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Abstract: A new decoding method for low-density parity-check (LDPC) codes is presented to lower
the energy consumption of LDPC decoders for NAND flash-based storage systems. Since the channel
condition of NAND flash memory is reliable for most of its lifetime, it is inefficient to apply the
maximum-effort decoding with the full parity-check matrix (H-matrix) from the beginning of the
lifespan. As the energy consumption and the decoding latency are proportional to the size of the
H-matrix used in decoding, the proposed algorithm starts the decoding with a partial H-matrix
selected by considering the channel condition. In addition, the proposed partial decoding provides
various error-correcting capabilities by adjusting the partial H-matrix. Based on the proposed partial
decoding algorithm, a prototype decoder is implemented in a 65 nm CMOS process to decode a
4 KB LDPC code. The proposed decoder reduces energy consumption by 93% compared to the
conventional LDPC decoding architecture at maximum.

Keywords: low-density parity-check (LDPC) decoding; low-power technique; NAND flash memory;
storage system

1. Introduction

NAND flash memory is extensively used in many storage solutions, such as solid-
state drives (SSDs) and secure digital (SD) cards, due to its fast accessibility, low-power
consumption, and compact size [1,2]. Recently, advanced structures such as 3D-stacked
NAND flash for storing more information in a limited area have been widely employed,
which provide a more error-prone environment [3–5]. In storage systems built with
NAND flash memories, error-correction codes (ECCs) are commonly applied to ensure data
reliability. Algebraic codes such as BCH and RS codes have widely been employed because
of their guaranteed performance and moderate hardware complexity, but the codes are
not adequate when the NAND flash channel worsens. For that reason, the LDPC code has
been employed in many NAND flash-based storage systems recently, as its error-correcting
capability resulting from iterative belief propagation is far superior to the algebraic codes.
However, the LDPC decoding necessitates high computational complexity and frequent
memory accesses, and consumes considerably higher energy than BCH and RS decoding
processes [6,7].

Since the NAND flash channel is reliable for most of its lifetime, the maximum-effort
decoding with the full parity-check matrix (H-matrix) is inefficient when the channel is
reliable. Providing multiple error-correcting capabilities may be a solution, since the error-
correcting capability can be adjusted depending on the channel condition. As a matter
of fact, multi-rate LDPC codes are commonly used to provide various error-correcting
capabilities in the wireless communication systems [8,9]. The use of multi-rate codes is
effective only when the channel condition at the time of encoding is consistent with that of
decoding, which means that the traditional multi-rate codes are not suitable for storage
systems in which the data writes and reads can occur far apart.

A new partial decoding is proposed to provide various error-correcting capabilities
with a single H-matrix. The decoding strength is adjusted by changing the column degree
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of the partial H-matrix, which is verified through intensive simulations over the additive
white Gaussian noise (AWGN) channel. Based on partial decoding, we present a novel
energy-efficient decoding algorithm. The proposed algorithm starts the decoding with a
partial H-matrix selected by considering the channel condition at the time of decoding.
When the decoding with the partial H-matrix fails, the proposed algorithm increases the
size of the partial H-matrix to enhance the decoding strength and tries the decoding again.
Since the energy consumption of an LDPC decoder is mainly related to the size of the
H-matrix used for decoding, the proposed algorithm can reduce the energy consumed
in the decoding process. In addition, it is effective in reducing the decoding latency and
enhancing the decoding throughput.

The rest of this paper is organized as follows. Section 3 introduces the proposed
partial decoding of the LDPC codes and Section 4 analyzes simulation results of the pro-
posed energy-efficient decoding algorithm. Theoretical analysis is explained in Section 5.
The details of the hardware design and the implementation results are presented in
Sections 6 and 7, respectively, and conclusions are made in Section 8.

2. Backgrounds

This section provides an overview of LDPC decoding algorithms, including an in-
depth explanation of the Sum-Product algorithm (SPA) [10] and that of the Min-Sum
algorithm (MSA) [11]. Moreover, the structure of the Quasi-Cyclic (QC) LDPC H-matrix
will be introduced to explain proposed algorithms.

2.1. LDPC Decoding Algorithms

The SPA and the MSA are two prominent methods used for decoding LDPC codes,
which are essential for error correction in NAND flash-based storage systems. They are also
known as the Belief Propagation (BP) algorithms of LDPC codes. It operates by passing
probabilistic messages along the edges of a Tanner graph to estimate the likelihood of bit
values. Both algorithms operate iteratively decoding the likelihood messages until they
converge to a stable solution or reach a predefined number of iterations. In each iteration,
the SPA combines the messages from neighboring nodes using a product operation, fol-
lowed by a normalization process to update the beliefs of each bit’s value. In contrast,
the MSA estimates these probabilities by considering the minimum value of the incoming
messages, hence the name. This method, while an approximation, significantly reduces the
need for complex calculations without drastically affecting decoding accuracy. The SPA
typically requires floating-point precision and involves trigonometric functions, making it
computationally intensive.

The advantage of using MSA lies in its simplicity, as it can be implemented using
integer arithmetic and simple comparison operations, making it suitable for hardware with
limited processing capabilities. Both algorithms benefit from the inherent error detection
and correction capabilities of LDPC codes, which feature a redundant structure enabling the
identification and rectification of errors in data transmission. The practical implementation
of these algorithms also considers factors such as channel noise characteristics and the
required level of error correction. Tailoring the algorithm to specific needs can result in
various modifications and optimizations, such as the normalized MSA and the offset MSA,
which aim to bridge the performance gap with the SPA.

2.2. Quasi-Cyclic LDPC Codes

The array LDPC code is suitable for adjusting the column degree of the H-matrix, as
it is one of regular LDPC codes that have fixed column and row degrees. Moreover, it is
one of the quasi-cyclic (QC) LDPC codes composed of shifted identity matrices of the same
size [12]. Therefore, the number of check nodes can be controlled easily by eliminating some
block-rows, each of which having the same size as the identity matrix. Three parameters,
wc, wr, and p, define an array LDPC code, where p is a prime number denoting the size of
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the identity matrix, and wc and wr represent the column and row degrees of the H-matrix,
respectively. The H-matrix of the (p, wr, wc) array LDPC code is

H =


I I · · · I
I A · · · Awr−1

I A2 · · · A2(wr−1)

...
...

. . .
...

I Awc−1 · · · A(wc−1)(wr−1)

, (1)

where I is the p × p identity matrix and A is a matrix obtained by shifting every row of I
cyclically by one. When p = 3, for example, the corresponding matrix A is

A =

 0 1 0
0 0 1
1 0 0

. (2)

Based on (2), A2 is calculated as

A2 =

 0 1 0
0 0 1
1 0 0

 0 1 0
0 0 1
1 0 0

 =

 0 0 1
1 0 0
0 1 0

. (3)

3. Proposed Partial Decoding of LDPC Codes

The partial decoding of an LDPC code is newly introduced to provide various error-
correcting capabilities, which can be adaptively applied according to the channel condition.
The decoding strength is adjusted by changing the number of check nodes to be used
for decoding. The number of check nodes relevant to a variable node is called the col-
umn degree of the H-matrix. Since each variable node collects the local messages come
from the connected check nodes, the LDPC decoding works normally with some check
nodes removed. Therefore, the error-correcting capability can be adjusted by changing the
column degree.

3.1. Construction of a Partial H-Matrix

The H-matrix shown in (1) can be decomposed into wc sub-matrices, h1 to hwc ,

H =


I I · · · I
I A · · · Awr−1

I A2 · · · A2(wr−1)

...
...

. . .
...

I Awc−1 · · · A(wc−1)(wr−1)

 =


h1
h2
h3
...

hwc

, (4)

where hi is a p × wr p sub-matrix denoting

hi =
[

I Ai−1 A2(i−1) · · · A(wr−1)(i−1)
]
. (5)

To support various error-correcting capabilities, a partial H-matrix is organized by
including some of the above sub-matrices, h1 to hx. A set of sub-matrices is denoted as Hx,

Hx = [h1 h2 · · · hx]
T , (6)

where x is an integer ranging from 2 to wc, since the column degree of a partial H-matrix
should be at least 2 in order to decode an LDPC code. When wr = 4, for example, a partial
H-matrix H3 is constructed as
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H3 =

 h1
h2
h3

 =

 I I I I
I A A2 A3

I A2 A4 A6

. (7)

3.2. Decoding of a Partial H-Matrix

The message is encoded with the full H-matrix of the LDPC code, while the received
codeword is decoded by using a partial H-matrix in the partial decoding. Iterative decoding
algorithms such as the SPA or MSA can be used to update variable nodes and check nodes
based on the partial H-matrix. Before starting a decoding iteration using the partial H-
matrix, the syndromes of the updated codeword are checked with respect to the full
H-matrix. If the syndromes are all zeros, then the codeword is correct so that the decoding
process is finished. Otherwise, we repeat the decoding iteration until we reach the number
of maximally allowed iterations (MAI). The detailed procedure of the partial decoding is
described in Algorithm 1.

Algorithm 1 Partial LDPC decoding.

1: Initialization: load the initial LLR values to each variable node.
2: Iterative Decoding: Perform the following steps in accordance with the SPA or MSA.

3: for i = 0 to i = MAI − 1 do ▷ Iterative decoding
4: for all check nodes included in the full H, do ▷ Syndrome check
5: compute syndrome
6: end for

7: if syndromes are all zeros then ▷ Decoding success
8: report a decoding success do terminate the decoding
9: end if

10: for check nodes included in the partial H, do ▷ Check node update
11: update check nodes and generate check-to-variable node (C2V) messages
12: end for

13: for all variable nodes do ▷ Variable node update
14: update LLR values and generate variable-to-check node (V2C) messages
15: end for
16: end for

17: report a decoding failure ▷ Decoding failure

The error-correcting capability resulting from a partial H-matrix is investigated based
on a (149, 61, 6) array LDPC code that is designed to protect a message of 1 KB. The SPA is
employed to decode the received codeword with setting MAI to 30. Figure 1 shows how
the error-correcting capability changes over the channel SNR. The uncorrected bit-error
rate (BER) performances resulting from H2 and H6 correspond to the weakest and strongest
error-correcting capabilities, respectively. The decoding strength is stronger when the
partial H-matrix becomes larger. Therefore, it is possible to support diverse error-correcting
capabilities by constructing several partial H-matrices from a single H-matrix. Though H2
shows the weakest decoding strength, it removes two thirds of memory accesses compared
to the full H-matrix. This enables a tradeoff between decoding capability and energy
consumption, since the number of memory accesses dominates the energy consumption of
an LDPC decoder [13].
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Figure 1. Uncorrected BER performances of various partial H-matrices obtained from a (149, 61, 6)
array LDPC code.

3.3. Proposed Energy-Efficient Decoding of a Partial H-Matrix

The proposed decoding algorithm increases energy efficiency in the LDPC decoding,
and is effective in reducing the energy consumption of storage systems built with NAND
flash memory, since the NAND flash is reliable in the beginning stage. Applying high
voltages to a cell repeatedly to program or erase the cell decreases the SNR of the flash
channel monotonically [3,4]. As the wear-leveling technique makes the SNR of a page
almost the same as that of the other page [5], the NAND flash channel is reliable in
a considerable amount of time. Since the NAND flash channel in the beginning does
not induce many erroneous bits, the maximum-effort decoding with the full H-matrix is
inefficient. Therefore, the proposed algorithm selects a proper partial H-matrix depending
on the channel condition.

Considering the channel SNR, the proposed algorithm selects a specific partial matrix
from a set of partial H-matrices defined as

S = {H2, H3, . . . , Hwc}. (8)

The selected partial H-matrix is the initial partial H-matrix that is first used for de-
coding. The initial partial H-matrix for a specific SNR can be determined in advance by
conducting simulations over the flash channel or by analyzing the decoding algorithm. The
proposed energy-efficient decoding algorithm is described in Algorithm 2.

Algorithm 2 Energy-efficient LDPC decoding.

1: Input: S = {H2, H3, . . . , Hwc}, MAI, and channel SNR
2: j = index of a partial H corresponding to the channel SNR

3: Partial decoding with Hj ▷ from Algorithm 1

4: if the above decoding fails then
5: if j < wc then
6: set j = j + 1 goto step 3: ▷ Extend H
7: else
8: report a decoding failure
9: end if

10: else
11: report a decoding success ▷ Early termination
12: end if
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4. Simulation Results

The (149, 61, 6) array LDPC code is used to validate the proposed energy-efficient
LDPC decoding algorithm. The average number of iterations required to decode a code-
word is shown in Figure 2, which is obtained by applying the SPA with setting the MAI
to 30. In the simulation, the flash memory is regarded as an AWGN channel. The SNR is
defined as σ2/N, where N is the noise power, and σ2 is the signal power. It is assumed that
the distribution for a Single Level Cell is similar to that of Binary Phase Shift Keying (BPSK).
The Error Rate was considered based on the assumption that an all-zero code transmitted
as ’1’ would result in an error if the outcome was non-zero.

Figure 2. The average number of iterations simulated for various partial H-matrices of the (149, 61, 6)
array LDPC code.

For a specific SNR, there are partial H-matrices that provide almost the same decoding
performance as that of the full H-matrix. For an SNR of 6 dB, for example, the decoding
with H3 leads to almost the same number of iterations as that of the full H-matrix. Based
on the simulation results, the proposed algorithm selects an initial partial H-matrix with
which the decoding starts. Decoding may continue with H2, but if the average number of
iterations begins to increase, it can switch to decoding with H3. This inference is exploited
by simulation results, and implementation is feasible through an SSD controller that tracks
the number of iterations at the end of the previous decoding process.

The energy consumption of an LDPC decoder is mainly dominated by memory ac-
cesses resulting from frequent updates of internal messages to be exchanged between
variable and check nodes [13]. Reducing the number of memory accesses is therefore
highly effective in lowering the overall energy consumption. Moreover, it decreases the
decoding latency as well as the decoding throughput. As the number of memory accesses
is proportional to the size of the H-matrix used in decoding, reducing its size lessens the
energy consumed in the LDPC decode in effect. The average number of memory accesses
resulting from the proposed partial decoding algorithm and the conventional one that
decodes with the full H-matrix are compared in Figure 3. It is clear that the proposed
algorithm considerably reduces the number of memory accesses when the SNR is not
small. Since the large number of memory accesses leads to high energy consumption,
the proposed decoding algorithm significantly reduces the energy consumed in the high
SNR region.
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Figure 3. The comparison of memory accesses resulting from the conventional and proposed decoding
algorithms for the (149, 61, 6) array LDPC code.

For the (149, 61, 6) array LDPC code, the energy consumption caused by mem-
ory accesses is reduced down to 33.1% even compared to the conventional decoding
algorithm that employs the early stopping method [14]. As the memory accesses are
mainly required to calculate V2C and C2V messages, the computational operations are
also reduced in proportion to the reduction ratio of memory accesses, which means that
the energy consumption of the LDPC decoder can be reduced by the reduction ratio of
memory accesses.

In addition, both the decoding latency and the decoding throughput are enhanced.
The normalized latency of the proposed partial decoding algorithm is compared to the
conventional one in Figure 4. Since the number of variable nodes connected to each check
node is constant, the number of clock cycles taken to process a check node is constant
for all partial H-matrices. Therefore, the number of check node operations affects the
decoding latency. As the number of check node operations is proportional to the size
of the partial H-matrix, the decoding latency can be effectively reduced by reducing the
size. In Figure 4, the decoding latency is reduced to 35.5% at maximum compared to the
conventional architecture [15]. Since the decoding throughput is inversely proportional
to the decoding latency, the proposed partial decoding algorithm can boost the decoding
throughput significantly in the beginning stage.
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Figure 4. The decoding latency of the proposed algorithm normalized by that of the conventional
one for the (149, 61, 6) array LDPC code.

5. Theoretical Analysis

The proposed decoding algorithm is theoretically analyzed to explain the existence of a
partial H-matrix that results in almost the same decoding performance as the full H-matrix.
It will be shown that the theoretical prediction of the required number of iterations is
consistent with the simulation results. The partial H-matrix can be determined by looking
into the number of iterations. To calculate the number of iterations required for a specific
SNR theoretically, we estimate how the BER of the decoded outputs changes according
to decoding iterations. The LLR distribution obtained by the internal message tracking
technique, which is called density evolution in [16], is used to estimate the BER of the
decoded outputs. The distribution of the LLR values over all variable nodes is investigated
in each iteration. The SPA is assumed for this analysis, as the internal steps of the algorithm
can be described in mathematically closed forms.

5.1. Calculation of the LLR Distribution

The LLR distribution in the l-th iteration is analyzed by using the mathematically
closed forms of the SPA. For an H-matrix H, the set of variable nodes connected to the m-th
check node is denoted as

Nm = {n : hmn = 1}, (9)

where hmn represents the element of the H-matrix on the m-th row and n-th column.
Similarly, the set of check nodes connected to the n-th column is

Mn = {m : hmn = 1}. (10)

If a regular LDPC code is considered in the analysis, the numbers of elements in Nm
and Mn are wr and wc, respectively. The set that excludes element n from Nm is denoted as
Nm\n, and the set excluding m from Mn is similarly denoted as Mn\m. The LLR value of
the n-th variable node after l iterations is denoted as L(l)

n , and similarly the C2V message of
the m-th check node after l iterations is represented as C(l)

m→n. The means of L(l)
n and C(l)

m→n
for all n and m are denoted as λ(l) and µ(l), respectively.

In previous works [16,17], the distribution of L(l)
n for all n is known to be binomially

distributed as N(λ(l), 2λ(l)) [16], where N(µ, σ2) represents the Gaussian distribution with
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mean µ and variance σ2, and C(l)
m→n is also binomially distributed [17]. Therefore, the LLR

distribution can be obtained by tracking λ(l) in each iteration. The equations that update
variable and check nodes are used to chase the mean of the LLR distribution. In the SPA,
the variable node update is expressed as

L(l)
n = L(0)

n + ∑
m∈Mn

C(l−1)
m→n , (11)

where L(0)
n is the initial LLR. The corresponding C2V message for the l-th iteration is

C(l)
m→n = 2 tanh−1

 ∏
j∈Nm\n

tanh

 L(l)
j

2

. (12)

For convenience, Equation (12) is rewritten as

tanh

(
C(l)

m→n
2

)
= ∏

j∈Nm\n
tanh

 L(l)
j

2

. (13)

Taking the expectations for both sides,

E

[
tanh

(
C(l)

m→n
2

)]
= E

 ∏
j∈Nm\n

tanh

 L(l)
j

2

. (14)

For the sake of simple expression, Ψ(x) is defined as

Ψ(x) = E
[
tanh

(y
2

)]
=

1√
4πx

∫ ∞

−∞
tanh

(y
2

)
e−

(y−x)2
4x dy, (15)

where y ∼ N(x, 2x). Equation (14) can be rewritten as

Ψ(µ(l)) =
(

Ψ(λ(l))
)wr−1

. (16)

Taking the expectations for both sides of (11), we obtain

λ(l) =
2Ec

σ2 + (wc − 1)µ(l−1), (17)

where Ec is the energy consumed to transmit a bit of a codeword and σ is the standard
deviation of the AWGN channel. A bit of zero or one transmitted over the AWGN channel
is mapped to

√
Ec or −

√
Ec, respectively, and the all-zero codeword is assumed to be sent.

By substituting (17) into (16), we have

Ψ(µ(l)) =

(
Ψ
(

2Ec

σ2 + (wc − 1)µ(l−1)
))wr−1

, (18)

and it is rewritten as

µ(l) = Ψ−1

((
Ψ
(

2Ec

σ2 + (wc − 1)µ(l−1)
))wr−1

)
. (19)

By substituting Equation (19) into Equation (17), we finally have the mean of the LLR
distribution,

λ(l) =
2Ec

σ2 + (wc − 1)Ψ−1

((
Ψ
(

2Ec

σ2 + (wc − 1)µ(l−2)
))wr−1

)
, (20)
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where µ(l−2) can be recursively calculated from (19) with the initial condition of µ(0) = 0.
The mean of LLR distribution λ(l) is only determined by the column degree wc, the row
degree wr, and the channel SNR Ec

σ2 . Therefore, the LLR distribution after l iterations can be
estimated from the mean expressed in (20).

5.2. Calculation of the Number of Iterations

For a specific SNR, the LLR values of all variable nodes are distributed following
the binomial distribution of N(λ(l), 2λ(l)) [16]. The mean of the LLR distribution λ(l) is
obtained from (20) by adjusting the column degree wc according to the size of the partial
H-matrix. To decide the success or failure of the decoding, the BER is estimated from the
calculated LLR distribution.

Assuming that the transmitted codeword are all zeros, the correctly decoded codeword
has positive LLR values for all bit-positions, but the uncorrected codeword has some
negative LLR values. Therefore, the ratio of the negative area to the total area of the
distribution can be considered as the uncorrected BER for a specific number of iterations.
Since the LLR values are binomially distributed, the BER after l iterations is calculated as

BER(l) = Q

(
2λ(l) − λ(l)
√

2λ(l)

)
= Q

√λ(l)

2

, (21)

where Q(x) is the Q-function of the given distribution,

Q(x) =
1√
2π

∫ ∞

x
e−

t2
2 dt. (22)

The LLR distribution and the estimated BER for the (149, 61, 6) array LDPC code with
an SNR of 5dB is shown in Figure 5. The full H-matrix is used for decoding, which means
that wc is 6. As the number of iterations increases, the mean of the LLR distribution moves
to the higher value, leading to a reduced BER. The estimated BER is used to compute the
number of iterations needed to achieve successful decoding. It is assumed that the left
tail of the BER distribution in Figure 5, which falls into the negative region, represents the
proportion of errors relative to the total number of cases. The area of that tail was calculated
using the Q-function, as described in (21) to determine the BER value. When the calculated
BER is less than 10−15 in a certain iteration, which is a criterion widely accepted in the
storage market, the decoding is considered to be successful in that iteration.

Figure 5. The probability distribution of LLR values and the estimated BERs of the (149, 61, 6) array
LDPC code when the SNR is 5 dB.
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Therefore, we analyze the theoretical number of iterations needed to achieve successful
decoding for a range of SNR. The numbers are depicted in Figure 6. Since the graphs look
similar to the simulation results shown in Figure 2, the proposed decoding algorithm
is consistent with the theoretical analysis. In addition, the existence of an initial partial
H-matrix that provides the same error-correcting performance as the full H-matrix for a
specific SNR is explained theoretically.

Figure 6. The theoretically calculated number of iterations for the various partial H-matrices of the
(149, 61, 6) array LDPC code.

6. Hardware Architecture

A simple modification of the existing decoder hardware allows decoding of the pro-
posed algorithm. Therefore, while maintaining the basic structure of the existing archi-
tecture, the addition of the capability to dynamically select the optimal partial H-matrix
based on the channel state significantly reduces energy consumption while maintain-
ing decoding accuracy. Through such a simple modification, the proposed decoding
method can be easily integrated into existing systems, offering improved performance and
energy efficiency.

6.1. Dedicated Syndrome Check Module

LDPC decoders that utilize soft-information are generally required to perform the
first decoding iteration. This approach is adopted because generating the soft-information
itself consumes a significant amount of latency, thus making it more advantageous in
several aspects to proceed with an initial decoding iteration rather than performing a
separate syndrome check. However, the proposed decoding algorithm, which also uses soft-
information, requires decoding with partial H-matrices of various sizes. To accommodate
this, a separate syndrome check module is incorporated. Employing an independent
syndrome check module can significantly reduce decoding latency, especially in good
channel conditions.

Typically, a full H-matrix is not necessary for syndrome checking to verify the integrity
of a codeword; it only needs to cover the entire message. Therefore, the size of the dedicated
syndrome check module can be very compact and implemented with minimal effort. Table 1
shows the gate count for syndrome check logic of LDPC codes of various sizes in 65 nm
CMOS process. For a commonly used 4 KB LDPC code with a rate of 0.9, it only requires
22 k equivalent gates, which is about 1% of the total decoder area. Therefore, incorporating
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this logic into an existing decoder incurs minimal overhead and can be easily applied to
any decoding architecture.

Table 1. Areas of the Syndrome Checking Logic for Various Sizes of LDPC Codes in 65 nm CMOS.

Code 1 [12] Code 2 [18] Code 3

Target system SSD SSD IEEE 802.11ac
Code type Array EG-LDPC PEG
Cyclic QC Cyclic or QC QC
User-message size 4 KB 8 KB 1944 bits
Code rate 0.9 0.96 0.5
Target frequency (MHz) 250 250 500
Area (Equation gate count) 22.1 k 38.4 k 6.6 k

6.2. Decoding Architecture

A block diagram of the proposed decoding architecture is shown in Figure 7. Except for
the dedicated syndrome checking (SYN) unit, the decoding architecture is identical to the
conventional layered min-sum decoder [18]. Each decoding function unit (DFU) performs
the independent check node operation in parallel, and the corresponding LLR values and
the intermediate C2V values are stored in LMEM and C2V memories, respectively. The
detailed architecture of the DFU is shown in Figure 8. Through the shuffle network, the
appropriate LLR and C2V values are obtained, followed by number system conversion,
addition and subtraction operations. For a fair evaluation of the implementation, the most
efficient method among the existing approaches has been applied for the Minimum search
logic [19,20].

The shuffle and de-shuffle networks align the LLR and C2V values. In the conventional
architecture, all syndromes are checked in each DFU operation since the conventional
decoding algorithm always uses the full H-matrix. However, the proposed partial LDPC
decoding uses the partial H-matrices instead of the full H-matrix when the channel is
reliable. Since decoding with the partial H-matrices does not compute all check node
equations and syndromes, the dedicated SYN unit, which checks remaining syndromes,
is additionally applied. As a result, proposed partial LDPC decoding can be applied by
adding a simple SYN unit to any existing structure with ease.

Figure 7. The prototype decoder for the proposed energy-efficient partial LDPC decoding algorithm
for the (607, 60, 6) array LDPC code.
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Figure 8. The detailed architecture of the decoding function unit.

7. Implementation Results

A prototype partial LDPC decoder, designed to decode the (607, 60, 6) array LDPC
code that protects 4 KB messages, is implemented in a 65 nm CMOS process. Including
the dedicated SYNCHK unit, the 4 KB LDPC decoder is realized with 1018 k equivalent
gates and consumes 279 mW. Table 2 compares the proposed decoder to recently reported
decoders for NAND flash storage systems. For quantitative comparisons, the energy
efficiency normalized to 65 nm CMOS technology is compared with assuming an operating
voltage of 1 V. More precisely,

Energy efficiency (J/bit) =
Power consumption (W)

Decoding throughput (bit/s)
. (23)

Compared to a previously reported LDPC decoder [18], the decoder adopting the
proposed algorithm saves 93% of the energy consumed in decoding. The hard-decision
based ECC decoders, such as concatenated-BCH (CBCH) or BCH decoders, may consume
smaller amounts of energy in the decoding process; however, these are difficult to apply
to recent NAND flash memories due to their weak error-correcting performance. The
proposed decoder even consumes less energy than the BCH decoder in [21], which is
not tightly optimized. The comparison with the implementation results shows that the
proposed decoder using the proposed energy-efficient LDPC decoding algorithm has
outstanding performances compared to recent implementations.

Table 2. Comparison of Various ECC Decoders for NAND Flash Controllers

This Work DASIP [22] TVLSI [18] ISCAS [23] JSSC [24] ISCAS [21]

ECC type LDPC LDPC LDPC LDPC CBCH BCH
Technology 65 nm 45 nm 130 nm 45 nm 65 nm 45 nm
Code rate 0.96 0.96 0.96 0.9 0.93 0.9
User-message size 4 KB 8 KB 8 KB 1 KB 8 KB 1KB
Quantization level 4 bits 7 bits 4 bits 1 bit 1 bit 1 bit
Internal precision 8 bits 7 bits 4 bits N. A. a N. A. N. A.
Operating voltage (V) 1.0 N. A. 1.2 N. A. 1.2 1.05
Operating frequency (MHz) 200 179 131 200 250 400
Decoding throughput (Gb/s) 2.96–29.6 0.9 5.4 3.2 17.7 6.4
Area (Equation gate count) 1018 k N. A. N. A. 700 k 335 k 230k
Power consumption (mW) 279 N. A. 2090 N. A. 48.5 b 88.4
Energy efficiency (pJ/bit) 9.43–94.26 N. A. 387 N. A. 2.74 b 13.8
Normalized energy efficiency c (pJ/bit) 9.43–94.26 N. A. 134 N. A. 1.9 b 12.5

a Not announced b At the raw bit-error rate of 2.5 × 10−3 c Normalized energy efficiency = Energy efficiency ×
(65 nm/technology) × (1/Operating voltage)2. List of abbreviations: DASIP: Conference on Design and Ar-
chitectures for Signal and Image Processing; TVLSI: IEEE Transactions on VLSI Systems; ISCAS: International
Symposiums on Circuits and Systems; JSSC: Journal of Solid-State Circuits.
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8. Conclusions

This paper has presented a new energy-efficient LDPC decoding method called partial
LDPC decoding by taking into account the characteristics of the NAND flash channel.
The proposed algorithm decodes by using a portion of the full H-matrix in order to save
the energy consumed in the decoding. The partial decoding can provide a range of error-
correcting capabilities by adjusting the size of the partial H-matrix, enabling a trade-off
between energy consumption and error-correcting capabilities. The existence of a partial H-
matrix, which achieves almost the same decoding performance as that of the full H-matrix
for a specific SNR, has theoretically been analyzed and proved by intensive simulations. A
prototype decoder to implement the proposed algorithm has been developed for 4 KB LDPC
codes using a 65 nm CMOS process. The proposed decoder reduces energy consumption
by 93% compared to recent LDPC decoding architectures.
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Abbreviations
The following abbreviations are used in this manuscript:

LDPC Low-density parity-check
SSD Solid-state drive
SD Secure digital
ECC Error correcting code
BCH Bose–Chaudhuri–Hocquenghem
RS Reed–Solomon
BP Belief Propagation
QC Quasi-cyclic
LLR Log-likelihood ratio
SPA Sum-product algorithm
MSA Min-sum algorithm
MAI Maximally allowed iterations
SNR Signal-to-noise ratio
BER Bit-error rate
AWGN Additive white Gaussian noise
V2C Variable-to-check
C2V Check-to-variable
2C 2’s complement
SM Signed magnitude
CBCH Concatenated BCH
CMOS Complementary Metal-Oxide-Semiconductor
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