ]× [ωmin, ωmax]× [pmin
5 , pmax

5 ];

• The problem region for models 14 and 15 is

Ω = [imin
sq , imax

sq ]× [ωmin, ωmax]× [pmin
5 , pmax

5 ].

The limit values are set to

• imin
sd = −10 A, imax

sd = 10 A;
• imin

sq = −10 A, imax
sq = 10 A;

• ψmin
rd = 0.1 mVs, ψmax

rd = 2 Vs;
• ωmin = −200 rad/s, ωmax = 200 rad/s;
• pmin

5 = 0 1/Vs, pmax
5 = 10 k/Vs.

The limit values are relevant for the studied motor from the paper [49]. All the intervals
are divided into 20 segments.

2.5. Tensor Product-Based Controller Design

The mentioned control system is a nonlinear state feedback controller completed by
the integral action to eliminate the steady-state error of the step response and to attenuate
disturbance and noise effects [41,42,50].
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2.5.1. Reference and Disturbance Data

The flux and torque reference values are set as follows:

ψref
rd = 0.2 Vs, Tref = 0.4 Nm.

From these reference values, the reference currents isd and isq can be calculated as

iref
sd =

ψref
rd

Lm
= 1.1834 A, iref

sq =
2
3

Lr

pLm

Tref

ψref
rd

= 0.7061 A,

i.e., the reference current components contains the nominal value of the inductances Lm
and Lr.

In the case of speed control,

ωref =
Tref
Df

= 84.2105
rad

s

is adopted.
The load torque is defined as

TL =


0, if t < T1;

0.4, if T1 ≦ t < T2;
−0.4, if t ≧ T2.

In the case of torque control, T1 = 1.5 s, and T2 = 3 s; furthermore, in the case of speed
control, T1 = 6 s, T2 = 9 s.

2.5.2. Controller Block Diagrams

Two control goals are realized in the frame of tensor product modeling: torque control
and speed control.

The torque control scheme

The torque control scheme is depicted in Figure 1. The plant is the induction machine
model with two inputs and two outputs: usd and usq are the d and q components of the
stator voltage in the dq reference frame; y1 and y2 can be defined by the output matrix
of C0, C1 or C2, as well as the reference components yref

1 and yref
2 . The state x is applied

in the state feedback part of the controller, denoted by K = K(x). The error components
between the reference signals and the outputs are plugged into the feedforward block of the
controller, denoted by the matrix KI = KI(x). The feedforward block contains an integrator
for the two channels independently. The motor is affect by the load torque TL.

The plant input in Figure 1 can be written as follows:

u =

[
usd
usq

]
= −Kx + KI

∫ t

−∞

([
yref

1 − y1
yref

2 − y2

])
dτ, (14)

where the dimensions of the matrices K and KI are 2 × 4 and 2 × 2, respectively.
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Figure 1. Block diagram for torque control.

The errors are defined as

ẋ1
I = yref

1 − y1, and ẋ2
I = yref

2 − y2,

with which the following augmented system can be defined for controller design using the
notation xI =

[
x1

I x2
I
]T: [

ẋ
ẋI

]
=

[
A4×4 04×2

C2×4
i 02×2

][
x
xI

]
+

[
B4×2

02×2

]
u, (15)

u = −
[
K KI

][ x
xI

]
, (16)

and i = 0, 1, 2. The matrices can be designed by the solution of an LMI problem.

The speed control scheme

The control algorithm mentioned in Figure 1 is extended to the control rotational
speed. The block diagram of the speed control is shown in Figure 2, where a new state
variable x3

I and a new feedforward block Kω are introduced (this is a column vector with
two rows); moreover, y1 = ψrd, and y2 = ωm are chosen, i.e., the flux and rotor speed are
the reference signal components.

Figure 2. Block diagram for speed control.

The error yref
2 − y2 is processed by a PI controller block in the original field-oriented

control scheme to generate a reference torque (yref
2 = ωref

m and y2 = ωm) [7,8,45–48]. This
cascade PI controller must be reformulated to have the state feedback and integrator
feedforward formula.

The details of the PI controller reformulation based on Figure 3 are as follows.
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Figure 3. Block diagram conversion.

First, the original field-oriented control scheme extended for speed control contains a
PI controller whose input is the error signal yref

2 − y2. This PI block is copied to the second
channel of Figure 3, resulting in the upper scheme. Let us denote the error signal by

ẋω = yref
2 − y2. (17)

The PI output signal is the input of the next integrator, i.e.,

ẋ2
I = KP ẋω + KIxω, (18)

in other words

x2
I = KPxω + KI

∫ t

−∞
xωdτ. (19)

With these, the integrator block output followed by the matrix KI is

µ1 =K11x1
I + K12

(
KPxω + KI

∫ t

−∞
xωdτ

)
,

ν1 =K21x1
I + K22

(
KPxω + KI

∫ t

−∞
xωdτ

)
.

(20)

Second, the integrator output signal on the second channel in the bottom of Figure 3 is

ẋ2
I = xω, (21)

i.e.,

x2
I =

∫ t

−∞
xωdτ. (22)



Electronics 2024, 13, 1405 11 of 27

The P and I part constants of the original field-oriented control scheme can be moved
to the vector Kω . With these, the integrator block output followed by the matrix KI and the
vector Kω is

µ2 =K11x1
I + K12x2

I + Kω,1xω = K11x1
I + K12

∫ t

−∞
xωdτ + Kω,1xω,

ν2 =K21x1
I + K22x2

I + Kω,2xω = K21x1
I + K22

∫ t

−∞
xωdτ + Kω,2xω.

(23)

By the appropriate choice of the integrator parameters, µ2 = µ1 and ν2 = ν1 can be
realized, i.e., the mentioned block diagram can be applied to control motor speed via state
feedback control.

The control signals of Figure 2 are given as:[
usd
usq

]
= −Kx + KI

∫ t

−∞

([
yref

1 − y1∫ t
−∞(yref

2 − y2)dξ

])
dτ + Kω

∫ t

−∞
(yref

2 − y2)dτ. (24)

In this case, the augmented system can be written as

 ẋ
ẋI
ẋω

 =


A4×4 04×30 0 1 0

0 0 0 0
0 0 0 1

 0 0 0
0 0 1
0 0 0



 x

xI
xω

+

[
B4×2

03×2

]
u, (25)

u = −
[
K KI Kω

] x
xI
xω

, (26)

whose representation can be used to design a nonlinear controller which contains the
PI-term for torque generation in a nonlinear form which is applicable in the TP-based frame-
work.

2.5.3. Controller Design

Controller synthesis is performed via the following steps:

• Define the motor parameters, references, and other data such as the load torque signal
(see Sections 2.3 and 2.5.1).

• Define parameter vector p according to the analyzed TP model alternative (i.e., select
parameters A, B, C, D, and E). It is based on Table 1.

• Define the parameter space Ω, and its discretization (see Section 2.4).
• Set up system matrix A, input and output matrices B and Ci (i = 0, 1, 2, 3) based on

Table 1 and on the equations in Section 2.2.
• Set up the matrices according to the block diagram in Figure 1 for torque control or in

Figure 2 for rotor speed control, i.e., according to (15) or (25). For example, set up the
matrix [

A4×4 04×2 B4×2

C2×4
i 02×2 02×2

]
,

or 
A4×4 04×3 B4×20 0 1 0

0 0 0 0
0 0 0 1

 0 0 0
0 0 1
0 0 0

 03×2

;

• Run higher-order singular value decomposition using the above mentioned matrix;
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• Set up weighting functions and vertex systems according to the approximation by

ẋ =
R

∑
n=1

wn(p)(Anx + Bnu), (27)

where R is the number vertex systems (see Table 1 for the applied linear systems of
the different TP model alternatives), An and Bn are the linear system matrices in the
vertices, and wn(p) is the weighting function. In this study, only CNO (Close-To-
Normality) and IRNO (Inverse-Relaxed-Normality) functions are studied; however,
other weighting functions can be selected, such as SNNN (Sum-Normalized and Non
Negativeness) [31–34];

• The control goal is to speed up the system response. In this case, the so-called de-
cay rate control can be applied, i.e., to solve the following generalized eigenvalue
minimization problem with linear matrix inequalities [35]:

maximize α, subject to

X ≻ 0,

− XAT
n − AnX + MT

nBT
n + BnMn − 2αX ≻ 0,

− XAT
n − AnX − XAT

m − AmX + MT
mBT

n + BnMm + MT
nBT

m + BmMn − 4αX ⪰ 0,

(28)

where n = 1, · · · , R, and m = n + 1, · · · , R.
The control goal is augmented by the control value constraint. Assuming that the state
initial value is bounded, i.e., ||x(0)|| ≤ ϕ (ϕ is predefined), the constraint ||u(t)||2 ≤
umax can be enforced at all times t ≥ 0 if the following linear matrix inequalities hold:

ϕ2I ⪯ X,[
X MT

n
Mn u2

maxI

]
⪰ 0, n = 1, · · · , R.

(29)

The maximum value of the parameter α can be found by the simple bisection method
as follows:

– Set the interval [a, · · · , b] where α is assumed;
– While |b − a| > ε do the following iteration (ε is a small positive limit, ε = 10−5

is used):

* x = a+b
2 ;

* Solve the above mentioned LMI with α = x;
* If LMI is feasible, then a = x; otherwise, b = x.

– α = x.

• Vertex gain matrices are obtained by

Kn = MnX−1, n = 1, · · · , R, (30)

from which the feedback and feedforward gains in (16) or in (26) can be calculated:

u = −
R

∑
n=1

wn(p)Kn

[
x
xI

]
, or u = −

R

∑
n=1

wn(p)Kn

 x
xI
xω

, (31)

if torque control or speed control is running.
• Check the closed-loop control system. Feasibility and applicability checks are per-

formed, and the results are shown in the next section.
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3. Results
3.1. The Weighting Functions

Figure 4 shows the CNO-type weighting functions of the model #1 when the parameter
p5 is not used. The effect of ψrd in the denominator of the A matrix elements can be seen
in w3,j (j = 1, 2, 3), especially when the flux is small, close to zero. This behavior can
be eliminated by introducing the parameter denoted by p5, i.e., p5 = 1/ψrd. The other
weighting functions wi,j (i = 1, 2, 4, j = 1, 2) are simple linear ones. By introducing p5, all
the weighting functions become such simple linear ones.

Figure 4. Typical CNO basis functions wi,j of the model without the parameter p5—model #1,
(blue−j = 1, red−j = 2, orange−j = 3).
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Figure 5 shows the IRNO-type weighting functions of the model #0 when the parame-
ter p5 is used.

Figure 5. Typical IRNO basis functions wi,j of the model with the parameter p5—model #0–model #1,
(blue−j = 1, red−j = 2).
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These functions are used in (3), and consequently in (27) and in (31) to approximate
the nonlinear system as well as the nonlinear controller. Applying weighting functions
gives a combination of the vertex systems An, Bn in (27), and Kn in (31); finally, the shape
of the weighting functions is dependent on the type (CNO, IRNO, SNNN, etc.) and on the
qLPV system representation. In this case, simple linear functions appear.

3.2. Results with the Output Matrix C0

The output matrix C0 gives the original field-oriented control scheme idea, but the
TP-based controller is nonlinear. The current components isd and isq are controlled directly
by using the reference value of iref

sd and iref
sq .

The parameter umax is chosen from the interval [100, · · · , 400] V and the parameter
|x(0)| from [0.01, · · · , 0.1]. The maximum value of the decay rate is selected by the bisection
method as it was presented before. A typical function of α = α(umax, |x(0)|) can be seen
in Figure 6 obtained by using model #4. It is noted that similar functions can be given
by the other model variants, too. The maximum and the minimum values of the decay
rate parameter are depicted in the figure: αmax = 4.282 at umax = 400 V and |x(0)| = 0.01;
αmin = 0.3336 at umax = 100 V and |x(0)| = 0.1. The effect of selecting the decay rate is
illustrated in the following.

Figure 6. Parameter α as the function of umax and |x(0)|—model #4.

Figures 7–9 show the time function of the state variable isd, isq, ψrd, and ωm, respec-
tively. The slow and fast transients according to the minimum and maximum decay rate
parameters are highlighted. It is noted that the current isq is practically not changed if the
parameter α is changed. The other current isd can be sped up efficiently; however, there is a
peak at the very beginning when model #4 is applied. The current overshoot is typically
around 10–20% for model #4 when α is changed. There is no overshoot in the time function
of the flux and of the rotational speed.

The torque is shown in Figure 10; it follows the flux time function. The d and q
components of the control input can be studied in Figure 11.

It must be underlined that the load torque change has no practical effect on the con-
troller scheme because the state variables as well as the torque are not changing, except the
motor speed. The speed is decreased to zero and increased to twice the nominal value
according to the load torque change.
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Figure 7. Slow and fast transients of isd and isq—model #4.

Figure 8. Slow and fast transients of ψrd—model #4.

It is found that the behavior of models #4–#7 is practically the same. It is noted that
the above mentioned overshoot in the d-current component can be eliminated by the
variants #4–#7 and an appropriate choice of α. On the other hand, a faster transient can be
reached as well, e.g., with model variants #12–#15 and #28–#31, when the currents can be
step-wise. Models #20–#23 are not the proper way to choose because overshoot appears in
the q-current component as well as in the torque function at the load torque change.
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Figure 9. Slow and fast transients of ωm—model #4.

Figure 10. Slow and fast transients of T—model #4.

Next, the robustness analysis is shown. The stator and rotor resistances depend on the
temperature inside the motor. The temperature change on the resistance has the following
physical rule:

Rs(T) =Rs,20◦C(1 + αT∆T),

Rr(T) =Rr,20◦C(1 + αT∆T),
(32)

with the notation 20 ◦C in the index, meaning the resistance at room temperature, i.e., the
nominal value of the resistance. The parameter αT is the temperature coefficient for resistiv-
ity, and finally, ∆T is the temperature change. The value of αT is 3.93 · 10−3 1

◦C for copper.
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Figure 11. Slow and fast transients of usd and usq—model #4.

Taking the resistivity change into account in the simulations is a kind of robustness
analysis. The controller is designed when room temperature and nominal resistances are
valid. In the present example, the following parameters are obtained by controller design:
umax = 200 V, |x(0)| = 0.05, and α = 1.666. Here, the temperature is changed between
−60 ◦C and 200 ◦C, resulting in a very small change in the state variables, as well as in
the output functions. As an illustration of the robustness, the resulting torque function is
depicted in Figure 12. It is easy to see that the torque change is negligible; moreover, the
load torque change has practically no effect on the output torque.

Figure 12. Torque change vs. the temperature—model #4.

3.3. Results with the Output Matrix C1

The flux component ψrd and the torque are the model outputs when matrix C1 is applied.
In this case, only the models #4–#7, #20–#23 and #28–#31 result in an applicable solution.
The models #12–#15 give also a feasible controller, but the designed controller works infea-
sibly because the current isq is zero. From engineering point of view, this solution is not
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allowed. The best results can be obtained when one of the models #28–#31 is used for the
controller design.

It is noted that the different qLPV models are different representations of the same
nonlinear system but with different weighting functions and different vertex systems in (27).
The controller gain vertex systems in (31) are designed by a numerical LMI solver. An
infeasible solution means a noncontrollable system because the appropriate LMIs cannot
be solved. If the controller is feasible but at the same time the solution is inadequate, then
the model representation is not a good candidate.

Model #28 is selected to present the results (the following parameters are obtained
by controller design: umax = 400 V, |x(0)| = 0.04, and α = 1.3106). It is noted that similar
findings can be obtained by models #28–#31.

Figure 13 presents the current component time functions. A magnified plot of the
starting transient is also shown. First, the input is turned on at t = 0, resulting in huge
overshoot in the q-component of the currents (see red curves), but there is no peak in the
other component. Second (blue curves), a time shift ∆t = 0.1s is applied in the torque
reference, which decreases the overshoot of the q-component current efficiently. On the other
hand, overshoot appears in the d-component. The overshoot in the q-component affects the
torque transient as it is highlighted in Figure 14, but the time shift in the torque reference
efficiently decreases the peak in the torque function. The time shift has neither a practical
effect on the rotor speed (Figure 15).

Figure 13. Current transient with (blue) and without (red) time delay in torque reference—model #28.
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Figure 14. Typical time function of torque with (blue) and without (red) time delay in torque
reference—model #28.

Figure 15. Time function of rotor speed with (blue) and without (red) time delay in torque reference—
model #28.

It must be underlined again that the load torque change has no practical effect on
the controller scheme behavior because the state variables as well as the torque are not
changing, except the motor speed. Of course, the speed is decreased to zero and increased
to twice the nominal value according to the load torque change.

The resistance change caused by temperature change has exactly the same effect as it was
shown in the case output matrix C0: negligible change in the time functions can be observed.

Here, another robustness analysis is presented. The inductance drop in Lm has an effect
only in the time function of the isd component, it is increased by 25%, i.e., the stationary
value is around 1.48 A when the inductance drop is 80%. Anyway, the reference flux and
torque can be tracked without stationary error according to the integral action in the control
block diagram.
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Models #20–#23 are not useful variants again because the load torque change affects
the load characteristics.

3.4. Results with the Output Matrix C2

On the other hand, applying the output matrix C2 does not give any applicable
solution. The flux component ψrd and the torque are the model outputs; the two nonzero
elements are both in the third column.

Only models #4–#7 are feasible mathematically, but there is a huge overshoot in the
time function of the current isq, resulting in a very slow controlling algorithm, i.e., the
results are not useful from an engineering point of view.

3.5. Results with the Output Matrix C3

The flux component ψrd and the rotor speed ωm are the model outputs when matrix C3
is applied. In this case, only the model variants #20–#23 and #28–#31 result in an applicable
solution. The results below are presented via model #31 with the following parameters:
umax = 100 V, |x(0)| = 0.01, and α = 0.434.

First, the input is turned on at t = 0, resulting in huge overshoot in the q component
of the currents (see red curves in Figure 16), but there is no peak in the d component.
Second (blue curves), a time shift is applied in the speed reference by linearly increasing
the reference in the range of t ∈ [0, · · · , 3] s. It decreases the overshoot of the q-component
current efficiently. The d component is practically not changed. The overshoot in the q
component affects the torque transient as it is highlighted in Figure 17, but the time shift
in the speed reference efficiently decreases the peak in the torque function. Unfortunately,
the rotor speed has a huge overshoot as it is shown in Figure 18, without the linearly
increasing speed reference. It can only be eliminated by the mentioned time function of
the reference signal. The time shift has no practical effect on the flux. The control signal
components are shown in Figure 19.

Figure 16. Current transient with (blue) and without (red) time delay in speed reference—model #31.

The load torque change has no practical effect on the controller scheme because the
state variables as well as the speed are not changing, except the q-component current and
the torque. The torque is decreased to zero and is increased to twice the nominal value
according to the load torque change.
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An interesting check can be studied in Figure 20. Here, the reference speed function
has linearly increasing and decreasing parts as well as stationary intervals. The system
output follows this signal with a small tracking error.

Figure 17. Torque transient with (blue) and without (red) time delay in speed reference—model #31.

Figure 18. Speed transient with (blue) and without (red) time delay in speed reference—model #31.
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Figure 19. Control signal transient with (blue) and without (red) time delay in speed reference—model #31.

Figure 20. Linearly varying reference speed (–) and the output (- -)—model #31.

3.6. Changing of the Weighting Functions

At the end, it is noted that there is practically no difference between the results by
CNO-type weighting functions and IRNO-type weighting functions. This can be explained
by the fact that the original nonlinear model is the same, giving the same results, while it
can be approximated by different weighting functions and different vertex systems as well
as vertex gain matrices in (27) and in (31), respectively.

3.7. The Control Matrix

The original field-oriented control scheme contains two independent linear PI con-
trollers. The two channels in the TP-based controller are not independent because of the
matrix KI. Figure 21 shows the time function of the KI matrix elements. The diagonal
elements K11

I and K22
I are constants after a short transient at the initial state; the values
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are 1792 and 2437, respectively. It is noted that the values are not changing when the
load torque is changed. The off-diagonal elements K12

I and K21
I are also constants after a

short transient, and the values are around 0.9 and 1.2, respectively, and these are slightly
changing when the load torque is changed. It can be stated that the off-diagonal elements
are negligible compared to the diagonal ones, i.e., the nonlinear feedforward integral action
is approximately independent.

Figure 21. Time variation of KI matrix elements—model #4.

The matrix elements in the stationary state are slightly constant, resulting in a diagonal
KI matrix. The matrix elements are not changing when the load torque appears; however
the state variables are changing, resulting in a change in the control signal (see, for example,
Figure 11 or Figure 19. It must be highlighted that the closed-loop system is always stable
because the LMIs are based on Lyapunov’s stability theorem.

4. Conclusions

The main contribution of this paper is a new methodology for TP-based nonlinear
controller design. Following this methodology, it is possible to select all qLPV models,
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which are suitable for controller design. Although the proposed methodology is generally
applicable for nonlinear systems, it was used to create a family of controllers for induction
machines, which combines the principles of FOC and TP transformation.

The first part of the paper discusses the TP modeling of induction machines and
its description in the LMI framework. The mathematical formalism of the FOC-based
nonlinear state-space representation is investigated, and all the possible 128 qLPV models
for torque control and speed control are studied extensively. A new block diagram is
investigated for speed control, which is applicable in the TP model-based framework.

With the TP model transformation, it is possible to systematically investigate all
possible qLPV models that can be written. This, of course, requires a rather lengthy and
resource-intensive run. However, it is possible to find the optimal model–controller pair.
It must be underlined that not all of the models give a feasible and applicable controller,
which is why all the possible combinations must be analyzed.

The designed nonlinear controller ensures stable, accurate, and robust operation over
the full operating range. It is confirmed that the wide range of temperature value affecting
the resistance of stator and rotor coils can be taken into account. Thus, the presented TP-
based FOC provides high performance even under extreme parameter variations, unlike
the traditional FOC using linear controllers and decoupling. In addition, the proposed con-
troller keeps the current and torque ripples low, outperforming the conventional DTCs in
this respect. Moreover, TP-based control design is numerical, which is easy to algorithmize,
so unlike FLC, it does not require complex mathematical formulas.

A possible future research task is the observer synthesis in the above mentioned
comprehensive investigation. Other effects can also be modeled, such as eddy current
effects or other nonmodeled nonlinearities. The method can also be applied to other type
of machines as well as other nonlinear systems.

Author Contributions: Conceptualization, M.K. and K.H.; methodology, M.K.; software, M.K.;
validation, M.K. and K.H.; formal analysis, M.K.; investigation, M.K.; resources, K.H.; data curation,
M.K. and K.H.; writing—original draft preparation, M.K. and K.H.; writing—review and editing,
M.K. and K.H.; visualization, M.K.; supervision, M.K.; project administration, K.H. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data is contained within the article.

Acknowledgments: Special thanks to Péter Baranyi for supervising the TP modeling and control design.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Orłowska-Kowalska, T.; Dybkowski, M. Industrial drive systems. Current state and development trends. Power Electron. Drives

2016, 1, 5–25. https://doi.org/10.5277/PED160101.
2. Boldea, I.; Tutelea, L.N.; Parsa, L.; Dorrell, D. Automotive electric propulsion systems with reduced or no permanent magnets:

An overview. IEEE Trans. Ind. Electron. 2014, 61, 5696–5711. https://doi.org/10.1109/TIE.2014.2301754.
3. Aktas, M.; Awaili, K.; Ehsani, M.; Arisoy, A. Direct torque control versus indirect field-oriented control of induction motors for

electric vehicle applications. Eng. Sci. Technol. Int. J. 2020, 23, 1134–1143. https://doi.org/10.1016/j.jestch.2020.04.002.
4. Liu, C.; Chau, K.T.; Lee, C.H.T.; Song, Z. A critical review of advanced electric machines and control strategies for electric vehicles.

Proc. IEEE 2021, 109, 1004–1028. https://doi.org/10.1109/JPROC.2020.3041417.
5. Trzynadlowski, A. The Field Orientation Principle in Control of Induction Motors; Springer: New York, NY, USA, 1993. https:

//doi.org/10.1007/978-1-4615-2730-5.
6. Boldea, I.; Moldovan, A.; Tutelea, L. Scalar V/f and I-f control of AC motor drives: An overview. In Proceedings of the 2015

International Aegean Conference on Electrical Machines & Power Electronics (ACEMP), 2015 International Conference on
Optimization of Electrical & Electronic Equipment (OPTIM) & 2015 International Symposium on Advanced Electromechanical
Motion Systems (ELECTROMOTION), Side, Turkey, 2–4 September 2015; pp. 8–17. https://doi.org/10.1109/OPTIM.2015.7426739.

7. Blaschke, F. The principle of field-orientation as applied to the transvector closed-loop control system for rotating-field machines.
Siemens Rev. 1972, 34, 217–220.

8. Hasse, K. Drehzahlgelverfahren für schnelle umkehrantriebe mit stromrichtergespeisten asynchron-kurzschlusslaufer-motoren.
Regelungstechnik 1972, 20, 60–62.

https://doi.org/10.5277/PED160101
https://doi.org/10.1109/TIE.2014.2301754
https://doi.org/10.1016/j.jestch.2020.04.002
https://doi.org/10.1109/JPROC.2020.3041417
https://doi.org/10.1007/978-1-4615-2730-5
https://doi.org/10.1007/978-1-4615-2730-5
https://doi.org/10.1109/OPTIM.2015.7426739


Electronics 2024, 13, 1405 26 of 27

9. Xu, X.; De Doncker, R.; Novotny, D. A stator flux oriented induction machine drive. In Proceedings of the 19th Annual IEEE
Power Electronics Specialists Conference (PESC), Kyoto, Japan, 11–14 April 1988; pp. 870–876. https://doi.org/10.1109/PESC.19
88.18219.

10. De Doncker, R.; Novotny, D. The universal field oriented controller. IEEE Trans. Ind. Appl. 1994, 30, 92–100. https://doi.org/10.1
109/28.273626.

11. Rodriguez, J.; Kennel, R.M.; Espinoza, J.R.; Trincado, M.; Silva, C.A.; Rojas, C.A. High-performance control strategies for electrical
drives: An experimental assessment. IEEE Trans. Ind. Electron. 2012, 59, 812–820. https://doi.org/10.1109/TIE.2011.2158778.

12. Wang, F.; Zhang, Z.; Mei, X.; Rodríguez, J.; Kennel, R. Advanced control strategies of induction machine: Field oriented control,
direct torque control and model predictive control. Energies 2018, 11, 120. https://doi.org/10.3390/en11010120.

13. Aziz, A.G.M.A.; Abdelaziz, A.Y.; Ali, Z.M.; Diab, A.A.Z. A comprehensive examination of vector-controlled induction motor
drive techniques. Energies 2023, 16, 2854. https://doi.org/10.3390/en16062854.

14. Takahashi, I.; Noguchi, T. A new quick-response and high-efficiency control strategy of an induction motor. IEEE Trans. Ind. Appl.
1986, IA-22, 820–827. https://doi.org/10.1109/TIA.1986.4504799.

15. Depenbrock, M. Direct self-control (DSC) of inverter-fed induction machine. IEEE Trans. Power Electron. 1988, 3, 420–429.
https://doi.org/10.1109/63.17963.

16. Lascu, C.; Boldea, I.; Blaabjerg, F. Direct torque control of sensorless induction motor drives: A sliding-mode approach. IEEE
Trans. Ind. Appl. 2004, 40, 582–590. https://doi.org/10.1109/TIA.2004.824441.

17. Orlowska-Kowalska, T.; Dybkowski, M. Stator-current-based MRAS estimator for a wide range speed-sensorless induction-motor
drive. IEEE Trans. Ind. Electron. 2010, 57, 1296–1308. https://doi.org/10.1109/TIE.2009.2031134.

18. Orlowska-Kowalska, T.; Korzonek, M.; Tarchala, G. Stability improvement methods of the adaptive full-order observer for
sensorless induction motor drive—Comparative study. IEEE Trans. Ind. Inform. 2019, 15, 6114–6126. https://doi.org/10.1109/TII.
2019.2930465.

19. Yildiz, R.; Barut, M.; Zerdali, E. A comprehensive comparison of extended and unscented Kalman filters for speed-sensorless
control applications of induction motors. IEEE Trans. Ind. Inform. 2020, 16, 6423–6432. https://doi.org/10.1109/TII.2020.2964876.

20. Degner, M.; Lorenz, R. Using multiple saliencies for the estimation of flux, position, and velocity in AC machines. IEEE Trans. Ind.
Appl. 1998, 34, 1097–1104. https://doi.org/10.1109/28.720450.

21. Ha, J.I.; Sul, S.K. Sensorless field-orientation control of an induction machine by high-frequency signal injection. IEEE Trans. Ind.
Appl. 1999, 35, 45–51. https://doi.org/10.1109/28.740844.

22. Yoon, Y.D.; Sul, S.K. Sensorless control for induction machines based on square-wave voltage injection. IEEE Trans. Power Electron.
2014, 29, 3637–3645. https://doi.org/10.1109/TPEL.2013.2278103.

23. Casadei, D.; Profumo, F.; Serra, G.; Tani, A. FOC and DTC: Two viable schemes for induction motors torque control. IEEE Trans.
Power Electron. 2002, 17, 779–787. https://doi.org/10.1109/TPEL.2002.802183.

24. Buja, G.; Kazmierkowski, M. Direct torque control of PWM inverter-fed AC motors—A survey. IEEE Trans. Ind. Electron. 2004,
51, 744–757. https://doi.org/10.1109/TIE.2004.831717.

25. Kumar, R.H.; Iqbal, A.; Lenin, N.C. Review of recent advancements of direct torque control in induction motor drives—A decade
of progress. IET Power Electron. 2018, 11, 1–15. https://doi.org/10.1049/iet-pel.2017.0252.

26. Marino, R.; Peresada, S.; Valigi, P. Adaptive input-output linearizing control of induction motors. IEEE Trans. Autom. Control 1993,
38, 208–221. https://doi.org/10.1109/9.250510.

27. Chiasson, J. Dynamic feedback linearization of the induction motor. IEEE Trans. Autom. Control 1993, 38, 1588–1594. https:
//doi.org/10.1109/9.241583.

28. Kuczmann, M.; Horváth, K. Design of feedback linearization controllers for induction motor drives by using stator reference
frame models. In Proceedings of the 2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC),
Gliwice, Poland, 25–29 April 2021; pp. 766–773. https://doi.org/10.1109/PEMC48073.2021.9432503.

29. Chiasson, J. A new approach to dynamic feedback linearization control of an induction motor. IEEE Trans. Autom. Control 1998,
43, 391–397. https://doi.org/10.1109/9.661597.

30. Kuczmann, M. Feedback linearization based induction machine control. In Proceedings of the 2020 2nd IEEE International
Conference on Gridding and Polytope Based Modelling and Control (GPMC), Győr, Hungary, 21–22 November 2020; pp. 9–12.
https://doi.org/10.1109/GPMC50267.2020.9333810.

31. Baranyi, P. TP model transformation as a way to LMI-based controller design. IEEE Trans. Ind. Electron. 2004, 51, 387–400.
https://doi.org/10.1109/TIE.2003.822037.

32. Baranyi, P. The generalized TP model transformation for T-S fuzzy model manipulation and generalized stability verification.
IEEE Trans. Fuzzy Syst. 2014, 22, 934–948. https://doi.org/10.1109/TFUZZ.2013.2278982.

33. Baranyi, P. Extracting LPV and qLPV structures from state-space functions: A TP model transformation based framework. IEEE
Trans. Fuzzy Syst. 2020, 28, 499–509. https://doi.org/10.1109/TFUZZ.2019.2908770.

34. Baranyi, P. How to vary the input space of a T-S fuzzy model: A TP model transformation-based approach. IEEE Trans. Fuzzy
Syst. 2022, 30, 345–356. https://doi.org/10.1109/TFUZZ.2020.3038488.

35. Tanaka, K.; Wang, H.O. Fuzzy Control Design and Analysis, A Linear Matrix Inequality Approach; John Wiley and Sons, Inc.: New
York, NY, USA, 2001.

https://doi.org/10.1109/PESC.1988.18219
https://doi.org/10.1109/PESC.1988.18219
https://doi.org/10.1109/28.273626
https://doi.org/10.1109/28.273626
https://doi.org/10.1109/TIE.2011.2158778
https://doi.org/10.3390/en11010120
https://doi.org/10.3390/en16062854
https://doi.org/10.1109/TIA.1986.4504799
https://doi.org/10.1109/63.17963
https://doi.org/10.1109/TIA.2004.824441
https://doi.org/10.1109/TIE.2009.2031134
https://doi.org/10.1109/TII.2019.2930465
https://doi.org/10.1109/TII.2019.2930465
https://doi.org/10.1109/TII.2020.2964876
https://doi.org/10.1109/28.720450
https://doi.org/10.1109/28.740844
https://doi.org/10.1109/TPEL.2013.2278103
https://doi.org/10.1109/TPEL.2002.802183
https://doi.org/10.1109/TIE.2004.831717
https://doi.org/10.1049/iet-pel.2017.0252
https://doi.org/10.1109/9.250510
https://doi.org/10.1109/9.241583
https://doi.org/10.1109/9.241583
https://doi.org/10.1109/PEMC48073.2021.9432503
https://doi.org/10.1109/9.661597
https://doi.org/10.1109/GPMC50267.2020.9333810
https://doi.org/10.1109/TIE.2003.822037
https://doi.org/10.1109/TFUZZ.2013.2278982
https://doi.org/10.1109/TFUZZ.2019.2908770
https://doi.org/10.1109/TFUZZ.2020.3038488


Electronics 2024, 13, 1405 27 of 27

36. Moez, A.; Mansour, S.; Mohamed, C.; Driss, M. Takagi-Sugeno fuzzy control of induction motor. Int. J. Electr. Electron. Eng. 2009,
2, 25–31.

37. Allouche, M.; Chaabane, M.; Souissi, M.; Mehdi, D.; Tadeo, F. State feedback tracking control for indirect field-oriented induction
motor using fuzzy approach. Int. J. Autom. Comput. 2013, 10, 99–110. https://doi.org/10.1007/s11633-013-0702-4.

38. Zina, H.B.; Allouche, M.; Chaabane, M. Tracking control for induction motor using Takagi-Sugeno approach. In Proceedings of
the 14th International Conference on Sciences and Techniques of Automatic Control & Computer Engineering, Sousse, Tunisia,
20–22 December 2013; pp. 25–30. https://doi.org/10.1109/STA.2013.6783100.
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