
Citation: Duan, G.; Chen, J.; Zhou, Y.;

Zheng, X.; Zhu, Y. Large Language

Model Inference Acceleration Based

on Hybrid Model Branch Prediction.

Electronics 2024, 13, 1376. https://

doi.org/10.3390/electronics13071376

Academic Editor: Arkaitz Zubiaga

Received: 4 March 2024

Revised: 1 April 2024

Accepted: 2 April 2024

Published: 5 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Large Language Model Inference Acceleration Based on Hybrid
Model Branch Prediction
Gaoxiang Duan 1,2, Jiajie Chen 1,2, Yueying Zhou 1,2 , Xiaoying Zheng 1,2,* and Yongxin Zhu 1,2,*

1 Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China;
duangx@sari.ac.cn (G.D.); chenjiajie@sari.ac.cn (J.C.); zhouyueying@sari.ac.cn (Y.Z.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: zhengxy@sari.ac.cn (X.Z.); zhuyongxin@sari.ac.cn (Y.Z.)

Abstract: As the size of deep learning models continues to expand, the elongation of inference time
has gradually evolved into a significant challenge to efficiency and practicality for autoregressive
models. This work introduces a hybrid model acceleration strategy based on branch prediction,
which accelerates autoregressive model inference without requiring retraining and ensures output
consistency with the original model. Specifically, the algorithm employs two models with different
parameter sizes aimed at the same task. The smaller model generates a series of potential tokens that
are then parallelly validated by the larger model to determine their acceptability. By orchestrating
the workflow of the large and small models through a branch-prediction strategy, the algorithm
conceals the validation time of the larger model when predictions are successful, thereby accelerating
inference. We propose a binomial distribution-based prediction function that blends theoretical
principles with empirical evidence, specifically designed for the nuanced requirements of accelerating
inference within a hybrid model framework. The entire algorithm was designed and implemented
on the llama model for text generation and translation tasks. The experimental results indicate
significant improvements. The proposed algorithm achieves a 1.2× to 3.4× increase in inference
speed compared to the original model, consistently outperforming the speculative sampling inference
acceleration algorithm.

Keywords: large language model; auto regressive model; branch prediction; decoder; inference

1. Introduction

Autoregressive large language models (LLMs) based on the transformer [1] archi-
tecture have revolutionized the field of natural language processing (NLP). The scale
advantage of these models has brought significant performance improvements to language
generation tasks, contributing to groundbreaking improvements across a wide array of
applications, from automated content creation to real-time translation services [2–4]. The
pivotal role of LLMs in advancing the frontiers of artificial intelligence and their utility in
processing and understanding complex language patterns cannot be overstated.

However, the evolution of these models introduces a critical challenge: their increased
complexity leads to longer inference times. As the size and sophistication of these models
grow, so does the computational cost required to generate outputs, leading to inefficiencies
that limit their practical applicability, especially in scenarios demanding real-time responses.
This burgeoning problem has catalyzed a flurry of research aimed at devising strategies to
accelerate inference without sacrificing the models’ output quality, a crucial endeavor for
sustaining the momentum of innovation in the field of NLP.

Efforts to mitigate the inference bottleneck of LLMs in NLP have concentrated on
two principal strategies. Firstly, optimizations of transformer model architectures aimed
at enhancing decoder efficiency have been pursued to diminish the overall runtime [4–7].
Such optimizations, however, often necessitate extensive retraining, incurring significant

Electronics 2024, 13, 1376. https://doi.org/10.3390/electronics13071376 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13071376
https://doi.org/10.3390/electronics13071376
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0005-0690-7185
https://orcid.org/0000-0002-1813-1792
https://doi.org/10.3390/electronics13071376
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13071376?type=check_update&version=2

Electronics 2024, 13, 1376 2 of 17

computational costs and negating the benefits of existing pretrained models. Secondly,
hybrid model strategies have been explored, where smaller models assist in the initial
generation task, potentially accelerating the process. Despite their promise, these strategies
are limited by the inherent output quality discrepancies between different model sizes,
which can adversely affect overall performance. Google’s 2023 proposal of a hybrid model
strategy called speculative sampling [8], which employs small models for draft generation
and large models for draft validation, marked a significant departure by decoupling the
sequential execution of large models in the generation process, thereby achieving notable
inference time reductions. However, the emergence of workflow blockages during the
validation phase has been identified as a critical performance bottleneck. In response,
building upon the principles of speculative sampling, this study introduces an advanced
fast inference algorithm that incorporates branch-prediction techniques. Specifically de-
signed to curtail the inference time of large autoregressive models without sacrificing the
output quality, this refined approach addresses the limitations inherent in prior methods.
By leveraging and extending the speculative sampling framework, our proposed solution
significantly enhances the inference efficiency within the NLP domain, offering a sophisti-
cated advancement over existing strategies. To address the blocking issue in the validation
process of hybrid model inference, this paper introduces branch-prediction technology
and proposes a fast inference algorithm for hybrid models based on branch prediction.
By immediately predicting the possible starting positions with the help of a predefined
prediction function after the small model execution is completed, the parallel execution of
the small model and large model validation is achieved. This method significantly reduces
the inference time.

The contributions of this paper include the following:

1. Firstly, we propose a hybrid model acceleration inference method based on branch
prediction. By using branch prediction, the validation time during hybrid model
inference would be reduced, which significantly reduces the inference time.

2. Secondly, we construct a branch-prediction function based on the binomial distribu-
tion assumption to fit the empirical distribution, further accelerating the inference
speed.

3. Lastly, through experiments, it is demonstrated that the proposed algorithm achieves
better acceleration effects in tasks of generating combinations of models of
different scales.

The remainder of this paper is organized as follows: We discuss the related works
in Section 2. The whole method is described in Section 4, and the detailed analysis is
introduced in Section 5. We present the experimental results in Section 6. The conclusion is
drawn in Section 7.

2. Related Work

There has been extensive research on efficient inference for large models [7,9,10]. Pre-
vious work on efficient inference for LLMs has mainly focused on two aspects: accelerating
the inference speed of the single-round decoder and the entire inference process. One cate-
gory of techniques attempts to reduce the computational complexity by changing the model
structure to accelerate single-model inference, such as distillation [11], sparsification [12],
quantization [13], and architectural modifications [14]. These methods have accelerated the
model-inference process but require the model to be retrained, which has the drawback
of not being able to use existing pretrained models. Moreover, due to modifications in
the model structure, the final output cannot maintain consistency with the original target
model, resulting in considerable performance loss. Knowledge distillation transfers knowl-
edge from large models to smaller ones to reduce computational load, but this process
often requires additional training for the smaller models. Model sparsification techniques
reduce the number of non-zero parameters in the model to lower storage and computa-
tional demands, which may lead to a decrease in the model expressiveness. Quantization
methods compress the model by reducing the bit width of the model parameters, which

Electronics 2024, 13, 1376 3 of 17

can significantly reduce computational resources while maintaining performance but may
introduce quantization errors. Architectural modifications optimize inference speed by
redesigning the model structure, such as introducing more efficient attention mechanisms,
but may require complete model restructuring.

Another category, adaptive computation methods, attempts to accelerate the entire
inference process. These methods are based on an important observation: during the
inference-generation process, some simple generation tasks can be approximated by smaller
models. Prior work has made related attempts [4,7,13,15]. Recently, Han et al. [16] proposed
an adaptive computation method that adapts the computational effort to the difficulty of
the problem. Sukhbaatar et al. [17] accelerated inference by having a small model handle
some simple tasks in the output. However, these methods also cannot maintain consistent
output with the original target model. In 2023, the Google team, led by Leviathan et al. [8],
proposed a speculative sampling-based hybrid model adaptive inference method, using
a small model as the approximate model. By generating drafts through the approximate
small model and validating with the target large model, the time dependency in the
autoregressive model-inference process is decoupled, allowing the inference process of the
large model to be parallelized. The speculative sampling-based hybrid model acceleration
inference algorithm effectively speeds up the inference time and has been applied in actual
large language model inference scenarios. The comparison between different acceleration
methods is listed in Table 1.

However, in the validation process of the large model, the generation by the small
model must wait for the validation by the target large model to finish before restarting,
making workflow blocking the main bottleneck in the inference speed of hybrid model
algorithms.

Table 1. Comparison of different acceleration algorithms.

Acceleration Algorithms Acceleration Type Need Retrain Align Original Output

distillation [11]

single-round decoder

Yes No
sparsification [12] Yes No
quantization [13] Yes No

architectural modifications [14] Yes No

confident adaptive transformers [17]
entire inference process

Yes No
fast transformer decoding [18] Yes No

speculative sampling [8] No Yes

3. Prior Knowledge

Enhancing the speed of inference for modern LLMs has become an unavoidable
challenge. Traditional inference methods are confronted with substantial computational
resource consumption, which hinders the realization of real-time inference demands. Re-
cently, speculative sampling [8] has been proposed as an effective method to accelerate
inference and has demonstrated superior performance in various studies. However, despite
the achievements in accelerating inference, the potential for efficiency improvement in
speculative sampling has not been fully explored. In light of this, our study aims to explore
the application of branch prediction, a technology widely used in computer architecture, in
speculative sampling to further enhance the efficiency of hybrid model inference accelera-
tion algorithms. By integrating the core concepts from both domains, we aspire to offer a
new perspective and methodology for accelerating inference in LLMs. This section will
introduce the fundamental principles and application backgrounds of speculative sam-
pling and branch prediction, laying the groundwork for understanding the contributions
of our work.

3.1. Speculative Sampling

Before delving into our research, it is crucial to understand the core idea and implemen-
tation of speculative sampling. Speculative sampling is a method designed to accelerate
the inference process of large language models. It is predicated on the assumption that

Electronics 2024, 13, 1376 4 of 17

not all steps in the inference process of a large autoregressive language model equally
impact the quality of the final output. Therefore, by predicting which steps have minimal
impact on the output quality and using smaller, faster models for inference at these steps,
the inference process can be significantly accelerated without substantially sacrificing the
output quality. The implementation of speculative sampling involves two key components:
a smaller, faster model Ms with s(x|x < t) being the distribution of the small model Ms
based on the prefix x < t and the original, larger model Mb with b(x|x < t) being the
distribution of the large model Mb based on the prefix x < t. The whole inference process
is listed as follows:

1. The smaller model is used to quickly generate a series of inference output drafts
n ∈ Z+ characters (tokens) {xi|xi ∼ s(x), 1 ≤ i ≤ n}.

2. These drafts are then verified and, if necessary, corrected by the original large model.
In detail, the number of accepted drafts δ is defined as

δ = min(i − 1 | 1 ≤ i ≤ n, εi >
bi(x)
si(x)

∪ n) (1)

where εi ∼ U(0, 1).
3. After validation, adjust the result:{

{xi | 1 ≤ i ≤ δ}, n = δ

{x1, ...xδ, α}, n > δ
(2)

where α is defined to ensure the final output is just like the sample from the large
model x ∼ b(x):

α ∼ norm(max(0, b(x|x < t)− s(x|x < t))) (3)

The essence of this approach lies in the ability of the smaller model to predict and
skip over parts that have little impact on the final output, concentrating computational
resources on inference steps critical to the output quality. Figure 1 illustrates an example of
how speculative sampling accelerates the entire generation process.

Inference Time

token1
token2
token3
token4

token7
token6
token5

Accept

Reject

Speculative Sampling Throughput: !
"#$

= !
%!

Original Throughput：	%
$

Inference Time

token1
token2
token3
token4

Small Model

Large Model

Figure 1. The schematic diagram of speculative sampling compared with original generation. In
the original output scenario, due to the autoregressive nature of the model, the generation of each
subsequent word must commence only after the preceding word has been finalized, with the large
model requiring six units of time for a single execution. However, under the speculative sampling
approach, this sequential execution is limited to the generation phase by a faster, smaller model, which

Electronics 2024, 13, 1376 5 of 17

requires only one unit of time for execution. The larger model’s validation process can then be con-
ducted in parallel, based on the content already produced by the smaller model, thereby accelerating
inference speed and increasing throughput by efficiently utilizing the time differential between the
small and large models.

3.2. Branch Prediction

Branch prediction is a pivotal technique in computer architecture, aimed at enhancing
the efficiency of executing instruction sequences by modern processors. The core idea
revolves around predicting the behavior of conditional branches such as if–else statements
in a program to reduce delays caused by waiting for branch decisions. In processor design,
branch prediction allows the processor to preload and execute instructions predicted as the
subsequent steps before the actual branch outcome is determined. When predictions are
accurate, this significantly improves the execution efficiency.

The key to implementing branch prediction lies in the design of prediction algo-
rithms, which must predict the execution of conditional branches in a program quickly
and accurately. The most basic branch-prediction strategies include static prediction and
dynamic prediction:

• Static prediction typically relies on simple rules, such as always predicting that a
branch will go in a specific direction (for example, always predicting that a loop
will continue).

• Dynamic prediction, on the other hand, depends on information collected at runtime,
predicting future branch decisions based on historical branch behavior. This category
includes a range of complex algorithms, such as Two-Level Adaptive Training and
History Table-Based Prediction.

4. Methods

This paper proposes a hybrid model acceleration inference algorithm based on branch
prediction, with the schematic diagram shown in Figure 2. Section 3.1 introduces the
workflow of the hybrid model generation algorithm based on branch prediction. Section 3.2
discusses the design of the prediction function in the acceleration algorithm.

4.1. Hybrid Model Inference Acceleration Algorithm Based on Branch Prediction

The inference acceleration algorithm based on branch prediction proposed in this paper
divides the overall generation task into multiple rounds, each comprising the following
four steps. The algorithm flowchart is shown in Figure 1.

Let Mb be the target large model to be accelerated, with b(x|x < t) being the distri-
bution of the target model Mb based on the prefix x < t. The time required for a single
inference of the target large model Mb is denoted as T. We define Ms as a smaller-scale
approximate model tasked with the same inference job, and the probability distribution of
this model, conditioned on the prefix x < t, is referred to as s(x|x < t). The time needed
for a single inference of the approximate model Ms is t, which is T divided by k(T/k).

1. Small Model Draft Generation: Initially, the small model Ms generates drafts of
n ∈ Z+ tokens {xi | xi ∼ s(x), 1 ≤ i ≤ n}, which could be the potential generation
output after the validation of the large model. The objective of this phase is to swiftly
produce preliminary inference outcomes using the small model. These initial results
then enable the large model to overcome sequence limitations by utilizing these drafts
as a foundation.

2. Branch Prediction: The prediction function ϕ(x) is employed to predict the number
of acceptable drafts γ. The first γ tokens are accepted, and γ + 1 is set as the starting
point for the next round of small model Ms inference, followed by the commencement
of the next round generation. By introducing branch prediction, we optimized the
scheduling of the entire inference process. In the subsequent steps, we will observe
that the total inference time is reduced when predictions are accurate.

Electronics 2024, 13, 1376 6 of 17

3. Large Model Validation: Concurrently with the generation of the next round of drafts
by the small model, the large model Mb parallelly evaluates all draft tokens from
Ms of this round and their respective probabilities to determine the actual number
of accepted δ ∈ Z. If ϵ ≥ b(xi)/s(xi), it signifies that the output result of the target
model at this position is consistent with that of the approximate model, accepting the
token generated by the approximate model at the ith position of this round; otherwise,
it is considered a failure in draft generation by the approximate model at this position.
The longest consecutive number of accepted tokens starting from the initial position
is counted as the real number of accepted δ for this round:

δ = min(i − 1 | 1 ≤ i ≤ n, εi >
bi(x)
si(x)

∪ n) (4)

The validation step will determine the actual acceptable draft length, similar to
speculative sampling. The retained tokens will ensure consistency with the results
directly sampled from the large model.

4. Branch-Prediction Result Check: After the validation by the large model Mb is com-
pleted, the prediction for this round is checked:

Θ(δ, γ) = T − (δ − γ)t (5)

If Θ(δ, γ) > 0, the prediction is deemed successful, and the small model proceeds to
the next round of draft generation. Otherwise, in the event of prediction failure, the
process reverts to the verification point and restarts the generation process. The deter-
mination of whether a prediction is successful is based on the comparison between
the predicted values and the actual values. Whether the prediction is successful or
not also decides if the inference process can be accelerated.

Inference Time

token1
token2
token3
token4

token7
token6
token5

Accept

Reject

Throughput = p + (1-p) !
"!
> !

"!

Small Model

Large Model
token1
token2
token3
token4

token7
token6
token5

Predict Success: p Throughput: 1

token1
token2
token3
token4

token7
token6
token5

Predict Success: 1 - p Throughput: !
#$%

= !
"!

Decided by Predict Function Parallel Validation

Inference Time

Inference Time

Figure 2. The schematic diagram of hybrid model inference based on branch prediction. For a single
execution, the large model requires six units of time, whereas the small model requires one unit of
time. Utilizing a predictive function allows for the immediate determination of a new starting point
upon the completion of small model generation, enabling parallel validation by the large model.
In scenarios where the prediction is successful, the validation time of the large model is effectively
concealed, rendering it negligible from a runtime perspective. Conversely, in cases of prediction
failure, the runtime remains consistent with that of speculative sampling. Considering both successful
and unsuccessful predictions, our approach invariably enhances inference speed.

Electronics 2024, 13, 1376 7 of 17

The steps mentioned above constitute the complete algorithm implementation. The
method proposed in this article is built upon the foundation of speculative sampling
schemes, further enhancing efficiency. It completely conceals the generation time of the
large model when predictions are successful and maintains the same generation speed
as speculative sampling when predictions fail. This means that the introduction of a
branch-prediction strategy will result in a speed increase, even with a poor prediction
accuracy rate.

4.2. Design of Prediction Function for Acceleration

Before the inference starts, based on the determined Mb, Ms, and the completion
number n generated each round, obtain the probability density function ϕ(x) for the
number of tokens that can be accepted each round. The parameters a and b are determined
by the choice of models Mb, Ms, and n. The probability density function, as the prediction
function in branch prediction, is determined before the inference starts, and the predicted
value γ ∼ ϕ(x) is determined by sampling from the probability density function ϕ(x) with
1 ≤ γ ≤ n.

5. Analysis
5.1. Impact of Branch-Prediction Strategy on Throughput

This paper measures the inference speed of different strategies using the number of
tokens generated per unit time, which is the throughput ω. Since the proposed acceleration
method aims to align with the target model output, a higher throughput indicates less total
inference time used. Here, we analyze and compare the throughput of our acceleration
algorithm with the standard inference process and the fast inference algorithm based on
speculative sampling [8]. The throughput of the target large model is

ωo = 1/T (6)

The throughput of the fast inference algorithm based on speculative sampling is

ωs =
β(n)

nt + T
(7)

where β is the average number of tokens that can be accepted in each round of n generated
tokens. A larger β indicates a more significant acceleration effect. The throughput of the
inference acceleration algorithm proposed in this paper is

ωb = p × β(n)
nt + T

+ (1 − p)× β(n)
nt + (δ − γ)t

(8)

where p represents the probability of correct branch prediction. The impact of the branch-
prediction strategy on time depends on the outcome of the branch prediction. When the
prediction result is correct, which is the check function Θ(δ, γ) ≥ 0, the round of generation
saves the time needed for large model validation. When the prediction result is incorrect,
which is the check function Θ(δ, γ) < 0, a recall operation is performed to return to the last
generation end point and choose the correct position to restart. At this time, the time spent
is the same as the algorithm without branch prediction [8]. Based on the above analysis,
the fast inference algorithm based on branch prediction proposed in this paper compared
to algorithm [8]:

ωb = p × β(n)
nt + T

+ (1 − p)× β(n)
nt + (δ − γ)t

≥ β(n)
nt + T

= ωs (9)

Overall, compared to the fast inference algorithm based on speculative sampling,
choosing the acceleration algorithm of this paper will reduce the inference time. The degree

Electronics 2024, 13, 1376 8 of 17

of acceleration depends on the effectiveness of the prediction function, i.e., the size of the
probability p of correct branch prediction.

5.2. Prediction Function Optimization
5.2.1. Prediction Function Based on Independent and Identically Distributed (IID)
Theory Analysis

The choice of the prediction function directly affects our acceleration effect. Here, this
paper follows the assumption of speculative sampling [8]; that is, each time the output of
the approximate model and the target model is consistent is an independent and identically
distributed event. At this time, the probability p(k) of the first k words being correctly
output is

p(k) = αk(1 − α) (10)

where α ∈ [0, 1] is the probability that the output of the approximate model is consistent
with the target model given the same prefix. Based on the IID assumption and according to
the probability density function, the distribution function regarding the correct times has
the following characteristics:

• The probability density distribution function is a monotonically decreasing convex
function.

• There is a significant increase in probability at n compared to the adjacent probability
before it. The probability at n should be the sum of all probabilities greater than or
equal to n; that is:

p(n) = 1 −
n−1

∑
i=1

αi(1 − α) = 1 − α + αn (11)

Figure 3 shows the possible probability distribution functions under different α when
the single-round generation count n = 15 is based on the I.I.D. assumption.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9 10

Fr
eq

ue
nc

y

Num of consecutive correct predictions

P=0.5 P=0.6 P=0.7

P=0.8 P=0.9

Figure 3. Probability distribution of the number of correct predictions based on the I.I.D. assumption.

Electronics 2024, 13, 1376 9 of 17

5.2.2. Prediction Function Based on Empirical Distribution Experimental Analysis

This paper uses the llama model 15 M as the approximate model and 42 M as the
target model, counting the results of 500 text-generation-task experiments. The statistics of
the consecutive correct prediction frequency for single-round counts of n = 10 and n = 15
are shown in Figure 4.

From the figure, it can be observed that the frequency distribution of correct predictions
has the following characteristics:

• The continuous approximation function of the frequency distribution is a monotoni-
cally decreasing convex function.

• There is a significant abnormal increase in the frequency distribution at the end n
compared to the adjacent frequency data before it.

0

50

100

150

200

250

0 2 4 6 8 10 12 14

Fr
eq

ue
nc

y
: h

un
dr

ed

Num of consecutive correct predictions

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9
Fr

eq
ue

nc
y

: h
un

dr
ed

Num of consecutive correct predictions

Figure 4. Frequency distribution of the number of correct predictions.

5.2.3. Determination of the Prediction Function

The theoretical probability distribution function and the frequency distribution ob-
tained from the empirical distribution have similar distribution function characteristics:
both are monotonically decreasing convex functions, and there is a significant increase at
n compared to the adjacent data before it. The similarity of the frequency distribution to
the frequency distribution to some extent demonstrates the reliability of the theoretical
assumption in 4.2. Further, the I.I.D. assumption is a simple approximation of reality; there-
fore, this paper adds two correction terms to more closely fit the final empirical probability
density function. The final prediction function ϕ(x) is obtained as

ϕ(x) =
{

apx(1 − p) + c, for 0 ≤ x ≤ n − 1
1 − ∑n−1

i=0 [api(1 − p) + c], for x = n
(12)

where a and c are parameters of the correction terms.
According to the prediction function, the impact of the number of drafts generated

per round is shown in Figures 5–7.

Electronics 2024, 13, 1376 10 of 17

0

5

10

15

20

25

30

35

40

1 3 5 7 9 11 13 15 17 19

Th
ro
ug
hp
ut
 :
to
ke
n/
s

Num of generations per epoch

BP, p=0.5

BP, p=0.8

BP, p=0.6

BP, p=0.7

BP, p=0.9

Target

Figure 5. The impact of the number of drafts generated per round by our work on throughput. BP
represents the method with branch-prediction strategy. The vertical bar represents the minimum
number of tokens that can be generated in a single round. Higher is better.

0

2

4

6

8

10

12

14

16

1 3 5 7 9 11 13 15 17 19

Th
ro

ug
hp

ut
 :t

ok
en

/s

Num of generations per epoch

Target

Non-BP, p=0.5 Non-BP, p=0.6

Non-BP, p=0.7 Non-BP, p=0.8

Non-BP, p=0.9

Figure 6. The impact of the number of drafts generated per round by the speculative sampling
strategy on throughput. Non-BP represents without branch prediction. The vertical bar represents
the minimum number of tokens that can be generated in a single round. Higher is better.

Electronics 2024, 13, 1376 11 of 17

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Th
ro

ug
hp

ut
 :t

ok
en

/s

Num of generations per epoch

BP, p=0.5

BP, p=0.8

BP, p=0.6
BP, p=0.7

BP, p=0.9
Non-BP, p=0.5

Non-BP, p=0.8

Non-BP, p=0.6
Non-BP, p=0.7

Non-BP, p=0.9
Target

Figure 7. The comparison of the impact of the number of drafts generated per round on throughput.
The vertical bar signifies the minimum number of tokens that can be generated in a single epoch.
A higher value is preferable. Given the same probability settings, the throughput of the method
employing branch prediction consistently surpasses that of the method without branch prediction.

6. Experiments
6.1. Experiments Setup

All the models were thoroughly pretrained on diverse text corpora prior to the ex-
periments. Both our approach and the benchmark speculative sampling algorithm ensure
that the outputs perfectly aligned with the target model, resulting in consistent outputs
across the three models compared. Our experiment focuses solely on the throughput of
each model.

The models used in this experiment are based on the llama [19] architecture, including
four different scales of models with parameter sizes of 260 K, 15 M, 42 M, and 110 M. Table 2
outlines the parameter configurations of the llama models utilized in our experiments. In
the experimental setup, the model temperature is set to 0.8, with top-p sampling at 0.9. The
use of top-p sampling ensures that tokens with minuscule probabilities are not sampled,
thus contributing to the efficiency and relevance of the generated text.

Table 2. Parameters of models at different scales.

Model Dimension Number of Attention
Heads Layers Parameters

260 K 64 8 5 260 K
15 M 288 6 6 15 M
42 M 512 8 8 42 M
110 M 768 12 12 110 M

6.2. The Impact of Branch-Prediction Algorithm across Diverse Model Scales

This section validates the proposed branch-prediction acceleration algorithm’s effec-
tiveness across a spectrum of model scales, ranging from small to large configurations. For
the text-generation task, this study employs the TinyStories dataset [20]. Meanwhile, the
translation tasks utilize the WMT 2018 English–French dataset [21].

Electronics 2024, 13, 1376 12 of 17

This experiment utilizes throughput as a quantitative measure to evaluate the models’
generation speed:

Throughput =
#generated tokens

time
=

1
computing time

(13)

This experiment compared the computation times of different algorithms under the
same model scale configuration. The comparative results of the computation time for the
text-generation task are presented in Figure 8, and those for the translation task are also
shown in Figure 9. Furthermore, the detailed throughput data for the text-generation task
are listed in Table 3 and for the translation task in Table 4.

0.0219

0.0614 0.0614

0.1631 0.1631 0.1631

0.02

0.0555

0.0396

0.1488

0.0819

0.0991

0.0153

0.0472

0.0282

0.1381

0.0636

0.0736

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

260K + 15M 260K + 42M 15M + 42M 260K + 110M 15M + 110M 42M + 110M

Co
m

pu
tin

g
Ti

m
e

: S

Configuration

Target Model

Speculative Sampling

Branch Prediction

Figure 8. Comparative analysis of computing times across various algorithms for text-generation
tasks under different model configurations: lower times indicate better performance.

0.032

0.0829 0.0829

0.2283 0.2283 0.2283

0.0221

0.0562

0.0445

0.1812

0.0887
0.0999

0.0168

0.0521

0.0322

0.1451

0.0751
0.0745

0

0.05

0.1

0.15

0.2

0.25

260K + 15M 260K + 42M 15M + 42M 260K + 110M 15M + 110M 42M + 110M

Co
m

pu
tin

g
Ti

m
e

: S

Configuration

Target Model

Speculative Sampling

Branch Prediction

Figure 9. Comparative analysis of computing times across various algorithms for translation tasks
under different model configurations: lower times indicate better performance.

The experimental results indicate that the branch-prediction algorithm proposed in
this paper, while maintaining the output consistency with the target model, achieves a
higher throughput than both the target large model and the speculative sampling algorithm
proposed by the Google team [8] across different tasks and model configurations.

In text-generation tasks, the branch-prediction algorithm demonstrates a significant
throughput improvement compared to both the target large model and the speculative

Electronics 2024, 13, 1376 13 of 17

sampling algorithm proposed by the Google team. Specifically, within the setup using a
260 K small model coupled with a 15 M target model, the branch-prediction algorithm
reached a throughput of 65.33 tokens/s. This is 1.3 times the throughput of the speculative
sampling algorithm at 50.12 tokens/s and 1.4 times higher than the target model’s 45.59 to-
kens/s. Remarkably, in the setup of 15 M plus 110 M, the branch-prediction algorithm
achieved a throughput of 15.73 tokens/s, which is 2.6 times the throughput of the target
large model at 6.13 tokens/s and substantially exceeds the speculative sampling algorithm’s
12.21 tokens/s. Table 5 demonstrates our approach in a text-generation task, achieving the
shortest computation time while maintaining a consistent content output.

In translation tasks, the branch-prediction algorithm continues to demonstrate its
superior efficacy. For instance, within the framework utilizing a 260 K small model in con-
junction with a 15 M target model, the branch-prediction algorithm attained a throughput
of 59.53 tokens/s. This performance is approximately 31% higher than the speculative
sampling algorithm’s 45.33 tokens/s and nearly 1.9 times the throughput of the target
model at 31.29 tokens/s. Even more impressive, in a configuration combining a 42 M small
model with a 110 M target model, the branch-prediction algorithm realized a throughput of
13.42 tokens/s. This rate is 1.34 times the throughput achieved by the speculative sampling
algorithm at 10.01 tokens/s and 3.4 times greater than the target model’s 4.38 tokens/s.
These outcomes underscore the branch-prediction algorithm’s remarkable acceleration
capability, especially in configurations involving larger models.

These results clearly demonstrate that the branch-prediction algorithm, while maintain-
ing output consistency with the target model, offers substantial performance improvements
in accelerating autoregressive model inference compared to the existing speculative sam-
pling algorithm. The achievement of such acceleration effects, especially in translation
and text-generation tasks with high-throughput demands, validates the effectiveness and
superiority of the branch-prediction algorithm in practical applications.

Additionally, the scale of the approximate model does not linearly correlate with
the acceleration effect. In the text-generation task targeting the 110 M model, the 15 M
approximate model achieved the highest acceleration effect of 2.6 times. In the translation
task, targeting the same 110 M model, the 42 M approximate model reached the highest
acceleration effect of 3.4 times. In practical applications, the appropriate approximate
model should be selected based on the specific task scenario and target model.

Table 3. Comparison of inference throughput under different hybrid model configurations in text-
generation tasks.

Hybrid Model Configuration Small Model Throughput
(tokens/s)

Target Model Throughput
(tokens/s)

Speculative Sampling
Throughput (tokens/s)

Branch-Prediction
Throughput (tokens/s)

260 K + 15 M 2400 45.59 50.12 65.33 (1.4×)
260 K + 42 M 2400 16.29 18.02 21.18 (1.3×)
15 M + 42 M 45.59 16.29 25.23 35.51 (2.2×)

260 K + 110 M 2400 6.13 6.72 7.24 (1.2×)
15 M + 110 M 45.59 6.13 12.21 15.73 (2.6×)
42 M + 110 M 16.29 6.13 10.09 13.58 (2.2×)

Table 4. Comparison of inference throughput under different hybrid model configurations in transla-
tion tasks.

Hybrid Model Configuration Small Model Throughput
(tokens/s)

Target Model Throughput
(tokens/s)

Speculative Sampling
Throughput (tokens/s)

Branch-Prediction
Throughput (tokens/s)

260 K + 15 M 1852 31.29 45.33 59.53 (1.9×)
260 K + 42 M 1852 12.06 17.79 19.21 (1.6×)
15 M + 42 M 31.29 12.06 22.48 31.01 (2.6×)

260 K + 110 M 1852 4.38 5.52 6.89 (1.6×)
15 M + 110 M 31.29 4.38 11.28 13.31 (3.2×)
42 M + 110 M 12.06 4.38 10.01 13.42 (3.4×)

Electronics 2024, 13, 1376 14 of 17

Table 5. Performance comparison in text-generation task between our work, speculative sampling,
and the origin method.

Method Origin (110 M) Speculative Sampling
(110M + 42 M) Our Work (110 M + 42 M)

Content

One day, Lily met a
Shoggoth. He was very shy,
but was also very generous.

Lily said “Hello Shoggy!
Can I be your friend?”

Shoggy was happy to have
a friend and said “Yes, let’s

explore the universe
together!” So they set off on

a journey to explore the
universe. As they travelled,

Shoggy was happy to
explain to Lily about all the

wonderful things in the
universe. At the end of the
day, Lily and Shoggy had

gathered lots of wonderful
things from the universe,
and they both felt very

proud. They promised to
explore the universe as one
big pair and to never stop

being generous to
each other.

One day, Lily met a
Shoggoth. He was very shy,
but was also very generous.

Lily said “Hello Shoggy!
Can I be your friend?”

Shoggy was happy to have
a friend and said “Yes, let’s

explore the universe
together!” So they set off on

a journey to explore the
universe. As they travelled,

Shoggy was happy to
explain to Lily about all the

wonderful things in the
universe. At the end of the
day, Lily and Shoggy had

gathered lots of wonderful
things from the universe,
and they both felt very

proud. They promised to
explore the universe as one
big pair and to never stop

being generous to
each other.

One day, Lily met a
Shoggoth. He was very shy,
but was also very generous.

Lily said “Hello Shoggy!
Can I be your friend?”

Shoggy was happy to have
a friend and said “Yes, let’s

explore the universe
together!” So they set off on

a journey to explore the
universe. As they travelled,

Shoggy was happy to
explain to Lily about all the

wonderful things in the
universe. At the end of the
day, Lily and Shoggy had

gathered lots of wonderful
things from the universe,
and they both felt very

proud. They promised to
explore the universe as one
big pair and to never stop

being generous to
each other.

Total Computing Time: s 18.10 10.99 8.10

6.3. Ablation Experiment on the Impact of Single-Round Token Generation Quantity on
Acceleration Effect

This section analyzes the impact of the number of tokens generated by the approximate
model in a single round on the acceleration effect, with the 110 M model as the target model
and the 15 M model as the approximate model in the text-generation experiment. The
minimum value of n must satisfy the condition that the single-round draft time is greater
than the target model’s single verification time:

n ≥ ⌈T/t⌉ (14)

In this experiment, the test range is chosen as n ∈ Z+, 8 ≤ n ≤ 20. The experimental
results are shown in Figure 10. From Figure 10, it can be seen that the number of tokens
generated in a single round, n, is negatively correlated with the acceleration effect. At n = 8,
we observe the optimal acceleration effect, achieving an inference speed of 15.73 tokens/s,
representing a 2.6-fold increase over the target model’s acceleration ratio. Conversely,
at n = 20, the acceleration effect diminishes to its lowest, with an inference speed of 7.11
tokens/s, marking only a 1.2-fold improvement in the acceleration ratio relative to the
target model. The impact of the number of tokens generated by the approximate model in
a single round on the acceleration effect is consistent with the prediction in Section 5.

6.4. Extreme Trade-Off Strategy: Exploring Exhaustive Methods

Further, this section presents a more extreme trade-off strategy to explore the limit
of time-friendly algorithms. After each execution of the small model, instead of branch
prediction, all possible cases are executed in parallel, while the large model performs
validation in parallel. After the next round of the small model execution is completed, the
validation work of the large model has also been finished. Choose the correct path among
the all-parallel small models verified as correct to continue execution and repeat the above
operation. The comparison diagram is shown in Figure 11.

The exhaustive method can completely hide the validation time of the large model
from a temporal perspective, but since it requires the parallel execution of n small models,
it also significantly increases the use of computing resources. This section chose the 15 M
and 110 M models for the text-generation-task experiment. The experimental results are
shown in Figure 12. From the figure, it can be seen that the strategy of using the exhaustive

Electronics 2024, 13, 1376 15 of 17

method reaches the highest inference speed of 20.01 tokens/s. However, it also increases
up to eight times the computing resources of the approximate model. As n increases, the
additional amount of the approximate model also continuously increases.

15.73

14.25

12.92

11.95

11.11

10.04

9.35

8.73
8.28

7.73 7.53 7.31

7.11

5

7

9

11

13

15

17

8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

TH
RO

UG
HP

UT
：

TO
KE

N
/S

NUM OF GENERATED TOKENS PER EPOCH

branch prediction

original

spectulative sampling

Figure 10. Comparison of different algorithms’ throughput as the number of tokens generated by the
approximate model in a single round changes. Higher is better.

Predict Right

Small Model Inference Once

Hybrid Model Inference
Based on Branch Prediction

Big Model Inference Once

Way 1

Way i

Way n

Hybrid Model Inference
Based on Exhaustive

Right Routine

Predict Right

Small Model Inference Once

Hybrid Model Inference
Based on Branch Prediction

Big Model Inference Once

Way 1

Way i

Way n

Hybrid Model Inference
Based on Exhaustive

Right Routine

Predict Wrong

Way 1

Way j

Way n

Figure 11. The comparison between the exhaustive method and the branch-prediction-based al-
gorithm for hybrid model inference highlights a fundamental difference in approach. Instead of
selecting a single potential starting point with the assistance of the branch-prediction function, the
exhaustive method enumerates all possible starting points and performs generation in parallel. This
approach significantly diminishes the time required for large model validation.

Electronics 2024, 13, 1376 16 of 17

Speculative sampling Branch prediction Exhaustive

12.21 15.73 20.01

1 1 8

Throughput(token/s)

Num of smaller models

Figure 12. Comparative analysis of computational resource consumption between exhaustive and
branch-prediction methods. This figure illustrates the comparison of computational resource con-
sumption between the exhaustive method and branch-prediction method in text-generation tasks.
The exhaustive method, achieving the highest inference speed of 20.01 tokens/s, correspondingly
incurs an up to 8-fold increase in computational resource usage. The graph distinctly shows how
the exhaustive method’s demand for computational resources exponentially grows with an increase
in n (the number of tokens generated in a single round), highlighting the importance of balancing
computational resources when choosing implementation strategies.

7. Conclusions

This study addresses the problem of performance bottlenecks caused by increasing
model sizes in large language model inference and proposes a hybrid model inference
acceleration algorithm based on branch prediction. By introducing a branch-prediction
scheduling strategy and designing personalized prediction functions for different model
combinations based on empirical distributions and theoretical assumptions, the inference
process is optimized for acceleration. The branch-prediction-based inference acceleration
algorithm proposed in this paper significantly improves inference speed while aligning
with the output of the target large model.

In terms of validating previous theories, this paper thoroughly analyzes existing re-
search attempts to accelerate large model inference and chooses a hybrid model acceleration
strategy to avoid the need for retraining models. It further introduces branch prediction to
accelerate hybrid inference and reduce workflow congestion. The research results show that
compared to the target model and the latest advanced acceleration efforts, the algorithm
proposed in this paper effectively enhances the inference speed. This method solves the
performance issue of the increased inference time in large language models, offering a
viable solution to the challenge of maintaining real-time inference capabilities as model
sizes continue to expand.

Author Contributions: Conceptualization, G.D. and J.C.; methodology, G.D. and Y.Z. (Yueying Zhou);
software, G.D.; validation, G.D.; formal analysis, G.D.; investigation, G.D.; resources, G.D.; data
curation, G.D.; writing—original draft preparation, G.D.; writing—review and editing, X.Z. and Y.Z.
(Yongxin Zhu); visualization, G.D.; supervision, X.Z.; project administration, X.Z. and Y.Z. (Yongxin
Zhu); funding acquisition, X.Z. and Y.Z. (Yongxin Zhu). All authors have read and agreed to the
published version of the manuscript.

Electronics 2024, 13, 1376 17 of 17

Funding: This research was supported by the National Natural Science Foundation of China under
grant number 12373113, as well as the National SKA Program of China (grant no. 2020SKA0120202).

Data Availability Statement: The Part of this research data and model could be found in https:
//github.com/karpathy/llama2.c/blob/master/run.c accessed on 3 March 2024.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.

Adv. Neural Inf. Process. Syst. 2017, 30.
2. Kenton, J.D.M.W.C.; Toutanova, L.K. Bert: Pre-training of deep bidirectional transformers for language understanding. In

Proceedings of the naacL-HLT, Minneapolis, MN, USA, 2–7 June 2019; Volume 1, p. 2.
3. Touvron, H.; Lavril, T.; Izacard, G.; Martinet, X.; Lachaux, M.A.; Lacroix, T.; Rozière, B.; Goyal, N.; Hambro, E.; Azhar, F.; et al.

Llama: Open and efficient foundation language models. arXiv 2023, arXiv:2302.13971.
4. Liu, Y.; Pan, D.; Zhang, H.; Zhong, K. Degradation-Trend-Aware Deep Neural Network with Attention Mechanism for Bearing

Remaining Useful Life Prediction. IEEE Trans. Artif. Intell. 2023, 1–15. [CrossRef]
5. Kitaev, N.; Kaiser, Ł.; Levskaya, A. Reformer: The efficient transformer. arXiv 2020, arXiv:2001.04451.
6. Ghimire, D.; Kil, D.; Kim, S.h. A survey on efficient convolutional neural networks and hardware acceleration. Electronics 2022,

11, 945. [CrossRef]
7. Zhou, Z.; Zhu, Y.; He, C.; Wang, Y.; Yan, S.; Tian, Y.; Yuan, L. Spikformer: When spiking neural network meets transformer. arXiv

2022, arXiv:2209.15425.
8. Leviathan, Y.; Kalman, M.; Matias, Y. Fast inference from transformers via speculative decoding. In Proceedings of the

International Conference on Machine Learning, Vienna, Austria, 21–17 July 2023; pp. 19274–19286.
9. Dehghani, M.; Arnab, A.; Beyer, L.; Vaswani, A.; Tay, Y. The efficiency misnomer. arXiv 2021, arXiv:2110.12894.
10. Lin, T.; Wang, Y.; Liu, X.; Qiu, X. A survey of transformers. AI Open 2022, 3, 111–132. [CrossRef]
11. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531.
12. Zhai, X.; Kolesnikov, A.; Houlsby, N.; Beyer, L. Scaling vision transformers. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 12104–12113.
13. Qiu, J.; Ma, H.; Levy, O.; Yih, S.W.t.; Wang, S.; Tang, J. Blockwise self-attention for long document understanding. arXiv 2019,

arXiv:1911.02972.
14. Beltagy, I.; Peters, M.E.; Cohan, A. Longformer: The long-document transformer. arXiv 2020, arXiv:2004.05150.
15. Schwartz, R.; Stanovsky, G.; Swayamdipta, S.; Dodge, J.; Smith, N.A. The right tool for the job: Matching model and instance

complexities. arXiv 2020, arXiv:2004.07453.
16. Han, Y.; Huang, G.; Song, S.; Yang, L.; Wang, H.; Wang, Y. Dynamic neural networks: A survey. IEEE Trans. Pattern Anal. Mach.

Intell. 2021, 44, 7436–7456. [CrossRef] [PubMed]
17. Schuster, T.; Fisch, A.; Jaakkola, T.; Barzilay, R. Consistent accelerated inference via confident adaptive transformers. arXiv 2021,

arXiv:2104.08803.
18. Shazeer, N. Fast transformer decoding: One write-head is all you need. arXiv 2019, arXiv:1911.02150.
19. Zhang, R.; Han, J.; Zhou, A.; Hu, X.; Yan, S.; Lu, P.; Li, H.; Gao, P.; Qiao, Y. Llama-adapter: Efficient fine-tuning of language

models with zero-init attention. arXiv 2023, arXiv:2303.16199.
20. Eldan, R.; Li, Y. TinyStories: How Small Can Language Models Be and Still Speak Coherent English? arXiv 2023, arXiv:2305.07759.
21. Sennrich, R.; Haddow, B.; Birch, A. Improving neural machine translation models with monolingual data. arXiv 2015,

arXiv:1511.06709.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/karpathy/llama2.c/blob/master/run.c
https://github.com/karpathy/llama2.c/blob/master/run.c
http://doi.org/10.1109/TAI.2023.3333767
http://dx.doi.org/10.3390/electronics11060945
http://dx.doi.org/10.1016/j.aiopen.2022.10.001
http://dx.doi.org/10.1109/TPAMI.2021.3117837
http://www.ncbi.nlm.nih.gov/pubmed/34613907

	Introduction
	Related Work
	Prior Knowledge
	Speculative Sampling
	Branch Prediction

	Methods
	Hybrid Model Inference Acceleration Algorithm Based on Branch Prediction
	Design of Prediction Function for Acceleration

	Analysis
	Impact of Branch-Prediction Strategy on Throughput
	Prediction Function Optimization
	Prediction Function Based on Independent and Identically Distributed (IID) Theory Analysis
	Prediction Function Based on Empirical Distribution Experimental Analysis
	Determination of the Prediction Function

	Experiments
	Experiments Setup
	The Impact of Branch-Prediction Algorithm across Diverse Model Scales
	Ablation Experiment on the Impact of Single-Round Token Generation Quantity on Acceleration Effect
	Extreme Trade-Off Strategy: Exploring Exhaustive Methods

	Conclusions
	References

