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Abstract: In this contribution, a novel optimization approach, derived from the behavioral patterns
exhibited by Duroc pig herds, is proposed. In the developed metaheuristic, termed Artificial Duroc
Pigs Optimization (ADPO), Ordered Fuzzy Numbers (OFN) have been applied to articulate and
elucidate the behavioral dynamics of the pig herd. A series of experiments has been conducted, using
eight standard benchmark functions, characterized by multiple extrema. To facilitate a comprehensive
comparative analysis, experiments employing Particle Swarm Optimization (PSO), Bat Algorithm
(BA), and Genetic Algorithm (GA), were executed on the same set of functions. It was found that, in
the majority of cases, ADPO outperformed the alternative methods.
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1. Introduction to Pig Herd Optimization

Nowadays, it is almost impossible to count all the “animals” (or, more broadly under-
stood, natural phenomena) that inspired optimization methods. Among them, some of the
more “unusual ones” are as follows:

• Whale Optimization Algorithm (WOA) [1,2],
• Firefly Optimization Algorithm (FOA) [3],
• Orca Predation Algorithm (OPA) [4–6],
• Starling Murmuration Optimizer (SMO) [7–9],
• Hunting search meta-heuristic algorithm [10].

Moreover, nature-phenomena-inspired optimization algorithms have been applied
to problems originating from a very wide spectrum of areas, for instance (the aim of this
list is only to illustrate the breadth of the explored application areas; it is not exhaustive in
any way):

• economic dispatch problem [11],
• workflow planning of construction sites [12],
• multimodal optimization with multiple optima [13],
• engineering optimization problems [14,15],
• medical science [16],
• automatic composition of semantic web services [17],
• pickup and delivery problem [18].

Moreover, recently, a novel trend can be observed. Here, a nature-inspired “mech-
anism” is combined with “non-standard elements”. For instance, the resulting “hybrid
methods” include (but are not limited to) the following:
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• modification of the Artificial Bee Colony (ABC) algorithm by application of Ordered
Fuzzy Numbers (OFN) – OFNBee [19,20], or

• Hybrid Fuzzy-Ant Colony optimization [21].

Since the results of combining OFNs with ABC optimization were quite promis-
ing [19,20], further exploration of this research direction (exploring hybrid optimization
approaches) ensued. In this contribution, the behavior of a pig herd was selected as the
nature-originating phenomenon. The idea originated from the fact that biologists and
breeders, who studied the behavior of pigs, found that they are the “wisest” non-primate
animals. As a matter of fact, in the scientific literature, it has even been claimed that their
intelligence may exceed that of some primates. For instance, Stanley Curtis carried out
an experiment related to pig memory. He placed a ball, a frisbee, and a sinker in front
of several pigs, and was able to teach them to jump, sit next to, or retrieve any of these
items [22–24]. Based on the performed experiments, he claimed that pigs are wiser than
dogs. Moreover, it was also established that, in some video games, pigs were “better players”
than chimpanzees [25]. Curtis’ successors continued this work. Here, James Pettigrew [26]
found that pigs not only have their own preferences for temperature [27], but also try, if
they are able, on the basis of trial and error, to master ways of “managing” the heating
in a room [28]. Next, Sarah Boysen argued [23] that pigs are able to concentrate with an
intensity higher than in the case of chimpanzees. Finally, Michael Mendel observed [29]
that guinea pigs can signal their strength and use this information to minimize aggressive
behavior while establishing the order in the herd. He also stipulated that pigs show quite
complicated social behaviors, such as competition, similar to those observed among some
primate species [30]. In this context, anyone who has even briefly stayed near pigs could
easily find that they are constantly communicating with each other.

Taking this into account, it was concluded that the abilities of pigs may be useful in
solving optimization problems. The earliest attempts at exploring this research direction
have been reported in [31–33]. However, to the best of our knowledge, nobody has
tried to create a hybrid method, and to infuse Ordered Fuzzy Numbers (OFN)s into
optimization algorithms inspired by pig behavior [34]. Since, as noted, combining OFNs
and ABC optimization was quite successful, exploring the potential of a hybrid optimization
method, based on (Duroc) pig herd behavior combined with the use of OFNs, is the main
contribution of this work.

2. Introduction to Ordered Fuzzy Numbers and Their Application

Before describing the proposed approach to hybrid optimization, let us briefly intro-
duce the main concepts related to the Ordered Fuzzy Numbers (OFN). This is undertaken,
among others, because OFNs are not well-known and, therefore, without such an intro-
duction, the proposed approach may not be easy to follow. However, it should be stressed
that the interested readers should consult the references found in the next section for an
in-depth discussion of the idea and its potential applications.

2.1. Concept of Ordered Fuzzy Numbers

The original approach to defining fuzzy numbers was proposed in 1993 by Witold
Kośiński and his doctoral student P. Słysz [35–38]. Subsequent research with resulting
publications by W. Kośiński and collaborators (P. Prokopowicz and D. Ślezak) introduced
the concept of ordered fuzzy numbers and its potential applications [39–44]. Based on
these publications and material summarized in [34], an Ordered Fuzzy Number (A) can be
conceptualized as a quadruple A = [ fA(0), fA(1), gA(1), gA(0)], which forms a trapezoid, as
depicted in Figure 1.

Based on this meta-level conceptualization, a precise definition of an Ordered Fuzzy
Number can be formulated as follows:
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Figure 1. Visual representation of Ordered Fuzzy Numbers with (a) positive orientation and with
(b) negative orientation.

Definition 1. The Ordered Fuzzy Number A is defined as an ordered pair of functions:

A = (xup, xdown)

where xup, xdown : [0, 1] −→ R are continuous functions (see, Figure 2). Functions fA, gA
represent the parts upA, downA ⊆ R2, respectively, such that it follows:

upA = {( fA(y), y) : y ∈ [0, 1]}
downA = {(gA(y), y) : y ∈ [0, 1]}

Here, the orientation corresponds to the order of the graphs of fA and gA.

Figure 2. Graphical interpretation of the ordered fuzzy number definition.

The distinguishing feature of the directed Ordered Fuzzy Number lies in its orientation:

• When the directed OFN is aligned in the direction of increasing values along the X-axis,
it is termed as having a positive orientation,

• Conversely, when the directed OFN is aligned in the opposite direction, it is referred
to as having a negative orientation.

• Finally, a convex fuzzy number is a fuzzy set in the space of real numbers, which is
normal, convex, has a bounded support, and a piecewise continuous membership
function. It encompasses proper fuzzy numbers, fuzzy intervals, singleton sets, and
fuzzy sets with an unbounded support.

2.2. Definition of Golden Ratio-Based Defuzzyfication Operator

Obviously, being ordered is an important element of OFNs. It can be said that it
determines the “nature” of the number. Here, let us note that another important aspect of
fuzzy numbers is the fuzzification/defuzzification process, i.e., the transformation from the
real numbers to the fuzzy numbers and back. In this context, for the developed optimization
algorithm, let us consider the use of a defuzzification method, which is based on the concept
of the Golden Ratio, which in turn is derived from the Fibonacci series. Note that in the
context of this work, fuzzification (mapping from real to fuzzy numbers) is not required,
but it can be easily formulated if needed.

Overall, the inspiration for the defuzzification method originates from the observation
of numerous occurrences of the Golden Ratio across various disciplines, such as biology,
architecture, medicine, and art. Of particular interest is its presence in genetics, where
the structure of the DNA molecule itself exhibits the Golden Ratio (with deoxyribonucleic
acid molecules measuring 21 angstroms wide and 34 angstroms long for each full length
of a single double helix cycle). This phenomenon, as well as an overall popularity of the
Golden Ratio, points to an interesting role of the Fibonacci series, and the Golden Ratio
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in particular, as the “universal design principles”, utilized both by humans and in nature.
Therefore, amidst the array of possible (and available) (de)fuzzification operators, it has
been decided to employ one based on the Golden Ratio. Its definition is as follows:

Definition 2.

φ
GR

=

{
min(supp(A)) + supp(A)

Φ i f ordered A is positve
max(supp(A))− supp(A)

Φ i f ordered A is negative.
(1)

Here, GR is the defuzzification operator, while supp(A) is the support for the fuzzy set A in
the universe X.

Let us now define the Golden Ratio for the OFN. The mathematical Formula (1), as
well as its graphic interpretation presented in Figure 3, applies to convex fuzzy numbers,
as these numbers are being used in the proposed algorithm. Convex fuzzy numbers,
as defined in fuzzy set theory, are sets characterized by both fuzziness and convexity.
Fuzziness allows for the representation of uncertainty (or imprecision), while convexity
ensures that the set remains continuous and possesses specific geometric properties. In the
context of the proposed algorithm, convex fuzzy numbers serve as a flexible and robust
means of representing uncertain or imprecise data, facilitating effective decision-making
and problem-solving processes.

0 2 4 6 8 10

a

b

crisp value

Figure 3. The OFN number A = [0, 2, 4, 10].

Since OFNs are oriented, a formula for the case of the orientation “pointing in the
other direction” is also needed. This case is illustrated in Figure 4.

0 2 4 6 8 10

a

b

crisp value

Figure 4. The OFN number B = [10, 4, 2, 0].

In this context, it is important to observe how the individual components of the two
values of the line segments a and b are situated, relative to the orientation of the OFN. In the
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scenario where the OFN is positive, a greater portion of the Golden Ratio (GR) originates
from the base point f (0). Conversely, in the case of a negative OFN, the base point shifts
to g(0). Now, let us proceed to define the additional technical aspects necessary for the
GR defuzzification.

supp(A) =


g
A
(0)− f

A
(0) i f ordered A is positve

f
A
(0)− g

A
(0) i f ordered A is negative

(2)

min(supp(A)) =


f
A
(0) i f ordered A is positve

g
A
(0) i f ordered A is negative

(3)

max(supp(A)) =


g
A
(0) i f ordered A is positve

f
A
(0) i f ordered A is negative

(4)

Note that use of the GR defuzzification operator in the context of (Duroc pigs inspired)
optimization is one of the contributions of this work.

3. Proposed Artificial Duroc Pigs Optimization Method

The research on the Artificial Duroc Pigs Optimization (ADPO) algorithm dates back a
long time, and the current article represents an extension of the earlier study, presenting the
first version of the algorithm, and results obtained at that time [45]. Work on the APDO has
been ongoing since its initial development, and its code has now been fully re-implemented
in a completely new environment. This is another step in the evolution of the algorithm,
which continues to progress in light of new discoveries and experiments. On the other hand,
let us note that article [46] focuses on the application of fuzzy logic, particularly Ordered
Fuzzy Numbers, in observing and detecting DDOS attacks, representing a completely
different research area from that of the ADPO.

As mentioned, the primary focus of this study lies in amalgamating pig-inspired opti-
mization with Ordered Fuzzy Number arithmetic, employing the Golden Ratio defuzzifier.
Among the various breeds of pigs, Duroc pigs have been deliberately chosen. Originating
around 1800 in New England, Duroc pigs represent an ancient strain of domestic pigs.
Modern Duroc pigs typically exhibit medium-sized bodies, characterized by moderately
long torsos and slightly flattened snouts [47,48]. In several regions, such as the UK, farms
are established in such a way that Duroc pigs roam freely outdoors. During nighttime,
they seek refuge in lightweight prefabricated shelters, spending the majority of their time
roaming the fields. Feeding is typically carried out by workers who traverse through or
around the herd, dispersing food randomly. Pigs communicate with loud “vocalizations”
when food is discovered.

The observations related to the response of Duroc pig herds to a randomly scattered
food supply became the basis of the proposed algorithm. Let us start from a meta-level
description of the approach. Here, Figure 5 shows a schematic visualization of a simplified
Duroc pig herd. The points symbolize the location of pigs on the field. Two of them (denoted
as C and E) represent the case of roaring pigs, i.e., pigs that attempt to communicate with
others (in their herd) that they found food.
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Figure 5. Graphical representation of the ADPO method.

In the ADPO algorithm, one more category of pigs, referred to as the scout pigs has
been introduced. It represents pigs that roam around in search of food. Upon discovery,
they communicate through loud roars. Upon hearing the roar, other pigs proceed to move
in a straight line from their current position to the location of one of the roaring pig. Here,
it is assumed that the field is flat and there are no obstacles to pig movement. In the
scenario illustrated in Figure 5, a pig positioned at point X has the option to move towards
point C or point E. Overall, in such cases, a specialized choice-preference algorithm can
be proposed, or priorities can be determined based on factors such as the intensity of the
roar, which may indicate the quantity of food available, or the proximity of the roaring
pig. In the case of this contribution, the selection of the next destination, towards which a
given pig will move, is dictated by the abundance of food only. Hence, the pig at point X
will proceed towards point E. The direction of movement is determined using a simple
equation representing a line passing through the two points.

However, it is also important to “capture” the distance from the current location
to the food. Therefore, taking into account knowledge concerning optimization algo-
rithms, it can be easily realized that taking into account locations that are too far could
result in too early convergence (possibly to a local extremum). At the same time, focus-
ing only on nearby locations would slow the search. It is exactly to establish the “right
search space” where the OFN-based approach [49–51] is being applied, along with the
Golden Ratio [52] defuzzification.

Of course, it is possible (at least in theory) to apply other defuzzification operators.
This research direction is going to be explored in subsequent versions of the algorithm.
However, as the basic characteristic of the GR operator is that the defuzzified numbers
never go beyond the fuzzy number support, it was assumed that this approach should
work well in the ADPO method.

The pseudocode of the optimization method for the Artificial Duroc Pigs, or the ADPO
with Golden Ratio-based defuzzification, is presented next. Here, the following notation
is applied:

• pi—pig number i.
• Pi—pig number i from the subset of new individuals.
• ssi—pig scout number i, temporary collection of solutions.

ADPO Pseudocode:

Inputs:
Number of scouting pigs—SP = 10
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Number of leaders [%]—LP = 10% ∗ NP
Number of pigs—NP = 20
A herd of scouting pigs—{s1, . . . , sSP}
Herd of pigs—{p1, . . . , pNP}

Outputs:
Solution in the form of a point R(x, y)

Functions:

• SendToRandomPlaces()—sending out NP pigs to random places,
• SendToUniquePlaces()—sending out SP pig scouts to other unexplored places,
• SortGroup()—arranging solutions from the finest to the poorest,
• FindLeaderPigs()—looking for the top performer(s), constituting LP = 10% of the

target population,
• ReturnO f PigsScouts()—return of scout pigs,
• NextPigsPositions()—determining the subsequent position for each member of the

herd, excluding the leaders.
• Re f illHerdPigs()—completes the NP sample from the NP + SP − LP set,
• AvoidWeakPigs()—deleting solutions that did not fit in the NP
• I f NoEnd()—a function that verifies the satisfaction of the termination condition;

the algorithm will conclude upon reaching the specified accuracy or the maximum
number of epochs.

BEGIN
step 1: ∀pi ∈< p1, . . . , pNP > SendToRandomPlaces(pi)
step 2: ∀si ∈< s1, . . . , sSP > SendToUniquePlaces(si)
step 3: ∀Pi ∈< p1, . . . , pNP ∪ s1, . . . , sSP > SortGroup(Pi)
step 4: FindLeaderPigs() {pl1, pl2, . . . , plLP} ∈ P
step 5: RefillHerdPigs()
step 6: AvoidWeakPigs()
step 7: NextPigsPositions()
∀pi ∈< p1, . . . , pNP > Pi −→ P′

i
niech P(x1, y1) i R(x2, y2)
P(x1, y1) −→ P′(x′1, y′1)

OFNx[x1, x1, x2, x2] i OFNy[y1, y1, y2, y2]

x′1 = GR(OFNx) =



min(supp(OFNx)) +
|supp(OFNx)|

Φ ,
f or (OFNx) positive

max(supp(OFNx))− |supp(OFNx)|
Φ ,

f or (OFNx) negative

y′1 = GR(OFNy) =



min(supp(OFNy)) +
|supp(OFNx)|

Φ ,
f or (OFNy) positive

max(supp(OFNy))− |supp(OFNx)|
Φ ,

f or (OFNy) negative

step 8: IfNoEnd()−→GoTo(Step2)
END

A single “round” of the ADPO algorithm progresses in seven steps. At the beginning,
pigs are “sent” to NP = 20 random places. This number of locations (20) resulted in the
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best overall performance in both the experiments reported in what follows and in other
completed ones. However, it is important to note that NP should be seen as one of the
hyperparameters of the proposed approach. In other words, for different optimization
problems this number may vary and cannot be treated as a “universal constant”. For
instance, increasing complexity of the problem, combined with the need to find a solution
within a larger space may (naturally) affect the size of the “optimal NP”. Nevertheless,
exploring this aspect is out of the scope of this work.

In the subsequent phase, to mitigate potential undesired outcomes associated with
the use of a pseudorandom generator, additional SP = 10 scouts are dispatched to distinct
locations, where no pigs from the initial step are present. Again, the value of SP is another
hyperparameter of this method. Next, all NP + SP found local solutions (amounts of found
food) are sorted in descending order. In the fourth step, the best 10% of solutions are
collected (becoming “leaders”). Then, the selected “leader pigs” are saved, overwriting the
original list of the NP individuals. The memory used to store the intermediate information,
which is no longer necessary, is released in the sixth step. In the seventh step, pig movement
takes place. Its details have been described above in the context of Figure 5.

In the proposed algorithm, OFNs are utilized to determine the maximum feasible
movement of individual pigs. This involves applying the Golden Ratio defuzzifying
operator to the coordinates, ordinate, and abscissa, thereby determining the length of the
actual motion. Following the assessment of a stopping condition, to ascertain whether
further evolution is required, the algorithm may progress to the next “round”. However, if
a solution is identified as satisfactory, it is returned, and the algorithm concludes.

4. Experimental Setup

Since the current implementation of the ADPO method is new, its efficiency has to
be (re)evaluated for a set of well-tested benchmark functions in the 2D space where the
accuracy can be easily assessed. Since the reported results are promising, application of
ADPO to more complex scenarios is planned in the near future.

To compare the performance of ADPO to the “canonical nature-inspired algorithms”,
the following methods were selected (names of specific packages used in their implementa-
tions are provided in parenthesis):

• PSO—Particle Swarm Optimization (package—psoptim [53,54]),
• BAT—Bat Algorithm (package—microbats [55]),
• GA—Genetic Algorithm (package—GA [43]).

The selection of algorithms for comparison was justified by their relevant character-
istics and applications. The Genetic Algorithm (GA) was chosen because it is the oldest,
most commonly used, and well-developed metaheuristic, which is highly suitable for both
discrete and continuous problems. Particle Swarm Optimization (PSO) was also included
due to its effectiveness in solving continuous problems, achieving good results even in
cases of very high-dimensional functions. Although Artificial Bee Colony Algorithm (ABC)
is typically used for comparisons, Bat Algorithm (BA) was chosen as an alternative, because
it is very similar to ABC, while it yields very good results in seeking suboptimal solutions
of functions. With such a well-grounded selection of algorithms, it was possible to conduct
comprehensive comparisons, taking into account different types of optimization problems.

As noted, the current version of ADPO has been fully re-implemented in R. For the
remaining approaches, packages from the CRAN repository were used. In this way, it can
be claimed that “standard” realization of each method, against which ADPO was compared,
has been applied. The IDE RStudio was used as the programming environment.

For the experiments, eight well-known standard benchamrking functions, each with
multiple local extrema, and one global extremum, have been selected (see the next section).
For each method, 50 experiments were completed. Next, the root-mean error values and
the standard deviation were calculated for the found extrema. In what follows, average
results are reported. Graphs illustrating the solution search process for each function, along
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with charts depicting the values of the discovered minima in relation to the number of
iterations, are also provided.

Population size is an important hyperparameter of the configuration of the nature-
inspired algorithms. Table 1 summarizes used population sizes. These values were chosen
on the basis of the analysis of the literature, where they were found to be the most commonly
used for the functions in question. Here, let us recall that the population size parameters
for the APDO method were chosen experimentally. However, in the reported experiments
the same value was used in all eight benchmark cases. Hence, the selected value (s) can
be seen as an overall “reasonable choice” (though, not necessarily the best one for each
individual method and function). It can thus be claimed that the reported comparisons are
“fair” because in each case the same popular/reasonable population size was used for all
benchmark functions.

Table 1. The population size configuration for the algorithms.

Algorithm The Size of the Population

1 PSO 40

2 APDO 30

3 BAT 40

4 GA 40

In this context, it is important to stress again that the aim of this work was not to find
the most optimal hyperparameters for each method in the case of each individual problem.
Note also that the selected functions are very popular standard benchmarks used across
the scientific literature, but they are not real-life, large-scale, and/or extremely difficult
problems. However, the goal of the experiments reported in this contribution was to answer
the following general question: is the APDO method competitive vis-a-vis other popular
nature-inspired methods . If the answer was to be positive (which turns out to be the case),
then further explorations would make sense and there would be a reason for them to be
undertaken. This point needs to be kept in mind when reading what follows.

Benchmark Functions

As noted, the experiments involved the optimization of eight benchmark functions
with two unknowns [56,57], aiming at identifying their global minimum within specified
ranges of variable values [58,59]. Table 2 furnishes the function names, variable value
interval limits, sought values of the two unknowns, and the desired global minimum value.

Table 2. List of benchmark functions used for the experiment.

No. Function Name Range of Values x1
and x2

Searched Values of
x1 and x2

Searched Value of
f (x1, x2)

1 Easom [−100, 100] (3.14, 3.14) −1

2 Eggholder [−512, 512] (512, 404) −959

3 Drop Wave [−5.12, 5.12] (0, 0) −1

4 Levy N.13 [−10, 10] (1, 1) 0

5 Matyas [−10, 10] (0, 0) 0

6 Rastrigin [−5.12, 5.12] (0, 0) 0

7 Zirilli [−10, 10] (−1.04 ,0) −0.35

8 Venter [−50, 50] (0, 0) −400

Mathematical equations of the benchmark functions, used in the performed experi-
ments, are as follows:
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Eggholder:

f (x) = −(x2 + 47)sin
√
| x1

2
+ (x2 + 47) | − x1sin

√
| x1 − (x2 + 47) | (5)

Venter:

f (x) = x2
1 − 100cos(x1)

2 − 100cos(x2
1/30) + x2

2 − 100cos(x2)
2 − 100cos(x2

2/30) (6)

Matyas:
f (x) = 0.26(x2

1 + x2
2)− 0.48x1x2 (7)

Zirilli:
f (x) = 0.25x4

1 − 0.5x2
1 + 0.1x1 + 0.5x2

2 (8)

Easom:
f (x) = −cos(x1)cos(x2)exp(−((x1 − π)2 + (x2 − π)2)) (9)

Rastrigin:

f (x) = −cos(x1)cos(x2)exp(−((x1 − π)2 + (x2 − π)2)) (10)

Levy N.13:

f (x) = sin2(3πx1) + (x1 − 1)2(1 + sin2(3πx2)) + (x2 − 1)2(1 + sin2(2πx2)) (11)

Drop Wave:

f (x) = −
1 + cos(12

√
x2

1 + x2
2)

0.5(x2
1 + x2

2) + 2
(12)

Finally, in Figures 6 and 7, graphical representations of the eight test functions
are presented.

Figure 6. Graphical representation of the first four benchmark functions: Easom, Eggholder,
Matyas, Rastrigin.
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Figure 7. Graphical representation of the remaining benchmark functions: Drop Wave, Levy N.13,
Venter, Zirilli.

5. Experimental Results

Let us now discuss the results obtained for the selected benchmarks, using ADPO
and the remaining three classical approaches: Genetic Algorithms (GA), Particle Swarm
Optimization (PSO), and Bat Algorithms (BA). Before proceeding to the discussion of the
specific numerical results obtained for each of the benchmark functions, let us compare the
times needed to find the solutions.

5.1. Execution Time Comparison

In the case of optimization algorithms, execution time is very important. The average
time results from 50 runs of the four algorithms for the eight benchmarking functions are
summarized in Table 3.

Table 3. Average algorithm time for functions.

No. Function Name PSO APDO BAT GA

1 Eggholder 0.0996 0.06 0.1308 0.122

2 Venter 0.06 0.047 0.06 0.18

3 Matyas 0.0748 0.062 0.0816 0.058

4 Zirilli 0.072 0.066 0.082 0.060

5 Easom 0.07 0.04 0.079 0.098

6 Rastrigin 0.073 0.038 0.076 0.18

7 Levy N.13 0.076 0.04 0.084 0.187

8 Drop Wav 0.077 0.04 0.085 0.147
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Overall, it can be observed that the APDO method, in the majority of cases, finds the
solution in the shortest average time. Only for the Matyas and the Zirilli functions is the
BAT faster. However, it has to be admitted that, in all cases, the computation times are
relatively short. Hence, the main observation that can be formulated is as follows: for
the standard 2D benchmark functions, for the typical hyperparameter settings, the APDO
approach finds the solution in a “competitive time”.

Let us now look, separately, into experimental results obtained for the individual
benchmark functions.

5.2. Results for the Eggholder Function

Here, “good results” were achieved by the PSO and APDO algorithms, with f (x)
ranging from −897 to −959 for PSO, and from −928 to −957 for APDO. These should be
compared to the targeted value of −959. Conversely, GA and BAT exhibited significant
“instabilities” characterized by large MSE errors and standard deviations spanning several
dozen units (see Figure 8). Figure 8 illustrates the performance differences. Here, the line
representing the performance of GA, due to the very large error, is completely outside of
the visible area (has not been included).

Figure 8. The results, obtained in subsequent iterations, for the Eggholder benchmark function.

5.3. Results for the Venter Function

The best numerical results for the Venter function have been obtained by the APDO
method (see, Figure 9). Slightly worse results can be seen for GA and PSO. Clearly, the
worst results have been produced by BAT. Here, the best result is f (x) = −387, when the
actual value is −400. It should be noted, however, that some additional experiments have
been performed. In each case, for the three non-APDO algorithms, with the increase in the
size of the population (above that reported in Table 1, the results became better (became
more accurate). Nevertheless, it was decided that, for the reasons already discussed, in
this contribution only results for a single (popular in the literature) population size will be
reported. Finally, for the reported population sizes, the APDO is the fastest, while the GA
algorithm is the slowest (see Table 3). Obviously, with increases in the population sizes, the
time needed to find the solution increases in all cases.
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Figure 9. The Venter benchmark function values obtained in successive iterations.

5.4. Results for the Zirilli Function

As can be seen in Figure 10, for the Zirilli function, solutions found by all methods are
quite good. Recall that in each case, the “basic” population sizes (as summarized in Table 1)
have been used. Here, the only important difference is related to the times of execution.
Interestingly, contrary to the case of the Venter function, the GA approach is the fastest
(on average).

Figure 10. The Zirilli benchmark function values obtained in successive iterations.

5.5. Results for the Easom Function

Overall, again for this function the size of the population was significant for the
non-ADPO approaches. For the “baseline populations”, PSO, BAT, and GA were quite
inaccurate. However, again with the increase in the population size, the quality of the
results improved. Here, for the baseline hyperparamenters, GA was the slowest, while
ADPO was the fastest approach. The results have been summarized in Figure 11.
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Figure 11. Values of the Easom benchmark function obtained in successive iterations.

5.6. Results for the Drop Wave, Levy N.13, and Rastrigin Functions

The correctness of the Drop Wave (Figure 12), Levy N.13 (Figure 13), and Rastrigin
(Figure 14) optimization results is similar for all tested methods. In additional experiments,
it was noted that minor errors and noticeable standard deviation were evident only with
small population sizes of specifically 20 individuals. Furthermore, these supplementary
experiments also revealed the poor quality of BAT optimization, particularly evident in the
case of the Rastrigin function, where the reported minimum was 1 with 200 individuals,
contrary to the expected value of 0.

Figure 12. Values of the Drop Wave benchmark function obtained in successive iterations.
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Figure 13. Values of the Levy N.13 benchmark function obtained in successive iterations.

Figure 14. Values of the Rastrigin benchmark function obtained in successive iterations.

5.7. Summary of Experimental Results

Let us now provide the summary of all performed experiments, including those that
have not been reported above in the form of tables and figures. Overall, as expected, the
quality of the results of the performed optimizations depended on the tested method, the
specific benchmark function, and the size of the population. The latter was studied in
supplementary experiments, but was not reported (other than the selected observations
above), to deliver a focused fair assessment. Naturally, as the population size increased, the
accuracy of the obtained results improved in all cases. This improvement was particularly
pronounced when utilizing swarm methods with the Eggholder or Venter functions. How-
ever, it is important to note that as the number of swarms increased to enhance accuracy,
the execution time also significantly escalated (for obvious reasons).

Another interesting factor that influenced the quality of the obtained results was the
complexity of the test function “combined” with the range in which the extremes have been
sought. Functions with particularly broad ranges of values, e.g., the Eggholder function for
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[−512, 512], were the most difficult to optimize. On the other hand, small-scale functions,
with a minimum value of 0, or close to it, were often successfully solved even for small
populations (e.g., 20). This also suggests that the Eggholder function could be used in
subsequent studies, in which population size (and solution finding time) would play a
more pronounced role.

It should be noted that, for the standard benchmarks used in the performed experi-
ments, the difficulty of solving the given functions seemed to affect the algorithm’s time,
particularly in the case of the BAT algorithm. Its performance worsened with the difficulty
of the benchmark function. Perhaps this is due to the way of implementing this algorithm,
e.g., because of the library from which it was taken. However, investigating this effect is
clearly out of the scope of this work.

Experiments have shown that, in most cases, the genetic algorithm (GA) is charac-
terized by a good quality of results when executed for 70 or more iterations. However,
typically, this is the slowest method. Moreover, its results for the difficult optimization
of the Eggholder function were of very low quality. On the other hand, for this task
(the Eggholder function), the particle swarm algorithm (PSO) was the best. However, an
adequate accuracy was obtained only with swarms of 100 and larger.

Against this background, the proposed ADPO method distinguished itself by provid-
ing reasonably correct results, in a short (or, often, the shortest) time. Here, particularly
interesting is the case of the Eggholder function, where ADPO is faster than the PSO method.
Most likely, it is related to the fact that in ADPO there is no distinction between global
and local neighborhood (as opposed to PSO). In other words, the search is performed by
passing information about the best solution, resulting in the herd “moving” in its direction,
while also searching the neighborhood. At the same time, for the APDO, each specimen
can become the source of the best solution. Random start of specimens from scattered
places enables searching larger space solutions. At the same time, if the best solution is
found in a given cycle, the remaining specimens can be sent to search all points for the
currently optimal solution. In this context, the novelty of the ADPO method is in its use of
the Ordered Fuzzy Notation, combined with GR defuzzification, as its inherent part. This
allows for a smooth description of the transition of a specimen from one solution to another.
Thanks to the use of OFN, the population reaches the desired extreme functions earlier.

6. Concluding Remarks

In the conducted experiments, a new optimization method based on the swarming
behavior of Duroc pigs, combined with the use of OFN for modeling numbers and GR
defuzzification, yielded satisfactory results. These results are very promising, especially
considering that the ADPO population was smaller, while yielding better (or at least similar)
results, when compared with the competing classical algorithms. This is a significant
finding, as it challenges the conventional belief that larger populations are necessary for
better optimization results. The fact that the proposed method performed well with a small
population size is noteworthy and could have implications for optimizing computational
resources in practical applications.

Furthermore, the experiments considered also the execution time. It was observed that
the proposed method yielded good results in terms of speed, indicating its efficiency in pro-
ducing quality solutions within a reasonable timeframe. This combination of effectiveness
and efficiency is a valuable characteristic for any optimization method, as it speaks to its
potential practical utility in real-world scenarios, where time and computational resources
are often limited. It may also mean that the ADPO can solve more complex problems with
resources smaller than in the case of other well-known optimization approaches.

The experiments were conducted in a 2D space, and the results were found to be
very promising. This sets the stage for further research, where the space will be expanded
to a greater number of dimensions. This expansion is crucial as it will allow for a more
comprehensive understanding of the method’s performance across different problem
spaces, potentially uncovering specific limitations of its versatility and robustness.
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Overall, the use of swarming behavior of pigs, as a basis for optimization, turned out
to be an intriguing concept. The successful application of this approach, in the context of
the performed experiments, underscores the potential of bio-inspired approaches in solving
complex optimization problems. Moreover, utilization of OFN for modeling numbers is
another noteworthy aspect of the proposed approach. This indicates a departure from
traditional numerical modeling techniques and suggests that alternative methods can be
effective in optimization. The successful integration of OFN in the proposed method opens
possibilities for exploring unconventional mathematical tools in the realm of optimization,
potentially leading to innovative approaches and solutions.

In conclusion, the experiment has provided valuable insights into the effectiveness,
efficiency, and potential of the proposed new optimization method. The promising results,
especially in the context of small population sizes and faster computation, indicate its
viability for practical applications. Furthermore, joint exploration of nature-inspired and
unconventional mathematical concepts in optimization opens new avenues for future
research and innovation in the field. As the experiment moves towards higher dimensions,
it is poised to uncover further nuances of the method and its applicability across diverse
problem spaces.
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