
Citation: Yuan, Z.; Ning, H.; Tang, X.;

Yang, Z. GDCP-YOLO: Enhancing

Steel Surface Defect Detection Using

Lightweight Machine Learning

Approach. Electronics 2024, 13, 1388.

https://doi.org/10.3390/

electronics13071388

Academic Editors: Jungpil Shin, Md.

Al Mehedi Hasan and Hoang D. Le

Received: 1 March 2024

Revised: 2 April 2024

Accepted: 3 April 2024

Published: 6 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

GDCP-YOLO: Enhancing Steel Surface Defect Detection Using
Lightweight Machine Learning Approach
Zhaohui Yuan *, Hao Ning *, Xiangyang Tang and Zhengzhe Yang

School of Software, East China Jiaotong University, Nanchang 330013, China;
xytang@myyahoo.com (X.T.); yzzqwq@gmail.com (Z.Y.)
* Correspondence: yuanzh@whu.edu.cn (Z.Y.); stacyfincher9@gmail.com (H.N.)

Abstract: Surface imperfections in steel materials potentially degrade quality and performance,
thereby escalating the risk of accidents in engineering applications. Manual inspection, while tradi-
tional, is laborious and lacks consistency. However, recent advancements in machine learning and
computer vision have paved the way for automated steel defect detection, yielding superior accuracy
and efficiency. This paper introduces an innovative deep learning model, GDCP-YOLO, devised for
multi-category steel defect detection. We enhance the reference YOLOv8n architecture by incorporat-
ing adaptive receptive fields via the DCNV2 module and channel attention in C2f. These integrations
aim to concentrate on valuable features and minimize parameters. We incorporate the efficient Faster
Block and employ Ghost convolutions to generate more feature maps with reduced computation.
These modifications streamline feature extraction, curtail redundant information processing, and
boost detection accuracy and speed. Comparative trials on the NEU-DET dataset underscore the
state-of-the-art performance of GDCP-YOLO. Ablation studies and generalization experiments reveal
consistent performance across a variety of defect types. The optimized lightweight architecture
facilitates real-time automated inspection without sacrificing accuracy, offering invaluable insights to
further deep learning techniques for surface defect identification across manufacturing sectors.

Keywords: defect detection; deep learning; image processing; lightweight

1. Introduction

Steel is an alloy composed of iron and carbon, known for its high ductility, toughness,
and strength [1]. As a result, steel is widely utilized in modern industrial production,
construction, and various other sectors. With the rapid advancement of modern industry,
there is a growing demand for steel in our daily lives. However, steel materials are often
susceptible to adverse effects during the production process, resulting in surface defects
such as scratches and cracks. These defects compromise the physical structure of steel,
significantly impacting the quality of the material. If steel materials with defects are used
in the construction of buildings, automotive components, aircraft, and other engineering
projects, it may even increase the risk of accidents. In the early stages, traditional steel
surface defect identification relied mainly on manual visual inspection, which was a time-
consuming and highly experiential task. It not only had low efficiency but also made it
difficult to ensure consistency in identification quality.

It is worth noting that in recent years, machine learning and object detection technolo-
gies have made rapid progress, demonstrating tremendous potential in terms of target
recognition speed, accuracy, automation, and sustainability. Especially in large-scale,
high-speed, and high-precision target recognition tasks [2], they have shown significant
advantages over manual recognition. Object detection algorithms can be broadly classified
into traditional methods and those grounded in deep learning.

Traditional object detection algorithms [3] typically employ a sliding window search
strategy, where a fixed-size window slides over the image, extracting features, and then

Electronics 2024, 13, 1388. https://doi.org/10.3390/electronics13071388 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13071388
https://doi.org/10.3390/electronics13071388
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0007-7943-9698
https://doi.org/10.3390/electronics13071388
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13071388?type=check_update&version=2

Electronics 2024, 13, 1388 2 of 19

using a classifier to determine if the window contains the target object. This approach
involves a large amount of computation and time consumption during runtime, resulting
in slow execution speed and limited accuracy, particularly for handling large images and
large-scale datasets. The rapid advancement in deep learning has propelled deep learning-
based object detection algorithms into the mainstream, marking substantial strides in the
object detection domain. These algorithms can be broadly categorized into two-stage [4]
and one-stage [5] approaches.

In 2014, R. Girshick et al. initially proposed the two-stage model region with CNN
(RCNN) [6]. This model uses selective search to extract object candidate boxes, then
employs a convolutional neural network (CNN) to extract features, and finally uses a
linear support vector machine for object classification. Two-stage models typically offer
higher accuracy in object detection, and this design concept has profoundly influenced
subsequent research. The Facebook team’s end-to-end object detection model based on
Transformer, named DETR [7], infers the relationships between objects and the global
image background by providing a set of learned fixed small object queries, and directly
generates the final prediction set in parallel. Xie et al. A new model [8] was proposed,
which combines CNN and Transformer for hybrid feature extraction to reduce model
complexity and address the issue of Transformer’s lack of inductive bias. Joonhyeok Moon
introduced the RoMP Transformer [9], featuring rotation bounding boxes and a multi-layer
feature pyramid. Compared to other contemporary neural networks, it demonstrates
superior performance in terms of accuracy and computational speed. Sunkara presented
a deep learning model called YOGA [10], which includes a two-stage feature learning
process and utilizes inexpensive linear transformations for feature map learning. These
models exhibit several common characteristics. They demonstrate high accuracy and are
capable of effectively handling variations in target size, deformation, and other changes,
particularly showing improved detection performance for partially occluded, complex-
shaped, or varying-sized objects. They have found wide applications in fields such as
medical image analysis, security, and surveillance.

Simultaneously, one-stage detectors have also had a profound impact on the field
of object detection. Since 2016, a series of one-stage detectors have emerged. R. Joseph
proposed the milestone YOLO (You Only Look Once) algorithm [11]. Subsequently, object
detection algorithms based on the YOLO concept have been proposed. In 2018, R. Joseph
introduced the YOLOv3 [12] model based on YOLO, which utilizes multi-scale features
for object detection, thereby improving the detection capability for objects of various sizes.
Subsequently, in 2020, JOCHER G proposed the YOLOv5 [13] model, which employs the
Focus structure for efficient feature extraction and incorporates feature fusion operations
using FPN+PAN. While these algorithms may have slightly lower accuracy compared to
two-stage algorithms, they often exhibit higher operational speed and lower computational
overhead. They are typically applied in scenarios that require real-time performance, such
as autonomous driving or industrial assembly line operations.

With the continuous iteration of the YOLO network, it has gradually been applied
to surface defect detection due to its good detection speed and accuracy. Guo et al. pro-
posed an improved YOLOv5-based steel defect detection algorithm [14]. They introduced
the TRANS module, designed based on the Transformer architecture, into the network,
facilitating feature fusion within the network. This integration enhances the detector’s
capability to detect objects of varying scales through the implementation of multi-scale
feature fusion structures, which merge features of different scales. Wang et al. proposed an
improved algorithm based on YOLOv5s [15]. In the model, they used coordinate attention,
bidirectional feature pyramid network, and K-means algorithm to enhance the detection
accuracy, and the experimental performance was significantly better than the original
model. Zheng’s team proposed the EW-YOLOv7 defect detection model [16]. By combining
the Acmix attention mechanism with the GhostNetV2 module, they effectively optimized
the defect detection performance. Ling Wang [17] optimized the detection performance
of YOLOv5 by using multi-scale detection blocks combined with an attention mechanism.

Electronics 2024, 13, 1388 3 of 19

Their model achieves a detection rate of 72% in mean Average Precision (mAP) for steel
surface defects. Although these algorithms have improved the detection speed to some
extent, there remains an issue of low overall detection accuracy. Due to the uncertainty asso-
ciated with steel defects, it is common to encounter multiple defects of different scales and
categories within a single image. Moreover, most real-world defect images exhibit blurry
boundaries between the background and the defect segmentation, making it challenging to
improve detection accuracy [18].

In order to tackle the issue of low detection accuracy in current defect detection
models, we compared different models and ultimately selected the YOLOv8n model
structure as a reference. We introduced the Deformable ConvNets v2 (DCNV2) module,
coordinate attention (CA) attention mechanism, Faster Block, and Ghost convolution (Ghost
Conv) to reconstruct the network, proposing a more efficient and lightweight steel defect
detection model.

Firstly, to improve the model’s feature extraction capability and generalization, we in-
troduced the DCNV2 module in the feature extraction layer of the Backbone, which achieves
adaptive receptive fields and enhances the model’s detection capability for complex objects.
Secondly, to enable the model to more accurately focus on key feature information, and
improve detection accuracy and speed, we optimized the CSPDarknet53 to two-stage FPN
(C2f) module of the Backbone. This includes introducing the CA attention mechanism and
using a more efficient Faster Block for feature extraction to reduce learning of unnecessary
background information. Finally, to make the model faster in detection speed, we used
Ghost Conv instead of regular convolution in the feature fusion network. With a certain
receptive field maintained, this significantly reduces the computational burden of the
model and more efficiently generates multiple feature maps, while reducing computational
complexity while retaining redundant information. The above redesign results make the
model more suitable for handling complex object detection tasks, optimizing the feature
extraction, parameter quantity, and performance of the object detection model.

The primary contributions of this paper include the following:

1. We propose a new GDCP-YOLO model, which reduces redundant information extrac-
tion and achieves more effective steel surface defect detection by combining adaptive
receptive fields and attention mechanisms.

2. We introduce the CA attention mechanism in the C2f module and use a more efficient
Faster Block for feature extraction to reduce the model’s parameter quantity and
improve its running speed.

3. We combine the coordinate attention which integrates CSPDarknet53 to two-stage
FPN with Faster Block (CA_C2f_Faster) and Ghost Conv in our proposed model
to achieve high accuracy while being lightweight. This branch model provides a
lightweight improvement.

4. We conducted extensive comparative experiments to verify the performance opti-
mization results of our proposed model. Additionally, we performed generalization
experiments on the GDCP-YOLO model, providing a reference for its application in
other detection fields.

The paper’s structure is outlined as follows: In Section 2, we provide a brief overview
of the reference model YOLOv8n, analyzing its inference process to provide a reference
for subsequent innovations. In Section 3, we analyze and discuss the new model proposed
in this paper, introducing our innovative work. In Section 4, we detail the datasets and
corresponding experimental setups employed in our study. We compare, generalize,
and perform ablation experiments on the proposed model to validate its effectiveness.
In Section 5, we summarize our work in this paper.

2. Structural Characteristics of the Reference Model

The YOLO algorithm reinterprets the object detection problem as a regression issue by
predicting the position and class of objects on an image grid through a single convolutional
neural network. This approach eliminates the traditional step of candidate box extraction,

Electronics 2024, 13, 1388 4 of 19

facilitating real-time object detection. YOLOv8n, a one-stage object detection algorithm,
enhances the previous generations of the YOLO algorithm by accelerating operation,
reducing model parameters, and improving recognition accuracy. The YOLOv8n network
structure is illustrated in Figure 1.

Backbone Neck Head

Upsample

Concat C2f

Concat C2f

Upsample

Concat C2f

CBS

Concat C2f

CBS

P1

P2

P3

P4

P5

P1

P2

P3

P4

P5

Input

P5

P4

P3

Detect

4 x reg_max

nc

Bbox.

Cls.

CIoU

+DFL

BCE

Detect

Detect

LOSS

Figure 1. The flow chart of the YOLOv8n model.

The input component is tasked with preprocessing the input image, which includes
resizing it to a specific size, normalizing it, and converting it into a tensor format compatible
with the neural network. Additionally, the input component incorporates data augmenta-
tion functionality. The Mosaic method merges multiple training images into a single large
image, enabling simultaneous processing of multiple images in one forward pass. In the
final 10 epochs of training, inspired by YOLOX, the Mosaic operation is deactivated.

The Backbone component, consisting of CBS (convolution, batch normalization, and ac-
tivation function), C2f [19], and Spatial Pyramid Pooling with Features (SPPF) [13] modules,
transforms the original image into a multi-scale, high-dimensional feature representation,
forming multi-scale feature maps. In different stages of feature extraction, the output
features are directly fed into the upsampling operation, eliminating the 1 × 1 convolution
before upsampling in previous YOLO generations. The C2f module design mirrors the C3
module in preceding versions. It also adopts CSPNet and residual concepts [20], dividing
the network into two parts, each containing multiple residual blocks. However, compared
to the original C3 module, it has more residual connections and includes additional split
operations, eliminating the convolution operations in the branches, which enriches the
feature information during gradient backpropagation. This division reduces model com-
plexity while simultaneously enhancing feature extraction efficiency. The SPPF module
transforms the originally parallel structure of Spatial Pyramid Pooling (SPP) into a serial
structure. Before pooling, a convolution operation is performed on each region, and the
convolution results are concatenated with the pooling results to form the output features.
The module achieves a fusion of local and global information in feature maps through
multi-scale pooling layers that preserve spatial information and adapt to different input
sizes. The model employs the SiLU activation function for its smoothness, non-linearity,
and gradualness. It yields superior results compared to traditional Sigmoid and Tanh
activation functions while avoiding potential gradient explosion issues associated with
ReLU activation function. The SiLU activation function formula is as follows:

SiLU(x) = x × sigmoid(x) =
x

1 + e−x (1)

The Neck component comprises CBS, C2f, Upsample, and Concat modules, employing
an FPN + PAN structure [21]. This allows the network to fuse feature information of
different scales simultaneously while preserving spatial information, better handling objects
of varying sizes and improving object localization and classification accuracy.

The detect component adopts an anchor-free detection method, predicting the object’s
center point and the distance from the center to each of its four edges directly. Furthermore,
it replaces the IOU matching algorithm with the Task-Aligned Assigner matching strategy

Electronics 2024, 13, 1388 5 of 19

from the TOOD model [22]. This strategy uses a high-order combination of classification
scores and IoU to measure the degree of task alignment, helping the network dynamically
prioritize high-quality anchors. The formula for the matching strategy is as follows:

t = sα × uβ (2)

Here, s denotes the predicted box’s classification score, u signifies the CIoU value [23]
between the predicted and ground truth boxes, and α and β are weight hyperparameters
used to adjust the matching degree. The alignment degree can be measured by multiplying
these two values. A t value close to 1 indicates a higher degree of matching between the
predicted box and the ground truth box, satisfying the conditions of a positive sample.
The predicted boxes are sorted based on their matching degree with the ground truth box
using t, and then the top K predicted boxes are selected as positive samples to enhance the
model’s accuracy. When a predicted box matches multiple ground truth boxes, the one
with the highest matching degree is retained.

The detect component separates the prediction of object position and class in the object
detection task, enhancing the model’s flexibility and making it more adaptable for different
object detection tasks and scenarios. The loss function used by the model comprises two
components: classification and regression. The former uses binary cross-entropy (BCE)
for loss calculation, while the latter uses Distribution Focal Loss (DFL) and CIoU Loss.
The formula for the BCE loss is as follows:

LBCE =
1
N

N

∑
i=1

Li =
1
N

N

∑
i=1

−[yi · log(pi) + (1 − yi) · log(1 − pi)] (3)

In this context, N stands for the batch size, yi denotes the label value, and pi signifies
the predicted value of the model. The formula for DFL is as follows:

Si =
yi+1 − y
yi+1 − yi

(4)

DFL(Si, Si+1) = −((yi+1 − y)log(Si) + (y − yi)log(Si+1)) (5)

Here, y represents the label value, and yi and yi+1 are the two closest label values to y.
The formula for CIoU is as follows:

LCIoU = 1 − IoU + (
ρ2(b, bgt)

c2) + αv (6)

In these formulas, b and bgt denote the center points of the predicted box and the
ground truth box, ρ represents the Euclidean distance between these two center points, c
represents the diagonal distance of the minimum enclosing box that can contain both the
predicted box and the ground truth box simultaneously, α is a weight function, and v is
used to measure aspect ratio consistency. During actual training, the model calculates total
loss by weighting these three losses using a certain weight ratio.

3. The GDCP-YOLO Framework: Enhancing Steel Surface Defect Detection

This study introduces a novel algorithm, GDCP-YOLO, specifically designed for steel
surface defect detection. The model’s flowchart is provided in Figure 2.

To enhance the object detection model’s performance and efficiency, we integrated
various strategies into this new framework. Initially, we incorporated the DCNV2 module
into the Backbone’s feature extraction layer, which serves to bolster the model’s feature
extraction capability, facilitate adaptive receptive fields, and enhance spatial deformation
processing and generalization abilities. Furthermore, we refined the C2f module of the
Backbone by introducing the CA attention mechanism and employing a more efficient
Faster Block for feature extraction.

Electronics 2024, 13, 1388 6 of 19

CBS

CA_C2f_Faster

DCnv2

SPPF

Upsample

Concat

C2f

GhostConv

Detect

Figure 2. The flow chart of the GDCP-YOLO model.

The CA attention mechanism enables precise focus on critical feature channels, im-
proving detection accuracy by minimizing irrelevant background information and reducing
model parameters, thereby enhancing operational speed. Lastly, within the feature fusion
network, we employed Ghost Conv instead of ordinary convolution to generate multiple
feature maps more efficiently, further reducing the model’s parameter count while ensuring
ample feature fusion and retaining redundant information. In summary, by incorporating
the DCNV2 module, CA attention mechanism, Faster Block, and Ghost Conv, we have re-
structured the network to enhance feature extraction, reduce parameter count, and improve
performance, enhancing its suitability for complex object detection tasks. The detailed
parameter network structure of the GDCP-YOLO network is illustrated in Figure 3, and its
main features will be elaborated upon in subsequent sections.

CBS

K=3，s=2，p=1

640×640×3

CBS

K=3，s=2，p=1

320×320×64

CA_C2f_Faster

Shortcut=True

160×160×128

DCnv2

K=3，s=2，p=1

CA_C2f_Faster

Shortcut=True

80×80×256

DCnv2

K=3，s=2，p=1

CA_C2f_Faster

Shortcut=True

40×40×512

CBS

K=3，s=2，p=1

CA_C2f_Faster

Shortcut=True

20×20×512

SPPF

K=5

40×40×512

Upsample

Concat

C2f

Shortcut=True

Upsample

80×80×256

Concat
C2f

Shortcut=True
Detect

GhostConv

K=3，s=2，p=1

40×40×512

Concat

C2f

Shortcut=True
Detect

GhostConv

K=3，s=2，p=1

Concat

Detect

20×20×512

Input

 Detect

Conv Conv

Conv Conv

Conv2dConv2d

Bbox.

Loss

Cls.

Loss

CBS

Conv

BatchNorm2d

SiLU

 SPPF

Conv

MaxPool

Concat

MaxPool

MaxPool

ConvBackbone

Neck

Head

C2f

Shortcut=True

Figure 3. Structure of the GDCP-YOLO. The GDCP-YOLO model consists of four components: input,
Backbone network, feature fusion module, and detection. It incorporates the FPN + PAN structure to
introduce top-down pathways and lateral connections for refining feature representations.

3.1. DCNv2 Module

During the model training process, robust features often enable the model to learn
more effective feature representations, thereby improving the model’s recognition capa-
bilities. Therefore, selecting appropriate convolutions for feature extraction is particularly
crucial. Ordinary convolution typically samples at fixed positions of the input feature

Electronics 2024, 13, 1388 7 of 19

map. This approach results in fixed weights of the convolution kernel, leading to a uniform
receptive field size of the convolutional neural network when processing different position
regions of the image. This is not optimal for deep convolutional neural networks as dif-
ferent positions may correspond to objects with varying scales or deformations. To tackle
this issue, Zhu et al. developed DCNv2 [24], which enhances the network’s adaptability to
deformable targets through deformable convolutional layers and introduces an adjustment
mechanism to optimize model offset learning.

Drawing from the concept of DCNv2, we introduced the DCNV2 module into the
key feature extraction layer of the Backbone. This incorporation enables adaptive adjust-
ments in the size and shape of the receptive field through deformable convolution. This
adaptation enables us to more effectively capture features that are close to the object’s
shape and size, thereby enhancing the network’s generalization ability and improving its
spatial deformation processing ability. As depicted in Figure 4, it shows the calculation
process of ordinary convolution, which involves sliding a small convolution kernel on the
input data and calculating the element-wise product sum of the convolution kernel and
input data at each position. Its receptive field size is inherently fixed. Figure 4b shows the
calculation process of deformable convolution. By learning “offset” parameters, it allows
offset operations on pixels in the input window, applies bilinear interpolation to gener-
ate sub-pixels, and then uses these sub-pixels instead of original pixels for convolution
operation. The formula is as follows:

y(p0) = ∑
pn∈R

w(pn) · x(p0 + pn + ∆pn) (7)

In this context, R represents the set of pixels in the current sliding window, w represents
the convolution kernel, x represents the input image, p0 represents the coordinates of the
center point of the sliding window in the image, and pn represents the relative positions of
other pixels in the sliding window to the center point. ∆pn represents the learned offsets
through Offset learning.

（a） （b）

Figure 4. (a) Receptive fields of regular convolution. (b) Variable convolution. In regular convolution,
each element of the convolution kernel is multiplied and summed with the corresponding position of
the input data to obtain the value at the corresponding position of the output feature map. Deformable
convolution kernels deform the input data slightly based on learned offsets and then perform the
multiplication and summation operations.

The specific details are illustrated in Figure 5. The feature map first undergoes a 3 × 3
convolution for channel adjustment, followed by the BatchNorm layer and SiLU activation
function. Next, the obtained features are input into three branches. One branch calculates
the corresponding offsets for each pixel in the offset module, while another performs the
corresponding Mask operation. The last branch, along with the calculated Mask parameters
and Offset parameters, is input into the deformable convolution. Finally, the output goes
through the BatchNorm layer and SiLU activation function.

Electronics 2024, 13, 1388 8 of 19

Conv BatchNorm2d SiLU

OffsetMask

DeformConv BatchNorm2d SiLU

Figure 5. Structure of the DCNV2 module. By introducing offset computations, better feature
extraction can be achieved.

3.2. CA_C2f_Faster Module

In real-world scenarios, due to the influence of industrial production environments
and detection equipment, capturing clear images of steel surfaces can be challenging.
Some images may exhibit blurred detection targets and backgrounds, thereby complicat-
ing the extraction of steel surface defect features. To overcome this difficulty associated
with feature extraction in steel defect detection models, we incorporated the CA atten-
tion mechanism [25] into the C2f core feature extraction module of the Backbone. This
mechanism encodes horizontal and vertical positional information into channel attention.
The introduction of the attention module allows for the enhancement of feature-related
channel information, adaptive learning of channel weights, and the model’s focus on more
useful channel information, thereby improving the model’s ability to recognize and detect
steel surface defects. The lightweight nature of the CA attention also enables the net-
work to concentrate on large-scale positional information without significantly increasing
computational load.

To tackle the issue of slow operation speed in the C2f module, we replaced the
original Bottleneck with the recently developed Faster Block [26]. The PConv within this
block not only reduces computational burden but also extracts features more effectively
than traditional deep convolution methods, making it suitable for multi-channel feature
processing. This reduces model parameters and increases operational speed.

As shown in Figure 6, once the feature map enters the module, we first use a CBS
module to adjust the number of channels in the feature map to meet the model requirements.
Then, we split the feature map using the split operation, introducing more branches
and cross-layer connections to enhance the model’s gradient flow, promote information
flow, and improve model performance. After splitting, we use the Faster Block for more
comprehensive feature extraction on a portion of the feature map.

The Faster Block is primarily constructed using operations such as Pconv, PWconv,
and normalization. In the Faster Block, we first use Pconv convolution for channel feature
extraction. We use traditional convolution on only one-fourth of the input channels to
extract spatial features, while the rest of the channels remain unchanged. To maximize
information utilization across all channels, we add a point-wise convolution layer after
PConv. This layer enables feature information to flow through all channels, ensuring that
the model does not lose critical information while reducing redundant computations. For
subsequent operations, batch normalization is used instead of other methods for faster
inference. For activation layers, we select the SiLU activation function commonly used in
YOLO to adapt to the entire model based on experience.

Electronics 2024, 13, 1388 9 of 19

CBS

Split

Faster_Block

Faster_Block

Concat

CBS

CA

X Avg Pool Y Avg Pool

Concat + Conv2d

BatchNorm + Non-linear

Conv2d Conv2d

Sigmoid Sigmoid

Re-weight

Residual PConv

PWConv

BatchNorm2d

SiLU

PWConv

Concat

Conv

Identity

Figure 6. The New CA_C2f_Faster structure. The CA attention module is introduced to enhance
channel information related to features. The Faster Block is used to improve the computational
speed of the model, utilizing branches and cross-layer connections to enhance the gradient flow of
the model.

In CA attention, to avoid compressing spatial information into channels entirely, we
do not use global average pooling. Instead, we decompose global pooling into encoding
operations of two one-dimensional vectors. During the operation, we utilize two pooling
kernels to process the channels separately along the horizontal and vertical directions.
Their computational formulas are shown as follows:

zh
c (h) =

1
W ∑

0≤i<W
xc(h, i) (8)

zw
c (w) =

1
H ∑

0≤j<H
xc(j, w) (9)

We connect the feature maps generated by the two equations above and use a 1 × 1
convolution, normalization operation, and activation function for feature transformation.
The specific process is as follows:

f = δ(F1([zh, zw])) (10)

Then, we apply 1 × 1 convolutions and normalization operations to adjust the feature
dimensions of tensors f h and f w, resulting in tensors FH and FW , respectively.

gh = σ(Fh(f h)) (11)

gw = σ(Fw(f w)) (12)

As shown in Equation (13), we then apply the Sigmoid activation function to expand
the obtained tensors gh and gw, which serve as attention weights. Finally, we multiply
tensor xx with the horizontal attention weight tensor gw and the vertical attention weight
tensor gh at the corresponding coordinates in the C channel. This calculation is used to
compute the output of the coordinate attention block.

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (13)

3.3. Ghost Conv

In actual industrial production, we receive a large number of images of steel surfaces.
In order to efficiently process a large number of photos, the detection speed of the model is
crucial. We typically enhance the model’s speed by reducing redundant computations. Tra-
ditional convolutions often extract redundant features, which can heavily impact memory

Electronics 2024, 13, 1388 10 of 19

usage and slow down model performance. In order to improve the model’s computational
speed, we introduce the Ghost Module [27] proposed by Huawei Noah’s Ark Lab, which
can achieve the same effect as traditional convolutions with fewer computations.

As illustrated in Figure 7, Ghost Conv decomposes a standard convolutional layer
into two parts: a core convolution and an auxiliary convolution. These two convolutional
layers learn primary and secondary features, respectively. The input feature map first
passes through an auxiliary convolution with a kernel size of 1 × 1. After the convolution
operation, the number of channels is adjusted to half of the expected output channels,
followed by a BatchNorm layer and SiLU activation function. Then, the obtained features
are input into two branches, one of which passes through the main convolution with a 5× 5
kernel, followed by a BatchNorm layer and SiLU activation function to obtain features.
Finally, by stacking the outputs of the main and auxiliary convolutions, we obtain the
final feature map. By using Ghost Conv, we reduce computational burden and eliminate
redundant computations caused by traditional convolution operations without reducing
accuracy, thereby reducing the number of model parameters.

Conv2d

BatchNorm2d

SiLU

Conv2d

BatchNorm2d

SiLU

Figure 7. Structure of Ghost Conv. The use of auxiliary convolutions and primary convolutions can
simplify redundant computations in feature extraction.

4. Experimentation and Analysis of Results
4.1. Dataset

The NEU-DET steel surface defect dataset [28], released by Northeastern University,
was employed for this study. Due to the inaccurate annotation and low pixel quality of
the crazing defect in this dataset, coupled with blurry backgrounds, the detection process
poses certain challenges. It comprises 1800 grayscale images, each representing one of six
typical surface defects found on hot-rolled steel strips: crazing (CR), inclusion (IN), patches
(PA), pitted surface (PS), rolled-in scale (RS), and scratches (SC). Each defect category is
represented by 300 images. The dataset includes annotations indicating the defect category
and location in each image, as illustrated in Figure 8.

After obtaining the raw dataset, we preprocessed the labels by converting the original
XML labels into TXT format to suit our model’s requirements. The dataset was randomly
divided into a 6:2:2 ratio, allocating 1040 images to the training set, 374 to the validation
set, and the remaining 386 for model testing. Table 1 presents the quantity of images and
labels for each defect category in the training dataset.

Electronics 2024, 13, 1388 11 of 19

（a） （b） （c）

（d） （e） （f）

Figure 8. Typical steel surface defects. (a) Crazing, (b) inclusion, (c) patches, (d) pitted surface,
(e) rolled-in scale, (f) scratches.

Table 1. Distribution of labels in the training dataset.

Category Number

CR 401
IN 524
PA 530
PS 265
RS 339
SC 276

4.2. Experimental Environment and Parameter Settings

The experiment utilized the hardware setup and key software settings detailed in
Table 2. This included setting the initial learning rate to 0.01, with a momentum parameter
of 0.937 and weight decay of 0.0005. Stochastic Gradient Descent was employed as the
optimizer, with a training duration of 300 epochs, a batch size of 16, and images resized to
640 × 640 pixels.

Table 2. Hardware environment and software configuration.

Hardware/Software Configuration

GPU RTX 3090(24 GB)
CPU 15 vCPU Intel(R) Xeon(R) Platinum 8358P CPU @ 2.60 GHz
Development environment PyTorch2.0.0 + Python3.8(ubuntu20.04) + Cuda11.8
Development tool PyCharm 2020.1.1 x64

4.3. Evaluation Metrics

Object detection involves object classification and localization. The model’s per-
formance was assessed using three main metrics: detection accuracy, detection speed,
and model parameter count. Detection accuracy was assessed using mAP@0.5 and
mAP@0.5:0.95 across the entire network model. Frames per second (FPS) were used to
evaluate detection speed.

Average Precision (AP) gauges the correlation between precision and recall at various
thresholds and is used to evaluate the model’s performance. The calculation of precision
and recall is outlined in Equations (14) and (15).

P =
TP

TP + FP
(14)

Electronics 2024, 13, 1388 12 of 19

R =
TP

TP + FN
(15)

True Positives (TP) are instances where the model correctly identifies positive samples.
False Positives (FP) occur when negative samples are incorrectly labeled as positive, while
False Negatives (FN) are positive samples wrongly classified as negative. Equation (16)
depicts the Precision–Recall curve, where Precision (P) is on the vertical axis and Recall (R)
is on the horizontal axis. The area under the curve indicates the AP.

AP =
∫ 1

0
p(r)dr (16)

In scenarios involving multi-category datasets, we calculate the AP for each category
independently, sum these AP values, and then divide by the total number of categories (n)
to derive the mean Average Precision (mAP) for all object detection categories.

mAP =
1
n

n

∑
j=1

APj (17)

FPS represents the model’s processing speed in terms of the number of images it
handles per second. A higher FPS value indicates a faster processing rate.

4.4. Model Training

Tensorboard was used during training to monitor and record the model’s loss curve on
datasets. As depicted in Figure 9, both training and validation losses consistently decrease
with the increase in the number of training iterations, indicating continuous learning and
improvement of detection performance by the model.

Figure 9. Loss curves of training.

Post-training, the trained model was applied to the validation set, and the evaluation
results are depicted in Figure 10. The model demonstrated significantly higher detection
accuracy for inclusion, patches, and scratches compared to the other three defect categories.
This could be attributed to a higher number of labels for inclusion and patches in the
training set, facilitating more comprehensive feature representation learning during model
training. For scratches, the distinct contrast between its features and the background may
have facilitated good feature learning despite limited labels.

4.5. Comparative Experiments and Results

Assessing the effectiveness of our proposed algorithm, we conducted comparative
experiments using the same dataset partition against RetinaNet [29], YOLOv3 [12], Mask-
RCNN [30], YOLOv5 [13], YOLOv6, YOLOv7, and YOLOv8. Detailed results are depicted
in Figure 11.

Electronics 2024, 13, 1388 13 of 19

Figure 10. Confusion matrix.

The RetinaNet algorithm demonstrated a mean Average Precision (mAP) of only
62.6%, underscoring its limitations in accurately recognizing small targets within multiple
defect categories. In contrast, the YOLOv3 (tiny) and YOLOv3 algorithms improved their
mAP by 3.2% and 11.8%, respectively, indicating enhanced detection accuracy, particularly
for the YOLOv3 algorithm when compared to RetinaNet. Since the YOLO model integrates
unique multi-scale feature fusion prediction structures, it exhibits superior performance in
detecting steel defects, which vary greatly in size.

Figure 11. Model accuracy.

Mask-RCNN adds a new Mask branch to the original RCNN model, aiding in model
training and prediction. The addition of this branch enhances the model’s performance
in detecting tasks with blurred backgrounds. This improvement results in a 6.4% increase
in mAP compared to RetinaNet. YOLOv5 uses Mosaic data augmentation to preprocess
initial images, allowing the model to learn more robust feature representations. Coupled

Electronics 2024, 13, 1388 14 of 19

with its adaptive anchor boxes, YOLOv5 demonstrates comprehensive improvements in
detection across the dataset’s six categories. YOLOv5s and YOLOv5m achieve mAPs of
72% and 72.2%, respectively. YOLOv6 shows significant improvement in detecting crazing
defects, achieving an mAP of 75.2%. Its use of a parameterized bakebone enhances model
parallelism during runtime, and its novel loss function showcases good performance on
imprecisely annotated data.

Our proposed algorithm improves by 1.4% and 2.2% compared to the original YOLOv8n
and YOLO7 (tiny), respectively. Significant improvements are observed in detecting crazing,
pitted surface, and rolled-in scale defects. By visually inspecting sample images of these
defect categories, we notice prevalent blurriness, small, and densely clustered defects. Our
CA_C2f_Faster module combines attention mechanisms with residual thinking for better
feature extraction, possibly explaining why our model outperforms previous models.

These results suggest that our algorithm can recognize multiple defect categories on
steel surfaces with higher accuracy than current mainstream detection algorithms.

To compare model detection speeds, we conducted tests on various algorithms un-
der the same experimental conditions. As shown in Figure 12, our proposed algorithm
maintained a similar detection speed to the original YOLOv8n model, approximately dou-
ble that of the RetinaNet algorithm, and essentially equivalent to YOLOv3 (tiny). This
further validates our algorithm’s effectiveness in swiftly and accurately detecting steel
surface defects.

Figure 12. Comparison of model speed.

In the earlier generations of YOLO, a significant number of convolution operations
were used to enhance the model’s accuracy, resulting in slower inference speeds. YOLOv3
increased model complexity to improve accuracy, which led to an image detection efficiency
of only 18.3% compared to our model within the same timeframe. While Mask-RCNN
improved its runtime speed by 38.6 FPS compared to YOLOv3, its actual detection efficiency
was only 28.3% of our model.

Starting from YOLOv5, designers began emphasizing the concept of lightweight
models, reducing unnecessary convolution operations. This led to significantly higher
detection speeds for YOLOv5s, YOLOv5m, and YOLOv6s, achieving 294.1 FPS, 163.9 FPS,
and 277.8 FPS, respectively, although they still lagged behind our model’s 384.6 FPS.

We also conducted comparative experiments using the lightweight YOLOv7 (tiny)
algorithm with the NEU-DET dataset. Due to the reduction of redundant computations
during our model’s design phase, our proposed model surpassed YOLOv7 (tiny) in both
detection accuracy and achieved detection speeds approximately 1.8 times faster.

Electronics 2024, 13, 1388 15 of 19

Overall, our model performs exceptionally well in terms of running speed and demon-
strates a significant advantage in accuracy over other mainstream models.

Figure 13 displays the number of parameters (Params) for each compared model,
a metric reflecting the size of each model. The results reveal the following:

Figure 13. Comparison of model parameter quantity.

1. Our proposed algorithm holds a distinct advantage in parameter quantity compared
to larger models like YOLOv3 and Mask-RCNN, with parameter quantities of only
2.7% and 3.8% of their original model parameter quantities, respectively.

2. Compared to medium-sized models such as YOLOv6s and YOLOv5m, our proposed
algorithm reduces parameter quantity by approximately 13.4 M and 22.2 M, respectively.

3. Relative to smaller models like YOLOv7 (tiny), YOLOv5s, and YOLOv3 (tiny), our
proposed algorithm possesses only half, one-third, and one-fourth of their parameter
quantities, respectively. This suggests that our proposed algorithm is suitable for
both GPUs and CPUs as well as certain low-computing power NPUs, demonstrating
greater adaptability.

4. Compared to the original YOLOv8n algorithm, our parameter quantity has also been
reduced by 7%.

These results indicate that we have struck a balance between speed, accuracy, and the
number of parameters in detecting steel surface defects. Our proposed model demonstrates
both practicality and advancement. Figure 14 shows the detection results of various defect
samples by category.

4.6. Generalization Experiments and Results

To reaffirm the efficacy of our proposed model, we performed generalization com-
parisons between the YOLOv8n model and our proposed algorithm, using the publicly
available VOC2007 [31] and GC10 datasets [32]. The same experimental environment was
maintained for these comparative experiments.

As depicted in Table 3, our proposed algorithm outperformed the original YOLOv8n
on the VOC2007 dataset, with a notable increase in mAP@0.5 of 2.1%. The mAP@0.5:0.95
remained fundamentally unchanged relative to the original model.

Electronics 2024, 13, 1388 16 of 19

（a） （b） （c）

（d） （e） （f）

Figure 14. Defect detection results image.(a) Crazing, (b) inclusion, (c) patches, (d) pitted surface,
(e) rolled-in scale, (f) scratches.

Table 3. Experimental results on the VOC2007 dataset.

Models mAP@0.5 mAP@0.5:0.95

YOLOv8(n) 61.9 42
Ours 64 41.8

Note: Bold and underlined data represent the optimal values.

The algorithm demonstrated a significant enhancement over the original YOLOv8n on
the GC10 dataset (Table 4), with increases of 1.9% and 1.3% in mAP@ 0.5 and mAP@ 0.5:0.95,
respectively. This affirms that our improved algorithm not only achieved progress on the
NEU-DET dataset but also exhibited considerable improvement on publicly available
datasets, indicating good generalization capability of the improved model.

Table 4. Experimental results on the GC10 dataset.

Models mAP@0.5 mAP@ 0.5:0.95

YOLOv8(n) 67.1 33.2
Ours 69 34.5

Note: Bold and underlined data represent the optimal values.

4.7. Ablation Experiments and Results

To scrutinize the improvements offered by the three proposed enhancements to the net-
work model, we undertook ablation experiments on the NEU-DET dataset using YOLOv8n
as the baseline network (Table 5). The experimental environment and parameter settings
remained consistent.

Table 5 reveals that employing the CA_C2f_Faster module alone augmented the speed
of the baseline network by 41.1 FPS and reduced the parameter quantity by 11.7%. This is
primarily due to the employment of lightweight Pconv for feature extraction, combined

Electronics 2024, 13, 1388 17 of 19

with the CA attention module with fewer parameters and computations, effectively en-
hancing the model’s running speed and reducing its parameter quantity. The experiment
discovered that combining the CA_C2f_Faster module with Ghost Conv further improved
FPS and model parameter quantity, yielding optimal results among all experimental groups,
with a speed of 439.8 FPS and a parameter quantity of 2.56M. Remarkably, its model accu-
racy also ranked second in the experiments, second only to our final model, revalidating
the effectiveness of our designed CA_C2f_Faster in improving running speed and reducing
model parameters.

Table 5. Ablation experiments results.

CA_C2f_Faster GhostConv DCnv2 R mAP@0.5 mAP@0.5:0.95 FPS Params
(M)

- - - 71.5 74.4 41.2 393.7 3√
- - 67.8 73 39.6 434.8 2.65

-
√

- 72.8 75.2 41.8 416.6 2.91
- -

√
68.4 74.6 41.8 360.1 3.23√ √

- 68.8 75.5 42.9 439.8 2.56√
-

√
66.8 73 40.5 370.4 2.88

-
√ √

68.7 74.4 41.5 353.4 3.14√ √ √
73.8 75.8 43 384.6 2.8

Note: “
√

” stands for the usage of this module. Bold and underlined data represent the
optimal values.

Ultimately, the incorporation of the DCnv2 module led to peak accuracy. The model
saw a 2.3% rise in recall rate and achieved an mAP@0.5 of 75.8%, surpassing the baseline
model, and mAP@ 0.5:0.95 increased by 1.8%. This suggests that the DCnv2 module,
which incorporates deformable convolutional thinking, is effective in capturing features of
varying sizes and positions to learn richer semantic features. This makes the network model
more comprehensive in detecting steel surface defects and improves its performance.

5. Conclusions

Addressing issues of inadequate feature extraction capability, low detection accuracy,
insufficient feature fusion, and susceptibility to background interference in defect detection
on steel surfaces using YOLOv8n, this paper introduces a new algorithm termed GDCP-
YOLO. It effectively combines the advantages of deformable convolution and attention
mechanism, achieving efficient feature extraction. By introducing the idea of reducing
redundant computation, it performs better in detecting defects in steel while maintaining
the detection speed. We have verified the effectiveness and generalization ability of the
model through extensive experiments. On the NEU-DET dataset, mAP@0.5:0.95 reached
43%, which is a 1.8% improvement compared to the original YOLOv8n network, with a
7% reduction of model parameters and similar running speed to the baseline model. Our
model also demonstrated excellent generalization performance. On two public datasets,
VOC2007 and GC10, mAP@0.5 was improved by 2.1% and 1.9%, respectively, compared to
the YOLOv8n model. The detection accuracy is superior to other mainstream algorithms
and can quickly and accurately detect surface defects on steel, especially for targets with
unclear boundaries between the target and background. The feasibility of the new algorithm
has been demonstrated. However, there are still deficiencies in detecting crazing defects,
which may be due to inaccurate labeling of this type of defect. In the future, we will focus
on further researching solutions to the labeling bias issue in surface defect detection on
steel and strive to further improve the model’s detection speed and accuracy. Our model
provides a reference for other scholars in lightweight research on surface defect detection
on steel, while also enhancing detection speed and accuracy. This lays a foundation for
future industrial applications and holds broad market prospects.

Electronics 2024, 13, 1388 18 of 19

Author Contributions: All of the authors extensively contributed to the work. Conceptualization,
Z.Y. (Zhaohui Yuan), H.N., Z.Y. (Zhengzhe Yang) and X.T.; methodology, Z.Y. (Zhaohui Yuan) and
H.N.; validation, Z.Y. (Zhengzhe Yang) and H.N.; investigation, X.T. and H.N.; writing—original
draft preparation, Z.Y. (Zhaohui Yuan) and H.N.; writing—review and editing, Z.Y. (Zhaohui Yuan).
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Province Science Foundation of Jiangxi, with grant
numbers 20224BAB202030 and 20202ACBL202009.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request. The download link for the dataset used in this paper is as follows.
https://aistudio.baidu.com/datasetdetail/195425 (accessed on 1 March 2024).

Conflicts of Interest: All authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Schlegel, J. The World of Steel: On the History, Production and Use of a Basic Material; Springer Nature: Berlin/Heidelberg,

Germany, 2023.
2. Papandreou, G.; Kokkinos, I.; Savalle, P.A. Modeling local and global deformations in deep learning: Epitomic convolution,

multiple instance learning, and sliding window detection. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 390–399.

3. Felzenszwalb, P.; McAllester, D.; Ramanan, D. A discriminatively trained, multiscale, deformable part model. In Proceedings of
the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8.

4. Zou, Z.; Chen, K.; Shi, Z.; Guo, Y.; Ye, J. Object detection in 20 years: A survey. Proc. IEEE 2023, 111, 257–276. [CrossRef]
5. Zaidi, S.S.A.; Ansari, M.S.; Aslam, A.; Kanwal, N.; Asghar, M.; Lee, B. A survey of modern deep learning based object detection

models. Digit. Signal Process. 2022, 126, 103514. [CrossRef]
6. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

7. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In
Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 213–229.

8. Xie, X.; Wu, D.; Xie, M.; Li, Z. GhostFormer: Efficiently amalgamated CNN-transformer architecture for object detection. Pattern
Recognit. 2023, 148, 110172. [CrossRef]

9. Moon, J.; Jeon, M.; Jeong, S.; Oh, K.Y. RoMP-transformer: Rotational bounding box with multi-level feature pyramid transformer
for object detection. Pattern Recognit. 2024, 147, 110067. [CrossRef]

10. Sunkara, R.; Luo, T. YOGA: Deep object detection in the wild with lightweight feature learning and multiscale attention. Pattern
Recognit. 2023, 139, 109451. [CrossRef]

11. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

12. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
13. Jocher, G.; Stoken, A.; Borovec, J.; Changyu, L.; Hogan, A.; Diaconu, L.; Ingham, F.; Poznanski, J.; Fang, J.; Yu, L.U. YOLOv5:

v3.1-Bug Fixes and Performance Improvements. Zenodo 2020. [CrossRef]
14. Guo, Z.; Wang, C.; Yang, G.; Huang, Z.; Li, G. Msft-yolo: Improved yolov5 based on transformer for detecting defects of steel

surface. Sensors 2022, 22, 3467. [CrossRef] [PubMed]
15. Wang, Y.; Xu, Y.; Yu, Z.; Xie, G. Color-patterned fabric defect detection based on the improved YOLOv5s model. Text. Res. J. 2023,

93, 00405175231178947. [CrossRef]
16. Zheng, Z.; Chen, N.; Wu, J.; Xv, Z.; Liu, S.; Luo, Z. EW-YOLOv7: A Lightweight and Effective Detection Model for Small Defects

in Electrowetting Display. Processes 2023, 11, 2037. [CrossRef]
17. Wang, L.; Liu, X.; Ma, J.; Su, W.; Li, H. Real-time steel surface defect detection with improved multi-scale YOLO-v5. Processes

2023, 11, 1357. [CrossRef]
18. Tang, B.; Chen, L.; Sun, W.; Lin, Z.k. Review of surface defect detection of steel products based on machine vision. IET Image

Process. 2023, 17, 303–322. [CrossRef]
19. Lou, H.; Duan, X.; Guo, J.; Liu, H.; Gu, J.; Bi, L.; Chen, H. DC-YOLOv8: Small-Size Object Detection Algorithm Based on Camera

Sensor. Electronics 2023, 12, 2323. [CrossRef]
20. Wang, C.Y.; Liao, H.Y.M.; Wu, Y.H.; Chen, P.Y.; Hsieh, J.W.; Yeh, I.H. CSPNet: A new backbone that can enhance learning

capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle,
WA, USA, 14–19 June 2020; pp. 390–391.

21. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

https://aistudio.baidu.com/datasetdetail/195425
http://doi.org/10.1109/JPROC.2023.3238524
http://dx.doi.org/10.1016/j.dsp.2022.103514
http://dx.doi.org/10.1016/j.patcog.2023.110172
http://dx.doi.org/10.1016/j.patcog.2023.110067
http://dx.doi.org/10.1016/j.patcog.2023.109451
http://dx.doi.org/10.5281/zenodo.4154370
http://dx.doi.org/10.3390/s22093467
http://www.ncbi.nlm.nih.gov/pubmed/35591155
http://dx.doi.org/10.1177/00405175231178947
http://dx.doi.org/10.3390/pr11072037
http://dx.doi.org/10.3390/pr11051357
http://dx.doi.org/10.1049/ipr2.12647
http://dx.doi.org/10.3390/electronics12102323

Electronics 2024, 13, 1388 19 of 19

22. Feng, C.; Zhong, Y.; Gao, Y.; Scott, M.R.; Huang, W. TOOD: Task-aligned One-stage Object Detection. In Proceedings of the 2021
IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 3490–3499.

23. Zheng, Z.; Wang, P.; Ren, D.; Liu, W.; Ye, R.; Hu, Q.; Zuo, W. Enhancing geometric factors in model learning and inference for
object detection and instance segmentation. IEEE Trans. Cybern. 2021, 52, 8574–8586. [CrossRef] [PubMed]

24. Zhu, X.; Hu, H.; Lin, S.; Dai, J. Deformable convnets v2: More deformable, better results. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 9308–9316.

25. Hou, Q.; Zhou, D.; Feng, J. Coordinate attention for efficient mobile network design. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13713–13722.

26. Chen, J.; Kao, S.h.; He, H.; Zhuo, W.; Wen, S.; Lee, C.H.; Chan, S.H.G. Run, Do not Walk: Chasing Higher FLOPS for Faster
Neural Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC,
Canada, 17–24 June 2023; pp. 12021–12031.

27. Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. Ghostnet: More features from cheap operations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1580–1589.

28. Song, K.; Yan, Y. A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects. Appl.
Surf. Sci. 2013, 285, 858–864. [CrossRef]

29. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

30. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,
Venice, Italy, 22–29 October 2017; pp. 2961–2969.

31. Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J.
Comput. Vis. 2010, 88, 303–338. [CrossRef]

32. Lv, X.; Duan, F.; Jiang, J.j.; Fu, X.; Gan, L. Deep metallic surface defect detection: The new benchmark and detection network.
Sensors 2020, 20, 1562. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TCYB.2021.3095305
http://www.ncbi.nlm.nih.gov/pubmed/34437079
http://dx.doi.org/10.1016/j.apsusc.2013.09.002
http://dx.doi.org/10.1007/s11263-009-0275-4
http://dx.doi.org/10.3390/s20061562
http://www.ncbi.nlm.nih.gov/pubmed/32168887

	Introduction
	Structural Characteristics of the Reference Model
	The GDCP-YOLO Framework: Enhancing Steel Surface Defect Detection
	DCNv2 Module
	 CA_C2f_Faster Module
	Ghost Conv

	Experimentation and Analysis of Results
	Dataset
	Experimental Environment and Parameter Settings
	Evaluation Metrics
	Model Training
	Comparative Experiments and Results
	Generalization Experiments and Results
	Ablation Experiments and Results

	Conclusions
	References

