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Abstract: The swift embrace of Industry 4.0 paradigms has led to the growing convergence of Infor-
mation Technology (IT) networks and Operational Technology (OT) networks. Traditionally isolated
on air-gapped and fully trusted networks, OT networks are now becoming more interconnected with
IT networks due to the advancement and applications of IoT. This expanded attack surface has led to
vulnerabilities in Cyber–Physical Systems (CPSs), resulting in increasingly frequent compromises
with substantial economic and life safety repercussions. The existing methods for the anomaly detec-
tion of security threats typically use simple threshold-based strategies or apply Machine Learning
(ML) algorithms to historical data for the prediction of future anomalies. However, due to the high
levels of heterogeneity across different CPS environments, minimizing the opportunities for transfer
learning, and the scarcity of real-world data for training, the existing ML-based anomaly detection
techniques suffer from a poor predictive performance. This paper introduces a hybrid anomaly
detection approach designed to identify threats to CPSs by combining the signature-based anomaly
detection typically utilized in IT networks, the threshold-based anomaly detection typically utilized
in OT networks, and behavioural-based anomaly detection using Ensemble Learning (EL), which
leverages the strengths of multiple ML algorithms against the same dataset to increase the accuracy.
Multiple public research datasets were used to validate the proposed approach, with the hybrid
methodology employing a divide-and-conquer strategy to offload the detection of certain cyber
threats to computationally inexpensive signature-based and threshold-based methods using domain
knowledge to minimize the size of the behavioural-based data needed for ML model training, thus
achieving a higher accuracy over a reduced timeframe. The experimental results showed accuracy
improvements of 4–7% over those of the conventional ML classifiers in performing anomaly detection
across multiple datasets, which is particularly important to the operators of CPS environments due to
the high financial and life safety costs associated with interruptions to system availability.

Keywords: anomaly detection; Cyber–Physical Systems; IoT; IIoT; machine learning; ensemble learning

1. Introduction

Society is currently transitioning from the third industrial revolution, IT Systems and
Automation, to the so-called Industry 4.0, Cyber–Physical Systems. This transition began
in 2011 as the result of an industrial research effort [1] initiated by the German govern-
ment, with the objective of leveraging the pervasive availability of high-speed network
connectivity and rich telemetry data to improve industrial manufacturing processes.

The impetus for Industry 4.0 was the growing availability of ubiquitous networking
connectivity, allowing for manufacturing processes to be optimized through smart automation.
To contrast, the earlier iterations of industrial control processes were characterized by isolated
systems using basic relay logic over point-to-point serial connections with an extremely limited
bandwidth. These primitive Operational Technology (OT) networks gradually evolved into
the Industrial Internet of Things (IIoT), with hyper-connected sensors and actuators forming

Electronics 2024, 13, 1391. https://doi.org/10.3390/electronics13071391 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13071391
https://doi.org/10.3390/electronics13071391
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-6384-5746
https://orcid.org/0000-0002-6447-2133
https://orcid.org/0000-0001-6024-9527
https://doi.org/10.3390/electronics13071391
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13071391?type=check_update&version=1


Electronics 2024, 13, 1391 2 of 17

an intelligent Cyber–Physical System (CPS), an integrated environment comprised of software
and real-world physical components such as sensors and actuators.

CPS environments can be viewed as the fusion of Information Technology (IT) and
Operational Technology (OT) environments, each having distinct priorities regarding
system security. IT networks have historically embraced the CIA (Confidentiality, Integrity,
and Availability) pillars of information security to establish the organizational security
stance, prioritizing each facet in a specific order of importance. In contrast, OT networks
reverse this order [2,3], placing the highest importance on availability, followed by integrity,
while regarding confidentiality as the least critical aspect of overall system security. This
divergence largely stems from the evolution of OT from earlier Industrial Control Systems
(ICSs), where availability was paramount, and integrity and confidentiality were seldom
considered due to the use of trusted, independent, and isolated network connections.

As OT networks have been amalgamated with IT networks to create modern CPS
environments, the persistent disparities in priorities have led to ongoing challenges that
are yet to be fully addressed [4]. IT networks emphasize authentication (identifying users)
and authorization (determining allowed actions), aligning roughly with the confidentiality
and integrity facets of the CIA triad of information security. However, OT networks have
traditionally placed such a heavy emphasis on the availability facet of the CIA triad that
authentication and authorization were assumed to be valid based on physical access to the
trusted and isolated OT network [5].

The historical assumption of a fully trusted and isolated environment [6] is no longer
valid with the integration of IT and OT networks, exposing vulnerabilities to common
network-based attacks such as Distributed Denial of Service (DDoS), Man-in-the-Middle
(MitM), replay attacks, impersonation, spoofing, false data injection, etc.

This merging of IT and OT networks has tremendously increased economic activity and
brought quality of life improvements, but is not without challenges. The rapid growth of IIoT
has outpaced advancements in cybersecurity, with new threat models and security challenges
that lack a unified framework for secure design, malware resistance, and risk mitigations.

The increased incorporation of CPS across different facets of modern society has led
to a significant rise in malicious attacks by adversaries. In recent times, there has been a
notable increase in incidents targeting critical civilian infrastructure, including power grids
and oil pipelines. This surge in attacks can be attributed to heightened connectivity to the
public internet, substantially amplifying the vulnerability of CPSs.

The common anomaly detection methods will typically employ one or two ML algo-
rithms that have been manually selected [7,8] by the researcher, which leads to results that
are influenced by the limitations of a single algorithm. Additionally, the results can vary
widely by dataset due to variations in features and data distribution, leading to limited
opportunities for generic solutions that can be applied to multiple CPS environments.

To contrast, Ensemble Learning (EL) utilizes multiple ML algorithms with the same
dataset, which leads to improved predictive performance when compared to a single ML
algorithm [9–11]. Even minor improvements in predictive performance are highly desirable
in CPS environments, which are extremely intolerant of false positives and false negatives
due to the potential economic and life safety consequences of incorrect predictions.

Due to the high levels of heterogeneity in CPS environments and the lack of real-world
datasets with representative data, ML algorithms for performing anomaly detection for
CPS have historically been very environment-specific, with significant amounts of effort
in the data pre-processing stages. A generic framework for anomaly detection in CPS has
proved elusive, partially due to the high levels of manual effort required.

EL is a promising strategy for performing anomaly detection in CPS, as the highly
imbalanced datasets that typically introduce bias into ML algorithms can be minimized by
combining multiple weak classifier models to obtain a strong model [12]. By providing dif-
ferent weights to each ML algorithm, the weaknesses can be minimized, and the strengths
can be maximized, resulting in a hybrid group of algorithms with an overall better predic-
tive performance. While ensemble-based learning methods predate written human history,
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the concept of using Ensemble Learning in computational intelligence is mere decades
old, first proposed by Dasarathy and Sheela [13] in 1979. In its early years, EL struggled
to find broad acceptance with researchers in anomaly detection studies due to the added
complexity and high computational costs for what was a marginal improvement at best.
However, with exponential improvements in microprocessor performances over the years,
combined with the high costs of false positives and false negatives in CPS environments,
EL has become increasingly popular as an anomaly detection strategy in this niche.

This paper proposes a novel Ensemble Learning-Based Hybrid Anomaly Detection
Method comprised of signature-based detection for known threats, threshold-based metrics
for the immutable physical characteristics of a CPS, combined with an ensemble-based learn-
ing model for behaviour-based anomaly detection, with the goal of improved predictive
performance over those of the existing anomaly detection methods, which is demonstrated
using two public research datasets (Edge-IIoTset2023 and CICIoT2023). This paper builds
upon previous works [14–16] by the authors of this paper, furthering the development of
a generalizable framework for threat detection in CPS environments that can be applied
in a broad variety of CPS environments through the use of EL to overcome weaknesses in
existing threat detection models.

The remainder of this paper is organized as follows: Section 2 provides a literature
analysis of existing research covering Ensemble Learning methods for anomaly detection.
Section 3 describes the experimental methodology presented in this study, Section 4 de-
scribes the experimental evaluation, while Section 5 describes the experimental results.
Finally, Section 6 discusses the conclusions and opportunities for future works.

2. Related Works

Ensemble-based learning methods have existed as long as human civilization, since
the first group of people learned that better outcomes to problems can be obtained from
group input than individual decisions. Indeed, many of the day-to-day tasks in modern
society are based on ensemble-based decisions, from democratic processes using votes to
reach a consensus to the academic process of peer review to advance scientific knowledge,
and many more. While anomaly detection is a common area of study in ML, there has been
limited attention given to threat detection to CPS environments, and less still in the specific
area of EL as a strategy for improving accuracy in threat detection to CPSs. Interested
readers on this topic may find this review paper [15] worth reading.

Jeffrey et al. [16] propose a method of anomaly detection in CPS-leveraging unsuper-
vised learning models with one-class classification algorithms as a method of compensating
for the extreme scarcity of anomalous data in the commonly available research datasets.
This proposed method focuses on the differences between supervised and unsupervised
learning with a limited number of classification algorithms and mitigates some of the
accuracy issues caused by imbalanced data classes, but suffers from limited transferability
between CPS environments.

Afrifa et al. [17] start with the assumption that significant numbers of IoT devices
are regularly commandeered into botnets by malicious actors to further nefarious goals
that threaten global commerce. Due to resource constraints of typical IoT devices, a
single compromised device may not be particularly dangerous, but a botnet comprised
of thousands or millions of compromised devices can cause significant harm. A novel
approach of botnet detection is proposed using Ensemble Learning to identify an individual
node in a botnet and providing real-time intrusion prevention. This is a particularly
interesting approach, as it focuses on Ensemble Learning as a strategy for the identification
of botnet membership, rather than the more common classification task of identifying
malicious vs. benign activities against an individual host.

Araya et al. [18] focus on the use of Ensemble Learning for anomaly detection in
smart building energy consumption. This research is focused on improving electricity
usage efficiency in commercial and industrial environments to reduce the environmental
impact and is not specifically aimed at detection of malicious activity, but makes use of



Electronics 2024, 13, 1391 4 of 17

the same strategies for anomaly detection as IDS. Since power consumption in commercial
buildings varies on an hour-by-hour basis correlating to the operational hours, as well
as month-by-month fluctuations based on the seasonal requirements for heating and
cooling, an anomaly detection framework based on sliding temporal windows is proposed
to maximize efficiency, while minimizing false classifications due to cyclical variations.
Real-world data were obtained and used to train multiple ML models using moving time
windows, and then combined with an ensemble method, resulting in significantly improved
predictive performance.

Yazdinejad et al. [19] propose an anomaly detection model for IIoT environments
based on ensemble deep learning, utilizing Long Short-Term Memory (LTSM) and the
AutoEncoder (AE) architecture to analyze time series data to identify anomalous activity.
A common issue in anomaly detection in IIoT/CPS environments is highly imbalanced
datasets, which affect the predictive performance of many individual ML algorithms. This
research starts with the assumption that IIoT environments are highly distributed, with a
large number of potentially heterogenous sensors and actuators, so approaches the problem
as a big data challenge using an ensemble deep Recurrent Neural Network (RNN) model
to perform pattern recognition on time series data gathered from monitoring the IIoT
environment, and then classify the activity as normal or anomalous.

Saharkhizan et al. [20] further develop the concepts of using an ensemble of deep
learning models to merge multiple ML models with low-level accuracy into an aggregated
prediction model with higher accuracy than its component algorithms. Multiple LTSM
models are trained on Modbus network traffic, and then aggregated with a decision tree to
achieve higher levels of classification accuracy.

Danso et al. [21] propose an ensemble-based IDS located on the IoT gateway, avoiding
any resource constraints on the IoT devices by performing passive network sniffing to
collect network traffic samples, which are then used to train multiple ML models to serve as
base learners, which are then used as inputs for an Ensemble Learning model to improve the
predictive performance through combining the individual ML algorithms with a stacking
meta-classifier to make the final predictions.

Illy et al. [22] propose a two-tiered approach to Ensemble Learning for IoT anomaly
detection, with the first level used to perform a rapid normal vs. anomaly detection, and the
second level performing a more detailed and time-consuming classification of the specific
attack type. This hybrid approach seeks to quickly achieve a coarse-grained anomaly
detection in order to provide rapid notification and response, followed up with more fine-
grained detailed analysis that can still be processing after the initial alert notification. This
trade-off between the detection speed and classification accuracy is implemented through
the use of multiple base learners that differ in domain expertise to achieve rapid detection
with a voting ensemble classifier, followed by more detailed and time-consuming attack
classification analysis via a bagging ensemble classifier.

Zhao et al. [23] propose a novel Ensemble Learning algorithm for anomaly detection on
smart power grids, focusing on feature matching across a federated learning environment
to determine if anomalous behaviour is the result of a physical fault (i.e., power line break
due to weather or other environmental conditions) or actions of a malicious actor (i.e.,
network-based attack). The proposed model attempts to represent the smart power grid
as a state machine, with normal behaviour modeled as state transitions that are processed
with multiple base classifiers in an ensemble model to detect anomalous behaviour.

Tsogbaatar et al. [24] propose a hybrid Deep Learning and Ensemble Learning frame-
work for anomaly detection on IoT devices using Software-Defined Networking (SDN) as
the management plane for observation of classification of network flows. By implementing
SDN in an IoT environment, full visibility of all the network flows can be obtained, as
well as rapid attack mitigation through the rate-limiting or blocking of malicious traffic by
the SDN controller. The proposed Ensemble Learning framework performs deep feature
extraction with stacked autoencoders, which are used as inputs to Probabilistic Neural
Networks (PNNs) for anomaly detection.
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Zhong et al. [25] assert that the key limitations in the existing anomaly detection
methods are related to low-quality training datasets and low levels of transference to
different environments. A novel model of Ensemble Learning is proposed, starting with the
use of autoencoders to extract features from raw data, and then training the autoencoders
with a small amount of labeled data. The trained autoencoders are then used to train a
Long Short-Term Memory (LTSM) model, which then uses different weights in multiple
base classifiers to perform the final classification.

Zheng et al. [26] propose a method of anomaly detection called a Manifold regularization-
based deep convolutional autoencoder (MR-DCAE) to identify unauthorized terrestrial
radio broadcasts on licensed frequencies. While the proposed implementation has limited
applicability outside its defined problem domain of illicit radio frequency usage, the under-
lying deep learning model is particularly robust with limited data and offers a degree of
generalizability that is particularly useful in the highly diverse domain of CPSs.

Chen et al. [27] utilize a deep learning model based on a sliding-window convolutional
variational autoencoder (SWCVAE) that focuses on multivariate time series data, which
is commonly used for logging sensor and actuator readings in CPS environments. The
focus of the proposed model is aimed at optimizing predictive maintenance scheduling
for industrial robots based on hardware component failures rather than cyber threats,
but is desirable from a system availability perspective to the operations of industrial
CPS environments.

Yu et al. [28] propose a novel method of anomaly detection through combining the
Ensemble Learning methods of convolutional variational autoencoders, resulting in a
mixture-of-experts model. While extremely high accuracy levels can be obtained for vector
datasets, the performance suffers on matrix datasets, resulting in limited generalizability in
complex CPS environments.

A notable gap in the existing literature is the availability of robust and scalable methods
to update the trained models as new data become available. The existing methods typically
require retraining the entire model if the dataset experiences shifts in distribution over time, but
this method is relatively time-consuming. Certain ensemble models such as online boosting
or online random forests can perform incremental learning methods without retraining on
the entire dataset, but can be susceptible to significant accuracy loss if the data distribution
drifts excessively from the original dataset. As available computational capacity continues to
increase, and if sufficiently large datasets are available, more complex deep learning models
such as autoencoders may be able to provide greater scalability and improved accuracy.

This paper intentionally focuses on improving the predictive accuracy, even at the
expense of additional computational time due to the unique motivators of the operations of
CPS environments for extreme availability, making false positives or false negatives more
costly than in IT-only networks. This paper focuses on EL as a method for improving accu-
racy, but it should be recognized that EL methods do have their own limitations, which are
summarized as follows: Hyperparameter tuning for multiple base classifiers can increase
the model training time and/or require increased computational resources. Additionally,
the researcher must carefully select the base classifiers appropriate for the dataset, with suf-
ficiently diverse base classifiers to be able to maximize strengths and minimize weaknesses,
while being careful to avoid overfitting or amplifying the model bias. Interpretability is
another challenge, as the multiple base classifiers may lead to nonintuitive or difficult-to-
understand decisions when compared to those of single classification algorithms.

3. Materials and Methods

CPSs face unique challenges with using ML for anomaly detection, as there is fre-
quently a large amount of available data that shows normal activity, but a lack of real-world
data showing anomalous or malicious activity [29].

The lack of training data for anomalous activity has frequently been addressed by
the use of artificially generated research datasets, which have varying degrees of fidelity
to real-world environments. Due to the scarcity of training data, the operators of CPS
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environments are particularly concerned about predictive accuracy, as false positives or
false negatives can have significant financial and/or quality of life impacts, especially in the
case of critical national infrastructure, such as power grids and water treatment facilities.

For this reason, the operators of CPS environments are particularly interested in
improving the predictive accuracy, even to the extent of gaining small incremental improve-
ments that operators of traditional IT networks may dismiss as a too-costly trade-off in
computational requirements with diminishing returns.

The approach proposed in this paper operates under the assumption that IT traffic
and OT traffic are sufficiently distinct to warrant a hybridized threat detection strategy.
Signature-based filters within the IT network are employed to screen out any malicious
traffic originating from the Internet or potentially adversarial computers located on the IT
network, as well as threshold-based methods to detect excessive IT resource utilization (CPU,
RAM, etc.). Consequently, the security measures for CPS on OT networks should specifically
target unforeseen behaviours that relate to the physical components of the CPS, which will
include some threshold-based detection strategies for immutable physical characteristics of
the CPS, such as temperature and pressure operating tolerances. These signature-based and
threshold-based strategies will be addressed via a traditional IDS, while this paper focuses
on performing behaviour-based anomaly detection in the OT portion of the CPS, with the
proposed approach leveraging Ensemble Learning methods to achieve higher predictive
performance than traditional ML classifiers. Additional details on the methodology used
within the Ensemble Learning step are shown in Figure 1 and Algorithm 1.
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Figure 1. Logical workflow of threat detection approach. IT/OT traffic is ingested and preprocessed
to eliminate unwanted or redundant data. Signature-based and threshold-based metrics are not added
to an ML model, but sent directly to a rules engine, with normal traffic dropped, and anomalous
traffic sent to an IDS for exception alerting. Behaviour-based metrics are fed to a learning model for
deeper analysis, with traffic classified as anomalous forwarded to an IDS for exception alerting.
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Algorithm 1. Pseudocode showing the algorithm used to combine multiple base classifiers into
Ensemble Learning models.

FOR each base_classifier in [LR, NB, SVM, KNN, MLP]
Initialize base_classifier
Perform hyperparameter optimization

END FOR
FOR each ensemble_method in [voting, stacking, bagging, boosting]

Combine optimized base_classifiers
Calculate predictive performance

END FOR
Choose best ensemble_method
Make prediction

The diversity of endpoint devices in OT networks pose a challenge for accurate
anomaly detection compared to the more uniform nature of IT networks, which often
consist of large estates of near-identical Windows/Linux/etc., systems. To contrast, OT
networks exhibit significant variations across different organizations. These differences
extend to bespoke hardware specifically tailored for individual Cyber–Physical System
(CPS) installations, introducing complexity to the signature-based and threshold-based
detection strategies.

In response to this challenge, behaviour-based ML algorithms become a valuable tool
for training models to comprehend the normal behaviour within the OT segment of the
CPS, facilitating the identification of anomalous activities that deviate from the established
norms in a particular environment.

It should be noted that certain anomaly detection classes in this paper intentionally
exclude ML, relying on a Host-based Intrusion Detection System (HIDS) for IT components.
Additionally, the physical components of the CPS, such as 5y3 operating temperature, pres-
sure, vibration, and frequency of actuator duty cycles, often adhere to defined operational
tolerances. These tolerances are typically dictated by life safety regulations and remain
immutable, enabling swift and accurate validation through a straightforward threshold-
based anomaly detection strategy. This approach bypasses the time-consuming and costly
training of an ML model for threats related to these characteristics.

This paper concentrates on the behavioural characteristics of the OT portions of
the CPS, focusing on Ensemble Learning as an effective means for improving predictive
performance of ML algorithms for anomaly detection in CPS environments.

Furthermore, in this study, we assert that the problem of anomaly detection in CPS
places a much higher value on predictive accuracy than the traditional IT networks, even
at the cost of higher computational requirements due to the significant economic impact
and life safety concerns related to CPS environments.

The traditional binary classification models are disadvantaged by highly imbalanced
datasets, typically leading researchers to generate a balanced dataset by undersampling
the normal class, thereby inducing a bias on the models. Additionally, it may lead to
learning models with poor generalization capabilities, rendering them incapable of facing
cyber-attacks that were not present in the training data. However, combining multiple
traditional binary classification models into an Ensemble Learning model maximizes the
strengths and minimize the weaknesses of multiple binary classifiers, leading to higher
predictive accuracy that is so sought after in CPS environments.

This paper will make use of the following traditional classification models as base
classifiers: Logistic Regression (LR), Naïve Bayes (NB), Support Vector Machine (SVM),
K-Nearest Neighbor (KNN), and Multi-Level Perceptron (MLP). These particular base
classifiers [30] were selected due to their high diversity, which improves the predictive
performance in the subsequent ensemble models through maximizing the strengths and
minimizing the weaknesses of each base classifier. For example, LR and MLP complement
each other because LR excels at capturing the linear patterns in data, while MLP excels
at capturing the non-linear patterns. NB was selected due to its resistance to bias in
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datasets containing irrelevant or minimally correlated features, while SVM and KNN
complement each other due to differing strengths in highly dimensional datasets. These
base classifiers will be aggregated and combined into Voting/Stacking/Bagging/Boosting
ensemble classifiers in an attempt to improve the predictive performance to a level greater
than can be achieved by the base classifiers. A brief description of each classification
algorithm [30] is provided in Table 1.

Table 1. Summary of classification algorithms.

Base Classifiers

LR
Logistic Regression is a supervised learning classification algorithm that employs a linear model for binary
classification, which uses a logistic function to predict the probability of a data point belonging to one of the

available classes.

NB

There are multiple variations of Naïve Bayes, all of which are based on Bayes’ theorem. This paper employs the
Bernoulli variation of NB, a supervised learning classification algorithm commonly used for binary or multiclass

classification. A unique feature of Bernoulli NB is the assumption that features are conditionally independent,
making it particularly well suited for binary classification tasks.

SVM
Support Vector Machine is a supervised learning algorithm used for both classification and regression tasks by

finding a hyperplane to separate the data into multiple classes. SVM is particularly useful in highly dimensional
datasets that are common in CPS environments.

KNN
K-Nearest Neighbor is a supervised learning algorithm used for both classification and regression tasks and works

by assigning a data point to a particular class based on the labels of its nearest neighbors. This algorithm is
commonly used due to its simplicity and low computational requirements.

MLP
Multi-Level Perceptron is a supervised learning algorithm that performs both classification and regression tasks
using a neural network consisting of multiple layers of nodes (perceptrons) with non-linear activation functions.

MLP is particularly effective in detecting complex patterns in data that can be missed by other algorithms.

Ensemble Classifiers

Voting

Voting is a simple ensemble method where multiple individual models (classifiers or regressors) are trained
independently, and their predictions are combined to make a final decision. In a majority voting scheme (hard
voting), the class predicted by the majority of models is chosen. In weighted voting (soft voting), models may

contribute different weights to their predictions.

Stacking

Stacking, or stacked generalization, involves training multiple diverse models and combining their predictions
using a meta-model (also known as a blender or meta-classifier). The base models’ predictions serve as input
features for the meta-model. Stacking aims to leverage the strengths of different models and improve overall

predictive performance.

Bagging

Bagging (Bootstrap aggregating) is an ensemble technique where multiple instances of the same learning algorithm
are trained on different subsets of the training data, created through bootstrap sampling (random sampling with
replacement). The final prediction is obtained by averaging (for regression) or voting (for classification) over the

predictions of individual models.

Boosting

Boosting is an ensemble method that focuses on sequentially training weak learners (models slightly better than
random guessing) and giving more weight to instances that are misclassified by previous models. The final

prediction is a weighted combination of the weak learners’ predictions, which minimizes the weaknesses and
maximizes the strengths of the base classifiers to achieve higher accuracy than would be possible through other

ensemble methods such as voting.

4. Experimental Evaluation
4.1. Description of Datasets

This study intentionally makes use of multiple datasets from diverse environments,
with the goal of showing that EL is an effective method of anomaly detection across a broad
range of CPS environments. Each of the selected datasets have sufficient popularity in
academic research, making it possible to compare single ML classification models against
the EL methods to validate their increased predictive performance through the use of
multiple algorithms.

As is typical for anomaly detection in CPS environments, each of the available datasets
have imbalanced classes, which causes overfitting and inaccurate correlations with many
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ML algorithms, which is a shortcoming that the use of EL is intended to alleviate. A
summary of the selected public datasets is shown in Table 2 and described in further detail
in the subsequent sections.

Table 2. Summary of datasets.

Dataset Rows Columns Normal Data Anomaly Data

Edge-IIoTset2023 2,219,201 63 85.9% 14.1%
CICIot2023 2,867,734 46 38.3% 61.7%

4.2. Edge-IIoTset2023

The Edge-IIoTset2023 dataset [31] was developed in 2023 as a comprehensive dataset
that can be used to develop and accurately validate IoT/IIoT security solutions. The
dataset was collected from a sophisticated seven-layer testbed, including more than 10 IoT
devices, IIoT-based Modbus flows, and 14 IoT and IIoT protocol-related attacks. The
attacks include Mirai-udpplain, MITM-ArpSpoofing, DNS_Spoofing, Recon-PingSweep,
Recon-PortScan, Recon-OSScan, Recon-HostDiscovery, XSS, CommandInjection, Vulner-
abilityScan, Backdoor_Malware, BrowserHijacking, DictionaryBruteForce, SqlInjection,
and Uploading_attack.

This dataset was generated from the direct observation of a controlled testbed environ-
ment, with normal activity and attack activity generated by the researchers in a controlled
environment, which may result in limited fidelity to IIoT environments directly connected
to the less-predictable public internet.

Prior to pre-processing, the dataset contained ~22.2 million lines, of which ~20.3 million
lines were comprised of DDoS-related attacks, which severely skewed the balance of class
distribution. Since DDoS attacks can be considered a threshold-based metric, they are best
addressed via perimeter firewalls rather than in an ML model, so the DDoS entries were
dropped from this dataset in order to focus the Ensemble Learning model on behavioural
aspects of the CPS.

After pre-processing, this dataset contains 2,291,201 rows and 63 columns, with 85.9%
normal data and 14.1% anomaly data. To aid in reproducibility efforts by future researchers,
the dataset pre-processing steps are provided at https://github.com/nickjeffrey/ensemble_
learning (accessed 5 April 2024).

4.3. CICIoT2023

The CICIoT2023 dataset [32] was developed in 2023 by the Canadian Institute for
Cybersecurity in cooperation with the University of New Brunswick to generate a research
dataset for large-scale attacks in IoT environments. To provide contrast to the previous
dataset, this dataset focuses more heavily on the cyber portions than the physical portions
of a CPS environment, providing 33 different cyber-attacks against 105 different IoT devices.
The different attacks can be broadly classified into these categories: DDoS, DoS, Recon,
Web-based, Brute Force, spoofing, and Mirai.

This dataset was generated from the direct observation of a real IoT environment, but
the attack scenarios were generated by the researchers in a controlled environment, which
may result in limited fidelity to IoT environments directly connected to the less-predictable
public internet.

Prior to pre-processing, the dataset contained ~45.6 million lines, of which ~43.8 million
lines were comprised of DDoS-related attacks, which severely skewed the balance of class
distribution. Since DDoS attacks can be considered a threshold-based metric, they are best
addressed via perimeter firewalls rather than in an ML model, so the DDoS entries were
dropped from this dataset in order to focus the Ensemble Learning model on behavioural
aspects of the CPS.

After pre-processing, this dataset contains 2,867,734 rows and 46 columns, with 61.7%
anomaly data, and 38.3% normal data. To aid in reproducibility efforts by future researchers,

https://github.com/nickjeffrey/ensemble_learning
https://github.com/nickjeffrey/ensemble_learning
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the dataset pre-processing steps are provided at https://github.com/nickjeffrey/ensemble_
learning (accessed 5 April 2024).

While this dataset is still imbalanced, it should be noted that the imbalance is in the
opposite direction of the previous dataset, with this dataset having a minority of the data in
the normal class. The two public research datasets in this paper were intentionally chosen
because of their differences in order to show the broad applicability of Ensemble Learning
as a method of improving the predictive performance.

4.4. Experiment Setup

Due to the imbalanced nature of the datasets, it is expected that typical ML classifica-
tion models such as LR/NB/SVM/KNN/MLP will suffer from some degree of overfitting,
thus reducing the model’s accuracy.

This study intentionally uses multiple public research datasets from diverse sources
and with dissimilar features to demonstrate the broad applicability of EL methods.

After balancing the data classes via random undersampling of the majority class, in
order to minimize model bias, a portion of each class was reserved for final validation.
After the data were resampled to balance the classes, they were normalized, and a 10-fold
cross validation was carried out to minimize the distribution bias.

The final validation stage includes all the data that have not been used in training and
testing; this is an imbalanced dataset containing instances from normal traffic and from
anomalies. The aim of this validation stage is to compare the behaviour of the different
modeling techniques included in this comparison, so conclusions could be extracted.

In order to avoid drawing conclusions from biased data, the whole procedure was
repeated 10 times from the balanced dataset to the final validation stage, with the obtained
partial results aggregated for comparison of different learning models.

Due to the diverse nature of CPS environments, hyperparameter optimization is
particularly important when training multiple conventional ML algorithms on different
datasets. For this reason, the proposed model makes no assumptions about parameter
settings for each of the base classifiers and instead employs a Grid Search Cross-Validation
technique to tune each model parameter to find the optimal parameter settings for a
particular dataset. The specific hyperparameter tuning details for each of the base classifiers
is expected to vary by dataset due to the heterogeneous nature of CPS environments. For
example, one dataset may perform better using the SVM base classifier with an RBF kernel,
while another dataset may use a sigmoid kernel. The dataset-specific parameter settings
used in the proposed model were programmatically determined and are provided in the
Supplementary Materials at https://github.com/nickjeffrey/ensemble_learning (accessed
5 April 2024).

To measure the quality of each individual model, the accuracy, Sensitivity, Specificity,
Geometric Mean, Precision, Recall, and F1-score measurements will be used. The accuracy
will give indications of the performance on the balanced dataset, while Sensitivity (True
Positive rate) and Specificity (True Negative rate) will help in the final validation stage,
where the data will be clearly imbalanced. The Geometric Mean provides a balanced
measure of Sensitivity and Specificity. Precision denotes the proportion of correct attack
classes to the total amount of predicted attack results. Recall denotes the proportion of
proper attack classifications relative to the overall count of all the samples that should
have been identified as attacks. The F1-score is the Harmonic Mean between Precision
and Recall. The equations used to calculate these metrics are shown below. The following
abbreviations are used in the equations below: True Positive (TP), True Negative False
Positive (FP), and false negative (FN).

Accuracy = (TP + TN)/(TP + TN + FP + FN), (1)

Sensitivity = TP/(TP + FN), (2)

Specificity = TN/(TN + FP) (3)

https://github.com/nickjeffrey/ensemble_learning
https://github.com/nickjeffrey/ensemble_learning
https://github.com/nickjeffrey/ensemble_learning
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Geometric Mean = sqrt (Sensitivity × Specificity) (4)

Precision = TP/(TP + FP) (5)

Recall = TP/(TP + FN) (6)

F1-score = (2 × Precision × Recall)/(Precision + Recall) (7)

The above steps are performed for each of the individual ML classification models, and
the results are used as inputs for an EL model that will use voting/stacking/bagging/boosting
models to further improve predictive performance, as illustrated in Figure 2. It is worth-
while to note that a recurring challenge in anomaly detection for CPS is the lack of com-
prehensive research datasets with fidelity to real-world environments. Due to the high
heterogeneity across CPS environments, the authors are not suggesting one particular EL
method to be universally superior to the others. Instead, this proposed model automati-
cally tests different EL methods (voting, stacking, bagging, and boosting) and selects the
method that provides the highest accuracy for a particular dataset to further the goal of a
generalizable model for anomaly detection across diverse CPS environments.
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Figure 2. The experimental setup followed in this research. The raw data must undergo preprocessing,
cleaning, and balancing to minimize the model bias. After separating the data into training and
validation samples, the balanced portion of the normal (green) and anomaly (red) dataset was used
for training and testing the base classification models and the ensemble models. The remaining data
were used in the final validation, and the resulting predictive performances of the base and ensemble
classifiers were compared.
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5. Results

The initial hypothesis of this paper was that EL could provide an improved predictive
performance of threats to CPSs when compared to those of the traditional ML classification
models. This hypothesis was confirmed by the experiments for both of the public research
datasets employed in this paper.

Of all the ensemble classifiers tested in this paper, the results were similar for both of
the tested datasets, indicating the general applicability of the original hypothesis across
diverse CPS environments. The Voting and Stacking ensemble methods showed minor
accuracy improvements of 3–4% over those of the traditional classification models for either
dataset, which is to be expected due to the lack of extreme variation or diversity in the
accuracy levels of the base classifiers.

The Bagging ensemble method also shows minor partial improvements, with a ~3%
accuracy increase for the Edge-IIoTset2023 dataset and ~5% accuracy increase for the CI-
CIoT2023 dataset due to the differences in data variance in the underlying datasets, making
the Bagging method slightly less able to generalize across multiple CPS environments. This
very slight improvement is small enough that we consider the Bagging ensemble method
to have no significant improvement over the traditional classification models.

The Boosting ensemble method was the most effective across both datasets, with ~10%
improvement in the mean accuracy for the Edge-IIoTset2023 dataset and ~8% improvement
in the mean accuracy for the CICIoT2023 dataset. This is to be expected, as the Boosting
classifier is designed to train multiple weak learners, and then adjust the weights of the
base classifiers to minimize the weaknesses and maximize the strengths, resulting in higher
accuracy levels than can be obtained from the base classifiers. The detailed experimental
results are shown in Tables 3–6. The results are visualized in Figures 3–6.

Table 3. Cross-validation scores for the Edge-IIoTset2023 dataset. Best mean score is indicated in
bold type.

Fold
Individual Classifiers Ensemble Classifiers

LR NB SVM KNN MLP Voting Stacking Bagging Boosting

1 0.8251 0.7174 0.8323 0.8282 0.8395 0.8364 0.8344 0.8251 0.9369
2 0.8199 0.7019 0.8302 0.8219 0.824 0.8313 0.8292 0.8219 0.9224
3 0.8458 0.7536 0.8582 0.8385 0.8478 0.8602 0.8561 0.8478 0.9275
4 0.8344 0.7246 0.8478 0.8385 0.852 0.8509 0.8416 0.8354 0.9369
5 0.8313 0.7091 0.8458 0.8437 0.8489 0.8468 0.8458 0.8302 0.9369
6 0.8219 0.7267 0.8416 0.8427 0.8427 0.8437 0.8416 0.823 0.9369
7 0.8282 0.7122 0.8406 0.8416 0.8427 0.8416 0.8551 0.8282 0.9224
8 0.8199 0.7091 0.8292 0.8188 0.8282 0.8333 0.8313 0.8178 0.9141
9 0.8292 0.7298 0.8571 0.8716 0.8551 0.8551 0.8613 0.8292 0.9369

10 0.8261 0.7277 0.8323 0.8395 0.8375 0.8385 0.8416 0.8251 0.9379
Mean 0.8282 0.7212 0.8415 0.8385 0.8418 0.8438 0.8438 0.8284 0.9308

StdDev 0.0074 0.014 0.0101 0.0139 0.0095 0.009 0.0103 0.008 0.0082

Table 4. Summary of performance metrics for the Edge-IIoTset2023 dataset. Best results are indicated
in bold type.

Metric
Individual Classifiers Ensemble Classifiers

LR NB SVM KNN MLP Voting Stacking Bagging Boosting

Accuracy 0.8733 0.7699 0.8875 0.8687 0.8789 0.8885 0.9013 0.8852 0.9601
Sensitivity 0.7515 0.6209 0.7537 0.7713 0.7544 0.7584 0.7298 0.7643 0.8772
Specificity 0.9188 0.8254 0.9374 0.905 0.9253 0.937 0.9652 0.9304 0.991
GeoMean 0.8309 0.7159 0.8406 0.8355 0.8355 0.843 0.8393 0.8432 0.9324
Precision 0.8722 0.7767 0.8855 0.8698 0.8774 0.8866 0.9004 0.8838 0.9606

Recall 0.8733 0.7699 0.8875 0.8687 0.8789 0.8885 0.9013 0.8852 0.9601
F1-score 0.8727 0.7728 0.886 0.8692 0.878 0.8871 0.8981 0.8843 0.9594
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Table 5. Cross-validation scores for the CICIoT2023 dataset. Best mean score is indicated in bold type.

Fold
Individual Classifiers Ensemble Classifiers

LR NB SVM KNN MLP Voting Stacking Bagging Boosting

1 0.8629 0.7821 0.8817 0.8555 0.8811 0.8845 0.8845 0.8629 0.9226
2 0.8641 0.7901 0.8851 0.8595 0.8999 0.8942 0.897 0.8663 0.9357
3 0.8669 0.7867 0.884 0.8714 0.9016 0.8942 0.8965 0.8663 0.9403
4 0.8475 0.7843 0.8953 0.8651 0.8896 0.8902 0.8958 0.8463 0.926
5 0.8429 0.7615 0.8799 0.8526 0.889 0.8856 0.8902 0.8435 0.938
6 0.8662 0.7894 0.8924 0.8645 0.8981 0.893 0.8987 0.8657 0.9334
7 0.8668 0.786 0.8896 0.8657 0.8976 0.8987 0.8987 0.8674 0.9323
8 0.8714 0.7849 0.8964 0.8571 0.8964 0.9038 0.9004 0.8708 0.9402
9 0.8617 0.7883 0.8896 0.8634 0.9112 0.8987 0.9067 0.864 0.9391

10 0.8645 0.8059 0.8919 0.8668 0.905 0.897 0.905 0.8651 0.9345
Mean 0.8615 0.7859 0.8886 0.8622 0.8969 0.894 0.8973 0.8618 0.9342

StdDev 0.0086 0.0102 0.0054 0.0055 0.0082 0.0057 0.0061 0.0087 0.0056

Table 6. Summary of performance metrics for the CICIoT2023 dataset. Best results are indicated in
bold type.

Metric
Individual Classifiers Ensemble Classifiers

LR NB SVM KNN MLP Voting Stacking Bagging Boosting

Accuracy 0.8506 0.77 0.8763 0.847 0.8931 0.8842 0.8925 0.8939 0.9319
Sensitivity 0.7979 0.7174 0.8212 0.7863 0.8728 0.8415 0.865 0.8664 0.9162
Specificity 0.9357 0.8549 0.9562 0.945 0.926 0.953 0.9369 0.9382 0.9574
GeoMean 0.864 0.7831 0.8903 0.862 0.899 0.8955 0.9002 0.9016 0.9366
Precision 0.8717 0.7981 0.8961 0.8721 0.8997 0.8984 0.9011 0.9024 0.9353

Recall 0.8506 0.77 0.8763 0.847 0.8931 0.8842 0.8925 0.8939 0.9319
F1-score 0.8527 0.7732 0.878 0.8492 0.8942 0.8856 0.8937 0.895 0.9324
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6. Conclusions and Future Works

Threat detection in CPSs poses unique challenges, with the differing security postures
of IT and OT networks making it difficult to provide a unified threat detection strategy. This
paper proposes a hybrid methodology that leverages signature-based detection strategies
for known threats, threshold-based detection strategies for the immutable properties of
the CPS, and the combination of multiple ML algorithms with Ensemble Learning for the
behaviour-based detection of anomalies, with the goal of providing higher accuracy via EL
than that which can be achieved with the traditional ML methods.

This paper details experiments with multiple classification algorithms against imbal-
anced datasets, which are then combined into an Ensemble Learning model, starting from
the hypothesis that because malicious activity makes up a very small portion of the datasets
due to its natural scarcity, the traditional ML classifiers suffer due to the imbalanced nature
of the datasets, so greater accuracy can be obtained by combining multiple classification al-
gorithms into an EL model. The results show that EL improves the predictive performance
across multiple datasets by 4–7% above that of the highest-performing base classifier, which
is particularly important to the operators of CPSs due to the high financial and life safety
costs associated with interruptions to system availability.

The future works include continued investigations into increasing accuracy through
the use of more complex learning models, including deep learning for large and heteroge-
neous environments, decision threshold tuning to minimize misclassification in imbalanced
datasets, and the further development of complementary detection methodologies that
combine ML algorithms for OT networks with signature-based and threshold-based de-
tection strategies for the IT components of CPS. For many cybersecurity use cases, the
occasional false negative is acceptable, but CPS environments are particularly intolerant of
false negatives due to the low risk/high impact consequences of an interruption to critical
CPS infrastructure, making further investigation and threshold tuning a worthy avenue for
future works.
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Supplementary Materials: To aid in reproducibility efforts by future researchers, the dataset
pre-processing steps are provided at https://github.com/nickjeffrey/ensemble_learning (accessed
5 April 2024).
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