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Abstract: The purpose of this paper is to explore the implementation of retrieval-augmented genera-
tion (RAG) technology with open-source large language models (LLMs). A dedicated web-based
application, PaSSER, was developed, integrating RAG with Mistral:7b, Llama2:7b, and Orca2:7b mod-
els. Various software instruments were used in the application’s development. PaSSER employs a set
of evaluation metrics, including METEOR, ROUGE, BLEU, perplexity, cosine similarity, Pearson cor-
relation, and F1 score, to assess LLMs’ performance, particularly within the smart agriculture domain.
The paper presents the results and analyses of two tests. One test assessed the performance of LLMs
across different hardware configurations, while the other determined which model delivered the
most accurate and contextually relevant responses within RAG. The paper discusses the integration
of blockchain with LLMs to manage and store assessment results within a blockchain environment.
The tests revealed that GPUs are essential for fast text generation, even for 7b models. Orca2:7b
on Mac M1 was the fastest, and Mistral:7b had superior performance on the 446 question–answer
dataset. The discussion is on technical and hardware considerations affecting LLMs’ performance.
The conclusion outlines future developments in leveraging other LLMs, fine-tuning approaches, and
further integration with blockchain and IPFS.

Keywords: retrieval-augmented generation (RAG); open-source large language models (LLMs);
Mistral:7b; Llama2:7b; Orca2:7b; Antelope blockchain; Ollama; LangChain; smart agriculture

1. Introduction

The advent of LLMs is changing the paradigm in natural language processing (NLP)
toward improved classification, generation, and understanding of texts. However, general-
purpose LLMs often require further adaptation to advance their performance in specific
tasks or specialized domains. This has led to the development of different approaches to
enhancing the performance of the models. Their goal has been to overcome the inherent
limitations of pre-trained large-scale models. In this regard, the following models can be
mentioned: full fine-tuning, parameter-efficient fine-tuning (PEFT), prompt engineering,
and retrieval-augmented generation (RAG).

Full fine-tuning [1] is a method in which tuning occurs by adjusting all LLM parame-
ters to specific data for a single task. This requires less data and offers greater accuracy and
robustness of the results. The large scale of LLMs, however, makes the method’s implemen-
tation computationally expensive, requiring significant memory, time, and expertise.

Parameter-efficient fine-tuning (PEFT) [2] emerged simultaneously, outlining an al-
ternative strategy. The method focuses on modifying a selected number of parameters.
The results are better (faster) learning performance and knowledge retention from pre-
training. However, the performance of PEFT depends on the complexity of the task and
the technique chosen, as it updates far fewer parameters in comparison to full fine-tuning.
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In [3], the prompt engineering method is presented. This technique does not involve
training network weights. To influence the desired output, it involves crafting the input
to the model. This approach includes zero-shot prompting, few-shot prompting, and
chain-of-thought prompting, each offering a way to guide the model’s response without
direct modification of its parameters. This method leverages the flexibility and capability of
LLM and provides a tool to adapt the model without the computational cost of retraining.

RAG, introduced in [4], enhances language models by combining prompt engineering
and database querying to provide context-rich answers, reducing errors and adapting to
new data efficiently. The main concepts involve a combination of pre-trained language
models with external knowledge retrieval, enabling dynamic, informed content generation.
It is cost-effective and allows for traceable responses, making it interpretable. The develop-
ment of retrieval-augmented generation (RAG) represents a significant advancement in
the field of natural language processing (NLP). However, for deeper task-specific adapta-
tions, like analysing financial or medical records, fine-tuning may be preferable. RAG’s
integration of retrieval and generation techniques addresses LLM issues like inaccuracies
and opaque logic, yet incorporating varied knowledge and ensuring information relevance
and accuracy remain challenges [5].

Each method offers a specific approach to improving LLM performance. Choosing
between them depends on the desired balance between the required results, the available
resources, and the nature of the tasks set.

In fact, there are other different methods in this field. They are founded on these basic
approaches or applied in parallel. For example, dense passage retrieval (DPR) [6] and the
retrieval-augmented language model (REALM) [7] refine retrieval mechanisms similar
to RAG. Fusion-in-decoder (FiD) [8] integrates information from multiple sources into
the decoding process. There are various knowledge-based modelling and meta-learning
approaches. Each of these models reflects efforts to extend the capabilities of pre-trained
language models and offer solutions for a wide range of NLP tasks.

The purpose of this paper is to explore the implementation of retriever-augmented
generation (RAG) technology with open-source large language models (LLMs). In order
to support this research, a web-based application PaSSER that allows the integration,
testing and evaluation of such models in a structured environment has been developed.

The paper discusses the architecture of the web application, the technological tools
used, the models selected for integration, and the set of functionalities developed to operate
and evaluate these models. The evaluation of the models has two aspects: operation on
different computational infrastructures and performance in text generation and summa-
rization tasks.

The domain of smart agriculture is chosen as the empirical domain for testing the
models. Furthermore, the web application is open-source, which promotes transparency
and collaborative improvement. A detailed guide on installing and configuring the ap-
plication, the datasets generated for testing purposes, and the results of the experimental
evaluations are provided and available on GitHub [9].

The application allows adaptive testing of different scenarios. It integrates three of
the leading LLMs, Mistral:7b, Llama2:7b, and Orca2:7b, which do not require significant
computational resources. The selection of the Mistral:7b, Llama2:7b, and Orca2:7b models
is driven by an approach aimed at balancing performance and affordability. The selected
models were determined due to their respective volume parameters that allow installation
and operation in mid-range configurations. Given the appropriate computational resources,
without further refinement, the PaSSER application allows the use of arbitrary open-source
LLMs with more parameters.

A set of standard NLP metrics—METEOR, ROUGE, BLEU, Laplace and Lidstone’s
perplexity, cosine similarity, Pearson correlation coefficient, and F1 score—was selected for
a thorough evaluation of the models’ performance.



Electronics 2024, 13, 1361 3 of 30

In this paper, RAG is viewed as a technology rather than a mere method. This distinction
is due to the paper’s emphasis on the applied, practical, and integrative aspects of RAG in
the field of NLP.

The paper contributes to the field of RAG research in several areas:

1. By implementing the PaSSER application, the study provides a practical framework
that can be used and expanded upon in future RAG research.

2. The paper illustrates the integration of RAG technology with blockchain, enhancing
data security and verifiability, which could inspire further exploration into the secure
and transparent application of RAG systems.

3. By comparing different LLMs within the same RAG framework, the paper provides
insights into the relative strengths and capabilities of the models, contributing knowl-
edge on model selection in RAG contexts.

4. The focus on applying and testing within the domain of smart agriculture adds to the
understanding of how RAG technology can be tailored and utilized in specific fields,
expanding the scope of its application and relevance.

5. The use of open-source technologies in PaSSER development allows the users to
review and trust the application’s underlying mechanisms. More so, it enables col-
laboration, provides flexibility to adapt to specific needs or research goals, reduces
development costs, facilitates scientific accuracy by enabling exact replication of re-
search setups, and serves as a resource for learning about RAG technology and LLMs
in practical scenarios.

The paper is organized as follows: Section 2 provides an overview of the development,
implementation, and functionalities of the PaSSER Web App; Section 3 discusses selected
standard NLP metrics used to measure RAG performance; Section 4 presents the results of
tests on the models; Section 5, the limitations and influencing factors highlighted during
the testing are discussed; and Section 6 summarizes the results and future directions for
development.

2. Web Application Development and Implementation

This section describes the development, implementation, and features of the PaSSER
Web App, which henceforward will be referred to as the PaSSER App.

The PaSSER App is a complementary project to the Smart crop production data
exchange (SCPDx) platform, described in detail in [10,11]. The platform aims to support the
integration of exchanging information and data acquired or generated as a result of the use
of different technologies in smart agriculture. An underlying blockchain and distributed
file system, eosio blockchain and InterPlanetary file system (IPFS), were selected [12].
The networks were deployed as private, permissionless. Later, in 2022, due to the hard
fork, eosio blockchain was renamed to Antelope.io [13], which forced the migration of
the blockchain network. The development of the SCPDx platform was preceded by a
number of studies related to the choice of blockchain platform [14], blockchain-enabled
supply-chain modelling for a smart crop production framework [15], and blockchain oracles
integration [16].

The framework outlined in Figure 1 represents the PaSSER App’s core infrastructure,
the server side, the application itself, and the integration with the blockchain and IPFS of
the SCPDx platform infrastructure.

There are different ways and techniques to work with LLMs and the RAG technology
(Python scripts, desktop or web apps), but from a user’s perspective, it is most convenient
to use a web interface as it is independent of software platforms, where access to external
resources is implemented through APIs. This is why the PaSSER App was developed as a
web application.

The PaSSER App communicates with Ollama [17], ChromaDB [18], Python scripts,
Antelope blockchain, and IPFS through their respective APIs. Currently, the IPFS network
is not utilized within the framework; however, future enhancements aim to incorporate it
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to enable storage and content distribution, which will support the fine-tuning processes
of LLMs.
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The PaSSER App is developed in JavaScript, leveraging the PrimeReact library [19]
for its user interface components. To facilitate interaction with the Antelope blockchain
network, it employs the WharfKit library [20]. The LangChain library [21] is integrated for
engagement with RAG and LLMs. The application is hosted on an Apache web server, en-
abling communication between the PaSSER App, the LLMs, and the SCPDx infrastructure.

The server component of the PaSSER App includes a vector database, LLM API, and
a score evaluation API. Ollama’s API supports different operating systems (UBUNTU,
Windows, and macOS) and is used as an interface with different LLMs. This API grants
users the flexibility to manage and interact with different open-source LLMs. Specifically,
Ollama is deployed on an Ubuntu server equipped with 128 GB RAM, not utilizing a GPU,
and also configured locally on a Mac Mini M1 with 16 GB RAM and a 10-core GPU.

ChromaDB is used to work with vector databases. ChromaDB is an open-source
vector database for applications that utilize large language models (LLMs). It supports
multiple programming languages such as Python, JavaScript, Ruby, Java, Go, and others.
The database is licensed under the Apache 2.0 license. ChromaDB architecture is suited
for applications that require semantic search capabilities. An embedding refers to the
transformation of text, images, or audio into a vector of numbers, which represents the
essence of the content in a way that can be processed and understood by machine learning
models. In this implementation, ChromaDB was installed on a macOS-based server and
locally on a Mac Mini M1 16 GB RAM 10 GPU.

Two Python scripts are developed: one for computing various evaluation metrics
using libraries such as NLTK [22], torch [23], numpy [24], rouge [25], transformers [26], and
scipy [27], and the other for logging model performance data, both using the Pyntelope
library [28] for blockchain interactions. These scripts are operational on an Ubuntu server
and are accessible via GitHub [9], facilitating the analysis and the recording of perfor-
mance metrics within a blockchain framework to ensure data integrity and reproducibility
of results.

2.1. LLMs Integration

In this implementation of PaSSER, Mistral:7b, Llama2:7b, and Orca2:7b models were
selected. These models have the same volume parameters and are suitable to be installed
and used on hardware configurations with medium computational capacity, while giving
good enough results. A brief description of the models is presented below.

Mistral:7b “https://mistral.ai/news/announcing-mistral-7b/ (accessed on 23 March
2024)” is a language model developed by Mistral AI with a capacity of 7.3 billion parameters.
It is available under the Apache 2.0 license, so it can be used without restrictions. The
model can be downloaded and used anywhere, including locally, and deployed on any
cloud (AWS/GCP/Azure) using the LLM inference server and SkyPilot.

https://mistral.ai/news/announcing-mistral-7b/
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It is structured to process language data, facilitating a wide range of text-based applica-
tions. This model incorporates specific attention mechanisms, namely grouped-query atten-
tion (GQA) and sliding window attention (SWA), aimed at optimizing the processing speed
and managing longer text inputs. These technological choices are intended to improve the
model’s performance while managing computational resources effectively [29–31].

Llama2:7b “https://llama.meta.com/llama2/ (accessed on 23 March 2024)” is a series
of large language models developed by Meta, offering variations in size from 7 billion to
70 billion parameters. The 7 billion parameter version, Llama 2:7b, is part of this collection
and is designed for a broad range of text-based tasks, from generative text models to more
specific applications like chatbots. The architecture of Llama 2 models is auto-regressive,
utilizing an optimized transformer structure. These models have been pre-trained on
a mix of publicly available online data and can be fine-tuned for specific applications.
They employ an auto-regressive language model framework and have been optimized for
various natural language processing tasks, including chat and dialogue scenarios through
supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) [32].

Llama2:7b models have been trained on significant computational resources and have
a considerable carbon footprint, which Meta has committed to offsetting as part of their
sustainability program. The 7b model specifically consumed 184,320 GPU hours and
emitted an estimated 31.22 tCO2eq during its training, with all emissions directly offset.
These models are intended for both commercial and research purposes, and while they have
been primarily tested in English, they carry the potential for a broad array of applications.
Meta has provided a custom commercial license for Llama 2, and details on accessing this
license can be found on their website.

Orca2:7b, Orca 2 [33], developed by Microsoft, is a fine-tuned version of the Llama 2
model with two versions: one with 7 billion and the other with 13 billion parameters. It
focuses on improving the reasoning abilities of smaller language models through enhanced
training methods. By employing high-quality synthetic data for training, Orca 2 is designed
to master various reasoning techniques such as step-by-step processing and recall-then-
generate strategies. This synthetic training data is crafted to guide the model in adopting
different solution strategies appropriate for varied tasks, aiming to optimize the model’s
problem-solving approach.

The model is a result of research aimed at leveraging the advancements in large
language models to boost the performance of smaller models, making them more efficient
and versatile in handling tasks that require complex reasoning. The initiative behind Orca
2 is to provide a resource for research into the development, evaluation, and alignment
of language models, particularly focusing on smaller models that can perform efficiently
across a range of tasks.

Orca 2 is available for public use and research, underscoring Microsoft’s commit-
ment to advancing the field of AI and language model technology. It represents an effort
to explore how smaller models can be enhanced to approach a variety of tasks more ef-
fectively without the extensive computational and environmental costs associated with
larger models.

2.2. PaSSER App Functionalities

The site map for the PaSSER App is depicted in Figure 2, detailing its core features.
Figure 2 provides a structured flowchart of the PaSSER App’s user interface, mapping out
the navigation pathways for various functionalities, such as the creation and management
of a vector store, chat interactions, testing protocols, configuration settings, database
management, and user authentication. Each section outlines the sequence of user actions
and choices, from inputting data to exporting test results, configuring system settings, and
maintaining the database. These include user authentication (login), system configuration
(configuration setup), creation and management of vector stores from various sources (text,
PDF files, and websites), and functionalities for engaging with the stored data through

https://llama.meta.com/llama2/
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Q&A chat and RAG Q&A chat based on the established vector stores. Additionally, a
testing module is outlined to evaluate the application’s functionalities and performance.
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The ‘Create vectorstore’ feature, as depicted in Figure 3, outlines the process of
converting raw textual data into a structured, queryable vector space using LangChain. This
transformation of NLP and vector embedding techniques makes it possible to convert text
into a format convenient for vector operations. Users can source textual data from text files,
PDFs, and websites. The outlined procedure for vectorstore creation is standardized across
these data types, ensuring consistency in processing and storage. At the current phase,
automatic retrieval of information from websites (scrapping) is considered impractical
due to the necessity for in-depth analysis of website structures and the requirement for
extensive manual intervention to adequately structure the retrieved text. This process
involves understanding varied and complex web layouts and imposing a tailored approach
to effectively extract and organize data.
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1. Cleaning and standardizing text data. This is achieved by removing unnecessary char-
acters (punctuation and special characters). Converting the text to a uniform size
(usually lower case). Separating the text into individual words or tokens. In the im-
plementation considered here, the text is divided into chunks with different overlaps.

2. Vector embedding. The goal is to convert tokens (text tokens) into numeric vectors. This
is achieved by using pre-trained word embedding models from selected LLMs (in
this case, Misrtal:7b, Llama2:7b, and Orca2:7b). These models map words or phrases
to high-dimensional vectors. Each word or phrase in the text is transformed into a
vector that represents its semantic meaning based on the context in which it appears.

3. Aggregating embeddings for larger text units to represent whole sentences or documents
as vectors. It can be achieved by simple aggregation methods (averaging the vectors of
all words in a sentence or document) or by using sentence transformers or document
embedding techniques that take into account the more consistent and contextual
nature of words. Here, transformers are used, which are taken from the selected LLMs.

4. Create a vectorstore to store the vector representations in a structured format. The
data structures used are optimized for operations with high-dimensional vectors.
ChromaDB is used for the vectorstore.

Figure 4 defines the PaSSER App’s mechanisms for processing user queries and
generating responses. Figure 4a represents a general Q&A chat workflow with direct
input without the augmented context provided by a vectorstore. The corresponding LLM
processes the query, formulates a response, and concurrently provides system performance
data, including metrics such as total load and evaluation timeframes. Additionally, a
numerical array captures the contextual backdrop of the query and the response, drawn
from previous dialogue or related data, which the LLM utilizes similar to short-term
memory to ensure response relevance and coherence. While the capacity of this memory is
limited and not the focus of the current study, it is pivotal in refining responses based on
specific contextual elements such as names and dates. The App enables saving this context
for continued dialogue and offers features for initiating new conversations by purging the
existing context.
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Figure 4b illustrates the workflow of a Q&A chat using the RAG technique, which
employs a pre-built vectorstore for data retrieval and response generation. The ‘RAG Q&A
chat’ feature facilitates interaction with an existing vectorstore. Users commence the chat
by entering a query, triggering the LangChain library to fetch related data from the chosen
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vectorstore. This data informs the subsequent query to the LLM, integrating the original
question, any prompts, and a context enriched by the vectorstore’s information. The LLM
then generates a response. Within the app, a dedicated memory buffer recalls history, which
the LLM utilizes as a transient context to ensure consistent and logical responses. The
limited capacity of this memory buffer and its impact on response quality is acknowledged,
though not extensively explored in this study. In the ‘RAG Q&A chat’, context-specific
details like names and dates are crucial for enhancing the relevance of responses.

The ‘Tests’ feature is designed to streamline the testing of various LLMs within a
specific knowledge domain. It involves the following steps:

1. Selection of a specific knowledge base in a specific domain.

With ‘Create vectorstore’, the knowledge base is processed and saved in the vector
database. In order to evaluate the performance of different LLMs for generating RAG
answers on a specific domain, it is necessary to prepare a sufficiently large list of questions
and reference answers. Such a list can be prepared entirely manually by experts in a
specific domain. However, this is a slow and time-consuming process. Another widely
used approach is to generate relevant questions based on reference answers given by a
selected LLM (i.e., creating respective datasets). PaSSER allows the implementation of the
second approach.

2. To create a reference dataset for a specific domain, a collection of answers related to
the selected domain is gathered. Each response contains key information related to
potential queries in that area. These answers are then saved in a text file format.

3. A selected LLM is deployed to systematically generate a series of questions corre-
sponding to each predefined reference answer. This operation facilitates the creation
of a structured dataset comprising pairs of questions and their corresponding answers.
Subsequently, this dataset is saved in the JSON file format.

4. The finalized dataset is uploaded to the PaSSER App, initiating an automated sequence
of response generation for each query within the target domain. Following that, each
generated response is forwarded to a dedicated Python backend script. This script
is tasked with assessing the responses based on predefined metrics and comparing
them to the established reference answers. The outcomes of this evaluation are then
stored on the blockchain, ensuring a transparent and immutable ledger of the model’s
performance metrics.

To facilitate this process, a smart contract ‘llmtest’ has been created, managing the
interaction with the blockchain and providing a structured and secure method for storing
and managing the assessment results derived from the LLM performance tests.

The provided pseudocode outlines the structure ‘tests’ and its methods within a
blockchain environment, which were chosen to store test-related entries. It includes identi-
fiers (id, userid, and testid), a timestamp (created_at), numerical results (results array), and
descriptive text (description). It establishes id as the primary key for indexing, with addi-
tional indices based on created_at, userid, and testid to facilitate data retrieval and sorting by
these attributes. This structure organizes and accesses test records within the blockchain.
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The pseudocode below defines an eosio::multi_index table ‘tests_table’ for a blockchain,
which facilitates the storage and indexing of data. It specifies four indices: a primary
index based on id and secondary indices using created_at, userid, and testid attributes for
enhanced query capabilities. These indices optimize data retrieval operations, allowing for
efficient access based on different key attributes like timestamp, user, and test identifiers,
significantly enhancing the database’s functionality within the blockchain environment.
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The pseudocodes provided above and in Section 3 are generated with GitHub Copilot
upon the actual source code available at “https://github.com/features/copilot (accessed
on 1 April 2024)”.

5. The results from the blockchain are retrieved for further processing and analysis.

To facilitate the execution of these procedures, the interface is structured into three
specific features: ‘Q&A dataset’ for managing question and answer datasets, ‘RAG Q&A
score test’ for evaluating the performance of RAG utilizing datasets, and ‘Show test results’
for displaying the results of the tests. Each submenu is designed to streamline the respective
aspect of the workflow, ensuring a coherent and efficient user experience throughout the
process of dataset management, performance evaluation, and result visualization.

Within the ‘Q&A dataset’, the user is guided to employ a specific prompt, aiming
to instruct the LLM to generate questions that align closely with the provided reference
answers, as described in step 2. This operation initiates the creation of a comprehensive
dataset, subsequently organizing and storing this information within a JSON file for future
accessibility and analysis. This approach ensures the generation of relevant and accurate
questions, thereby enhancing the dataset’s utility for follow-up evaluation processes.

The ‘RAG Q&A score test’ is designed to streamline the evaluation of different LLMs’
performances using the RAG, as indicated in Figure 5. This evaluation process involves
importing a JSON-formatted dataset and linking it with an established vectorstore relevant
to the selected domain. The automation embedded within this menu facilitates a method-
ical assessment of the LLMs, leveraging domain-specific knowledge embedded within
the vectorstore.

https://github.com/features/copilot
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Vectorstores, once created using a specific LLM’s transformers, require the consistent
application of the same LLM model during the RAG process. Within this automated frame-
work, each question from the dataset is processed by the LLM to produce a corresponding
answer. Then, both the generated answers and their associated reference answers are
evaluated by a backend Python script. This script calculates performance metrics, records
these metrics on the blockchain under a specified test series, and iterates this procedure for
every item within the dataset.

The ‘Show test results’ feature is designed to access and display the evaluation
outcomes from various tests as recorded on the blockchain, presenting them in an organized
tabular format. This feature facilitates the visualization of score results for individual
answers across different test series and also provides the functionality to export this data
into an xlsx file format. The export feature makes it much easier for users to understand
and study the data, helping with better evaluations and insights.

The ‘Q&A Time LLM Test’ feature evaluates model performance across various hard-
ware setups using JSON-formatted question–answer pairs. Upon submission, the PaSSER
App prompts the selected model for responses, generating detailed performance metrics
like evaluation and load times, among others. These metrics are packed in a query to
a backend Python script, which records the data on the blockchain via the ‘addtimetest’
action, interacting with the ‘llmtest’ smart contract to ensure performance tracking and
data integrity.

The ‘Show time test results’ makes it easy to access and view LLM performance data,
organized by test series, from the blockchain. When displayed in a structured table, these
metrics can be examined for comprehensive performance assessment. There is an option
to export this data into an xlsx file, thereby improving the process for further in-depth
examination and analysis.

Authentication within the system (‘Login’) is provided through the Anchor wallet,
which is compliant with the security protocols of the SCPDx platform. This process,
described in detail in [34], provides user authentication by ensuring that testing activities
are securely associated with the correct user credentials. This strengthens the integrity and
accountability of the testing process within the platform ecosystem.

The ‘Configuration’ feature is divided into ‘Settings’ and ‘Add Model’.
The ‘Settings’ is designed for configuring connectivity to the Ollama API and Chro-

maDB API, using IP addresses specified in the application’s configuration file. It also
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allows users to select an LLM that is currently installed in Ollama. A key feature here is
the ability to adjust the ‘temperature’ parameter, which ranges from 0 to 1, to fine-tune the
balance between creativity and predictability in the output generated by the LLM. Setting a
higher temperature value (>0.8) increases randomness, whereas a lower value enhances
determinism, with the default set at 0.2.

The ‘Add Model’ enables adding and removing LLMs in the Ollama API, allowing
dynamic model management. This feature is useful when testing different models, ensuring
optimal use of computational resources.

The ‘Manage DB’ feature displays a comprehensive list of vectorstores available in
ChromaDB, offering functionalities to inspect or interact with specific dataset records. This
feature enables users to view details within a record’s JSON response. It provides the option
to delete any vectorstore that is no longer needed, enabling efficient database management
by removing obsolete or redundant data, thereby optimizing storage utilization.

A block diagram representation of the PaSSER App’s operational logic that illustrates
the interactions between the various components is provided in Figure 6.
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The UI (web application) interacts with users for configuration, authentication, and
operation initiation. It utilizes JavaScript and the PrimeReact library for UI components.
Enables the user interactions for authentication (Login), configuration, and operations with
the LLMs and blockchain.

The web server (Apache) hosts the web application, facilitating communication be-
tween the user interface and backend components.

The LLM API and Vector Database utilize the Ollama API for the management of
different LLMs. It incorporates ChromaDB for storage and retrieval of vectorized data.

Data pre-processing and vectorization standardize and convert data from various
sources (e.g., PDFs, websites) into numerical vectors for LLM processing using pre-trained
models of selected LLMs.

The RAG Q&A chat facilitates query responses by integrating external data retrieval
with LLM processing. It enables querying the LLMs with augmented information retrieval
from the vector database for generating responses.

Testing modules utilize built-in testing modules to assess LLM performance across
metrics, with results recorded on the blockchain.

The Python evaluation API calculates NLP performance metrics and interacts with
the blockchain for recording the testing results via smart contracts.

Smart contracts manage test results recording on the blockchain.

3. Evaluation Metrics

The evaluation of RAG models within the PaSSER App was performed using a set of
13 standard NLP metrics. These metrics evaluated various dimensions of model perfor-
mance, including the quality of text generation and summarization, semantic similarity, pre-
dictive accuracy, and consistency of generated content compared to reference or expected
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results. Metrics included METEOR, ROUGE (with ROUGE-1 and ROUGE-L variants),
BLEU, perplexity (using Laplace and Lidstone smoothing techniques), cosine similarity,
Pearson correlation coefficient, and F1 score.

The PaSSER App ran two main tests to assess LLM: “LLM Q&A Time Test” and “RAG
Q&A Assessment Test”. The latter specifically applied the selected metrics to a created
dataset of question–answer pairs for the smart agriculture domain. The test aimed to deter-
mine which model provides the most accurate and contextually relevant answers within
the RAG framework and the capabilities of each model in the context of text generation
and summarization tasks.

The ‘RAG Q&A chat’ was assessed using a set of selected metrics: METEOR, ROUGE,
PPL (perplexity), cosine similarity, Pearson correlation coefficient, and F1 score [35].

An automated evaluation process was developed to apply these metrics to the answers
generated using RAG. The process compared generated answers against the reference
answers in the dataset, calculating scores for each metric.

All calculations were implemented in backEnd.py script in Python, available at:
“https://github.com/scpdxtest/PaSSER/blob/main/scripts/backEnd.py (accessed on
1 April 2024)”.

The following is a brief explanation of the purpose of the metrics used, the simplified
calculation formulas, and the application in the context of RAG.

3.1. METEOR (Metric for Evaluation of Translation with Explicit Ordering)

METEOR score is a metric used to assess the quality of machine-generated text by
comparing it to one or multiple reference texts [36]. The calculating involves several steps:

– Word alignment between candidate and reference translations based on exact, stem,
synonym, and paraphrase matches, with the constraint that each word in the candidate
and reference sentences can only be used once and aims to maximize the overall match
between the candidate and references.

– Calculation of Precision (P) = Number of matched words in the candidate/Number
of words in the candidate and Recall (R) = Number of matched words in the candi-
date/Number of words in the reference:

P =
m
wc

, R =
m
wr

(1)

where:
m = Number of unigrams in the candidate translation that are matched with the

reference translation.
wc = Total number of unigrams in the candidate translation.
wr = Total number of unigrams in the reference translation(s).

– Calculation of Penalty for chunkiness, which accounts for the arrangement and fluency
of the matched chunks (c) = Number of chunks of contiguous matched unigrams in
the candidate translation and (m):

Penalty = 0.5
( c

m

)3
(2)

– The final score is computed using the harmonic mean of Precision and Recall, adjusted
by the penalty factor:

Mscore = Fmean(1 − Penalty) (3)

where Fmean = 10PR
R+9P .

The implementation of the calculations of Equations (1)–(3) is conducted with the nltk
library, single_meteor_score function, line 58 in Python script.

This pseudocode describes the process of splitting two texts into words and calculating
the METEOR score between them.

https://github.com/scpdxtest/PaSSER/blob/main/scripts/backEnd.py
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RecallROUGE-N =
∑S∈{Re f erence Summaries} ∑gramn∈s Countmatch(gramn)

∑S∈{Re f erence Summaries} ∑gramn∈s Count(gramn)
(4)

– PrecisionROUGE-N is the ratio of the number of overlapping n-grams in the system
summary to the total number of n-grams in the system summary itself:

PrecisionROUGE-N =
∑S∈{System Summaries} ∑gramn∈s Countmatch(gramn)

∑S∈{System Summaries} ∑gramn∈s Count(gramn)
(5)

– F1ROUGE-N is the harmonic mean of precision and recall:

F1ROUGE-N = 2
PrecisionROUGE-N × RecallROUGE-N
PrecisionROUGE-N + RecallROUGE-N

(6)

ROUGE-L focuses on the longest common subsequence (LCS) between the generated
summary and the reference summaries. The LCS is the longest sequence of words that ap-
pears in both texts in the same order, though not necessarily consecutively. The parameters
for ROUGE-L include:

– RecallROUGE-L is the length of the LCS divided by the total number of words in
the reference summary. This measures the extent to which the generated summary
captures the content of the reference summaries:

RecallROUGE-N =
LCS(System Summary, Re f erence Summary)

Lenght o f Re f erence Summary
(7)

– PrecisionROUGE-N is the length of the LCS divided by the total number of words in
the generated summary. This assesses the extent to which the words in the generated
summary appear in the reference summaries:

PrecisionROUGE-N =
LCS(System Summary, Re f erence Summary)

Lenght o f System Summary
(8)
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– F1ROUGE-N is a harmonic mean of the LCS-based precision and recall:

F1ROUGE-N = 2
PrecisionROUGE-N × RecallROUGE-N
PrecisionROUGE-N + RecallROUGE-N

(9)

ROUGE-W is an extension of ROUGE-L with a weighting scheme that assigns more
importance to longer sequences of matching words. In this application, ROUGE-W is
not applied.

The implementation of the calculations of Equations (4)–(9) is conducted with the
rouge library, rouge.get_scores function, line 65 in Python script.

This pseudocode describes the process of initializing a ROUGE object and calculating
the ROUGE scores between two texts.
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ROUGE-W is an extension of ROUGE-L with a weighting scheme that assigns more 
importance to longer sequences of matching words. In this application, ROUGE-W is not 
applied. 

The implementation of the calculations of Equations (4)–(9) is conducted with the 
rouge library, rouge.get_scores function, line 65 in Python script. 

This pseudocode describes the process of initializing a ROUGE object and calculating 
the ROUGE scores between two texts. 

1. Set ‘hypothesis’ to the reference text and ‘ref’ to the candidate text 
2. Initialize a Rouge object 
3. Calculate the ROUGE scores between ‘hypothesis’ and ‘ref’ using the 

‘get_scores’ method of the Rouge object 

The choice between a preference for precision, recall, or F1 scoring depends on the 
specific goals of the summarization task, such as whether it is more important to capture 
as much information as possible (recall) or to ensure that what is captured is highly rele-
vant (precision). 

The choice between a preference for precision, recall, or F1 scoring depends on the
specific goals of the summarization task, such as whether it is more important to capture
as much information as possible (recall) or to ensure that what is captured is highly
relevant (precision).

In the context of RAG models, ROUGE metric serves as a tool for assessing the
quality of the generated text, especially in summary, question answering, and content-
generation tasks.

3.3. BLEU (Bilingual Evaluation Understudy)

The BLEU [38] score is a metric used to assess the quality of machine-generated text by
comparing it to one or multiple reference texts. It quantifies the resemblance by analysing
the presence of shared n-grams (sequences of n consecutive words).

The metric employs a combination of modified precision scores for various n-gram
lengths and incorporates a brevity penalty to account for the adequacy and fluency of the
translation. Below are the simplified formulas for estimating BLEU.

For each n-gram length n, BLEU computes a modified precision score. The modified
precision Pn for n-grams is calculated as follows:

Pn =
∑C∈{Candidate Translation} ∑n−grams∈C Countclip(n − gram)

∑C′∈{Candidate Translation} ∑n−grams∈C′ Countclip(n − gram′)
(10)

where, Countclip is a count of each n-gram in the candidate translation clipped by its
maximum count in any single reference translation.

The brevity penalty (BP) is a component of the BLEU score that ensures translations
are not only accurate but also of appropriate length. The BP is defined as:

BP =

{
1 i f c > r

e(1−r/c) i f c ≤ r
(11)

where, c is the total length of the candidate translation, and r is the effective reference
corpus length, which is the sum of the lengths of the closest matching reference translations
for each candidate sentence.

BP = 1 if the candidate translation length c is greater than the reference length r,
indicating no penalty.

BP = e(1−r/c) if c is less than or equal to r, indicating a penalty that increases as the
candidate translation becomes shorter relative to the reference.
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The overall BLEU score is calculated using the following formula:

BLEU = BP.exp
(
∑N

n=1 wnlogPn

)
(12)

where, N is the maximum n-gram length (typically 4), and wn is the weight for each
n-gram’s precision score, often set equally such that their sum is 1 (e.g., wn = 0.25 for
N = 4).

This formula aggregates the individual modified precision scores Pn for n-grams of
length 1 to N, geometrically averaged and weighted by wn, then multiplied by the brevity
penalty BP to yield the final BLEU score.

The implementation of the calculations of Equations (10)–(12) is conducted with the
nltk library, sentence_bleu and SmoothingFunction functions, lines 74–79 in Python script.

This pseudocode describes the process of splitting two texts into words, creating a
smoothing function, and calculating the BLEU score between them.
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penalty 𝐵𝑃 to yield the final BLEU score. 

The implementation of the calculations of Equations (10)–(12) is conducted with the 
nltk library, sentence_bleu and SmoothingFunction functions, lines 74–79 in Python script. 

This pseudocode describes the process of splitting two texts into words, creating a 
smoothing function, and calculating the BLEU score between them. 

1. Split the reference and candidate texts into words 
2. Create a smoothing function using method4 of the SmoothingFunction class 
3. Calculate the BLEU score between the word lists of reference and candidate 

using the ‘sentence_bleu’ function with the smoothing function 

In the context of RAG models, the BLEU score can be used to evaluate the quality of 
the generated responses. A high BLEU score would indicate that the generated response 
closely matches the reference text, suggesting that the model is accurately retrieving and 
generating responses. A low BLEU score could indicate areas for improvement in the 
model’s performance. 

3.4. Perplexity (PPL) 

In the context of RAG models, the BLEU score can be used to evaluate the quality of
the generated responses. A high BLEU score would indicate that the generated response
closely matches the reference text, suggesting that the model is accurately retrieving and
generating responses. A low BLEU score could indicate areas for improvement in the
model’s performance.

3.4. Perplexity (PPL)

Perplexity (PPL) [39] is a measure used to evaluate the performance of probabilistic
language models. The introduction of smoothing techniques, such as Laplace (add-one)
smoothing and Lidstone smoothing [40], aims to address the issue of zero probabilities for
unseen events, thereby enhancing the model’s ability to deal with sparse data. Below are
the formulas for calculating perplexity.

– PPL with Laplace Smoothing adjusts the probability estimation for each word by adding
one to the count of each word in the training corpus, including unseen words. This
method ensures that no word has a zero probability. The adjusted probability estimate
with Laplace smoothing is calculated using the following formula:

PLaplace(wi|h) =
C(wi, h) + 1

C(h) + V
(13)

where, wi is the probability of a word given its history h (the words that precede it), C(wi, h)
is the count of wi, C(h) is the count of history h, and V is a vocabulary size (the number of
unique words in the training set plus one for unseen words).

The PPL of a sequence of words W = w1, . . . wN is given by:

PPL(W) = e−
1
N ∑N

i=1 ln(PLaplace(wi |h)) (14)

The implementation of the calculations of Equations (13) and (14) is conducted with
the nltk library, lines 84–102, in Python script.

This pseudocode describes the process of tokenizing an input text paragraph, training
a Laplace model (bigram model), and calculating the perplexity of a candidate text using
the model.
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text using the model. 

1. Tokenize the input text paragraph into sentences and words, convert all 
words to lowercase 

2. Split the tokenized text into training data and vocabulary using a bigram 
model 

3. Train a Laplace model (bigram model) using the training data and vocabulary 
4. Define a function ‘calculate_perplexity’ that: 

a. Tokenizes the input text into words, converts all words to lowercase 
b. Calculates the perplexity of the text using the Laplace model 

5. Set ‘test_text’ to the candidate text 
6. Calculate the Laplace perplexity of ‘test_text’ using the 

‘calculate_perplexity’ function 

– PPL with Lidstone smoothing is a generalization of Laplace smoothing where instead 
of adding one to each count, a fraction λ (where 0 < λ < 1) is added. This allows for 
more flexibility compared to the fixed increment in Laplace smoothing. Adjusted 
Probability Estimate with Lidstone Smoothing: 𝑃 (𝑤 |ℎ) = ( , )( )   (15)

The 𝑃𝑃𝐿 of a sequence of words 𝑊 = 𝑤 , … 𝑤  is given by: 𝑃𝑃𝐿(𝑊) = 𝑒 ∑ ( | )   (16)

The implementation of the calculations of Equations (15) and (16) is conducted with 
the nltk library, lines 108–129, in Python script. 

This pseudocode describes the process of tokenizing an input text paragraph, 
training a Lidstone model (trigram model), and calculating the perplexity of a candidate 
text using the model. 

1. Set the training text to the reference text 
2. Tokenize the training text into sentences and then into words, convert all 

words to lowercase 
3. Prepare the training data for a trigram model 
4. Create and train a Lidstone model with Lidstone smoothing, where gamma is 

the Lidstone smoothing parameter 
5. Set the test text to the candidate text 
6. Tokenize the test text into sentences and then into words, convert all words 

to lowercase 

– PPL with Lidstone smoothing is a generalization of Laplace smoothing where instead
of adding one to each count, a fraction λ (where 0 < λ < 1) is added. This allows
for more flexibility compared to the fixed increment in Laplace smoothing. Adjusted
Probability Estimate with Lidstone Smoothing:

PLidstone(wi|h) =
C(wi, h) + λ

C(h) + λV
(15)

The PPL of a sequence of words W = w1, . . . wN is given by:

PPL(W) = e−
1
N ∑N

i=1 ln(PLidstone(wi |h)) (16)

The implementation of the calculations of Equations (15) and (16) is conducted with
the nltk library, lines 108–129, in Python script.

This pseudocode describes the process of tokenizing an input text paragraph, training
a Lidstone model (trigram model), and calculating the perplexity of a candidate text using
the model.
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6. Tokenize the test text into sentences and then into words, convert all words 

to lowercase 
7. Prepare the test data 
8. Calculate the Lidstone perplexity of the test text 

In both formulas, the goal is to compute how well the model predicts the test set 𝑊. 
The lower perplexity indicates that the model predicts the sequence more accurately. The 
choice between Laplace and Lidstone smoothing depends on the specific requirements of 
the model and dataset, as well as empirical validation. 

In the context of RAG models, both metrics are useful for assessing the quality and 
ability of models to deal with a variety of language and information. These metrics 
indicate how well they can generate contextually informed, linguistically coherent, and 
versatile text. 

3.5. Cosine Similarity 
Cosine similarity [41] is a measure of vector similarity and can be used to determine 

the distance of embeddings between the chunk and the query. It is a distance metric that 
approaches 1 when the question and chunk are similar and becomes 0 when they are 
different. The mathematics formulation of the metric is: 𝐶𝑜𝑠𝑖𝑛 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = .‖ ‖ ‖ ‖ = ∑∑ ∑   (17)

where, 𝐴. 𝐵  is the dot product of vectors 𝐴  and 𝐵 , ‖𝐴‖  and ‖𝐵‖  are the Euclidean 
norms (magnitudes) of vectors 𝐴  and 𝐵 , calculated with ∑ 𝐴   and ∑ 𝐵  , 
respectively, and 𝑛 is the dimensionality of the vectors, assuming 𝐴 and 𝐵 of the same 
dimension. 𝐶𝑜𝑠𝑖𝑛 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 1 means the vectors are identical in orientation. 𝐶𝑜𝑠𝑖𝑛 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 0 means the vectors are orthogonal (independent) to each other. 𝐶𝑜𝑠𝑖𝑛 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = −1 means the vectors are diametrically opposed. 

The implementation of the calculation of Equation (17) is conducted with the 
transformers library, lines 133–164, in Python script. 

This pseudocode describes the process of tokenizing two texts, generating BERT 
embeddings for them, and calculating the cosine similarity between the embeddings. The 
[CLS] token is used as the aggregate representation for classification tasks. 

1. Define a function ‘get_bert_embedding’ that: 
a. Takes in a text, a tokenizer, and a model 
b. Tokenizes the text and converts it to a tensor 
c. Gets the BERT embeddings for the text 
d. Returns the [CLS] token embedding 

2. Initialize the tokenizer and model for BERT 
3. Set ‘text_1’ to the reference text and ‘text_2’ to the candidate text 
4. Tokenize ‘text_1’ and ‘text_2’ 
5. Generate BERT embeddings for ‘text_1’ and ‘text_2’ 
6. Get the [CLS] token embeddings for ‘text_1’ and ‘text_2’ 
7. Calculate the cosine similarity between the [CLS] token embeddings of 

‘text_1’ and ‘text_2’ 

In the RAG models, cosine similarity ensures that retrieved documents align closely 
with user queries, capturing relationships between the meaning of a user. This is 
particularly important in RAG models, as they leverage a retriever to find context 
documents. The use of cosine similarity between embeddings ensures that these retrieved 
documents align closely with user queries. 

In both formulas, the goal is to compute how well the model predicts the test set W.
The lower perplexity indicates that the model predicts the sequence more accurately. The
choice between Laplace and Lidstone smoothing depends on the specific requirements of
the model and dataset, as well as empirical validation.

In the context of RAG models, both metrics are useful for assessing the quality and
ability of models to deal with a variety of language and information. These metrics
indicate how well they can generate contextually informed, linguistically coherent, and
versatile text.

3.5. Cosine Similarity

Cosine similarity [41] is a measure of vector similarity and can be used to determine
the distance of embeddings between the chunk and the query. It is a distance metric that
approaches 1 when the question and chunk are similar and becomes 0 when they are
different. The mathematics formulation of the metric is:

Cosin Similarity =
A.B

∥A∥∥B∥ =
∑n

i=1 AiBi√
∑n

i=1 A2
i

√
∑n

i=1 B2
i

(17)
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where, A.B is the dot product of vectors A and B, ∥A∥ and ∥B∥ are the Euclidean norms

(magnitudes) of vectors A and B, calculated with
√

∑n
i=1 A2

i and
√

∑n
i=1 B2

i , respectively,
and n is the dimensionality of the vectors, assuming A and B of the same dimension.

Cosin Similarity = 1 means the vectors are identical in orientation.
Cosin Similarity = 0 means the vectors are orthogonal (independent) to each other.
Cosin Similarity = −1 means the vectors are diametrically opposed.
The implementation of the calculation of Equation (17) is conducted with the trans-

formers library, lines 133–164, in Python script.
This pseudocode describes the process of tokenizing two texts, generating BERT

embeddings for them, and calculating the cosine similarity between the embeddings. The
[CLS] token is used as the aggregate representation for classification tasks.
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transformers library, lines 133–164, in Python script. 

This pseudocode describes the process of tokenizing two texts, generating BERT 
embeddings for them, and calculating the cosine similarity between the embeddings. The 
[CLS] token is used as the aggregate representation for classification tasks. 

1. Define a function ‘get_bert_embedding’ that: 
a. Takes in a text, a tokenizer, and a model 
b. Tokenizes the text and converts it to a tensor 
c. Gets the BERT embeddings for the text 
d. Returns the [CLS] token embedding 

2. Initialize the tokenizer and model for BERT 
3. Set ‘text_1’ to the reference text and ‘text_2’ to the candidate text 
4. Tokenize ‘text_1’ and ‘text_2’ 
5. Generate BERT embeddings for ‘text_1’ and ‘text_2’ 
6. Get the [CLS] token embeddings for ‘text_1’ and ‘text_2’ 
7. Calculate the cosine similarity between the [CLS] token embeddings of 

‘text_1’ and ‘text_2’ 

In the RAG models, cosine similarity ensures that retrieved documents align closely 
with user queries, capturing relationships between the meaning of a user. This is 
particularly important in RAG models, as they leverage a retriever to find context 
documents. The use of cosine similarity between embeddings ensures that these retrieved 
documents align closely with user queries. 

In the RAG models, cosine similarity ensures that retrieved documents align closely
with user queries, capturing relationships between the meaning of a user. This is particu-
larly important in RAG models, as they leverage a retriever to find context documents. The
use of cosine similarity between embeddings ensures that these retrieved documents align
closely with user queries.

3.6. Pearson Correlation

The Pearson correlation coefficient ® is a statistical measure that calculates the strength
and direction of the linear relationship between two continuous variables.

The formula for the Pearson correlation coefficient is as follows:

r =
∑n

i=1
(
Xi − X

)(
Yi − Y

)√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1

(
Yi − Y

)2
(18)

where, n is the number of data points, Xi and Yi are the individual data points, and X and
Y are the means of the X and Y data sets, respectively.

The implementation of the calculation of Equation (18) is conducted with the trans-
formers and script libraries, lines 167–178, in Python script.

This pseudocode describes the process of tokenizing two texts, generating BERT
embeddings for them, and calculating the Pearson correlation coefficient between the
embeddings. The mean of the last hidden state of the embeddings is used as the aggregate
representation.
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In the context of evaluating RAG models, the Pearson correlation coefficient can be
used to measure how well the model’s predictions align with actual outcomes. A coeffi-
cient close to +1 indicates a strong positive linear relationship, meaning as one variable
increases, the other also increases. A coefficient close to -1 indicates a strong negative linear
relationship, meaning as one variable increases, the other decreases. A coefficient near 0
suggests no linear correlation between variables. In the evaluation of RAG models, a high
Pearson correlation coefficient could indicate that the model is accurately retrieving and
generating responses, while a low coefficient could suggest areas for improvement.

3.7. F1 Score

In the context of evaluating the performance of RAG models, the F1 score [42] is used
for quantitatively assessing how well the models perform in tasks for generating or retriev-
ing textual information (question answering, document summarization, or conversational
AI). The evaluation often hinges on their ability to accurately and relevantly generate text
that aligns with reference or ground truth data.

The F1 score is the harmonic mean of precision and recall. Precision assesses the portion
of relevant information in the responses generated by the RAG model. High precision
indicates that most of the content generated by the model is relevant to the query or task at
hand, minimizing irrelevant or incorrect information. Recall (or sensitivity) evaluates the
model’s ability to capture all relevant information from the knowledge base that should be
included in the response. High recall signifies that the model successfully retrieves and
incorporates a significant portion of the pertinent information available in the context.

The formula for calculating is:

F1 = 2 × Precision × Recall
Precision + Recall

(19)

Precision and Recall are defined as:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(20)

where, TP (True Positives) is the count of correctly retrieved relevant documents, FP (False
Positives) is the count of incorrectly retrieved documents (i.e., the documents that were
retrieved but are not relevant), and FN (False Negatives) is the count of relevant documents
that were not retrieved.

The implementation of the calculations of Equations (19) and (20) occurs on lines
185–204 in Python script.

This pseudocode describes the process of tokenizing two texts, counting the common
tokens between them, and calculating the F1 score.
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For tasks of document summarization, the F1 score might evaluate the overlap between
the key phrases or sentences in the model-generated summaries and those in the reference
summaries, reflecting the model’s efficiency in capturing essential information (recall) and
avoiding extraneous content (precision).

For‚ conversational AI applications, the F1 score could assess the relevance and com-
pleteness of the model’s responses in dialogue, ensuring that responses are both pertinent
to the conversation context and comprehensive in addressing users’ intents or questions.

4. Testing

The aim of the tests presented in this section is to evaluate the performance of the Mis-
rtal:7b, Llama2:7b, and Orca2:7b models installed on two different hardware configurations
and to assess the performance of these models in generating answers using RAG on the
selected knowledge domain, smart agriculture.

The knowledge base used was retrieved from EU Regulation 2018/848 “https://eur-
lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018R0848 (accessed on 1 April
2024)” and Climate-smart agriculture Sourcebook “https://www.fao.org/3/i3325e/i332
5e.pdf (accessed on 1 April 2024)”. These documents were pre-processed manually and
vectorized using the transformers of Misrtal:7b, Llama2:7b, and Orca2:7b LLMs under the
following parameters: chunk size—500, overlapping—100, temperature—0.2.

The dataset containing reference answers specific to smart agriculture was compiled
and stored as a text file. The Mistral:7b model was deployed to formulate questions based
on these reference answers. Initial trials indicated that Mistral:7b excelled in generating
questions with high relevance within this particular domain. To initiate the question
generation process, the following prompt was employed: “Imagine you are a virtual
assistant trained in the detailed regulations of organic agriculture. Your task involves
creating precise questions for a specific regulatory statement provided to you below. The
statement comes directly from the regulations, and your challenge is to reverse-engineer
the question that this statement answers. Your formulated question should be concise, clear,
and directly related to the content of the statement. Aim to craft your question without
implying the statement itself as the answer, and, where relevant, gear your question toward
eliciting specific events, facts, or regulations.”

For testing purposes, two Ollama APIs installed on two different hardware configura-
tions were used:

- Intel Xeon, 32 Cores, 0 GPU, 128 GB RAM, Ubuntu 22.04 OS.
- Mac Mini M1, 8 CPU, 10 GPU, 16 GB RAM, OSX 13.4.

In the PASSER App, the installed Ollama APIs that were to be used could be selected.
This is set in the configuration->settings menu.

The two following tests were designed: testing via the ‘Q&A Time LLM Test’ and the
‘RAG Q&A score test’.

The ‘Q&A Time LLM Test’ evaluated LLM performance across two hardware configu-
rations using a dataset of 446 questions for each model, focusing on seven specific metrics
(evaluation time, evaluation count, load duration time, prompt evaluation count, prompt
evaluation duration, total duration, and tokens per second). These metrics were integral for
analyzing the efficiency and responsiveness of each model under different computational
conditions. The collected data was stored on a blockchain, ensuring both transparency and
traceability of the evaluation results.

The ‘RAG Q&A score test’ aimed to evaluate the performance of the models based on
13 metrics (METEOR, ROUGE-1, ROUGE-l, BLEU, perplexity, cosine similarity, Pearson
correlation, and F1) applied to each of the 446 questions—reference answers—for which
RAG obtained answers.

The ‘RAG Q&A score test’ evaluated the performance of different models in a chat
environment with enhanced RAG Q&A, identifying differences and patterns in their
ability to respond to queries. Its goal was to determine the model that best provided
accurate, context-aware responses that defined terms and summarized specific content.

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018R0848
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018R0848
https://www.fao.org/3/i3325e/i3325e.pdf
https://www.fao.org/3/i3325e/i3325e.pdf
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This evaluation can be used to select a model that ensures the delivery of accurate and
relevant information in the context of the specific knowledge provided.

The performance outcomes from the ‘Q&A Time LLM Test’ and ‘RAG Q&A score test’
for evaluating LLMs were stored on the blockchain via smart contracts. For analysis, this
data was retrieved from the blockchain and stored in an xlsx file. This file was uploaded
to GitHib “https://github.com/scpdxtest/PaSSER/blob/main/tests/TEST%20DATA_
GENERAL%20FILE.xlsx (accessed on 1 April 2024)”.

In the upcoming section, the focus is solely on presenting and analysing the mean
values derived from the test data. This approach eases the interpretation, enabling a
summarized review of the core findings and trends across the conducted evaluations.

4.1. Q&A Time LLM Test Results

When using the ‘Q&A Chat’ feature, performance metrics are returned by the Ollama
API along with each response. The metrics are reported in nanoseconds and converted to
seconds for easier interpretation. They are used to evaluate the performance of different
models under different hardware configurations.

Evaluation count is the number of individual evaluations performed by the model
during a specific test. It helps to understand its capacity to process multiple prompts or
tasks within a given timeframe, reflecting its productivity under varying workloads.

Load duration time is the time required for initializing and loading the language model
into memory before it begins processing data. This metric is essential for assessing the start-
up efficiency of the model, which can significantly impact user experience and operational
latency in real-time applications.

Prompt evaluation count is the number of prompts the model evaluates within a specific
test or operational period. It provides insights into the model’s interactive performance,
especially relevant in scenarios where the model is expected to respond to user inputs or
queries dynamically.

Prompt evaluation duration captures the time model used to evaluate a single prompt,
from receiving the input to generating the output. It measures the model’s responsiveness
and is particularly important for interactive applications where fast output is vital.

Total duration is the overall time for the entire evaluation process, incorporating all
phases from initialization to the completion of the last prompt evaluation. This metric gives
a complete view of the model’s operational efficiency over an entire test cycle.

Tokens per second quantifies the number of tokens (basic units of text, such as words or
characters) the model can process per second. It is a key indicator of the model’s processing
speed and computational throughput, reflecting its ability to handle large volumes of text
data efficiently.

Figure 7 illustrates the performance metrics of the Mistral:7b on macOS and Ubuntu
operating systems across the different indicators. The model demonstrates higher efficiency
on macOS, as indicated by the shorter evaluation time, longer prompt evaluation count, and
significantly higher tokens per second rate. Conversely, the model takes longer to process
prompts on Ubuntu, as indicated by the extended duration of prompt evaluation, even
though the operating system manages a greater number of prompt evaluations overall.

Figure 8 presents a comparison of the Llama2:7b performance. It reveals that MAC
OS is the more efficient platform, processing a higher number of tokens per second and
completing evaluations faster. Despite Ubuntu’s slightly higher prompt evaluation count,
it shows longer prompt evaluation and total duration times.

Figure 9 illustrates performance metrics for the Orca2:7b. MAC OS outperforms
Ubuntu with faster evaluation times, shorter load durations, and notably higher tokens per
second processing efficiency. While Ubuntu managed a higher prompt evaluation count, it
lagged in prompt evaluation speed, as reflected in the longer prompt evaluation duration
and extended total duration times.

https://github.com/scpdxtest/PaSSER/blob/main/tests/TEST%20DATA_GENERAL%20FILE.xlsx
https://github.com/scpdxtest/PaSSER/blob/main/tests/TEST%20DATA_GENERAL%20FILE.xlsx
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Across all models, several trends are evident (Figures 7–9). UBUNTU generally
shows longer evaluation times, indicating slower processing capabilities compared to MAC
OS. Evaluation counts are relatively comparable, suggesting that the number of operations
conducted within a given timeframe is similar across hardware configurations. Load duration
times are consistently longer on UBUNTU, affecting readiness and response times negatively.
UBUNTU tends to conduct more prompt evaluation count, but also takes significantly longer,
which exposes efficiency issues. UBUNTU experiences longer total durations for all tasks,
reinforcing the trend of slower overall performance. MAC OS demonstrates higher tokens
per second across all models, indicating more efficient data processing capabilities.
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The performance indicators (Table 1) suggest that across all models, the evaluation
time on the Mac M1 system is significantly less than on the Ubuntu system with Xeon
processors, indicating faster overall performance. In terms of tokens per second, the Mac
M1 also performs better, suggesting it is more efficient at processing information regardless
of having fewer CPU cores and less RAM.

Table 1. Comparative performance metrics of Llama2:7b, Mistral:7b, and Orca2:7b LLMs on macOS
M1 and Ubuntu Xeon Systems (w/o GPU).

Llama2:7b Mistral:7b Orca2:7b

Metric macOS/M1 Ubuntu/Xeon macOS/M1 Ubuntu/Xeon macOS/M1 Ubuntu/Xeon

Evaluation
time (s) Faster (51,613) Slower (115,176) Faster (35,864) Slower (45,325) Fastest (24,759) Slowest (74,431)

Evaluation
count (units) Slightly Higher (720) Comparable (717) Higher (496) Lower (284) Lower (350) Higher (471)

Load duration
time (s) Faster (0.025) Slower (0.043) Fastest (0.016) Slower (0.039) Similar (0.037) Similar (0.045)

Prompt
evaluation count Lower (51) Higher (68) Lower (47) Higher (54) Lower (53) Highest (96)

Prompt
evaluation

duration (s)
Shorter (0.571) Longer (5.190) Shorter (0.557) Longer (4.488) Shorter (0.588) Longest (6.955)

Total duration (s) Shorter (52,211) Longer (120,413) Shorter (36,440) Longer (49,856) Shortest (25,387) Longer (81,434)

Tokens/second Higher (14.07) Lower (6.3) Higher (13.91) Lower (6.36) Highest (14.38) Lower (6.53)

Despite having a higher core count and more RAM, the evaluation time is longer,
and the tokens per second rate are lower on the Ubuntu system. This suggests that the
hardware advantages of the Xeon system are not translating into performance gains for
these particular models. Notably, the Ubuntu system shows a higher prompt evaluation
count for Orca2:7b, which might be leveraging the greater number of CPU cores to handle
more prompts simultaneously.

Orca2:7b has the lowest evaluation time on the Mac M1 system, showcasing the most ef-
ficient utilization of that hardware. Llama2:7b shows a significant difference in performance
between the two systems, indicating it may be more sensitive to hardware and operating
system optimizations. Mistral:7b has a comparatively closer performance between the two
systems, suggesting it may be more adaptable to different hardware configurations.

The table suggests that the Mac M1’s architecture provides a significant performance
advantage for these language models over the Ubuntu system equipped with a Xeon
processor. This could be due to several factors, including but not limited to the efficiency of
the M1 chip, the optimization of the language models for the specific architectures, and the
potential use of the M1’s GPU in processing.

4.2. RAG Q&A Score Test Results

In this section, the performance of the Mistral:7b, Llama2:7b, and Orca2:7b models is
assessed through several key metrics: METEOR, ROUGE-1, ROUGE-L, BLEU, perplexity,
cosine similarity, Pearson correlation coefficient, and F1 score. A summary of the average
metrics is presented in Table 2.
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Table 2. A summary of performance metrics using RAG Q&A chat.

Metric Llama2:7b Mistral:7b Orca2:7b Best Model Metric in Text Generation and
Summarization Tasks

METEOR 0.248 0.271 0.236 Mistral:7b
Assesses fluency and adequacy of generated
text response, considering synonymy
and paraphrase.

ROUGE-1 recall 0.026 0.032 0.021 Mistral:7b
Measures the extent to which a generated
summary captures key points from a source
text, indicating coverage.

ROUGE-1 precision 0.146 0.161 0.122 Mistral:7b
Evaluates the fraction of content in the
generated summary that is relevant to the
source text, implying conciseness.

ROUGE-1 f-score 0.499 0.472 0.503 Orca2:7b
Provides a balance between recall and
precision for assessing the overall quality of a
generated summary.

ROUGE-l recall 0.065 0.07 0.055 Mistral:7b
Reflects the degree to which a generated
lowercase summary encompasses the content
of a reference lowercase summary.

ROUGE-l precision 0.131 0.143 0.108 Mistral:7b
Measures the accuracy of a generated
lowercase summary in replicating the
significant elements of the source text.

ROUGE-l f-score 0.455 0.424 0.457 Orca2:7b
Integrates precision and recall to evaluate the
quality of a generated lowercase
summary holistically.

BLUE 0.186 0.199 0.163 Mistral:7b

Quantifies the similarity of the generated text
to reference texts by comparing n-grams,
which is useful for machine translation
and summarization.

Laplace perplexity 52.992 53.06 53.083 Llama2:7b
Estimates the likelihood of a sequence in
generated text, indicating how well the text
generation model predicts sample sequences.

Lidstone perplexity 46.935 46.778 56.94 Mistral:7b

Assesses the smoothness and predictability of
a text generation model by evaluating the
likelihood of sequence occurrence with small
probability adjustments.

Cosine similarity 0.728 0.773 0.716 Mistral:7b
Determines the semantic similarity between
the vector representations of generated text
and reference texts.

Pearson correlation 0.843 0.861 0.845 Mistral:7b

Quantifies the linear correspondence between
generated text scores and human-evaluated
scores, indicating model predictability
and reliability.

F1 score 0.178 0.219 0.153 Mistral:7b

Combines the precision and recall of the
generated text in summarization tasks,
providing a singular measure of its
informational quality.

For a more straightforward interpretation of the results, the ranges of values of the
different metrics are briefly described below.

The ideal METEOR score is 1. It indicates a perfect match between the machine-
generated text and the reference translations, encompassing both semantic and syntactic
accuracy. For ROUGE metrics (ROUGE-1 recall, precision, f-score, ROUGE-l recall, precision,
f-score), the best possible value is 1. This value denotes a perfect overlap between the content
generated by the model and the reference content, indicating high levels of relevance and
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precision in the captured information. The BLEU score’s maximum is also 1 (or 100 when
expressed in percentage terms), representing an exact match between the machine’s output
and the reference texts, reflecting high coherence and context accuracy. For perplexity, the
lower the value, the better the model’s predictive performance. The best perplexity score would
technically approach 1, indicating the model’s predictions are highly accurate with minimal
uncertainty. The cosine similarity of 1 signifies maximum similarity between the generated
output and the reference. A Pearson correlation of 1 is ideal, signifying a perfect positive linear
relationship between the model’s outputs and the reference data, indicating high reliability
of the model’s performance. An F1 score reaches its best at 1, representing perfect precision
and recall, meaning the model has no false positives or false negatives in its output. For a
better comparison of the models, Figure 10 is presented.
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The presented metrics provide a picture of the performance of the models on text
generation and summarization tasks. The analysis for each metric is as follows.

METEOR evaluates the quality of translation by aligning the model output to reference
translations when considering precision and recall. Mistral:7b scores highest, suggesting its
translations or generated text are the most accurate.

ROUGE-1 recall measures the overlap of unigrams between the generated summary
and the reference. A higher score indicates more content overlap. Mistral:7b leads, which
implies it includes more of the reference content in its summaries or generated text.

ROUGE-1 precision (the unigram precision). Mistral:7b has the highest score, indicating
that its content is more relevant and has fewer irrelevant inclusions.

ROUGE-1 F-score is the harmonic mean of precision and recall. Orca2:7b leads slightly,
indicating a balanced trade-off between precision and recall in its content generation.

ROUGE-L recall measures the longest common subsequence and is good at evaluating
sentence-level structure similarity. Mistral:7b scores the highest, showing it is better at capturing
longer sequences from the reference text.

ROUGE-L precision. Mistral:7b again scores highest, indicating it includes longer, relevant
sequences in its summaries or generated text without much irrelevant information.

ROUGE-L F-Score. Orca2:7b has a marginally higher score, suggesting a balance in
precision and recall for longer content blocks.

BLEU assesses the quality of machine-generated translation. Mistral:7b outperforms the
others, indicating its translations may be more coherent and contextually appropriate.
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Laplace perplexity. For perplexity, a lower score is better as it indicates a model’s
predictions are more certain. Llama2:7b has the lowest score, suggesting the best predictability
under Laplace smoothing conditions.

Lidstone perplexity—Mistral:7b has the lowest score, indicating it is slightly more
predictable under Lidstone smoothing conditions.

Cosine similarity measures the cosine of the angle between two vectors. A higher
score indicates greater semantic similarity. Mistral:7b has the highest score, suggesting its
generated text is most similar to the reference text in terms of meaning.

Pearson correlation measures the linear correlation between two variables. A score
of 1 indicates perfect correlation. Mistral:7b has the highest score, showing its outputs have a
stronger linear relationship with the reference data.

F1 score balances precision and recall. Mistral:7b has the highest F1 score, indicating the
best balance between recall and precision in its outputs.

Based on the above analysis, the following summary can be concluded. For text gener-
ation and summarization, Mistral:7b appears to be the best-performing model in most met-
rics, particularly those related to semantic quality and relevance. Orca2:7b shows strength
in balancing precision and recall, especially for longer content sequences. Llama2:7b
demonstrates the best predictive capability under Laplace smoothing conditions, which
may be beneficial in certain predictive text generation tasks. The selection of the best model
would depend on the specific requirements of the text generation or summarization task.

4.3. Blockchain RAM Resource Evaluation

The integration of blockchain technologies to record test results aims to increase the
confidence and transparency of the results obtained, support their traceability, and facilitate
their documentation. This can also be implemented using classical databases (e.g., Mongo
DB, Postgres, Maria DB, or others), but as the amount of data stored in the blockchain is
relatively small (on average 1 kB per test), there is no obstacle to exploit the advantages of
this technology.

In terms of blockchain performance, the platform used (Antelope) is characterized as
one of the fastest—over 7000 transactions per second. Since the main time for running the
tests is due to the generation of answers (with or without the use of RAG), it is multiple
times longer than the time for recording the results in the blockchain (for example, about 1
min for generating an answer, and about 0.5 s for recording the results in the blockchain).

PaSSER App uses a private, permissionless blockchain network. Such a blockchain
network can be installed by anyone with the required technical knowledge. Instructions
for installing the Antelope blockchain can be found on GitHub at: “https://github.com/
scpdxtest/PaSSER/blob/main/#%20Installation%20Instructions.md (accessed on 1 April
2024)”. There are no plans to implement a public blockchain network in this project.

The blockchain (Antelope) must use a system token. The symbol (SYS), precision, and
supply are set when the network is installed. All system resources (RAM, CPU, NET) are
evaluated in SYS. Similar to other platforms (e.g., Bitcoin, Ethereum), to execute transactions
and build blocks (to prevent denial of service attacks), Antelope charges a fee in SYS tokens.

The NET is used to measure the amount of data that can be sent per transaction as an
average consumption in bytes over the last 3 days (72 h). It is consumed temporarily for
each action/transaction.

The CPU limits the maximum execution time of a transaction and is measured as
average consumption in microseconds, also for the last 3 days. It is also temporarily con-
sumed when an action or transaction is sent. NET and CPU are together called bandwidth.
In public networks, users can use the bandwidth resources if available, i.e., that are not
mortgaged by other accounts. The price of mortgaged bandwidth (NET and CPU) resources
varies, depending on how many SYS tokens are staked in total.

The RAM is the information that is accessible from application logic (order books,
account balances). It limits the maximum space that can be occupied to store permanent
data (in the block producers’ RAM). An account can exchange NET and CPU by mortgaging

https://github.com/scpdxtest/PaSSER/blob/main/#%20Installation%20Instructions.md
https://github.com/scpdxtest/PaSSER/blob/main/#%20Installation%20Instructions.md
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SYS tokens, but must buy RAM. RAM is not freed automatically. The only way to free up
memory is to delete the data that is using the account (multi-index tables). Freed unused
RAM can be sold and purchased at the market price, which is determined by the Bancor
algorithm [43]. In detail, the entire RAM, CPU, NET evaluation procedure that applies here
is described in [11].

In our case, the RAM price is extracted from the ‘rammarket’ table of the eosio system
account by executing the cleos command from the command line with the appropriate
parameters (date 23 March 2024, 14:05 h).
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In order to apply the Bancor algorithm for RAM pricing to our private network, the
following clarifications should be made. The Antelope blockchain network has a so-called
RAM token. The PaSSER uses our private Antelope blockchain network, whose system
token is SYS. In the context of the Bancor algorithm, RAM and SYS should be considered
Smart Tokens. The Smart Token is a token that has one or more connectors with other tokens
in the network. The connector, in this case, is a SYS token, and it establishes a relationship
between SYS and RAM. Using the Bancor algorithm [43,44] could be presented as follows:

RAMPrice = cb/(STos × CW), CW = cb/STtv, =>

RAMPrice = cb/(STos × cb/STtv) = STtv/STos
(21)

where: cb is for connector balance, Stos is for a Smart Token’s Outstanding Supply = base.balance,
and STtv is for a Smart Token’s total value = Connector Balance = quote.balance.

The cost evaluation of RAM, CPU, and NET resources in SYS tokens during a test
execution occurs as follows. The PaSSER App uses SYS tokens. The CPU price is measured
in (SYS token/ms/Day) and is valid for a specific account on the network. The NET Price
is measured in (SYS token/KiB/Day) and is valid for a specific account on the network.

This study only considers the cost of the RAM resources required to run the tests.
Data on the current market price of the RAM resource is retrieved from an oracle [16]

every 60 min that runs within the SCPDx platform whose blockchain infrastructure is
being used.

The current price of RAM is 0.01503345 SYS/kB as of 23 March 2024, 2:05 PM. Assum-
ing the price of 1 SYS is equal to the price of 1 EOS, it is possible to compare the price of the
RAM used if the tests are run on the public Antelope blockchain because there is a quote
of the EOS RAM Token in USD and it does not depend on the account used. The quote is
available at “https://coinmarketcap.com/ (accessed on 23 March 2024)”.

Table 3 shows that in terms of RAM usage and the associated costs in SYS and USD, the
score tests require more resources than the timing tests. The total cost of using blockchain
resources for these tests is less than 50 USD. This gives reason to assume that using
blockchain to manage and document test results has promise. The RAM price, measured in
SYS per kilobyte (kB), remains constant across different tests in the blockchain network.

https://coinmarketcap.com/
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Table 3. Blockchain test costs.

Operation Bytes RAM Price
(SYS/kB)

EOS Price
(USD)

RAM Cost
(SYS)

Equivalent
Cost (USD)

Time tests * 402,300 0.01503345 1.01 5.91 5.97

Score tests ** 2,896,560 0.01503345 1.01 42.52 42.95

Total 3,298,860 48.43 48.92
* Six series of 446 blockchain transactions. ** Three series of 446 blockchain BC transactions.

This means that blockchain developers and users can anticipate and plan for the costs
associated with their blockchain operations. The blockchain resource pricing model is
designed to maintain a predictable and reliable cost structure. This predictability mat-
ters for the long-term sustainability and scalability of blockchain projects as it allows for
accurate cost estimation and resource allocation. However, the real value of implement-
ing blockchain must also consider the benefits of increased transparency, security and
traceability against these costs.

5. Discussion

The PaSSER App testing observations reveal several aspects that affect the acquired re-
sults and the performance and can be managed. These are data cleaning and pre-processing,
chunk sizes, GPU usage, and RAM size.

Data cleaning and pre-processing cannot be fully automated. In addition to removing
special characters and hyperlinks, it is also necessary to remove non-essential or erroneous
information, standardize formats, and correct errors from the primary data. This is done
manually. At this stage, the PaSSER App processes only textual information; therefore, the
normalization of data, handling of missing data, and detection and removal of deviations
are not considered.

Selecting documents with current, validated, and accurate data is pivotal, yet this
process cannot be entirely automated. What can be achieved is to ensure traceability
and record the updates and origins of both primary and processed data, along with their
secure storage. Blockchain and distributed file systems can be used for this purpose.
Here, this objective is partially implemented since blockchain is used solely to record the
testing results.

The second aspect is chunk sizes when creating and using vectorstores. Smaller chunks
require less memory and computational resources. This is at the expense of increased
iterations and overall execution time, which is balanced by greater concurrency in query
processing. On the other hand, larger chunks provide more context but may be more
demanding on resources and potentially slow down processes if not managed efficiently.

Adjusting the chunk size affects both the recall and precision of the results. Adequate
chunk size is essential to ensure a balance between the retrieval and generation tasks in
RAG, as over- or undersized chunks can negatively impact one or both components. In
the tests, 500-character chunk sizes were found to give the best results. In this particular
implementation, no metadata added (document type or section labels) is used in the
vectorstore creation process, which would facilitate more targeted processing when using
smaller chunks.

GPU usage and RAM size obviously affect the performance of the models. It is evident
from the results that hardware configurations that do not use the GPU perform significantly
slower on the text generation and summarization tasks. Models with fewer parameters
(up to 13b) can run reasonably well on 16 GB RAM configurations. Larger models need
more resources, both in terms of RAM and GPU resources. This is the reason, in this
particular implementation, to use the selected small LLMs, which are suitable for standard
and commonly available hardware configurations and platforms.

It is important to note that the choice of a model may vary depending on the specific
requirements of a given task, including the desired balance between creativity and accuracy,
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the importance of fluency versus content fidelity, and the computational resources available.
Therefore, while Mistral:7b appears to be the most versatile and capable model based on
the provided metrics, the selection of a model should be guided by the specific objectives
and constraints of the application in question.

While promising, the use of RAG-equipped LLMs requires caution regarding data
accuracy, privacy concerns, and ethical implications. This is of particular importance in the
healthcare domain, where the goal is to assist medical professionals and researchers by ac-
cessing the latest medical research, clinical guidelines, and patient data, as well as assisting
diagnostic processes, treatment planning, and medical education. Pre-trained open-source
models can be found on Huggingface [45]. For example, TheBloke/medicine-LLM-13B-
GPTQ is used for medical question answering, patient record summarization, aiding
medical diagnosis, and general health Q&A [46]. Another model is m42-health/med42-
70b [47]. However, this application requires measures to ensure accuracy, privacy, and
compliance with health regulations.

6. Conclusions

This paper presented the development, integration, and use of the PaSSER web
application, designed to leverage RAG technology with LLMs for enhanced document
retrieval and analysis. Despite the explicit focus on smart agriculture as the chosen specific
domain, the application can be used in other areas.

The web application integrates Mistral:7b, Llama2:7b, and Orca2:7b LLMs, selected
for their performance and compatibility with medium computational capacity hardware. It
has built-in testing modules that evaluate the performance of the LLMs in real-time by a
set of 13 evaluation metrics (ROUGE-1 recall, precision, f-score; ROUGE-l recall, precision,
f-score; BLUE, Laplace perplexity, Lidstone perplexity, cosine similarity, Pearson correlation,
F1 score).

The LLMs were tested via the ‘Q&A Time LLM Test’ and ‘RAG Q&A score test’
functionalities of the PaSSER App. The ‘Q&A Time LLM Test’ was focused on assessing
LLMs across two hardware configurations. From the results of the ‘Q&A Time LLM Test’, it
can be concluded that even when working with 7b models, the presence of GPUs is crucial
for text generation speed. The lowest total duration times were shown by Orca2:7b on the
Mac M1 system. From the results of the ‘RAG Q&A Score Test’ applied to the selected
metrics over the dataset of 446 question–answer pairs, the Mistral:7b model exhibited
superior performance.

The PaSSER App leverages a private, permissionless Antelope blockchain network
for documenting and verifying results from LLMs’ testing. The system operates on a
token-based economy (SYS) to manage RAM, CPU, and NET resources. RAM usage and
associated costs, measured in SYS and USD, indicate that the total cost for blockchain re-
sources for conducted tests remains below 50 USD. This pricing model guarantees reliability
and predictability by facilitating accurate cost estimations and efficient resource distribu-
tion. Beyond the monetary aspects, the value of implementing blockchain encompasses
increased transparency, security, and traceability, highlighting its benefits.

Future development will focus on leveraging other pre-trained open-source LLMs
(over 40b) LLMs, exploring fine-tuning approaches, and further integration in the existing
Antelope blockchain/IPFS infrastructure of the SCPDx platform.
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