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Abstract: The demand for autonomous navigation UAVs in reconnaissance is steadily increasing.
One crucial aspect of these missions is the freshness of reconnaissance information, which serves as
a vital indicator of mission effectiveness. However, there is a lack of targeted investigation in the
research on autonomous single/multi-UAV missions and joint path planning. Furthermore, the use
of visual–inertial odometry (VIO) in rotary-wing UAVs can lead to significant positional drift during
flight, which may result in the loss of the UAV and mission failure. This paper investigates joint
planning problems in single/multi-UAV reconnaissance missions under both GPS-available and GPS-
unavailable scenarios and proposes an integrated data collection and beacon-assisted localization
approach. Finally, the numerical results demonstrate the effectiveness of the proposed scheme in
enhancing the freshness of reconnaissance information.

Keywords: unmanned aerial vehicle; autonomous UAVs; reconnaissance; data collection; mission
planning; path planning; heuristic optimization; information freshness; localization drift

1. Introduction

Smart unmanned systems are playing an increasingly significant role in various
fields, such as space exploration, intelligent industry, and modern warfare [1]. Among
them, small/micro unmanned aerial vehicles (UAVs) exhibit the highest flexibility in
three-dimensional movement in low-altitude environments. Compared to traditional
reconnaissance methods, utilizing UAVs to perform direct aerial reconnaissance or to
assist ground reconnaissance nodes in data collection has advantages [2]. The former
allows onboard terminals to capture information with vertical dimensions in real space [3].
However, this requires lightweight equipment due to payload limitations. While ground
reconnaissance nodes can reliably obtain real-time information within their perception area,
establishing real-time communication links with the backend data center is still challenging
due to limitations in wireless communication power, complex channel conditions, and
concerns about concealment [4–6]. Utilizing UAVs to collect data from reconnaissance
nodes and bring them to the data center for decision-making can effectively solve the
communication problem [7]. Nevertheless, collision risks and electromagnetic interference
pose a threat in practice, while the missions are highly complex. Therefore, autonomous
UAVs with well-designed planners are essential for this scenario [8], while data collection
by UAVs from ground nodes in close range increases the signal-to-noise ratio under limited
communication power.

In actual reconnaissance missions, signal interference and radio hijacking can result in
UAVs being unable to receive the correct remote control signals and can hinder accurate
satellite positioning signal reception, leading to the possibility of UAVs crashing or being
intercepted. Additionally, other types of interference, such as acoustic interference, can
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prevent UAVs from utilizing acoustic sensors for environmental awareness and sound-
based positioning. To address these issues, drawing inspiration from the general framework
and autonomous capabilities of current small/micro rotary-wing UAVs, this paper presents
a solution based on autonomous UAVs: UAVs that can successfully complete assigned
missions and achieve objectives without human intervention, autonomously determining
their waypoints and guiding movement based on available environmental and mission
information. The functional modules required to achieve autonomous navigation include
mission and path planning, perception and localization, and flight control. Among them,
the planner serves as the core of autonomous UAVs.

For autonomous path planning in environments with dense obstacles, Zhou et al.
proposed a framework that includes visual cameras, an inertial measurement unit (IMU),
simultaneous localization and mapping (SLMM), a motion planner, and a cooperative
locator [9]. The objective of the planning is to minimize the flight time, ensuring effective
obstacle avoidance for unexpected obstacles and seamless local trajectory adjustments.
Similarly, in [10,11], the problem of minimum-flight-time motion planning for point-to-
point navigation is addressed. However, in scenarios with a large number of ground
reconnaissance nodes, point-to-point motion planning may struggle to meet the overall
requirements for the freshness of reconnaissance information. Therefore, the planner must
conduct a coordinated optimization of both the waypoints’ access order and the UAV’s flight
trajectory. Furthermore, in GPS-denied scenarios, although multi-UAV formation flying
with an advanced visual + ultra-wideband (UWB) cooperative inter-vehicle positioning
design can reduce the cumulative positioning error of individual UAVs using autonomous
visual–inertial odometry (VIO) positioning, there is still nearly 1 m of position drift every
100 m of flight [12]. Additionally, multi-UAV cooperative localization is often impractical
due to reduced mission efficiency [13–15]. Therefore, under normal circumstances, the UAV
position drift can reach nearly 3 m or even more every 100 m [12]. The position drift can
lead to UAV position loss, causing mission failure and a UAV crash. This paper proposes
an approach to address the position drift using the planner of the UAV, aiming to offer an
innovative solution.

B. Miloradovic et al. [16] designed a planner based on an improved genetic algorithm,
which performs the joint optimization of the total flight time and total mission duration
under heterogeneous mission constraints. By solving the established extended colored
traveling salesman problem (ECTSP) model, the freshness of reconnaissance information is
improved. H. Hu et al. [17] provided a clear definition of the age of information (AoI) for
nodes in a scenario of UAV-assisted data collection, effectively characterizing the freshness
of reconnaissance information. In this kind of scenario [18], the joint planning of the
UAV mission assignment, node access sequence optimization, and trajectory generation
plays a dominant role in the overall freshness of reconnaissance information. Therefore,
research such as [19] has studied the joint planning problem within a unified framework.
Although the aforementioned studies have considered the heterogeneity of nodes, in
practical applications, different types of reconnaissance data have heterogeneous levels of
information urgency, which need to be considered in the joint planning problem.

To address the aforementioned challenges, we developed a UAV flight planner that
effectively collects data from ground reconnaissance nodes, enabling the efficient reconnais-
sance of a specific area and optimizing the overall freshness of reconnaissance information.
In a mountainous environment with no-fly zones, we deployed several ground reconnais-
sance nodes with known coordinates, each with a different data volume and urgency. The
proposed algorithm was designed and improved based on classical heuristic algorithms,
such as the genetic algorithm. Furthermore, we designed a flight planning method for both
GPS-enabled and GPS-denied environments, building upon popular VIO navigation. In
the proposed framework, we integrated data collection and beacon-assisted localization
to mitigate the VIO position drift when GPS is unavailable due to signal interference or
hijacking. Additionally, we compared our planner with other schemes for improving
information freshness, further highlighting the superiority of the proposed framework.
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2. System Model

In order to achieve the effective reconnaissance of a specific mission area, we deployed
N ground reconnaissance nodes with known coordinates within the area, denoted by
S = {s1, . . . , sn, . . . , sN}. Their coordinates are, respectively, denoted by ωn = (xn, yn, hn),
where n = 1, 2, . . . , N. Due to the difficulty of direct communication between reconnais-
sance nodes and the data center, single or multiple UAVs are dispatched from the data
center to fly to a hovering position directly above each reconnaissance node. The UAV
maintains a hovering flight and sends data collection instructions to the nodes. After the
data collection is completed, the UAV moves on to the next node and eventually returns to
the data center to unload the collected data, completing the information retrieval process.
The coordinates of the data center sdc are denoted by ωdc = (xdc, ydc, hdc). When a single
UAV is used for data collection, it is denoted by v. In the case of multiple UAVs being
used for data collection, the set of UAVs is denoted by V = {v1, . . . , vm, . . . , vM}, where
m = 1, 2, . . . , M, and M represents the total number of UAVs.

2.1. Age of Reconnaissance Information and Information Urgency

The ground reconnaissance node sn continuously acquires information before receiv-
ing data collection instructions from the UAV. It also broadcasts positioning signals to the
surrounding area to assist the UAV in location calibration, thereby eliminating the position
drift caused by accumulated errors. Once sn receives the data collection instructions, it
immediately starts uploading the reconnaissance data, and this time is defined as the
information effective timestamp [17], denoted by Tm,n. The AoI of sn is

∆(n)(t) = (t − Tm,n)
+ (1)

where (α)+ = max{0, α}.
However, considering the fact that the data collected by ground sensors in actual

reconnaissance missions may be of different types, it is necessary to take into account the
heterogeneity of information urgency when optimizing the average AoI (AAoI) of all nodes.
This can be achieved by using a non-negative and monotonically increasing cost function
to describe the rate of heterogeneous AoI growth.

When α > 0, the cost function, which represents the freshness of information, also
known as the AoI function, exhibits an exponential growth rate. This is because, for
reconnaissance information with higher urgency, the mutual information decreases rapidly
after a certain amount of time elapses, which is mainly due to the flight time of the
unmanned aerial vehicle and data transmission. Conversely, for data types with slower
mutual information decay, setting α < 0 allows the reconnaissance information to decay at
a logarithmic rate. For data types with moderate urgency, general linear growth is adopted,
i.e., α → 0, as shown in Figure 1. In the time scale range of the application in this paper,
the parameter settings in the figure cause different types of reconnaissance information to
exhibit exponential growth, linear growth, and logarithmic growth in terms of AoI.

fk(t)
∆
= α−1

k
(
eαkt − 1

)
(2)

which extends the typical AoI to a generalized non-linear form [20].
Assuming that sm,i represents the i-th reconnaissance node accessed by vm, the AoI is

considered to be 0 before accessing that particular node. The AoI starts to increase when si
begins to upload data, specifically after time Tm,i. The computational model is illustrated
in Figure 2. At time Tm,i+1, the AoI of sm,i is

∆∗
(m,i)(Tm,i+1) = fk

(
tdc
(i) + t f

(i)

)
= α−1

k

(
eαk

(
tdc
(i)+t f

(i)

)
− 1
)

(3)
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where the selection of the parameter αk depends on the type of current node and its degree
of information urgency.
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Figure 1. The AoI growth rates of different types of reconnaissance nodes.

Figure 2. AoI model for reconnaissance nodes with heterogeneous urgency.

2.2. Reconnaissance Data Collection Model

The communication channel between the UAV and the ground reconnaissance node
is characterized by the Rician fading channel model [21–23], where the power decay
coefficient per unit distance is denoted by µ0, and the path fading exponent is denoted by
2 ≤ α ≤ 5.5. The data transmission rate between the UAV and the ground reconnaissance
node is denoted by

Rt = Blog2

(
1 +

ptγd−α
c

σ2

)
(4)

where B represents the data transmission bandwidth, pt represents the transmission power
of the reconnaissance node, dc is the maximum communication range between the UAV
and the node, and γ is calculated as follows:

γ =
1

BΓ

[
F

F + 1
µ0 +

1
F + 1

µ0

∣∣∣h̃c

∣∣∣2] (5)
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where Γ represents the efficiency caused by modulation and coding, F represents the
environmental parameter that characterizes the line-of-sight (LoS) channel probability
between the UAV and the reconnaissance node, and h̃c represents a random non-line-of-
sight (NLoS) channel.

In addition, the received signal power at the data collection terminal is

pr = ptγd−α
c (6)

while the receiver sensitivity is

p0 = kbT0 × N f × Rmin × Eb
N0

(7)

where kb is the Boltzmann constant, T0 is the ambient temperature, N f is the RF circuit
noise factor, Rmin is the minimum communication rate, and Eb/N0 is the normalized
demodulation threshold. Therefore, the minimum data collection rate constraint and
minimum received power constraint are established as follows:

Rt ≥ Rmin (8)

pr ≥ p0. (9)

2.3. Integrated Data Collection with Beacon-Assisted Localization

VIO provides real-time and accurate localization information for autonomous UAVs.
However, the coordinates provided by VIO are relative to the take-off position of the
UAV, leading to challenging position drift issues. Specifically, the SLMM module utilizes
multiple frame images captured by visual sensors to solve the current position of the UAV
based on the inter-frame positional transformation. In large-scale reconnaissance scenarios,
the localization errors introduced by visual sensors and position estimation algorithms
accumulate over time, causing a position drift. Similarly, the IMU module calculates the
position based on the acceleration changes sensed by the gyroscope during the UAV motion,
resulting in the accumulation of errors introduced by the sensor and estimation algorithms
during flight.

The VIO position drift can cause the UAV to reach a spherical trust region with a radius
of r0 around the predetermined coordinates, rather than precisely reaching the intended
location after a certain period of flight time. r0 is typically an empirical parameter obtained
from experiments, representing the upper limit of the VIO position drift [9]. The magnitude
of r0 is dependent on the total distance traveled by the UAV from its starting point. When
r0 exceeds a certain range, the UAV may not be able to locate the reconnaissance nodes
after reaching the designated coordinates. Additionally, excessive self-positioning errors
can lead to mission failures or even result in the loss of the UAV.

Therefore, when satellite positioning signals are available, the UAV can utilize GPS
positioning at a certain frequency to correct accumulated VIO errors. In this case, the
mission and path planning of autonomous UAVs only need to consider conventional safety
constraints and the optimization of reconnaissance mission indicators. However, in GPS-
denied environments, where satellite positioning is not available, it is hard to eliminate
the position drift. To address this issue, we propose an integrated solution for reconnais-
sance data collection and beacon-assisted positioning, as shown in Figure 3. In large-scale
reconnaissance areas, the position drift of VIO typically occurs in the horizontal latitude
and longitude coordinates. Therefore, when the UAV flies toward ground reconnaissance
nodes with known coordinates, the UAV position can be corrected using the horizontal
coordinates of the ground reconnaissance nodes as well as the relative position information
between the UAV and the nodes [24,25].
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Figure 3. The integrated solution for reconnaissance data collection and beacon-assisted position-
ing, which includes visual beacon positioning correction (left) and wireless beacon positioning
correction (right).

This solution combines two correction methods. The left image in Figure 3 illustrates
visual beacon positioning correction. It involves placing markers resembling 2D barcodes,
known as AprilTag, on the ground reconnaissance nodes. These tags provide visual
guidance to the UAV, helping to correct cumulative errors. Here, η represents the half-field
angle of the UAV’s downward-facing camera, and rc1 is the error tolerance radius, satisfying

rc1 = hdc tan(η) (10)

where hdc represents the hovering height of the UAV during data collection from the ground
reconnaissance nodes, and it must satisfy the following constraint:

hdc < dc (11)

When the horizontal position drift of the UAV is smaller than the error tolerance
radius, the AprilTag marker falls within the field of view, and beacon-assisted positioning
is successful.

The right image in Figure 3 shows the wireless beacon positioning correction. When
the UAV reaches the vicinity of the node and receives the wireless signal, it can use the
positioning information for position correction. The error tolerance radius for this method
is represented by

rc2 = ∥dc − hdc∥ (12)

Therefore, when the UAV reaches the hovering collection position of a reconnaissance
node, its horizontal coordinates must fall within a circle with the horizontal coordinates
of the reconnaissance node as the center and max(rc1, rc2) as the radius. Otherwise, it will
result in a loss of positioning.

2.4. Safe Flight of Autonomous Reconnaissance UAVs

In practical UAV trajectory planning, digital elevation models (DEMs) are widely used
to describe terrain features. In complex mountainous environments, the flight path of the
UAV must avoid collisions with the ground while adhering to constraints on the maximum
flying height. Therefore, the obtained open-source DEM is discretized into a grid map
using rasterization methods, and a point-to-point optimal flight trajectory is generated
based on this map. This process results in a topological map of the UAV flight and the
flight time cost between each pair of hover points, which is used to calculate the AoI of the
reconnaissance node considering heterogeneous information urgency.
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Additionally, we also consider no-fly zones, interference zones, and other regions
that pose safety threats, modeling them as cylindrical zones. These zones, along with
terrain data, generate three-dimensional grid occupancy information within the mission
area, which is used for path planning. When generating point-to-point trajectories and
calculating flight time costs, it is crucial to take into account not only the potential risk
of terrain collisions but also the need to avoid any threats posed by no-fly zones, thus
ensuring the safety of the UAV.

3. Joint Planning Problem Formulation
3.1. Safety Flight Topological Road Map

Before joint planning, the terrain data of the mission area are obtained through open
sources. Based on the pre-acquired threat area ranges, data center coordinates, and pre-
deployed reconnaissance node coordinates, an occupancy grid map is generated. The
waypoints during the data collection process include the data center and the hovering
collection positions of all reconnaissance nodes, denoted by S̃ = S ∪ sdc. The flight
trajectory between waypoints is represented by a series of discrete points, denoted by

Wi,j[r] = (xi,j[r], yi,j[r], hi,j[r]), r = 1, 2, . . . , Rm (13)

where Wi,j[1] = ωi, Wi,j[Rm] = ωj. The safety constraints include constraints on the mission
area range, ground collision, maximum altitude, and no-fly zones.

The constraint on the mission area range represents the latitude and longitude con-
straints on the trajectory of the UAV, and it is expressed as{

0 ≤ xi,j[r] ≤ 1000
0 ≤ yi,j[r] ≤ 1000

(14)

The ground collision constraint and maximum altitude constraint primarily limit the
altitude of the UAV during flight and are expressed as

ht[r] ≤ hi,j[r] ≤ ht[r] + hmax (15)

where ht[r] represents the altitude of the projected point of Wi,j[r] on the ground, and hmax
represents the maximum altitude of the UAV above ground level.

The flight safety constraint on the no-fly zone is denoted by∥∥(xi,j(r), yi,j(r)
)
− (xN , yN)

∥∥ > rN , if hi,j[r] ≤ hN (16)

where the horizontal center coordinates are denoted by (xN , yN), the radius is denoted by
rN , and the height is denoted by hN .

On the basis of satisfying constraints (14)–(16), the path cluster represented by (13) is
solved. This path cluster constitutes a topological road map for a safe UAV flight, which
includes the optimal flight trajectories between every pair of nodes in S̃ .

3.2. Joint Optimization of Reconnaissance Task Assignment and Node Access Sequence

First, we establish a graph model that represents the joint optimization problem,
denoted by G =

(
S̃ , E

)
. In this model, the set of waypoints for the reconnaissance UAV,

denoted by S̃ , form the vertices of the graph. E represents the edges of the graph, which
are the set of safe flight trajectories between every pair of waypoints in the topological road
map, denoted by E =

{
ei,j|i, j ∈ 1, 2, . . . , N + 1

}
. Therefore, the time cost of UAV flight on

ei,j can be represented as

ci,j =
1

vavg

Rm−1
∑

r=1

∥∥Wi,j[r + 1]− Wi,j[r]
∥∥ (17)
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where vavg represents the average flight speed of the UAV.
Due to the establishment of the topological road map, which provides the shortest

flight paths between every pair of waypoints, repeated visits to the same node would
increase the flight time. Therefore, the UAV departs from the data center and visits each
reconnaissance node only once before returning to the data center. In a single-UAV recon-
naissance scenario, the objective function is the average AoI of all reconnaissance node
data. Based on (1)–(3), the following is obtained:

J1 =
1
N

N

∑
n=1

∆∗
(n)

(
Tend

)
=

1
kN

5

∑
k=1

∑
n∈Sk

fk

(
∑

i,i+1∈Sn∪s0

(
t f
i,i+1 + tdc

i

))
(18)

where Sk represents the set of reconnaissance nodes with an information urgency of fk,
while Sn represents the set of all nodes that come after node sn in a certain sequence of
reconnaissance node visits.

In a multi-UAV reconnaissance scenario, the objective function of this joint optimiza-
tion problem is

J2 =
1

MN

M

∑
m=1

N

∑
n=1

∆∗
(m,n)

(
Tend

m

)
=

1
M

M

∑
m=1

1
kN

5

∑
k=1

∑
n∈Sm,k

fk

(
∑

i,i+1∈Sm,n∪s0

(
t f
i,i+1 + tdc

i

))
(19)

The objective in (19) corresponds to using (18) to calculate the AAoI for each individual
UAV and then obtaining the overall AAoI.

In addition, we also consider the heterogeneity of the collection terminals in the multi-
UAV reconnaissance task allocation. We introduce the concept of “colors” from the colored
traveling salesman problem (CTSP) to describe the correspondence between UAVs and
heterogeneous reconnaissance nodes. Five different types of ground reconnaissance nodes
are defined in Section 2.1, and among the multiple UAVs departing from the data center,
some UAVs can only collect data from one type of node, while others can collect data
from all types of nodes. This setting takes into account factors such as the models and
the compatibility of data collection terminals in engineering practice, which may result in
heterogeneity in the performance of UAVs in reconnaissance missions.

Let C = {c1, . . . , ck, . . . , cK} represent the set of colors, where K is the number of
different types of reconnaissance nodes with varying information urgency. The mapping
between node types and colors is represented as follows:

ck = fC(n) (20)

Therefore, the access constraints for heterogeneous UAVs can be represented as follows:

xm
i,j =

{
1, fC(j) ∈ Cm
0, otherwise

(21)

where xm
i,j indicates that vm immediately flies to the j-th node after completing data collec-

tion for the i-th reconnaissance node. Cm represents the color set assigned to vm, satisfying
Cm ∈ C, and in this paper, it is assumed to be a singleton set or the entire set.

3.3. Optimization Problem Formulation for Different Navigation Modes

In the VIO + GPS navigation mode, the autonomous UAV is able to obtain real-time and
accurate self-positioning information. The GPS system can promptly correct the position
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drift caused by accumulated VIO errors. In this mode, the optimization problem for the
freshness of reconnaissance information for a single UAV can be formulated as follows:

(P1) min
Wi,j [r],xi,j

J1

s.t. (8), (9), (14)–(16)

The optimization problem in multi-UAV scenarios incorporates the access constraints
of heterogeneous data collection terminals. It can be formulated as

(P2) min
Wi,j [r],xm

i,j

J2

s.t. (8), (9), (14)–(16), (21)

In the VIO + data collection and beacon-assisted positioning integration mode, the
position drift of the UAV must be smaller than the maximum drift tolerance. According
to [9], the magnitude of position drift is related to the flight distance between every
two waypoints of the UAV. If the maximum drift amount max(rc1, rc2) corresponds to
a maximum flight distance of cmax, then in the modeling of the freshness optimization
problem for single/multi-UAV reconnaissance information, waypoint selection constraints
should also be included and denoted as

xm
i,j =

{
1, ci,j ≤ cmax
0, otherwise

(22)

In this case, the optimization problem for single/multi-UAV is, respectively, modeled as

(P3) min
Wi,j [r],xi,j

J1

s.t. (8), (9), (14)–(16), (22)

(P4) min
Wi,j [r],xm

i,j

J2

s.t. (8), (9), (14)–(16), (21), (22)

4. Algorithm Design
4.1. Calculation of Time Cost Matrix Based on A* Algorithm

To address the mission and trajectory joint planning problem for single/multiple-UAV
reconnaissance data collection in two different navigation modes, safe flight trajectories{

Wi,j[r]
}

between waypoints are generated based on the A* algorithm. A three-dimensional
topological road map that satisfies safety constraints (14)–(16) is then constructed, and the
flight time cost between waypoints is calculated using (17).

First, the three-dimensional space within the mission area is divided into uniformly
continuous and non-overlapping grids, and the terrain and no-fly zone are annotated on the
corresponding grids, forming the configuration space for the algorithm. Then, a heuristic
search is conducted with the aim of minimizing the travel distance from the starting point
of the current path segment until the destination grid is found. During the search process,
the heuristic function of the current grid point is set as

g(r) = λ(r) + θ(r) (23)

where λ(r) represents the distance already traveled by the UAV from the starting point
of the path segment to the current grid point, while θ(r) represents the estimated travel
distance from the current grid point to the end point of the path segment, which is set
as the three-dimensional Euclidean distance. For the current grid point, the length of all
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potential paths is greater than θ(r); it can be concluded that this heuristic function exhibits
consistency, and the flight trajectory generated is optimal in terms of the grid map. The
overall process is illustrated in Algorithm 1. In the worst case, the complexity of the single
A* algorithm is O(8d), where 8 is the number of child nodes during the node expansion,
and d represents the number of steps in the shortest path from one waypoint to another.
In practice, the A* algorithm is often efficient because it effectively avoids evaluating
unnecessary nodes.

Algorithm 1: Calculation of UAV safe flight trajectories and time cost matrix between
waypoints based on A* algorithm

1.

Input: The digital elevation map within the mission area range, the set of reconnaissance
nodes S and their coordinates {ωn}, the coordinates of the data center sdc, the
radius rN , the height hN , and the horizontal center coordinates (xN , yN) of the no-fly
zone; set the maximum altitude above ground level hmax.

2.

3D Planning Space Configuration: The grid-based obstacle representation with the reserved
safety distance; set UAV motion degrees of freedom, including the horizontal
longitude direction, horizontal latitude direction, vertical direction, and diagonal
direction.

3.
Initialization: Generate the vertex set S̃ , define the time cost matrix

{
ci,j

}
, define the open list

OpenList, define the closed list CloseList, and define the candidate list CandiList.
4. Calculation process:
5. for i = 1 to N + 1 do
6. for j = 1 to N + 1 do

7.
Set the starting point as ωi, set the ending point as ωj, set the visited list CloseList as

empty, set the candidate list CandiList as empty, and reset the open list OpenList.
8. while OpenList ̸= ∅ do
9. if Wi,j[r] = ωj then
10. break
11. end if

12.
Calculate the candidate path point list CandiList(t) based on the UAV motion degrees
of freedom.

13. for all child nodes t do
14. if g(t + 1) = inf
15. g(t + 1) = g(t) + λ(t, t + 1)
16. Move CandiList(t + 1) from the open list to the visited list.
17. elseif g(t + 1) > g(t) + λ(t, t + 1)
18. g(t + 1) = g(t) + λ(t, t + 1)
19. endif
20. end for
21. end while
22. Compute

{
ci,j

}
based on (17).

23. end for
24. end for

4.2. Design of Heuristic Algorithm for Joint Optimization

Algorithm 1 constructs a safe flight topology roadmap to confine the UAV trajectory
within safety constraints, thus simplifying the original optimization problem. In the VIO +
GPS navigation mode, for the proposed single-UAV optimization problem, the hovering
height is determined based on the communication distance constraint, and a modified
intelligent optimization algorithm is used to solve the extended form of the classic single-
agent TSP. This generates the visiting sequence for ground reconnaissance nodes, resulting
in the final reconnaissance plan.

For the proposed multi-UAV optimization problem, the encoding stage of the intelli-
gent optimization algorithm is designed in accordance with the heterogeneous UAV access
constraints defined in (21). This establishes a joint solution space for reconnaissance mis-
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sion assignment and visiting sequence optimization. The encoding scheme is illustrated in
Algorithm 2. The simplified form of this algorithm is used to calculate the fitness function
for the single-UAV optimization problem.

Algorithm 2: Encoding and fitness design for heuristic joint optimization algorithm

1.
Input: The set of reconnaissance nodes S and their coordinates {ωn}, the coordinates of the

data center sdc, urgency parameters {αk}, the time cost matrix
{

ci,j

}
, and UAV

identifiers {vm}.

2.
Initialization: Set the chromosome length to (N + M), generate a random sequence

route(N + M), and create a temporary list TempList.
3. Finding the index of the UAV’s current location, denoted by index(m).
4. Calculation process:
5. for m = 1 to M do
6. for i = index(m) to index(m + 1) do
7. if fC(i) ∈ Cm
8. Adding route(i) to Sm.
9. else
10. Adding route(i) to TempList.
11. end if
12. end for
13. end for
14. Calculate the fitness of individuals using (19) based on the allocation results.

In the VIO + data collection and beacon-assisted positioning integration mode, the
waypoint selection constraint is derived from the maximum tolerance for position drift,
as shown in (22). To enforce this constraint, a penalty function approach is adopted.
In the fitness function of the intelligent optimization algorithm, which corresponds to
the objectives in (18) and (19), a large penalty value is assigned to solutions that do not
satisfy this constraint. This gradually eliminates infeasible solutions during the algorithm
iteration. The complexity of intelligent optimization algorithms is mainly composed of
fitness calculation, individual selection, and exploration strategy. Here, p represents the
population size, and g represents the number of iterations. The computational complexity
of the objective is O(pN2), the computational complexity of individual selection is O(p),
and during the exploration process, jump-point crossover, random mutation, and elite
retention strategies are employed, with a computational complexity of O(p). Therefore,
the complexity of the joint optimization is O(gp ∗ N2).

5. Numerical Results

In this section, we first implement the construction of a three-dimensional topological
map for the UAV and estimate the flight time cost between waypoints. Then, based on this
topological map, we address the joint planning problem for the autonomous navigation of
single/multiple UAVs in different navigation modes. By comparing our proposed planning
framework with the state of the art, we validate the rationality of our approach and the
effectiveness of the corresponding algorithms. The simulation experiments were conducted
using MATLAB R2021a.

5.1. Parameter Configuration and Generation of Safe Flight Topological Roadmap

Within a mission area of 1000 m × 1000 m, there is a heterogeneous set of nodes de-
ployed for reconnaissance tasks. To simulate reconnaissance in mountainous environments
that include peaks and valleys, where there may be risks of collision and electromagnetic
interference, a portion of mountainous terrain was randomly extracted from ArcGIS 10.6
and preprocessed to generate the terrain described in this paper. No-fly zones are mod-
eled as cylindrical regions, and entering these areas can result in exposure and potential
hijacking, leading to mission failure.
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In the simulation with randomly distributed nodes, we simulated scenarios with node
quantities of 15, 30, and 45. In the scenario with regularly distributed nodes, there were
20 nodes. All nodes are classified into five different types, representing different types of
reconnaissance data, which are depicted as diamond shapes of different colors in the figures. In
order to ensure a realistic representation of the actual scenario, we take into account the spatial
distribution of the nodes. Specifically, the coordinates of the nodes should exhibit randomness,
but nodes of the same type should also exhibit a certain degree of spatial correlation.

The urgency parameter αk for these nodes is set according to Figure 1, ranging from
urgent to less urgent. For nodes with an exponential, linear, and logarithmic growth of
AoI, the amount of heterogeneous reconnaissance data collection is set to 1 Mbit, 2 Mbit,
and 4 Mbit, respectively. Consequently, the corresponding hover collection times for these
nodes are 1 s, 2 s, and 4 s. According to general logic, data with higher urgency typically
have a smaller volume. For example, a 256-color RGB color image with a resolution of
1280 × 1024 has a storage capacity close to 4 MB. This image may represent the parking
situation in an outdoor parking lot from a fixed perspective, used to analyze the transport
capacity, and the urgency of this information is relatively low. An electromagnetic spectrum
sensor records signal strength data from different frequency bands, potentially generating
a 2 MB dataset. These data can be used to analyze changes in enemy signal sources
or interference, with moderate information urgency. A pressure sensor records traffic
conditions on a specific road, potentially generating a 1 MB dataset. These data can be used
to monitor enemy mobility status and detect potential invasion threats, with a higher level
of information urgency.

The communication parameters in the simulations are set as follows. The data trans-
mission bandwidth B for the low-power ground reconnaissance node is 1 MHz, and the
transmission power pt is 5 mW. The path loss exponent α is 5, the noise power spectral
density σ2 is −169 dBm, the environmental parameter F is 3, and the modulation and
coding efficiency Γ is 1.5. Based on the UAV communication constraints (8)–(9), the maxi-
mum communication distance dc is approximately 25 m. Considering flight safety, the UAV
should stay away from unknown ground risks as much as possible. Therefore, the hover
collection altitude hdc for the UAV is set to 20 m.

The field-of-view angle 2η of the camera below the UAV is set to 80°, and based on (10),
rc1 is approximately 16.78 m. Based on (12), rc2 is approximately 15 m. Referring to [12], a
VIO autonomous navigation UAV will have a position drift of 1 m after flying for around
37 m. Therefore, to ensure that the position drift is smaller than the error tolerance radius
max(rc1, rc2) after a certain flying time, the maximum flight distance cmax satisfying the
waypoint selection constraint (22) is approximately 600 m. In other words, the maximum
flight time cost for satisfying the waypoint selection constraint is ci,j ≤ 600 m.

Figure 4 illustrates the distribution of these heterogeneous nodes in the mission area
and the UAV safe flight topological roadmap constructed using Algorithm 1. Among them,
the deep-red nodes represent the hovering collection positions corresponding to nodes
with an urgency parameter of α = 0.005; the light-red nodes correspond to α = 0.025; the
green nodes correspond to α → 0; the blue nodes correspond to α = −0.025; and the white
nodes correspond to α = −0.005. In addition, the black pentagon represents the data center,
and the dark lines represent the safe flight topological roadmap formed by the optimal
paths between each two waypoints. Based on this, the joint planning of missions and paths
for autonomous navigation UAVs in different navigation modes is further implemented
using Algorithm 2.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4. Nodes and mission environment schematic diagram, along with corresponding three-
dimensional topological roadmap. (a) Random distribution of 15 nodes. (b) Topological roadmap of
15 nodes. (c) Random distribution of 30 nodes. (d) Topological roadmap of 30 nodes. (e) Random
distribution of 45 nodes. (f) Topological roadmap of 45 nodes. (g) Circular distribution of 20 nodes.
(h) Topological roadmap of 20 nodes.

5.2. Simulations of VIO + GPS Navigation Mode

The main objective of the heuristic optimization algorithm designed in this paper is to
effectively improve the timeliness of reconnaissance information, which is characterized
by the information freshness with heterogeneous urgency, as proposed in (3). In order
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to achieve this under complex constraints, direct optimization schemes, as well as the
minimizing total flight time scheme and minimizing mission duration scheme proposed
in [16], are adopted and extensively compared and analyzed. In the following simulations,
two navigation modes are applied in different conditions. The first is the VIO + GPS
mode, corresponding to (P1) and (P2) when GPS is available; the second is the VIO + data
collection and beacon-assisted positioning integration mode, corresponding to (P3) and
(P4) when GPS is unavailable due to the existence of interference or hijacking.

Figure 5 presents the results of 30 Monte Carlo simulations showcasing the optimiza-
tion of information freshness for a single UAV in VIO + GPS navigation mode using box
plots. In this simulation, the direct optimization scheme aims to minimize the AAoI of
reconnaissance nodes and is denoted as “Minimizing AAoI”, while the minimizing total
flight time scheme aims to minimize the overall UAV flight time and is denoted as “Mini-
mizing T-sum”. The simulation scenario involves 20 nodes distributed in a nearly circular
pattern from the top view. It can be observed that in scenarios with a regular distribution of
reconnaissance nodes, both the direct optimization scheme and the minimizing total flight
time scheme yield stable results. The direct optimization scheme shows slightly improved
and more stable performance in terms of the AAoI and total flight time metrics. This can be
attributed to the better guidance provided by the heterogeneous information urgency in
scenarios with regularly distributed nodes.
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Figure 5. The comparative results of 30 Monte Carlo simulations between the direct optimization
scheme and the minimum total flight time scheme in the scenario of ground reconnaissance nodes
with a regular distribution, where the red crosses represent outliers caused by the optimization
algorithm getting trapped in local optima. (a) A box plot comparing the AAoI metric. (b) A box plot
comparing the total flight time metric.

Figure 6 displays the planning results near the median values in the box plots. From
the calculated paths, it is evident that the direct optimization scheme considers both terrain
and no-fly zones, as well as the heterogeneous urgency of nodes, making it a preferable
choice in similar scenarios with a regular distribution of reconnaissance nodes.

Figure 7 presents the simulation results using box plots for scenarios with random
distributions of 15, 30, and 45 nodes. It can be observed that when the distribution of
reconnaissance nodes lacks geometric regularity, the direct optimization scheme achieves
superior and more stable performance. Both the proposed AAoI metric with heterogeneous
information urgency and the traditional total flight time metric demonstrate improved
performance with the direct optimization approach. This is attributed to the non-linear
growth rate of AoI proposed in this paper, which guides the optimization direction during
the iterative process of the intelligent optimization algorithm.
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(a) (b)

Figure 6. A comparison of results with target values near the median. (a) The path planned for the
direct optimization scheme. (b) The path planned for the total flight time minimization scheme.
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Figure 7. Comparing the results of 30 Monte Carlo simulations between the direct optimization
scheme and the total flight time minimization scheme in a scenario where ground reconnaissance
nodes are randomly distributed. (a) A box plot comparing the AAoI metric in a scenario with
15 nodes. (b) A box plot comparing the total flight time metric in a scenario with 15 nodes. (c) A box
plot comparing the AAoI metric in a scenario with 30 nodes. (d) A box plot comparing the total flight
time metric in a scenario with 30 nodes. (e) A box plot comparing the AAoI metric in a scenario with
45 nodes. (f) A box plot comparing the total flight time metric in a scenario with 45 nodes.
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Comparing the results in Figure 8, where the target values are close to the median,
it is evident that as the number of nodes increases, the non-linear growth rate provides
more distinct guidance for the optimization direction, resulting in more reasonable compu-
tational results. Therefore, in this scenario, utilizing the intelligent optimization algorithm
and the direct optimization approach proposed in this study can lead to fresher reconnais-
sance information.

(a) (b)

(c) (d)

(e) (f)

Figure 8. A comparison of results with target values near the median. (a) The planned path of the
direct optimization scheme in the scenario with 15 nodes. (b) The planned path of the total flight time
minimization scheme in the scenario with 15 nodes. (c) The planned path of the direct optimization
scheme in the scenario with 30 nodes. (d) The planned path of the total flight time minimization
scheme in the scenario with 30 nodes. (e) The planned path of the direct optimization scheme in
the scenario with 45 nodes. (f) The planned path of the total flight time minimization scheme in the
scenario with 45 nodes.

5.3. Simulations of VIO + Data Collection and Beacon-Assisted Positioning Integration Mode

For the VIO + data collection and beacon-assisted positioning integration mode, (P3)
has a penalty term added to the fitness in order to enforce waypoint selection constraints
that satisfy the maximum allowable position drift in a soft constraint manner. However,
utilizing the direct optimization scheme and the minimizing total flight time scheme may
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not always successfully plan a safe path that meets the maximum allowable position drift
constraint, as intelligent optimization algorithms themselves are prone to getting trapped
in local optima. Hence, a combined scheme was adopted in simulations, where the fitness
function combined the reconnaissance node AAoI and total flight time information to
achieve a better optimization of reconnaissance information freshness.

Table 1 presents the success rates of intelligent optimization algorithms when employ-
ing three different schemes for (P3). In a scenario with 15 randomly distributed nodes,
the sparse distribution of nodes makes it challenging to meet the maximum allowable
position drift constraint, resulting in instances where all three schemes fail to successfully
plan a path, indicating the possibility of the UAV getting lost due to position drift. Among
the schemes, the direct optimization scheme has the highest failure rate, attributed to the
non-linear urgency of information proposed in this study causing drastic changes in AoI
growth rates, leading to the penalty value of the fitness function becoming ineffective
during the iteration process of the intelligent optimization algorithms.

Table 1. The success rate of the intelligent optimization scheme for a single UAV in the navigation
mode of VIO + data collection and beacon-assisted positioning integration.

Number of Nodes Optimization Scheme Planning Success Rate

15
Minimizing AAoI 20%
Minimizing T-sum 73%
Combined Scheme 67%

30
Minimizing AAoI 53%
Minimizing T-sum 100%
Combined Scheme 100%

45
Minimizing AAoI 27%
Minimizing T-sum 100%
Combined Scheme 100%

The success rate of the minimizing total flight time scheme and the proposed combined
scheme has shown significant improvement compared to the direct optimization scheme.
In 30- and 45-node scenarios, all 30 Monte Carlo simulations resulted in a 100% success rate.
In contrast, the direct optimization scheme still experienced numerous planning failures in
these scenarios.

A further comparison of the numerical results for the combined scheme and the
minimizing total flight time scheme in this scenario, as shown in Figure 9, demonstrates
that the combined scheme exhibits a significant advantage in both the AAoI and total flight
time metrics. This is considered the optimal solution for this scenario.

In the scenario (P2) representing multi-UAV reconnaissance, we conducted numerical
simulations on the randomly distributed scenario with 45 nodes. It is assumed that a total
of seven UAVs are dispatched to collect reconnaissance data from the nodes. Among them,
five UAVs correspond to five different types of ground nodes, denoted by the color sets {c1},
{c2}, {c3}, {c4}, and {c5} in constraint (21), while the other two UAVs correspond to all
types of ground nodes, represented by the color set {c1, c2, c3, c4, c5}. In the multi-UAV re-
connaissance scenario, in addition to the previously mentioned direct optimization scheme
(Minimizing AAoI) and minimizing total flight time scheme (Minimizing T-sum), we also
employed the minimizing maximum flight time scheme, also known as the minimizing
total mission duration scheme, denoted as Minimizing T-max.

Figure 10 presents the timeliness performance of these three schemes for reconnais-
sance information, as shown by the box plots. Although there are certain differences in
performance and stability between the direct optimization scheme and the minimizing max-
imum flight time scheme, both schemes achieve acceptable results in terms of information
timeliness and total mission duration compared to the minimizing total flight time scheme.
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Figure 9. Comparing the results of 30 Monte Carlo simulations between the combined scheme and
the total flight time minimization scheme in the VIO + data collection and beacon-assisted integrated
navigation mode. (a) A box plot comparing the AAoI metric in a scenario with 30 nodes. (b) A box
plot comparing the total flight time metric in a scenario with 30 nodes. (c) A box plot comparing the
AAoI metric in a scenario with 45 nodes. (d) A box plot comparing the total flight time metric in a
scenario with 45 nodes.
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Figure 10. Comparing the results of 30 Monte Carlo simulations for the direct optimization scheme,
minimizing total flight time scheme, and minimizing total mission duration scheme in the VIO + GPS
navigation mode. (a) A box plot comparing the AAoI metric in multi-UAV reconnaissance. (b) A box
plot comparing the total flight time metric in multi-UAV reconnaissance. (c) A box plot comparing
the maximum flight time metric in multi-UAV reconnaissance.
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From the planning results in Figure 11, where the objective values are near the median,
it can be observed that the direct optimization scheme and the minimizing maximum flight
time scheme yield more similar planning outcomes. However, the minimizing total flight
time scheme unevenly distributes the tasks to a small number of UAVs, compromising the
timeliness of the reconnaissance information. Therefore, it is not suitable for this scenario.

(a) (b)

(c)

Figure 11. A comparison of results with target values near the median. The paths of UAVs correspond-
ing to five different types of ground nodes are represented by lines of respective colors. Meanwhile,
the paths of UAVs corresponding to all types of ground nodes are represented by light blue lines.
(a) The planned path of the direct optimization scheme. (b) The planned path of the minimizing total
flight time scheme. (c) The planned path of the minimizing maximum flight time scheme.

Furthermore, comparing the results in Figure 10 with those in Figure 7, it can be
concluded that the use of multiple UAVs effectively reduces the AAoI of the reconnaissance
nodes, thus improving its information freshness. This finding aligns with the expected
conclusion. In this scenario, the direct optimization scheme shows a slight advantage over
the total flight time minimization scheme.

For the integrated VIO + data collection and beacon-assisted localization navigation
mode, the penalty function method is also adopted in (P4) to enforce the constraint on the
maximum drift tolerance in positioning. In Table 2, it can be observed that the direct opti-
mization scheme struggles to achieve effective planning results for this problem. Therefore,
in addition to the three aforementioned schemes, different joint planning schemes are also
compared. Joint scheme 1 involves designing optimization objectives that simultaneously
consider the AAoI and total flight time indicators, joint scheme 2 considers the AAoI and
total mission duration, joint scheme 3 considers the total flight time and total mission
duration, and joint scheme 4 simultaneously considers all three factors. Table 2 displays
the success rates of all planning schemes in this scenario, with the minimizing maximum
flight time scheme, joint scheme 1, and joint scheme 4 showing relatively acceptable success
rates. Through the analysis of (P2), it is evident that the performance of the AAoI for the
minimizing total flight time scheme and joint scheme 3 is unacceptable, and therefore, they
are no longer considered.
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Table 2. The success rate of the intelligent optimization scheme for multiple UAVs in the navigation
mode of VIO + data collection and beacon-assisted positioning integration.

Number of Nodes Optimization Scheme Planning Success Rate

45

Minimizing AAoI 0%
Minimizing T-sum 90%
Minimizing T-max 100%

Joint scheme 1 83%
Joint scheme 2 37%
Joint scheme 3 73%
Joint scheme 4 77%

In this scenario, joint schemes 1 and 4 improve the AAoI indicator to a certain extent
but also carry a certain risk of position drift, which may cause the partial loss of UAVs and
the incomplete execution of reconnaissance missions. The performance of joint scheme 4 is
slightly better than that of joint scheme 1, but the risk is also slightly higher.

Comparing Figures 9 and 12, it can be concluded that assigning multiple UAVs also
improves the overall freshness of reconnaissance information in the integrated VIO + data
collection and beacon-assisted localization navigation mode. However, there is a tradeoff
between risk and performance when selecting a scheme, and a compromise should be
made based on the specific reconnaissance mission.
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Figure 12. The Monte Carlo simulation results for the integrated VIO + data collection and beacon-
assisted localization navigation mode, comparing the minimizing maximum flight time scheme, joint
scheme 1, and joint scheme 4.

6. Conclusions

This study focuses on the characteristics of autonomous UAVs in different naviga-
tion modes and investigates the autonomous mission and joint path planning problems
for single/multiple UAVs. Through the designed optimization scheme, the freshness
of reconnaissance information is effectively enhanced. Extensive numerical simulations
were conducted in MATLAB to evaluate the success rate and effectiveness of the planning
schemes in each scenario, highlighting the selection of the optimal solution and the trade-
off between the success rate and timeliness. In future work, the framework of intelligent
optimization algorithms will be improved, and the algorithmic exploration process will
be further explored to achieve performance improvements. Additionally, the authors
will strive to port the proposed planner from MATLAB to the ROS system and conduct
real-world validation experiments in the future.
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Abbreviations
The following abbreviations are used in this manuscript:

UAV Unmanned aerial vehicle
IMU Inertial measurement unit
SLMM Simultaneous localization and mapping
UWB Ultra-wideband
VIO Visual–inertial odometry
ECTSP Extended colored traveling salesman problem
AoI Age of information
AAoI Average age of information
LoS Line-of-sight
NLoS Non-line-of-sight
DEM Digital elevation model
CTSP Colored traveling salesman problem
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16. Miloradović, B.; Çürüklü, B.; Ekström, M.; Papadopoulos, A.V. GMP: A genetic mission planner for heterogeneous multirobot
system applications. IEEE Trans. Cybern. 2022, 52, 10627–10638. [CrossRef] [PubMed]

17. Hu, H.; Xiong, K.; Qu, G.; Ni, Q.; Fan, P.; Letaief, K.B. AoI-minimal trajectory planning and data collection in UAV-assisted
wireless powered IoT networks. IEEE Internet Things J. 2021, 8, 1211–1223. [CrossRef]

18. Xiong, B.; Zhang, Z.; Jiang, H.; Zhang, J.; Wu, L.; Dang, J. A 3D non-stationary MIMO channel model for reconfigurable intelligent
surface auxiliary UAV-to-ground mmwave communications. IEEE Trans. Wireless Commun. 2022, 21, 5658–5672. [CrossRef]

19. Fu, J.; Sun, G.; Liu, J.; Yao, W.; Wu, L. On hierarchical multi-UAV dubins traveling salesman problem paths in a complex obstacle
environment. IEEE Trans. Cybern. 2023, 54, 123–135. [CrossRef] [PubMed]

20. Miridakis, N.I.; Tsiftsis, T.A.; ; Yang, G. Non-linear age of information: An energy efficient receiver-centric approach. IEEE Wireless
Commun. Lett. 2022, 11, 655–659. [CrossRef]

21. Jiang, H.; Zhang, Z.; Wu, L.; Dang, J. Three-dimensional geometry-based UAV-MIMO channel modeling for A2G communication
environments. IEEE Commun. Lett. 2018, 22, 1438–1441. [CrossRef]

22. Xiong, B.; Zhang, Z.; Ge, Y.; Wang, H.; Jiang, H.; Wu, L.; Zhang, Z. Channel modeling for heterogeneous vehicular ISAC
system with shared clusters. In Proceedings of the IEEE 98th Vehicular Technology Conference (VTC2023-Fall), Hong Kong,
10–13 October 2023; pp. 1–6. [CrossRef]

23. Liu, T.; Jiang, H.; Chen, Z.; Zhang, H.; Yang, X.; Shu, F. Nonlinear channel estimation and signal detection for quantized OFDM
system. IEEE Commun. Lett. 2023, 27, 2772–2776. [CrossRef]

24. Jiang, H.; Zhang, Z.; Wang, C.X.; Zhang, J.; Dang, J.; Wu, L.; Zhang, H. A novel 3D UAV channel model for A2G communication
environments using AoD and AoA estimation algorithms. IEEE Trans. Commun. 2020, 68, 7232–7246. [CrossRef]

25. Gong, Z.; Wu, L.; Zhang, Z.; Dang, J.; Zhu, B.; Jiang, H.; Li, G.Y. Joint TOA and DOA estimation with CFO compensation using
large-scale array. IEEE Trans. Signal Process. 2021, 69, 4204–4218. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JIOT.2023.3325945
http://dx.doi.org/10.1109/TCYB.2021.3070913
http://www.ncbi.nlm.nih.gov/pubmed/33983890
http://dx.doi.org/10.1109/JIOT.2020.3012835
http://dx.doi.org/10.1109/TWC.2022.3142437
http://dx.doi.org/10.1109/TCYB.2023.3265926
http://www.ncbi.nlm.nih.gov/pubmed/37099468
http://dx.doi.org/10.1109/LWC.2022.3140337
http://dx.doi.org/10.1109/LCOMM.2018.2828110
http://dx.doi.org/10.1109/VTC2023-Fall60731.2023.10333720
http://dx.doi.org/10.1109/LCOMM.2023.3302311
http://dx.doi.org/10.1109/TCOMM.2020.3011716
http://dx.doi.org/10.1109/TSP.2021.3095722

	Introduction
	System Model
	Age of Reconnaissance Information and Information Urgency
	Reconnaissance Data Collection Model
	Integrated Data Collection with Beacon-Assisted Localization
	Safe Flight of Autonomous Reconnaissance UAVs

	Joint Planning Problem Formulation
	Safety Flight Topological Road Map
	Joint Optimization of Reconnaissance Task Assignment and Node Access Sequence
	Optimization Problem Formulation for Different Navigation Modes

	Algorithm Design
	Calculation of Time Cost Matrix Based on A* Algorithm
	Design of Heuristic Algorithm for Joint Optimization

	Numerical Results
	Parameter Configuration and Generation of Safe Flight Topological Roadmap
	Simulations of VIO + GPS Navigation Mode
	Simulations of VIO + Data Collection and Beacon-Assisted Positioning Integration Mode

	Conclusions
	References

