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Abstract: The reliability of AI-based object detection models has gained interest with their increasing
use in safety-critical systems and the development of new regulations on artificial intelligence.
To meet the need for robustness evaluation, several authors have proposed methods for testing
these models. However, applying these methods in industrial settings can be difficult, and several
challenges have been identified in practice in the design and execution of tests. There is, therefore, a
need for clear guidelines for practitioners. In this paper, we propose a method and guidelines for
assessing the robustness of AI-based 2D object detection systems, based on the Goal Question Metric
approach. The method defines the overall robustness testing process and a set of recommended
metrics to be used at each stage of the process. We developed and evaluated the method through
action research cycles, based on two industrial cases and feedback from practitioners. Thus, the
resulting method addresses issues encountered in practice. A qualitative evaluation of the method by
practitioners was also conducted to provide insights that can guide future research on the subject.

Keywords: robustness; software testing; object detection; artificial intelligence

1. Introduction

Object detection systems (ODS) based on artificial intelligence (AI) can perform various
tasks, including locating, tracking, and counting objects, as well as detecting anomalies.
They are thus finding numerous applications for computer vision (CV) in the real world [1],
ranging from facial recognition [2] to animal monitoring [3] to defect detection [4]. However,
despite recent progress in AI-based object detection systems, their integration into real-
world safety-critical systems, such as autonomous cars or medical diagnosis, raises concerns
about their reliability in practice. Indeed, deep learning models used in these systems
have been shown to be sensitive not only to perturbations imperceptible to humans [5],
but also to natural or common perturbations that may occur during their real-world
operation [6,7]. Robustness is, therefore, described as a key requirement for high-risk AI
systems in the Artificial Intelligence Act (AI Act), the proposed European Union regulation
on artificial intelligence.

To meet the need for robustness assessment, several methods have been proposed to
test the robustness of image-based object detection models [8,9], usually by measuring their
performance against perturbed input images, an instance of the so-called metamorphic
testing technique [10,11]. However, while these methods are suitable for assessing the
robustness of deep learning models, they can be difficult to apply in practice due to the
lack of guidelines to adapt them to the specificities of the system under test. In previous
work [12], we tested the robustness of an industrial AI-based road object detection system
through metamorphic testing and identified several challenges in the design and execution
of the tests in practice, such as in the selection of relevant perturbations or appropriate
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metrics. Among other lessons, we learned that it may be necessary to adapt the test method
through domain knowledge while remaining sufficiently generic to be able to compare the
results from one system to another. Therefore, a method with clear guidelines is needed
to ensure that the robustness assessment is relevant and rigorous and that the results
are comparable.

Motivated by our previous industrial case study, we propose a method for the robust-
ness assessment of AI-based 2D object detection systems from a practitioner’s perspective.
It should allow image-based ODSs to be evaluated in a black-box setting, which is usu-
ally a strong constraint in an industrial context or in real-world scenarios. The method
was developed and evaluated through two cycles of action research [13] during which
we assessed the robustness of two industrial AI-based object detection systems—a road
monitoring system and a medical diagnosis system. In particular, these two industrial cases
helped us to identify issues encountered when testing the robustness of AI-based systems,
and to find ways of addressing them. The proposed method defines the overall robustness
testing process based on metamorphic testing, which is currently one of the most popular
techniques for testing machine learning-based systems [14,15]. Furthermore, it identifies a
set of complementary steps and metrics to be used in order to support the application of
metamorphic testing and overcome issues encountered in practice. Finally, a metamorphic
relation for assessing robustness is defined, which reflects the acceptable trade-off between
the distance between sets of circumstances and the difference in performance.

In summary, after giving an overview of AI-based object detection systems and meta-
morphic testing (Section 2), and presenting the two industrial cases (Section 3) as well as
the research method followed (Section 4), this paper makes the following original research
and engineering contributions:

• A metrics-driven method for the robustness testing of AI-based 2D object detection
systems (Section 5), including a combination of relevant metrics and the definition of
a metamorphic relation for assessing robustness.

• A prototype tool to assist practitioners in applying the proposed method and analyzing
the results obtained (Section 6).

• An extensive evaluation of the proposed method on an industrial case (Section 7).

Then, we address threats to validity in Section 8. Section 9 presents related work,
from reference systems to other methods and frameworks for testing the robustness of
AI-based systems. Finally, we present the conclusions and future work in Section 10.

2. Background
2.1. AI-Based 2D Object Detection Systems

Object detection is a computer vision task whose objective is to detect and locate
objects in an image or video. In practice, an object detection model identifies the position
and boundaries of each object by drawing a bounding box around it and assigns it a class
from a predefined set (see Figure 1 for an example). Object detection has a wide range of
applications, including healthcare systems, autonomous vehicles, surveillance systems,
and anomaly detection in industry.

Over the years, many model architectures have been proposed to perform this task,
based mainly on deep learning, as it has been shown to perform better [16]. Among those
architectures, a distinction is made between one-stage detectors and two-stage detectors
(see Figure 2). In two-stage detectors, a first model is used to extract potential regions of
interest (Region Proposal) and a second model is used to refine the location of each object
within those regions and classify it. For example, models from the R-CNN family [17] fall
into this category. In contrast, one-stage detectors locate and classify objects in a single
operation. This is the case, for example, of models from the YOLO family [18]. One-stage
detectors generally have lower accuracy but are often faster than two-stage detectors.
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(a) Input image (b) Groundtruth
and prediction

Figure 1. Detection of an object (person) on a pedestrian crossing. In green, the groundtruth (true
location and true class); in red, the predicted bounding box and class (with confidence score).
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Figure 2. Overview of (a) a two-stage detector and (b) a one-stage detector.

Regardless of their architecture, object detection models based on deep learning are
mostly evaluated by measuring the accuracy of their detections, both in terms of localization
and classification. The overall performance of an object detection model is usually given
by the average precision (AP) for each object class or the mean average precision (mAP)
averaged over all classes [19]. These metrics are based on the notions of true positive (TP),
false positive (FP) and false negative (FN). In the case of object detection, a true positive is
defined with respect to a threshold on the Intersection over Union (IoU) and the top-1 class
prediction. For instance, in some cases, TPs are detections with an IoU above 0.5 and the
correct predicted class. If at least one of these two conditions is not met, it is a false positive.
In the previous example (Figure 1), the predicted class is correct and the IoU is 0.83. It
is, therefore, a true positive. However, the definition of these metrics may vary slightly
depending on the benchmarks considered. The most recent research papers tend to use
the evaluation metrics of the COCO benchmark, which include 12 metrics for measuring
performance (https://cocodataset.org/#detection-eval (accessed on 1 April 2024)).

2.2. Metamorphic Testing

Metamorphic testing [10,11] is a property-based testing technique that alleviates the
oracle problem and facilitates the generation of test cases. It is based on the definition of
metamorphic relations (MRs) which are necessary properties of the system under test and
which relate to multiple inputs and their expected outputs. In the process of metamorphic
testing, follow-up test cases are generated from metamorphic relations and existing test

https://cocodataset.org/#detection-eval
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cases (so-called source test cases). The source and follow-up test cases are then executed
and if their outputs violate the MRs it indicates a failure of the system under test.

Metamorphic testing has been applied to a variety of domains [20,21], such as web
services and applications or embedded systems. In the field of machine learning, it has been
widely adopted in response to the oracle problem [14,15]. Several metamorphic relations
have been proposed, generally based on transformations in the training or test dataset that
should not affect the expected outputs or in a controlled and certain way [15]. In the case of
object detection systems, Wang et al. [22] introduced MetaOD, a metamorphic testing tool
for AI-based object detectors. The tool ensures that the following metamorphic property
is met: inserting a realistic object into the background of an image should not change the
object detection results, except for the inserted object.

3. Industrial Applications

The proposed method has been developed and evaluated using two industrial AI-
based 2D object detection systems (Figure 3). In the following, we introduce these two
cases, which have also been used as running examples throughout the paper.

(a) (b)
Figure 3. Object detection systems under test. (a) Road object monitoring system; (b) Medical
diagnosis system.

3.1. Road Monitoring System

The first object detection model under test is an AI-based Road Monitoring System
(RMS) for traffic regulation developed by the company Lacroix [12]. It aims to detect road
objects, such as vehicles and pedestrians, in images from cameras placed at road junctions
(see Figure 3a).

The object detection model is based on an architecture derived from EfficientNet [23]
for the backbone network and CenterNet [24] for the head network. It is a fast one-stage
detector (Figure 2), but its performance is still comparable to that of a two-stage detector.
The model was trained on an in-house dataset consisting of 30,000 high-resolution images
taken in real-life conditions, extracted from videos captured in France and Vietnam where
cameras were placed at road junctions, day and night. It can detect six classes of objects:
person, car, bicycle, motorcycle, truck, and bus. The test dataset consists of 2645 daytime
images taken in France.

The main objective of the tests is to assess the robustness of the system against changes
in its hardware or software environment (e.g., change in the parameters of the image signal
processor, or use of different camera technologies). This is a priority for the company
developing the system since it is intended to be deployed in several cities that are likely
not to use the same equipment. In addition, robustness testing must be performed in a
black-box setting, to avoid having to share sensitive information.

3.2. Medical Diagnosis System

The second object detection model under test is an AI-based Medical Diagnosis System
(MDS) based on the DeepLesion dataset [25]. It aims to detect and localize lesions in
radiological images from CT scans (see Figure 3b). It was developed by an independent
team of the company Kereval, for experimental purposes and to demonstrate its expertise.
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It is considered to be similar to an industrial system in that it was developed following a
typical development process, although having no real-world application.

The DeepLesion dataset was released in 2018 by the National Institutes of Health’s
Clinical Center. It is one of the largest CT scan datasets, including over 32,000 annotated
lesions and representing more than 4400 unique patients. It, therefore, has a great diversity and
is well suited to deep neural network training. The model used to do so is YOLOv5, a one-stage
detector from the YOLO family of detectors [18]. It was trained on about 6500 images from
the DeepLesion dataset and can detect eight classes of lesions: bone, abdomen, mediastinum,
liver, lung, kidney, soft tissue, and pelvis. The test dataset consists of approximately 1600 CT
images captured under the same conditions as the training dataset.

Despite its great diversity (variety of patients and studies), the training dataset contains
only images that have already been processed and annotated by radiologists, with relatively
few noisy images. The aim of the tests is, therefore, to assess the robustness of the system
in the absence of human supervision, in the event of equipment failures that could occur
during operation or misuse of the equipment.

4. Research Method

The method presented in this paper was developed iteratively and evaluated through
action research [13]. Action research aims “to study a system and concurrently to collaborate
with members of the system in changing it in what is together regarded as a desirable
direction” [26].

Susman [27] developed a detailed model of the action research method. It is thus, an
iterative process in which each research cycle has five stages: diagnosing, action planning,
taking action, evaluating, and specifying learning. In the diagnosing stage, the problem is
defined and the data required to carry out a detailed diagnosis are collected. During the
action planning stage, possible solutions are identified to address the problem. Then, in the
taking action stage, one of the solutions is selected and implemented. Data resulting from
the application of the chosen solution are collected and analyzed during the evaluating
stage. Finally, the specifying learning stage allows stakeholders to interpret the findings,
with respect to the success or failure of the solution. At this point, a new cycle of the
action research process begins and the problem is re-evaluated in the diagnosing stage.
This process continues until the problem is solved and the stakeholders are satisfied with
the result.

To build this method, we carried out two cycles of the action research method, as pre-
sented in Figure 4. Each cycle corresponds to the evaluation of the robustness of a different
industrial object detection system.

Second cycleFirst cycle

Diagnosing

Method
Version 1

1st solution

Evaluated method
Version 1

Road monitoring 
system (RMS)

Action Planning

Taking Action

Evaluating

Specifying Learning

Diagnosing

Method
Version 2

Evaluated method 
Version 1

Evaluated method
Version 2

Medical diagnosis
system (MDS)

Action Planning

Taking Action

Evaluating

Specifying Learning

Figure 4. Action research process.
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In the first cycle, we identified the metrics to be included in a method for the robustness
assessment of AI-based object detection systems. As a starting point, we used the results of
a previous study in which we performed the robustness assessment of the road monitoring
system (RMS) using a state-of-the-art approach [12]. This study allowed us to confirm
the effectiveness of the metamorphic testing approach in that context, and to identify the
shortcomings and gaps in the methodology regarding the metrics and domain knowledge.
To address those issues and elaborate a first solution for the method, we used the Goal
Question Metric (GQM) approach [28,29] during the taking action stage. The GQM method
is a top-down approach to developing goal-oriented measurements. It defines a goal, refines
this goal into questions, and defines metrics to answer these questions. An advantage of
this approach is that it limits the measurements collected to what is strictly necessary since
each metric is justified by an objective. Based on the questions defined in the GQM model,
we also adapted and completed the test method derived from the case study. The resulting
method was then evaluated and improved in the next cycle.

In the second cycle, we improved the overall robustness assessment process presented
in this paper. To do so, we inspected the evaluated first version of the metrics-driven method
by assessing the robustness of the medical diagnosis system (MDS). During the taking
action stage, we further detailed the different steps in the testing process, incorporating
new guidelines based on feedback from practitioners. This new use case also allowed us
to validate that the method and the recommended metrics can be successfully applied to
another domain.

5. The Method

In this section, we introduce a method for robustness assessment of ODS by present-
ing, in detail, the definition of the goal and questions of the GQM approach, the overall
robustness testing process, and the choice of metrics at each step.

5.1. Overview

The aim of our method is to provide clear guidelines for the assessment of the robust-
ness of AI-based 2D object detection systems during their life-cycle. In GQM terms, this
translates to the following goal:

Purpose: Evaluate
Issue: The robustness of
Object: An AI-based 2D object detection model
Viewpoint: From a practitioner’s viewpoint

Following Solingen et al. [29] guidelines, we define several questions to characterize
this goal in a quantifiable way, summarized in Table 1.

The first group of questions aims to characterize the object of the GQM model, i.e., an
object detection model, with respect to the overall goal and the issue. To do so, we use the
definition of robustness, which is, according to ISO/IEC TR 24029-1:2021 [30], the “ability
of an AI system to maintain its level of performance under any circumstances”. Thus,
the object of our GQM model can be decomposed along two axes: the performance of
the system on the one hand, and the circumstances of its use on the other. The first
two questions, therefore, relate to the measurement of the system’s performance and the
description of the circumstances (see Q1 and Q2 in Table 1).

A second group of questions seeks to further characterize these attributes, i.e., per-
formance and circumstances. To this end, Q3 aims to assess the significance or impact
of a given circumstance on the functioning of the system. In addition, Q4 focuses on the
differences between sets of circumstances, as comparing them can provide a good idea
of their characteristics. Similarly, one way to characterize the performance of the system
is to analyze its evolution by comparing performance measures under different sets of
circumstances, and so this is the subject of Q5.
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Finally, a question characterizes the relationship between performance and circum-
stances to establish the robustness of the system and achieve the overall goal of the GQM
model (see Q6 in Table 1).

Table 1. GQM model: questions.

Question

Q1 What are the circumstances of use of the system?
Q2 What is the level of performance of the object detection model?
Q3 How significant is a circumstance in the functioning of the system?
Q4 What is the difference between two sets of circumstances?
Q5 What is the difference between two measures of performance?
Q6 What is the impact of a change in circumstances on performance?

Each of these questions is answered at a different stage of the robustness assessment
process, for which several metrics are recommended.

Figure 5 presents the overall process, based on metamorphic testing, which is currently
one of the most effective techniques for testing machine learning-based systems [14,15].
The process has three main phases: the specification phase establishes references for the tests
(target circumstances and their significance for the system), the test case generation phase
allows the generation of test cases in target circumstances, and the evaluation phase assesses
the robustness by comparing the source circumstances (resp. performance) with the target
circumstances (resp. performance).

Phase 1. Specification

Task 2. Assess target
circumstances

significance

Task 1. Describe
target circumstances

A1.
System 

description

Phase 2. Test cases generation

Task 4. Generate follow-up 
test cases (target
circumstances)

Task 3. Describe source 
test cases (source 

circumstances)

D1. 
Source 
dataset

A2. 
Target 

circumstances 
description

A3. 
Source 

circumstances 
description

D2. 
Target dataset

A4. 
Performance 

and robustness 
description

Phase 3. Evaluation

Task 5. Assess
performance on 

D1 and D2

Task 6. Compare 
D1 and D2

Task 7. Assess
the robustness

External artifact Generated artifact

Figure 5. Business Process Model and Notation (BPMN) diagram of the robustness testing method.
Yellow artifacts (A1 and D1) are external data, provided by the developer of the system, while orange
artifacts are generated during the tasks.

In the following, we review each task of the process and associate each question of the
GQM model with a set of appropriate metrics.

5.2. Task 1. Describe Target Circumstances

The aim of this task is to provide a statistical or probabilistic description of the target
circumstances of use of the system, based on a description of the system and its environment.
Target circumstances are the set of circumstances against which a practitioner wishes to
assess the robustness of an AI-based system. For example, considering the MDS case, target
circumstances could be misuses of the scanner, such as a patient moving during the scan.

In fact, according to ISO/IEC TR 24029-1:2021 [30], the aim of robustness testing should
be to evaluate the system’s performance against atypical data, different from that expected
under operational conditions. Target circumstances should, therefore, be distinguished from
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the operational design domain (ODD) which is the set of operational conditions under which
the system is designed to function [31,32]. In particular, the target circumstances must include
potential hazards that the system may face during operation (e.g., change of input data
domain or hardware failure). Several works address the issue of finding hazards in the field
of computer vision (CV). For example, Zendel et al. [33] built a checklist of more than a
thousand potential hazards in CV systems, not only in the vision algorithm itself but also in
the equipment with which it interacts and the environment observed by the system.

In practical terms, the description of the target circumstances serves as a reference
during the robustness assessment for selecting and generating follow-up test cases. In this
step, not only are the possible circumstances listed, but also their distribution is described,
either by knowing their probability (M1) or by measuring their relative frequency (M2)
within a real-world representative data sample (see Table 2). It is important to note that the
sum of the relative frequencies or probabilities of the circumstances does not necessarily
have to be 1, especially when circumstances are not mutually exclusive and may occur
simultaneously. For example, in the MDS case, a different scanner may be used, resulting
in a different density contrast, while the patient may be incorrectly positioned, leading also
to a rotated cross-sectional image. On the other hand, if the circumstances are mutually
exclusive (i.e., cannot occur simultaneously), the sums are expected to equal 1. For example,
this is the case when circumstances are defined in relation to the time of day.

Table 2. GQM model: Q1 related metrics.

Metric Name Range Definition

M1 Probability [0, 1] How likely the circumstance is to occur. Relative
frequency over an infinite number of trials.

M2 Relative frequency [0, 1] How often an event occurs within the total number
of observations.

Note, that the target circumstances can be defined at several levels, depending on the
point of view adopted (e.g., the end user or the developer). We recommend that this step be
carried out from different perspectives, as they are often complementary. As an example,
Table 3 shows target circumstances for the MDS case study from the point of view of a
radiographer and from the point of view of the developer of the AI model that performs the
object detection. In the first case, the circumstances relate to the way the image acquisition
system is used, i.e., the scanner. In the second case, the circumstances relate to the directly
observed impact on the images. In that case, each high-level circumstance defined by the
radiographer can be associated with one or more circumstances defined by the developer,
as in the above example (Box 1).

Table 3. Target circumstances from two different perspectives (order does not matter).

Point of View Target Circumstances

Radiographer Two different scanners are used
An old scanner is used
The patient is poorly positioned
The patient is moving
The patient has a large body habitus
The radiation dose administered was reduced (with image reconstruction)
The radiation dose administered was reduced (without image reconstruction)

AI developer Density contrast may vary significantly
Some pixel lines may be shifted
The cross-section may be truncated
Images may be blurred due to motion blur
Images may be blurred (Gaussian blur)
There may be salt and pepper noise in the images
The cross-sectional image may be rotated between −20° and 20°
Image resolution may be altered during preprocessing
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Box 1. Example: MDS

Consider, for the MDS case, the following (hypothetical) context of use, based on discussions with a
practitioner in the field.

MDS may be used on images from different scanners. This can have a visible impact on the
images, which can be estimated experimentally. In our case, we estimate that in 15% of cases, the
radiographic contrast varies significantly from the others, in 10% of cases the image contains salt
and pepper noise, in 10% of cases the image is slightly blurred, and in 10% of cases the image is
pixelated due to lower resolution. Another anomaly observed in scanner images (1 in 5 cases, for
our system) is the presence of lines of horizontally shifted pixels, which can distort the analysis or
make the image unusable by the AI model.
In addition to equipment configuration, variability can also arise from use and patient factors.
For example, a large body habitus may lead to truncated cross-sections or images with truncation
artifacts. It is estimated that this occurs in 3 out of 20 images. Similarly, it is estimated that 1 in
10 images are blurred due to patient movement during the scan and that 1 in 10 images include a
slightly rotated view of the section because of the patient positioning.

Finally, the target circumstances of the MDS case study are as follows:

Target Circumstances Relative Freq.

Density contrast may vary significantly 0.15
Some pixel lines may be shifted 0.2
The cross-section may be truncated 0.15
Images may be blurred due to motion blur 0.1
Images may be blurred (Gaussian blur) 0.1
There may be salt and pepper noise in the images 0.1
The cross-sectional image can be rotated between −20◦ and 20◦ 0.1
Image resolution may be altered during preprocessing 0.1

5.3. Task 2. Assess the Significance of the Target Circumstances

Test case selection and prioritization is a challenge in the field of AI-based object
detection, as the input space can be very large [34]. In software testing, the notion of risk
is an integral part of the testing process, and the selection and prioritization of test cases
based on risk, also known as risk-based testing, is a recommended practice [35].

In this method, as target circumstances may be potential hazards, it is relevant to
prioritize test cases based on the risk associated with a target circumstance. In addition, this
information can also be reused and included in the definition of the metamorphic relation
used to assess the robustness (see Section 5.8).

In practical terms, the significance of a target circumstance is determined by the
risk associated with a system failure in that circumstance, and the assessment of the
significance of the target circumstances has two main objectives: to enable test cases to be
prioritized and to enable the variables involved in the metamorphic relation to be weighted.
Thus, the higher the significance of the circumstance, the higher the priority given to that
circumstance. Similarly, the higher the significance of the circumstance, the smaller the
variation in performance should be.

Based on the risk assessment model proposed by Kinney et al. [36], we define sig-
nificance as the product of three factors (see Table 4): the exposure of the system to a
circumstance, the likelihood of that circumstance occurring in practice, and the severity of
a system failure in that circumstance (potential loss or consequences).
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Table 4. GQM model: Q3 related metrics.

Metric Name Range Definition

M3 Exposure 1–5 Frequency to which the system is exposed to a possible circumstance.
M4 Likelihood 1–5 Probability of that circumstance occurring in practice.

M5 Severity 1–5 Severity of a system failure in that circumstance (potential loss or
consequences).

M6 Significance 1–125 = Exposure × Likelihood × Severity

In order to facilitate the definition of significance scores, we recommend assigning a
value to each target circumstance independently and using fixed scales, ranging from 1 to 5
to quantify each of the three factors (see Table 5). An example in the case of RMS is given
below (Box 2).

Table 5. Scales.

Value Exposure Likelihood Severity

1 Rare Rare Insignificant
2 Unusual Unlikely Minor
3 Occasional Possible Marginal
4 Frequent Likely Critical
5 Continuous Certain Catastrophic

Box 2. Example: RMS

Consider the following circumstance for the RMS case study: The camera has a very low shutter speed.
This circumstance translates as blurred input images for the object detection model. Its significance
can be defined as follows:

• Exposure: the system is exposed to this circumstance each time the camera is changed, which
should be rare. The exposure value is 1.

• Likelihood: in practice, it is very unlikely that the camera will have a too-low shutter speed, as
the camera will be tested and calibrated prior to its use. The likelihood value is 2.

• Severity: a failure of the AI-based object detection system in this circumstance could be
critical because it will have a continuous impact on the road actors (pedestrians and vehicles),
potentially leading to accidents, until the camera is removed or calibrated. The severity value
is 5.

Finally, the significance of the circumstance The camera has a very low shutter speed is 10.

At the end of this task and the specification phase, a document describing the target
circumstances, including their distribution and significance is generated and saved for
later use.

5.4. Task 3. Describe Source Test Cases (Source Circumstances)

Once the test objectives have been defined (i.e., target circumstances and their sig-
nificance), the test case generation phase can begin. This phase takes as input the target
circumstances description generated during the previous tasks and requires the use of a
dataset, which may be the test dataset (as opposed to the training dataset), and which we
will simply refer to as the source dataset.

As ML models are usually developed under the closed-world assumption, where
training and test data are drawn from the same distribution, all the images in the source
dataset should lie in the operational design domain (ODD), and therefore, contain no target
circumstances. However, when data are acquired in a real environment, some images or
parts of images may fall outside the ODD [37]. For example, in the case of road monitoring,
this could be the unexpected presence of wild animals on the road, whereas the training
data only contain objects common in urban areas (e.g., cars, pedestrians, bicycles). These
samples are commonly referred to as out-of-distribution (OOD) samples.
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It is, therefore, necessary to check whether the source dataset includes the target
circumstances. Thus, the objective of this step is to systematically identify and quantify the
target circumstances that are present in the source dataset.

In practice, we recommend following the list of previously established target circum-
stances and measuring the relative frequency of each of them within the source dataset
(see Table 2 and Box 3 for an example). However, in the absence of metadata or precise
knowledge of the dataset, it can be difficult to perform this step, especially on large datasets.
To overcome this difficulty, it is possible to perform this step on a representative sample of
the source dataset and extrapolate to the entire dataset. In addition, determining whether
an image is drawn from the same distribution as the training data is a complex problem,
known as out-of-distribution detection. Several methods have been proposed to perform
this task, but it is beyond the scope of this study [38,39].

Box 3. Example: MDS

In the following, this step is carried out from the point of view of the developer of the AI model in
the MDS case study. The following table lists the relative frequencies of each target circumstance
listed in Section 5.2 within the test dataset.

Finally, the source circumstances of the MDS case study are as follows:

Target Circumstances Relative Freq.

Density contrast may vary significantly 0.05
Some pixel lines may be shifted 0
The cross-section may be truncated 0.1
Images may be blurred due to motion blur 0.05
Images may be blurred (Gaussian blur) 0
There may be salt and pepper noise in the images 0
The cross-sectional image can be rotated between −20◦ and 20◦ 0
Image resolution may be altered during preprocessing 0

5.5. Task 4. Generate Follow-Up Test Cases (in Target Circumstances)

The objective of this task is to generate a dataset consisting solely of images in target
circumstances (i.e., outside the operational design domain), in order to assess the robustness
of the model in these circumstances. In the context of metamorphic testing, these images
are called follow-up test cases, generated on the basis of transformations representative of
the target circumstances. This task takes as input all the documents generated during the
previous tasks (description of the source and target circumstances) and the source dataset.

The first step is to determine the transformations to be applied to the images in
the source dataset to generate the follow-up test cases. These transformations are then
randomly applied to images from the source dataset in order to generate the follow-up test
cases in proportions similar to the frequency of the target circumstances. We call this newly
generated dataset of follow-up test cases, the target dataset. See Figure 6 for examples of
source and follow-up test cases, for the MDS case.

Note, that if necessary, the significance value of each circumstance can be used to
prioritize the transformations to be applied (e.g., if we do not wish to assess robustness to
all the target circumstances at the same time, which may be the case for assessing situations
independently of each other).
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a) Rotation and density contrast  b) Motion blur c) Rotation and shifted line 

Figure 6. Examples of source test cases (source circumstances), on the top, and follow-up test cases
(target circumstances), on the bottom, for the MDS case.

An example of the application of this task in the case of the RMS is given below
(Box 4).

Box 4. Example: RMS

In the RMS case study, we have defined a certain number of target circumstances related to changes
in camera or image signal processor (ISP) parameters. These target circumstances can be translated
into transformations that can be applied directly to the input images. For example, the circumstance
The camera has a very low shutter speed results in blurred input images. We can, therefore, define a
Motion Blur transformation to apply to the images in the source dataset to create follow-up test
cases in this target circumstance.
See Wozniak et al. [12] for more details and examples on the mapping between transformations and
the real phenomena, as well as examples of source and follow-up test cases for this industrial case.

Task 3 allowed us to determine that none of the images in the source dataset contain the target
circumstances. We thus, directly apply the Motion Blur transformation to the images in the dataset
so that the relative frequency of the follow-up test cases matches the relative frequency of the
corresponding target circumstance.

5.6. Task 5. Assess Performance on Source and Target Datasets

In accordance with the definition of robustness (see Section 5.1), the performance
assessment is a fundamental step in quantifying the robustness of an AI-based object detec-
tion system with respect to changes in the circumstances of use of the system. The objective
of this task is to evaluate the performance of the AI-based system on both the source dataset
and the newly generated target dataset(s) corresponding to the target circumstances. These
two performance evaluations are similar in terms of process and metrics. Table 6 lists the
metrics used to evaluate the performance of object detection models.
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Table 6. GQM model: Q2 related metrics.

Metric Name Range Definition

M7 Number of true positive (TP) N Number of objects correctly detected.

M8 Number of false positive (FP) N Number of nonexistent detected objects or existing
objects wrongly localized.

M9 Number of false negative (FN) N Number of objects not detected.
M10 Precision [0, 1] Efficiency of the model.

P =
TP

TP + FP
M11 Recall [0, 1] Effectiveness of the model.

R =
TP

TP + FN

M12 Mean average precision (mAP) [0, 1]

Area under the Precision-Recall curve averaged over
all classes. It measures the overall accuracy and the
trade-off between Precision and Recall. We distinguish
between:
mAP across IoUs: AP, AP0.5, AP0.75
mAP across object scales: APS, APM, APL

M13 Mean average recall (mAR) [0, 1]
Maximum recall given a fixed number of detections
per image, averaged over categories and IoUs. We
distinguish between:
AR across detections: AR1, AR10, AR100
AR across object scales: ARS, ARM, ARL

According to Padilla et al. [19], the most widely used metrics, whether in object
detection challenges or by the scientific community, are those measuring the accuracy of
detections. The overall performance of an object detection model is thus, usually given by
the mean average precision (mAP) and the mean average recall (mAR).

These metrics are based on the notions of true positive (TP), false positive (FP) and
false negative (FN). In the case of object detection, a true positive is defined with respect to
a threshold on the Intersection over Union (IoU) and the top-1 class prediction. For instance,
in some cases, TPs are detections with IoU above 0.5 and correct predicted class. If at least
one of these two conditions is not met, it is then a false positive.

For each detected object, IoU is defined as follows:

IoU =
area of intersection

area of union

Although these are the most commonly used metrics, not all of them are useful for
all object detection systems. The choice of one or the other metric varies according to the
application case and the objectives of the system. For example, in the case of the road
monitoring system, one of the most important metrics is the number of false negatives,
as it must be as close as possible to 0 to avoid potentially fatal incidents. On the other
hand, in the case of the medical diagnosis system, the number of false negatives is not as
important as in the case of the road monitoring system, because each CT scan image can be
reviewed by a human expert at any time. Box 5 summarises the results obtained for the
MDS case.

Box 5. Example: MDS

The following table shows the performance of MDS on the source and target datasets.

Precision Recall AP0.5 AP0.75 AP

Source dataset 0.564 0.51 0.526 0.396 0.34
Target dataset 0.498 0.384 0.414 0.264 0.246
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5.7. Task 6. Compare Source to Target Datasets

As previously mentioned, assessing robustness requires comparing the performance of
the system in different circumstances (i.e., against the source and target datasets). However,
given the stochastic nature of the target dataset generation process, the difficulty that the
target dataset represents for the system is not always the same from one run to another.
For example, from one image to another, a change in contrast (with the same parameters)
will not always have the same impact. Similarly, combinations of circumstances on the
same image will not always be the same.

To overcome this issue it is, therefore, necessary to have a common scale that quantifies
the difficulty of the target dataset, with respect to the source dataset. In practice, this can
be conducted by comparing the two datasets and measuring a distance, either between
the samples or between their features. In the first case, the metric is directly calculated
sample by sample, by measuring the distance or similarity between the original and the
follow-up images. It is averaged over all the samples from the datasets. In the second case,
the characteristics of the datasets are compared, for example, by using feature extraction
or clustering, and the metric measures the distance between feature vectors or clusters.
Table 7 lists several types of metrics that can be used in these two cases.

Note, that the choice of one metric or another highly depends on the use case and the
types of circumstances being tested (see example below in Box 6).

Table 7. GQM model: Q4 related metrics.

Metric Name Definition

M14 Distance between images E.g., Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR),
and Structural Similarity Index (SSIM) and its variants [40].
These metrics are used in the field of image quality. They are
full-reference metrics, which means that they compare an original
image with a distorted image (in our case, the generated
follow-up image).

M15 Distance between E.g., Fréchet Inception Distance (FID) [41].

distributions

Rather than comparing images pixel by pixel, it is possible to compare
other characteristics. This is the objective of metrics such as Fréchet
Inception Distance (FID), which compares the distribution (mean and
standard deviation) of images processed by an Inception-type neural
network. It is currently a benchmark metric for assessing the quality of
generative models.

M16 Distance between E.g., Euclidean distance, cosine similarity.

feature vectors

After using a feature extraction algorithm for each of the images
(source and follow-up), the distance separating the feature vectors is
measured using a metric such as Euclidean distance or
cosine similarity.

M17 Inter-cluster E.g., linkage distance [42].

distance

There are several ways of defining the distance between two clusters,
depending on whether we are considering a single point (Single
linkage), all the points (Complete linkage), the average of all points
(Average linkage), or the centroid of the clusters (Centroid linkage).
Note: inter-cluster or linkage distances are usually calculated based on
well-known distance measures, such as Euclidean, Manhattan,
or Mahalanbois distances.
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Box 6. Example: RMS

For this use case, we used the structural similarity index (SSIM) [43] to measure the distance between
circumstances. SSIM is a full-reference metric that measures the similarity between a source image
and its follow-up, in terms of luminance, contrast, and structure. Its value ranges from 0 to 1, where
an SSIM of 1 indicates that the two images being compared are identical. The distance between
circumstances is thus, given by 1 − SSIM.

This choice was motivated by the fact that in this use case, the camera is fixed in time and the
circumstances tested give rise to transformations applied uniformly to the image. For example,
there are no changes to specific objects in the image. The only structural modifications are, therefore,
those introduced by blur or noise transformations. A full-reference metric is thus relevant in
this configuration.
In addition, we have chosen to use a metric that is close to the human perception of image quality
(by comparison with MSE or PSNR, for example), because the transformations must be realistic and
the system’s performance comparable to that of human vision.

In practice, SSIM is computed for each pair of images (source, follow-up) in the datasets, and
then averaged over all the values. The distance between the datasets is given by 1 − SSIM. As
an example, the following table shows the evolution of the averaged SSIM as a function of the
parameter (amount of expansion and blurring) of the Chromatic aberration transformation, defined
in the context of the circumstance: the camera is equipped with a poor quality lens.

Parameter 0 0.1 0.25 0.5 0.75 1

SSIM 1 0.904 0.777 0.733 0.711 0.697
Distance 0 0.096 0.223 0.267 0.289 0.303

5.8. Task 7. Assess the Robustness

The objective of the last task is to aggregate the information from the previous stages to
assess the robustness of the system in the target circumstances. In the following, the meta-
morphic relation used in this testing method is introduced.

As previously mentioned, we base our approach on the definition of robustness in [30],
which considers an AI system to be robust if it is able to maintain its level of performance
under any circumstances. In practice, we relax this definition by introducing the notion
of distance between the circumstances: the smaller the distance between the source and
target circumstances, the closer the performance of the model in these circumstances should
be. In fact, as the tested circumstances lead to atypical data different from those expected
in operational conditions, it is unlikely in practice, to have strictly equal performance.
Furthermore, this relaxed definition includes the notion of global robustness as defined
by other authors (i.e., whatever two points are contained in the same region, the model
returns a similar prediction) [15].

We can, therefore, express the difference in performance ∆P (see Table 8) as a function
of the distance d. Then, a metamorphic relation for a robust model is:

∀(x, x′), ∆P = |Px − Px′ | ≤ ϵ(d)

where x and x′ are two sets of circumstances, Px (resp. Px′ ) is the performance of the model
under given circumstances x (resp. x′), and ϵ is a piecewise linear function. It means that we
can define several di for which the maximum threshold on ∆P will be different. In practice,
this function ϵ depends on the use case and the choices made at the previous stages. It
represents the acceptable trade-off between the distance between sets of circumstances and
the change in performance. It can be determined experimentally. See the example below
for more details (Box 7).
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Table 8. GQM model: Q5 related metrics.

Metric Name Range Definition

M18 Performance [0, 1] ∆P = |Px − Px′ |

difference (∆P) Absolute value of the difference between performance on the source
and target datasets.

Once the ϵ function is defined, all that remains is to use the previous results to check
that the model is robust, i.e., that it verifies the metamorphic relation.

Box 7. Example: MDS

For the MDS use case, several performance metrics have been calculated (see Section 5.6). The
distance between the source and target datasets was measured with CW-SSIM [44], a variant of
SSIM which provides better results for images that have been rotated or truncated. The results are
summarized in the table below.

In order to determine the ϵ(d) function in the metamorphic relation, we first seek to identify one or
more significant distance values d. In the previous task, the CW-SSIM metric was computed for
each pair of images (source, follow-up) in the datasets, and it is, therefore, possible to determine the
threshold at which it becomes significantly more difficult for the human eye to correctly process
the image. In practice, we rely on a domain expert to define this threshold. In this use case, it is
estimated at d = 0.25 on average. This means that the performance of the model should remain
more or less the same (e.g., ∆P ≤ 0.01) for d ≤ 0.25. Beyond this value, the difference in performance
may increase linearly with d.

We thus, have the following metamorphic relation:

∀
(

x, x′
)
, ∆P = |Px − Px′ | ≤ ϵ(d)

where

ϵ(d) =

{
0.01 ifd ≤ 0.25
d else

In this example, as shown in the table below, d ≤ 0.25. Whatever the performance metric, the

model does not verify the above relation and is, therefore, not globally robust.

Performance ∆P Distance d

AP Precision Recall CW-SSIM

0.094 0.066 0.126 0.154

6. Tooling

A prototype tool, available online (https://drive.google.com/file/d/1i-kqAeABWZPYyJii3
JDUHSbDHsPncmFq/view?usp=drive_link) (accessed on 1 April 2024) , has been developed
to assist practitioners in utilizing the method. This tool has been implemented as a three-
tab spreadsheet and allows (i) the different phases of the testing process to be monitored,
(ii) information about the system, such as measurements, to be kept throughout the pro-
cess, and (iii) the robustness of the system to be checked (w.r.t. a metamorphic relation).
The content of each of the three tabs is described below, and screenshots of the tool used
for the MDS case are available in Figure A1.

The first tab, Specification, is used to define the target circumstances (Task 1) and
their significance (Task 2). In practice, the user fills in a table summarizing all the target
circumstances of the system and their characteristics, including probability, exposure,
likelihood, and severity. The tool then calculates significance scores and displays the
distribution of circumstances according to the three factors to help identify the most critical
circumstances for the system.

The second tab, Test cases generation, focuses on describing the source dataset (Task 3)
and is used to define missing follow-up test cases in target circumstances (Task 4) for the

https://drive.google.com/file/d/1i-kqAeABWZPYyJii3JDUHSbDHsPncmFq/view?usp=drive_link
https://drive.google.com/file/d/1i-kqAeABWZPYyJii3JDUHSbDHsPncmFq/view?usp=drive_link


Electronics 2024, 13, 1368 17 of 26

robustness assessment. First, a pre-populated table based on the previous tasks is made
available for the user to enter circumstances that are already in the source dataset used for
testing the system. Users indicate their relative frequency in the dataset. Then, the tool
automatically updates a list of circumstances to be tested as a priority. To do so, it uses the
difference between the probability and the relative frequency to determine whether follow-
up test cases should be generated. The list is prioritized according to the circumstance’s
significance score.

Finally, the last tab, Evaluation, is used to perform all the remaining tasks for the
robustness assessment: performance evaluation (Task 5), measurement of the distance
between datasets (Task 6), and definition of the robustness property to be verified (Task 7).

7. Evaluation and Lessons Learned

Following the two cycles of action research, the proposed testing method was em-
pirically evaluated through a case study [45] whose goal was to assess the relevance and
applicability of the method in an industrial context. The main research question was
defined as follows: How useful is the proposed method for practitioners to test the robustness
of AI-based 2D object detection models? As mentioned in the introduction of this research
(Section 1), from our previous work we have learned that current state-of-the-art methods
can be difficult to apply in practice as they often lack clear guidelines for adapting them
to the systems under test while still allowing to compare the results from one system to
another. We thus, focus on the usefulness of the proposed method for practitioners, in terms
of its applicability and its ability to provide clear guidelines.

In the following, we report on the design, results and lessons learned from the study.

7.1. Design

We conducted the case study on the Medical Diagnosis System (MDS) developed by
Kereval (see Section 3.2), and the primary mean of data collection was a focus group involv-
ing practitioners from the company. Focus groups are an effective method for conducting
qualitative assessments of new approaches and collecting potential problems and lessons
learned based on feedback from practitioners [46]. We followed the recommendations of
Kontio et al. [46] in designing and conducting the focus group session.

The point of view adopted in this evaluation is that of external testers. We, there-
fore, selected five participants from Kereval, all of whom are experienced engineers or
testers with experience working on AI-based systems, but who were not involved in the
development of the MDS.

The focus group session took the form of a structured discussion in which the following
four main questions were addressed.

Q1: What problems did the company’s actors encounter in applying the state-of-art methods?
In this study, we aim to assess the usefulness of the proposed method in relation to current
practices and the issues that may be encountered in practice when testing robustness.
Therefore, the goal of this question is to identify practical issues and shortcomings related
to the methods commonly used by practitioners.

Q2: What difficulties do the company’s actors encounter in applying the proposed method?
The goal of this question is to identify potential problems in using the method, as they may
reveal unclear guidelines or unresolved practical issues.

Q3: What is the company’s actors perception on the benefits of the proposed method for the
practitioners? We seek to identify the strengths of the proposed method, such as the practical
issues it addresses.

Q4: What could prevent the use of the proposed method in other contexts? We seek to
identify the limitations of the proposed method in terms of applicability, and potential
areas of improvement.

During the session, one researcher acted as moderator to facilitate the discussion and
probe deeper when necessary. An additional observer took part in the session, which was
also video-recorded for data collection purposes. In total, the session lasted 2.5 h, divided
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into three parts. First, the moderator briefly recalled the purpose of the focus group and the
principle of the proposed method. Then, the discussion focused on the application of the
method to the MDS case in order to identify the potential difficulties for an external tester
in this context. Finally, the participants were invited to discuss more broadly the usefulness
of the method in relation to current practices and methods, the benefits it could bring and
the potential limitations of its application in different contexts.

Data were analyzed from the video recording and the notes taken during the session,
using the pattern matching technique [47] in which the empirically observed patterns
(findings from the focus group session) were compared with the expected patterns that we
had formulated based on the outcomes of the action research.

7.2. Results

In this section, we synthesize the results for each main question addressed during the
focus group session.

7.2.1. Current Practical Issues (Q1)

The most frequently cited problem during the discussion, and the one with which the
majority of participants (three out of five) agreed was the difficulty of determining a threshold
on the system’s performance that would enable testers to assess its robustness. This difficulty
led some participants, during similar projects, not to explicitly define a metamorphic
relation as presented in our proposed method (Task 7) but to use a method similar to load
testing in which the transformations applied to the input images are increasingly severe.

The difficulty of defining relevant transformations on the data to test the system was
also mentioned, together with the difficulty of applying transformations to the images,
i.e., generating test cases from a source dataset in the case of systems where domain
knowledge is required and the transformations to be applied are complex. The lack of a
framework to guide the definition of the transformations has already led one participant to
carry out the tests using an exploratory approach during one of his projects.

7.2.2. Difficulties in Using the Method (Q2)

The participants agreed that Task 1 (Describe target circumstances) and Task 2 (Assess the
significance of the target circumstances) were the most difficult to carry out in practice as a
tester, particularly the assignment of a value to certain factors involved in the significance
score (exposure, likelihood, and severity). They also identified that this latter difficulty
could arise from the sometimes subjective nature of these factors. On the other hand, two
of the participants drew parallels with traditional software testing practices, such as risk
assessment and the determination of safety integrity levels (SIL) as described in the IEC
61508 standard [48], validating that these difficulties are common in the context of software
testing and that the tester indeed usually discuss these issues with a domain expert.

To a lesser extent, the question of the choice of some metrics was raised as a difficulty in
practice, particularly for measuring the distance between datasets or circumstances as it
requires a good understanding of the system and its environment. However, the majority of
participants (four out of five) felt that these choices were indeed a matter of the AI tester’s
expertise. Thus, the tester can discuss with the domain expert to better understand the
system but retains responsibility for the final decision.

7.2.3. Benefits (Q3)

In terms of the benefits perceived by the company’s practitioners, the most frequently
cited response was clear, structured guidelines for the testing process. One participant high-
lighted the time saved by defining a clear process with ordered steps. Another participant
felt that such a method can help in formulating the hypotheses under which the robustness of
an AI-based system is validated. In addition, most of them (four out of five) agreed that
the proposed method can help determine the threshold on system performance and the definition
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of relevant transformations, and two of the current practical issues previously mentioned
(cf. Q1).

7.2.4. Limitations (Q4)

Overall, the participants felt that the proposed method would be difficult to apply to
systems whose circumstances of use are complex to describe and strongly linked to the application
domain. In practice, they consider that such “domain” circumstances cannot be easily
expressed in terms of transformations to be applied to images and, if they are, may not
be feasible. One of the participants gave the example of a transformation that would
involve transforming a daytime image into a night-time image: such a transformation is
very complex, difficult to automate, and therefore, very costly. Similar examples have been
given in industrial cases where the tester alone cannot determine the visual effect of a given
circumstance, and therefore, the associated transformation.

7.3. Conclusion and Lessons Learned

This study allowed us to determine how the proposed method could be useful to
software testers in relation to the problems they currently encounter in practice. The focus
group participants identified that the proposed method provides concrete answers to their
practical issues from a software tester’s point of view, although certain questions remain
unanswered. The lessons learned from this study are summarized below.

Lesson 1: Need for circumstances analysis when testing the robustness of AI-based
systems. The current practical issues mentioned by software testers are related to the
application domain of the system under test and require the tester to rely on documentation
or discussions with the development team or domain experts to determine the relevant
cases to test. This confirms that this activity must be an integral part of the testing process
in the same way as risk analysis in traditional software testing for high-risk systems.

Lesson 2: The choice of metrics is a matter for the AI tester’s area of expertise. One of
the lessons learned from this study is that AI testers need to be made aware of or trained in
the choice of performance metrics for AI models and the measurement of distance between
datasets. Indeed, the software testers interviewed believe that this should be part of an AI
tester’s area of expertise.

Lesson 3: More needs to be conducted to address the issue of complex, domain-
related circumstances. According to the practitioners interviewed, there is currently no
practical and cost-effective solution for AI-based systems whose circumstances cannot be
expressed in the form of simple or automatable transformations. A current alternative is to
acquire a dataset specifically for these circumstances of use, but this solution is also very
costly and often unfeasible.

8. Threats to Validity

In this section, we report on the possible threats to validity that we have identified
in this research and discuss how we mitigated them, following the recommendations of
Wohlin et al. [49].

8.1. Construct Validity

In action research, the learning effect may be a threat to construct validity. We avoided
the learning effect by using different cases and involving new practitioners in each cycle of
the action research. To ensure the construct validity of the empirical evaluation, we have
used an application case that we believe to be representative of a real situation of testing
the robustness of an AI-based 2D object detection system. Measurement bias was also
mitigated by using video recording and having an additional observer during the focus
group session.
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8.2. Internal Validity

To ensure that the results of the focus group session were representative of reality,
we selected practitioners with different profiles in terms of experience and role within the
company. In addition, to minimize the threat posed by the fact that one of the researchers
and the team of practitioners interviewed worked in the same company, the latter was
encouraged to criticize the proposed method, highlighting the difficulties and limitations
encountered in its application and to detail their responses. Furthermore, none of the
participants had previously contributed to the development of the method.

8.3. External Validity

In the action research, we used two different AI-based 2D object detection use cases
that have two distinct application domains, and two different groups of people to apply
the method, which allowed us to mitigate to some extent, the threat to external validity.
Regarding the case study, the focus group adopted the viewpoint of an external tester
to apply the proposed method and we do not intend to generalize the results beyond
this scope.

8.4. Conclusion Validity

To improve the reliability of our research, we have used well-established research meth-
ods (e.g., action research and focus group method) and described in detail the procedures
to conduct the research, following good practices.

9. Related Work
9.1. Standards, Guidelines and Methodologies for Testing AI Robustness

From best practices to emerging standards, several reference systems for the develop-
ment and testing of AI-based systems have surged in recent years. At the international and
European level, ISO/IEC, CEN-CENELEC and ETSI are among the standards organizations
involved. In the following, we focus on the reference systems related to the robustness of
AI-based systems.

The ISO/IEC JTC 1/SC 42 committee, which deals with standardization in the field of
artificial intelligence, is developing the ISO/IEC 24029 family of standards on the robustness
of systems using neural networks. This standard currently has three parts: ISO/IEC TR
24029-1:2021 [30] on an overview of the subject, published in 2021 as a 31-page document,
ISO/IEC 24029-2:2023 [50] on the use of formal methods in this context, published in 2023
as a 23-page document, and ISO/IEC AWI 24029-3 [51] on the use of statistical methods,
which is still under development. At the same time, this committee has been assigned to
review the ISO/IEC TR 29119-11:2020 [52] standard in the field of software testing, which
describes the test methods applicable to AI-based systems, the metrics that can be used,
and which maps the various test stages to those of the life cycle of an AI-based system.

CEN and CENELEC have established the CEN-CENELEC JTC 21 in response to the
European Commission White Paper [53] on AI. This committee is responsible for the
development and adoption of standards for AI and related data, as well as providing
guidance to other Technical Committees concerned with AI. In particular, it identifies
and adopts international standards already available or under development from other
organizations such as the ISO/IEC JTC 1/SC 42 committee.

For its part, the International Software Testing Qualifications Board (ISTQB) published
a Syllabus [54] that serves as a basis for certification in AI testing. Among the topics
covered in the syllabus are the various quality characteristics to be verified in AI-based
systems, including robustness, and the methods, techniques, and environments for testing
these systems.

AMLAS [55] is a methodology for the safety assurance of machine learning compo-
nents in autonomous systems. It supports the development of safety cases in a systematic
way. However, this high-level framework does not provide practical guidance on the choice



Electronics 2024, 13, 1368 21 of 26

of test methods during the model verification stage or on the appropriate metrics to be
used for the robustness assessment of a given system.

Although such reference systems help to structure progress in the field of AI testing
and guide the development of new methods and tools, they often lack practical applications.
Built to be applicable to different types of AI-based systems, they often result in high-
level and generic guidelines. Furthermore, their complexity and inertia in the face of the
emergence of new, more relevant methods make them difficult to use when selecting a
suitable testing approach in practice.

9.2. Robustness Testing of AI-Based Object Detection Systems

Several methods have been proposed in the literature to test the robustness of AI-
based models [14,15]. In computer vision, these methods usually involve measuring
the performance of the model against perturbed input images that reflect uncertainties
in its operational environment. Input images can be classified into two categories [15]:
adversarial inputs and natural inputs. Adversarial inputs are crafted from perturbations
that are imperceptible to humans but can cause AI models to make incorrect predictions [5].
Alternatively, natural inputs can be generated by applying common perturbations that
simulate real-world scenarios, such as sensor failures or changes in the environment [6,7].

Given their nature and implications for the security of AI-based systems, the topic of
adversarial input generation has received considerable attention in recent years, as high-
lighted by Akhtar et al. in two successive surveys [56,57]. This trend has also been observed
in the field of AI-based 2D object detection systems, where numerous techniques have been
proposed in the literature for generating adversarial inputs [9].

Regarding natural inputs, several methods have been proposed for defining pertur-
bations and generating perturbed input images, guided by knowledge of the application
domain [58], coverage metrics [59,60], or properties that the system must satisfy, such as
metamorphic relations [22,61]. In addition, several perturbation benchmarks have been
proposed in the literature to assess robustness [7,62–64]. However, few of these methods
have been developed and evaluated in the context of 2D object detection systems. As men-
tioned in Section 2.2, Wang et al. [22] developed MetaOD, a tool based on metamorphic
testing. It aims to verify that inserting objects into the background of an image does not
change the results for the other objects. For their part, Zhao et al. [63] proposed a natural
perturbation benchmark for testing models in the field of computer vision, including object
detection models.

In contrast to related work, we do not aim for a specific application domain (e.g.,
autonomous vehicles) or a specific set of perturbations. Instead, we aim to fill the gap
between academia and the industry, providing practitioners and researchers with practical
guidance on the application of effective state-of-the-art methods and a set of relevant metrics
to overcome issues encountered in practice, such as the elicitation of relevant perturbations.

10. Conclusions and Future Work

In this paper, we have presented the development of a method for assessing the
robustness of AI-based 2D object detection systems. The goal of this method is to meet
the need for clear guidelines identified in practice in previous work [12]. It was developed
using action research, based on two industrial cases and feedback from practitioners. As a
result of these experiments, we identified key steps in a testing process based on the
metamorphic testing technique and a set of metrics to be used at each step.

An initial qualitative evaluation of the proposed method was conducted to assess its
usefulness for practitioners and its ability to provide clear guidelines. The lessons learned
from this study will also help to guide future work. In particular, we identified that more
efforts should be concentrated on AI-based systems whose circumstances of use are difficult
to translate into a set of simple, automatable transformations. Thus, further industrial case
studies should be conducted to further improve the proposed method and complement the
guidelines in this context.
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In addition to the above, future work will involve the further implementation of a
software tool to assist practitioners in using the method. An initial prototype has been
developed to help with case studies, and initial feedback will enable us to continue our
work on the subject. Other future work will also concern the specification phase in line
with current risk analysis practices for critical software systems in order to deepen the
analysis of target circumstances. In particular, we will study how they can be formulated at
several levels of detail and address the question of the testability of circumstances.
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Appendix A

  Missing circumstances (%): 63%     
  Circumstances over/under - represented (%): 100%     

Total coverage of circumstances (%): 0%     
ID Circumstance Probability Significance Relative Frequency 

3 The cross-section may be truncated 0.15 20 0.1 
1 Density contrast may vary significantly 0.15 18 0.05 
2 Same pixel lines may be shifted 0.2 18 0 
4 Images may be blurred due to motion blur 0.1 15 0.05 

8 Image resolution may be altered during 
preprocessing 0.1 12 0 

7 The cross-sectional image may be rotated 
between -20° and 20° 0.1 10 0 

5 Images may be blurred (Gaussian blur) 0.1 9 0 

6 There may be salt and pepper noise in the 
images 0.1 3 0 

MEASURED PERFORMANCE MEASURED DISTANCE 
Metric Perf. on source dataset Perf. on target dataset ΔP Metric Distance d 
Precision 0.564 0.498 0.066 CW-SSIM 0.154 
Recall 0.510 0.384 0.126 
mAP50 0.526 0.414 0.112 PIECEWISE LINEAR FUNCTION PARAMETERS  
mAP75 0.396 0.264 0.132 IF d < Param a Param b 
mAP 0.340 0.246 0.094 0.25 0 0.01 

Insert new lines before this one. 1 1 0 
Insert new lines before this one. 

  ROBUSTNESS 
    
  Metamorphic relation: d < 0.25 ⇒  ΔP < 0.01   
    
  This property holds for  0 performance metrics.   
  The system is not robust with respect to the metamorphic relation.   
                

3. Evaluation 

2. Test Cases Generation (results)  

1. Specification 
ID Circumstance Probability Exposure Likelihood Severity Significance 

1 Density contrast may vary significantly 0.15 3 2 3 18 
2 Same pixel lines may be shifted 0.2 3 3 2 18 
3 The cross-section may be truncated 0.15 5 2 2 20 
4 Images may be blurred due to motion blur 0.1 5 1 3 15 
5 Images may be blurred (Gaussian blur) 0.1 3 1 3 9 

6 
There may be salt and pepper noise in the 
images 0.1 3 1 1 3 

7 
The cross-sectional image may be rotated 
between -20° and 20° 0.1 5 1 2 10 

8 
Image resolution may be altered during 
preprocessing 0.1 3 2 2 12 

Insert new lines before this one. 
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Figure A1. Elements from the tooling, for the MDS case.
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