i:;l?é electronics

Article

Autonomous Driving System Architecture with Integrated ROS2
and Adaptive AUTOSAR

Dongwon Hong and Changjoo Moon *

check for
updates

Citation: Hong, D.; Moon, C.
Autonomous Driving System
Architecture with Integrated ROS2
and Adaptive AUTOSAR. Electronics
2024, 13,1303. https://doi.org/
10.3390/ electronics13071303

Academic Editors: Felipe Jiménez and

Arman Sargolzaei

Received: 7 February 2024
Revised: 14 March 2024
Accepted: 21 March 2024
Published: 30 March 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Smart Vehicle Engineering, Konkuk University, Seoul 05029, Republic of Korea;
dks01972@konkuk.ac.kr
* Correspondence: cjmoon@konkuk.ac.kr

Abstract: In the automotive industry, research is now underway to apply Adaptive Automotive
Open System Architecture (AUTOSAR) to the development of next-generation mobility, such as
autonomous driving and connected cars. However, research on autonomous driving is being predom-
inantly conducted on the robotics platform ROS2 (Robot Operating System 2). This demonstrates a
considerable distance between autonomous driving research and its application in actual vehicles.
To bridge this gap, interoperability that leverages the strengths of the Adaptive AUTOSAR and
ROS2 platforms and compensates for their weaknesses is required. Therefore, this study proposes an
architecture for interoperability between the two platforms, named Autonomous Driving System
with Integrated ROS2 and Adaptive AUTOSAR (ASIRA). The proposed architecture enables commu-
nication between each of the two platforms through the ROS2 SOME/IP Bridge and allows for the
necessary data exchange. It validates them in autonomous driving scenarios and goes beyond vehicle
development, testing, and prototyping to exploit the advantages of each platform. Additionally, the
simulation of autonomous vehicles within the ASIRA architecture is demonstrated by interoperating
the ROS2 representative open-source autonomous driving project, Autoware, with the Adaptive
AUTOSAR simulator. This study contributes to the assimilation of ROS2 into the automotive industry
and its application in real vehicles by linking ROS2 and Adaptive AUTOSAR.

Keywords: autonomous vehicles; Adaptive AUTOSAR; ROS2; interoperability; SOME/IP

1. Introduction

As the automotive industry becomes increasingly sophisticated, the need for a greater
number of sensors and electronic devices has led to increased complexity in the internal
configurations of vehicles [1]. At the same time, vehicles must ensure safety, stability,
security, as well as the real-time transmission and reception of data. Not only has the
number of Electronic Control Units (ECUs) within vehicles grown, but the complexity of
the required software has also exponentially increased. Modern vehicle architectures are
challenging to manage and may connect over 100 ECUs [2]. This signifies the need for a
transformation in the traditional electrical and electronic (E/E) architecture of vehicles.

In response to these advancements, the automotive industry launched “Automotive
Open System Architecture (AUTOSAR)”, which is an international consortium consisting
of automotive OEMs, suppliers, and other industry stakeholders [3]. Since 2003, AUTOSAR
has introduced the Classic Platform, a solution for embedded systems with limited re-
sources that offers a high level of safety and meets the Automotive Safety Integrity Level
(ASIL-D). AUTOSAR is based on signal-based communication, such as Controller Area Net-
work (CAN) or FlexRay. However, as highly advanced technologies such as autonomous
driving and connected cars are developed, and high-performance sensors that continuously
produce large volumes of data are incorporated into vehicles, traditional communications
such as CAN are beginning to demonstrate bandwidth problems. Furthermore, the flexibil-
ity of architectures in making sensor data available to various software applications has

Electronics 2024, 13, 1303. https://doi.org/10.3390/ electronics13071303

https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13071303
https://doi.org/10.3390/electronics13071303
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-2200-0020
https://doi.org/10.3390/electronics13071303
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13071303?type=check_update&version=2

Electronics 2024, 13, 1303

2 of 20

become increasingly critical, and high-performance processors for the smooth acquisition
and processing of sensor data have become more important.

To meet these technological demands, AUTOSAR introduced Adaptive AUTOSAR
in 2017, which is based on POSIX OS [4]. Adaptive AUTOSAR supports the high-bandwidth
Ethernet-based Scalable Service-Oriented Middleware on Ethernet (SOME)/IP protocol
and enables a shift from traditional signal-based data communication to service-based
communication. Additionally, the support of High-Performance Computing has made it
easier to use the computing performance necessary for autonomous driving and to facilitate
the integration of various high-performance sensors and algorithms. This advancement is
aimed at the development of next-generation mobility, such as autonomous driving. The
automotive industry alongside AUTOSAR has already achieved substantial progress in
this direction [5].

In contrast to the efforts within the automotive industry, most research and develop-
ment for autonomous driving has been conducted on the robotics platform known as Robot
Operating System (ROS), which is managed and developed by Open Robotics [6]. Initially
designed as middleware for research purposes within universities and research institutions,
ROS was made available as an open-source project, which allowed for a large number of
users to develop and distribute a wide variety of packages and libraries. This openness
remarkably accelerated the development speed by making available numerous drivers that
supported the sensors necessary for autonomous driving, as well as sensor processing algo-
rithms. Moreover, ROS supported powerful simulation environments such as Gazebo [7]
and visualization tools such as Rviz [8], which added to the convenience of development.
However, ROS lacked real-time control capabilities and required high computing power.
It also used a proprietary communication method, TCPROS [9], which relied on a single
point of failure, the ROS Master [10]. TCPROS was unsuitable for industrial use because of
the severe security risks associated with exposing the Master IP and Port. To address these
issues, a second version, ROS2 [11], was developed.

ROS2 addresses the limitations associated with the research-focused nature of ROS1
by incorporating the Data Distribution Service (DDS) [12], which is a standard used in the
military and aviation industries for Service-Oriented Communication (SOC). Additionally,
the introduction of DDS Real-Time Publish Subscribe (DDS-RTPS) enables real-time control
under the assumption of well-structured code. These innovations demonstrate the potential
of ROS1 to move beyond its limitations and progress industrially. For instance, Apex
successfully developed a high-safety solution that met the requirements of the ASIL-D
level of the functional safety standard for electrical and/or electronic systems (ISO 26262)
based on ROS2 [13,14]. This trend has led various ROS1 autonomous driving projects to
transition to ROS2; Autoware [15] is a prominent example of this trend. Autoware is an
open-source project that encompasses essential autonomous driving functionalities such
as perception, decision making, and control [16]. It is currently being tested on various
testbeds, including autonomous buses, shuttles, and Autonomous Valet Parking, with
ongoing development toward the activation and commercialization of autonomous driving
technologies. However, for consumers to use autonomous vehicles in daily life, stringent
conditions must be met. Almost all vehicle companies currently adhere to the AUTOSAR
standard. This indicates that there is a notable gap between the research and development
of autonomous driving technologies and their application in actual vehicles. To leverage the
strengths of each platform and mitigate its weaknesses, interoperability between Adaptive
AUTOSAR and ROS2 platforms must be ensured in a form that can be realistically applied
in the automotive industry.

Two data communication methods exist to ensure such interoperability: DDS and
SOME/IP. While Adaptive AUTOSAR is being actively researched and applied, it can lead
to unpredictable behavior due to non-determinism issues [17]. Therefore, for stability in the
actual vehicle development and production stages, a combined architecture with Classic
AUTOSAR, which can achieve deterministic execution, is utilized. Classic AUTOSAR
supports SOME/IP but not DDS. Additionally, from a cost perspective, the semiconductor

Electronics 2024, 13, 1303

30f20

chips used in Classic AUTOSAR possess very limited hardware resources. DDS covers a
significantly broader range of protocols and, due to its various Quality of Service (QoS) fea-
tures, demands much more memory than SOME/IP. Consequently, compared to SOME/IP,
DDS relies heavily on the hardware resources of the vehicle’s network infrastructure, and
implementing and using DDS on microcontrollers is highly limited in functional aspects.

For these reasons, we propose a method for integrating Adaptive AUTOSAR and
ROS2 via the Ethernet-based SOME/IP protocol to ensure safety while maintaining a
flexible environment for the development and testing of autonomous vehicles. Adaptive
AUTOSAR, which has long been a standard architecture for vehicle companies and is a
validated platform, focuses on high reliability and safety for automotive systems. However,
ROS2, which is widely used in the field of robotics, lacks safety and real-time control but
offers substantial advantages in terms of flexible communication, development convenience
through an active open-source community, the development of sensor drivers, and more.
In addition, ROS2 has notable strengths in powerful visualization, development tools,
and simulation tools. The integration of Adaptive AUTOSAR and ROS2 leverages the
safety of the automotive field and the flexibility of robotics to simplify and accelerate the
development and testing of autonomous vehicles. In addition, interoperability via the
SOME/IP protocol enables faster adoption in the current automotive industry compared
to DDS. To integrate these two distinct platforms, this study proposes the design and
implementation of an interoperable architecture named Autonomous Driving System
with Integrated ROS2 and Adaptive AUTOSAR (ASIRA). Using ASIRA within a Linux
environment enables the exchange of data between Autoware, which is ROS2’s autonomous
driving project, and the Adaptive AUTOSAR Platform, which facilitates the operation of
autonomous vehicles.

The structure of this paper is as follows: Section 2 introduces related research and
background knowledge. Section 3 describes the system architecture and components and
the method of system implementation. Section 4 validates the developed system through
the simulation within scenarios and verifies the capability of the two platforms to exchange
data and achieve autonomous driving. Finally, Section 5 concludes this paper and presents
future research directions.

2. Background and Related Works

Section 2 provides background information on the platforms and technologies used in
this thesis and other related works. Section 2.1 describes Adaptive AUTOSAR. Section 2.2
describes ROS and ROS2. Section 2.3 describes related works and discusses their advantages
and limitations.

2.1. Adaptive AUTOSAR

Released in 2006, AUTOSAR 2.0 has since evolved to AUTOSAR 4.3 (2017) and is
widely used in a variety of vehicles. However, the recent rise of electric vehicles and
autonomous driving has placed new demands on the existing AUTOSAR platform, such as
high network bandwidth and high computing power. To meet these demands, researchers
have attempted to install Linux in vehicles. A Linux environment compensates for some of
the disadvantages of the existing AUTOSAR platform but lacks essential software that is
used in vehicle development environments, such as CAN communication and diagnostic
functions. Against this backdrop, the AUTOSAR consortium has labeled the original
AUTOSAR platform as the Classic Platform and has introduced the POSIX OS-based
Adaptive AUTOSAR Platform.

The overall architectural logical view of Adaptive AUTOSAR is shown on the left
side of Figure 1 [18]. Adaptive Applications (AAs) are located in the top layer. AAs run
on AUTOSAR Runtime for Adaptive Applications (ARAs). ARAs consist of Platform
Foundation Functional Clusters (FCs), and they also include Adaptive Platform Services
and Standard Application/Interfaces, although they are not shown in the figure. FCs

Electronics 2024, 13, 1303

4 0f 20

provide the fundamental functions of Adaptive AUTOSAR. Additionally, as the AP release
continues to evolve, new FCs are being added.

Adaptive AUTOSAR Platform
Adaptive Applications (AA)

I User Code |
Adaptive Application Adaptive Application Adaptive Application Adaptive Application
AUTOSAR Runtime for Adaptive Applications (ARA) ara API
Platform Foundation Functional Clusters (FCs)
Intrusion
Communication Execution Diagnostic .
M e Dowﬁ:ﬂnnagseyrmm m FunCtlonaI CIUSter
ara:com ara::exec
CEn — | ara::com |
atform Heal
iz -
L]
- L]
Log and Trace Core o °
ara:.core - - | |

POSI)§ PSE51 / C++ STL
Operating System Interface | POSIX OS ‘

Adaptive Application

Figure 1. Architecture (left) and operating mechanism (right) of Adaptive AUTOSAR Platform.

The operating mechanism of the Adaptive AUTOSAR Platform is depicted on the
right side of Figure 1. It includes an FC that uses the POSIX-based OS API, within which
the AUTOSAR Runtime exists. Using this API, users can develop and use the necessary
applications. Similarly, in this study, applications using ARAs are developed to implement
integration with ROS2. A considerable difference between Adaptive AUTOSAR and the
traditional Classic Platform is that it does not rely on traditional signal-oriented communi-
cation but is based on SOC. By employing SOME/IP implemented within ara::com based
on SOC, applications can be developed that allow for dynamic connections between servers
and clients.

2.2. ROS
221.ROS1

Since the publication of a paper on ROS open-source middleware in 2009 [19], ROS
middleware has been widely used in robotics and autonomous system development by
universities, research organizations, and individuals. In particular, the community is quite
active, which has brought about the release of numerous libraries and packages for various
types of robots as open-source (for example, Point Cloud Library (PCL) [20]). Moreover,
drivers for sensors that are produced by various companies are also available, and this
has contributed to the rapid growth of the ROS ecosystem. However, ROS1, which was
developed for the purpose of research, encountered various limitations in commercial use.
For instance, the development of NASA’s Robonaut was based on ROS1, but because of
the need for real-time control, ROS1 was modified during development. In addition to
real-time control, there were several shortcomings from an industrial perspective, including
OS limitations, single points of failure, and security issues.

2.2.2. ROS2

In 2017, Open Robotics distributed the first version of ROS2 to supplement the defi-
ciencies of ROS1 and to enable its use in commercial applications. One pivotal change that
appeared in ROS2 was the decision not to use TCPROS, which was the norm in ROS1, but
instead to adopt DDS as the fundamental middleware for internode communication. This
service is designated as an international standard by the Object Management Group [21],
and it allows the integration of a security specification known as DDS-Security into ROS2.
This enhancement addressed the security vulnerabilities in ROS1. Additionally, the capabil-
ity of DDS to use RTPS meant that it could also fulfill real-time control requirements.

Electronics 2024, 13, 1303

50f 20

In ROS2, a Robot Client Library (RCL) is available. It supports various programming
languages under names such as rclcpp, rclpy, and rcljava. This substantially enhances
development flexibility relative to ROS1 and allows for selecting an optimized language
for specific algorithms.

2.3. Related Works

Recent studies have been conducted on the interoperability between Adaptive AU-
TOSAR and ROS2, and on the application of ROS2 in vehicles. Jacqueline Henle compared
ROS2 and Adaptive AUTOSAR to evaluate their suitability for future vehicle architec-
tures [22]. Adaptive AUTOSAR, which applies Service-Oriented Architecture and Ethernet,
provides wider bandwidth, and this makes it suitable for the architecture of future vehicles
such as autonomous cars. However, it also has several disadvantages. In terms of ara::iam
security, platform health checks, persistence of information through ara::per, and vehicle
diagnostic functions, Adaptive AUTOSAR is superior to ROS2. However, in terms of main-
taining a continuous integration and development environment, loose coupling between
nodes, development speed, and the provision of powerful debugging and visualization
tools, ROS2 was evaluated as being better. However, the comparison did not consider the
interoperability between the two platforms. This study proposes the design of an archi-
tecture that compensates for the disadvantages of both platforms while enhancing their
advantages to enable interaction between them, and this is validated through autonomous
driving simulation.

Arestova presented a new architecture that met the service-oriented and real-time
communication needs of the automotive industry by integrating AUTOSAR Adaptive,
Open Platform Communications Unified Architecture (OPC UA), and Time-Sensitive Net-
working (TSN) technologies [23]. Adaptive AUTOSAR supports dynamic deployment and
high-performance processing, OPC UA enables flexible SOC between devices, and TSN
ensures real-time network communication. This research investigated how a combination
of these three technologies could provide high-speed deterministic communication, par-
ticularly regarding how OPC UA’s Client-Server and PubSub models could be applied
to the AUTOSAR Adaptive SOC. In addition, the effectiveness of this architecture was
verified through the implementation of bindings for real-time systems and performance
evaluation. However, the researchers performed only the implementation and verification
of the communication itself and did not conduct testing in actual operational environments.
In this study, an autonomous driving scenario was used to verify the interoperability of the
two platforms, and the developed system was validated through simulation.

3. System Architecture and Components

Section 3 describes the structure and methods of implementation for the ASIRA
architecture developed in this study. Section 3.1 explains the overall architecture, the
roles of each component, and the flow of data. Section 3.2 discusses the methods used to
implement the architecture.

3.1. System Architecture

The system architecture of this study is divided into two main parts: the Adaptive
AUTOSAR Platform and the ROS2 Autonomous Driving Platform, as shown in Figure 2.

Electronics 2024, 13, 1303 6 of 20

Adaptive AUTOSAR ROS2 Autonomous Driving Platform
Platform SOME/IP
Adaptive Application ROS2 SOME/IP Bridge
Service Discovery
Server
—) RPC Packet ROS2
Packet Converter Topic
Receiver Byte Data PUinSher
P — & &
Sender lt Subscriber
Topic
=l

AUTOSAR Runtime for Autoware

Adaptive Applications (ARA) m
[Hardware (Ubuntu 22.04)

Figure 2. ASIRA system’s architecture.

3.1.1. Adaptive AUTOSAR Platform

The Adaptive AUTOSAR Platform used open-source software developed in com-
pliance with the AUTOSAR standard to simulate the Adaptive AUTOSAR Runtime on
Linux [24]. It was implemented based on R20-11 and R22-11. Not all the components of
ARA were implemented; however, as explained in the figure, ara::com, ara::core, ara::diag,
ara:exec, ara::log, and ara:phm were implemented in accordance with the AUTOSAR
standard. AAs can develop the functionalities they need using ARAs, which complies with
the AUTOSAR standard. In this study, we developed an AA based on ARAs that could
exchange the necessary data packets with the ROS2 Autonomous Driving Platform by con-
structing a SOME/IP Service Discovery (SD) Server and an RPC Publish/Subscribe Server.

3.1.2. ROS2 Autonomous Driving Platform

The ROS2 Autonomous Driving Platform section was implemented using Autoware,
which is an open-source autonomous driving software platform based on ROS2, and
an ROS2 SOME/IP Bridge proposed in this study. Autoware includes all the necessary
components for operating autonomous vehicles, such as sensing, localization, perception,
planning, and control. It also provides its own simulation environment. In this study, the
Autoware’s simulation environment was used to implement and verify the integration
between the Adaptive AUTOSAR Platform and ROS2.

The ROS2 SOME/IP Bridge consists of three main parts. The first part contains
the Receiver and Sender, which are responsible for receiving and transmitting RPC Re-
quest/Response packets for integration with the Adaptive AUTOSAR Platform. The
second part involves converting the received packets into “Data Types” that can be used
in ROS2, transforming them into the required Topic Name and Message Type, and gen-
erating messages, or, conversely, converting them into byte arrays that can be packed
into RPC Request/Response packets. The last part publishes the converted messages to
the ROS2 Platform via DDS middleware or receiving topics that need to be transmitted
from Autoware to the Adaptive AUTOSAR Platform. The nodes existing within the ROS2
SOME/IP Bridge are all structured to fulfill the functions of these three parts, and they can
be modified as required according to the format or type of data.

3.1.3. Data Flow

Figure 3 presents the data flow diagram for the entire system. This represents the
implementation within the ROS2 SOME/IP Bridge to exchange Kinematic State and control

Electronics 2024, 13, 1303

7 of 20

commands as part of the actual implementation and verification of the ASIRA system’s
architecture. The execution sequence is indicated by the numbers.

Adaptive AUTOSAR Platform ROS2 SOME/IP Bridge Autoware Simulator
Service Discovery Server m _ Kinematic State Subscriber Planning
Multicast IP ; 239.0.0.1 e | L2] ¥
Port : 5555 Get RPC Server Information
B Trajectory
RPC Server IP Address
RPC Server Port /‘ Connect to RPC Server autoware_auto_planning_msgs/Trajectory
Receive Response Payload Control
RPC Publish Server y /! [6]
o e !
RPC Handler Called esponse Paylo Publish y Data — Subscribe Odometry Data
Pose (xy.2) I& (]
' P Orientation (uy.z) Vehicle Kinematic *
State Topic
Send Response with Atn‘ngeu‘?;rviﬁmy ‘ Create Control Command ‘
Dummy O y Data Control Command Publisher v
Get RPC Server Information /" Publish Control Command |
RPC Subscribe Server /
I:I—‘ pic Publist
RPC Handler Called eque: Connect to RPC Server Vehicle Control Visualization Node
* [ictermann Latera B ye, Command Topic
C d
omman Subscribe Command Topic
Obtaining Control Data Longitudinal
Command 19}
» Send RPC Request

Figure 3. Data flow.

1. The SD Server opens a server with the multicast IP and Port parsed from ARXML,
and the endpoint information of the RPC Servers. The Kinematic State Subscriber and
Control Command Publisher nodes within the ROS2 SOME/IP Bridge join the multicast
group and send a findService packet. The SD Server checks the Service ID information in
the packet and sends the corresponding RPC endpoint information to the Bridge Nodes.

2. From the RPC Endpoint packet received from the SD Server, each packet obtains
the respective RPC server endpoint information. The Kinematic State Subscriber acquires
the Endpoint of the RPC Publish Server, whereas the Control Command Publisher obtains
the Endpoint of the RPC Subscriber Server.

3. Bridge Nodes attempt to connect to the RPC Server using the acquired endpoint
information. After the connection is established, they send a request.

4. When an RPC Request is received from the Kinematic State Subscriber, the Handler
of the RPC Publish Server is called. The Handler generates Dummy Vehicle Odometry Data
for system verification and sends it back to the Kinematic State Subscriber in the Response
Payload.

5. Upon receiving the Response Payload, the Kinematic State Subscriber analyzes the
packet to obtain information on Pose, Orientation, Linear Velocity, and Angular Velocity.

6. This information is then formatted according to the nav_msgs/Odometry Message
used in ROS2 and published on the ROS2 Platform. This includes the vehicle’s position,
direction, and speed.

7. The ROS2 Autoware platform subscribes to the Odometry Topic. Subsequently,
it acquires Trajectory information from the Planning Node and sends it to the Control
Node. The Control Node uses this information to generate a Vehicle Control Command
and publishes the Topic.

8. The Control Command Publisher Node subscribes to the Vehicle Control Command
Topic and converts it into a byte array according to the RPC Request Payload format to
create a packet.

9. It sends a request to the RPC Subscribe Server.

10. When the RPC Subscribe Server receives the request, it extracts the Vehicle Con-
trol Command from the Payload, which includes Lateral and Longitudinal Commands
with details such as steering angle, steering rotation rate, speed, acceleration, and jerk
values. This information is then converted into a format that is usable by the Adaptive
AUTOSAR Platform.

Electronics 2024, 13, 1303

8 of 20

This is how the entire system flow unfolds. The data sent from the Adaptive AUTOSAR
Platform are used by the ROS2 Autonomous Driving Platform via the Bridge Node. The
resulting values from the processing of those data are then passed back to the Adaptive
AUTOSAR Platform via the Bridge for use.

3.2. System Implementation

The system implementation consists of the ARXML creation of the Adaptive
AUTOSAR Platform, the Adaptive Application implementation, and the ROS2
SOME/IP implementation.

3.2.1. Writing ARXML for the Adaptive AUTOSAR Platform

The typical development process for the Adaptive AUTOSAR Platform is to create an
ARXML Manifest file and design an AUTOSAR modeling and E/E architecture based on
the Manifest file. Typically, this is completed with a toolchain from companies that offer
different AUTOSAR tools. In this study, we do not use an AUTOSAR solution from any
specific company, and we use ARXML to define the various arguments needed to run the
application. The specification for the application to be executed is written and passed as
an argument through the ARXML Manifest file, and the argument is then used to execute
the Adaptive AUTOSAR Platform. First, Execution Management via ara::exec is executed,
and then the AA, which is responsible for interfacing with Execution Management ROS2,
is executed.

The AA reads an ARXML Manifest file through the ARXML Reader. The file contains
the parameters for setting up the SOME/IP network. The Manifest file used in this study
follows the standard R20-11 Specification of Manifest for Adaptive Platform [25], and its
main properties are shown in Table 1.

Table 1. Communication cluster arguments.

Component Name Description

A communication cluster is the main element that
describes the topological connection of ECUs
connected by a communication medium. Nodes
within a cluster share the same communication
protocol. A communication cluster has one or more
physical channels.

COMMUNICATION CLUSTER

Ethernet/physical channels represent VLANs or

ETHERNET-PHYSICAL-CHANNEL
untagged channels.

A network endpoint defines an IP address or MAC
multicast address, for example.

PROVIDED-SOMEIP-SERVICE- The existence and configuration of service instances
INSTANCE implemented on top of SOME/IP.

NETWORK-ENDPOINTS

For each event group, configure the communication
settings for the service instance.

SD-SERVER-CONFIG Configure settings related to the SD Server.

PROVIDED-EVENT-GROUPS

Configure settings related to the server’s OFFER

INITIAL-OFFER-BEHAVIOR BEHAVIOR and the client’s FIND BEHAVIOR.

Sets the minimum time (in seconds) to randomly
delay the first OFFER BEHAVIOR. This applies to
the SD Server’s Initial Offer or the SD Client’s
find message.

INITIAL-DELAY-MIN-VALUE

Sets the maximum time (in seconds) to randomly
delay the first OFFER BEHAVIOR. This applies to
the SD Server’s Initial Offer or the SD Client’s
find message.

INITTAL-DELAY-MAX-VALUE

Electronics 2024, 13, 1303

9 of 20

Table 1 describes the main components of implementation of an Adaptive Application
(AA). The AA that is used to integrate ROS2 has three main components.

The first is the communication cluster component. In the cluster configuration, we
set up two Endpoints (EPs), which are ServiceDiscoveryEP and RPCSubscribeServerEP.
ServiceDiscoveryEP is the endpoint information for SD, and RPCSubscribeServerEP is the
endpoint information for RPC communication after a connection is configured through SD.

The second is the Ethernet Communication Connector. It defines the properties of the
EPs, which are the components of the communication cluster mentioned above and is used
in this study by specifying only the port number.

Finally, we configure the Provided SOME/IP Service Instance. This is used by the
AA to configure and set up the SOME/IP SD Server for mutual discovery with the ROS2
Bridge. One SD Server is running, and we specify the IP and Port in the appropriate band to
enable Multicast IP. We then apply a maximum /minimum latency time for the SD Server’s
Initial Offer.

3.2.2. Implementation of Adaptive Applications on an Adaptive AUTOSAR Platform

Execution management starts the AA on a new thread. On the first run, the AA
imports the ARXML Manifest file and parses the parameters to set up the SOME/IP SD
Server and RPC server. It creates the SD Server through the SOME/IP inside ara::com and
waits while it is connected with the network group having the multicast group IP and
address. At this time, it enters the waiting state before sending the first message based
on the Initial Delay, as configured above. Then, the Consumer (ROS2 SOME/IP Bridge
in this case) configures a packet for the desired service and delivers it to the multicast
group through the findService message. At this time, the SD Server checks the Service ID
information in the packet, and if it matches the Service ID of the server, it sends a service
offer message with endpoint information to the multicast group. This process is called SD
and allows the Adaptive AUTOSAR Platform and ROS2 SOME/IP Bridge to find each
other and to obtain endpoint information from the consumer side to request a connection.

RPC Servers are created from the endpoint information parsed from the ARXML
Manifest file. We used the RPCs supported by the ara::com internal SOME/IP network
binding. We created a total of two RPC servers. The roles of the created RPC servers are
as follows.

RPC Publish Server: When a request from the ROS2 Bridge comes in, the Adaptive
AUTOSAR Platform sends the Vehicle’s Odometry Data to the ROS2 Bridge in an RPC
Response packet.

RPC Subscribe Server: When a request comes from the ROS2 Bridge, the RPC Subscribe
Server analyzes the request packet to obtain the command information for the vehicle and
makes the information available to the Adaptive AUTOSAR Platform.

We have two RPC servers and separate connections to the ROS2 Bridge because each
data transmission cycle is different. If we have two RPC servers, each server can send and
receive data independently of the other. If there is a delay in sending a request to the RPC
server, the response will also be delayed, which can be fatal for a system that sends and
receives real-time data.

After we created the RPC server, we created an RPC Handler for each server and bound
each Handler to the RPC Server. The binding process involves registering the Service ID and
Method ID with the RPC server. Each Handler is responsible for checking received packets,
analyzing the payload of the packet, and either consuming it or sending an appropriate
response. The Handlers connected to the two RPC servers play the following roles.

RPCKinematicStateHandler: This Handler is associated with the RPC Publish Server.
When an RPC request comes from the ROS2 SOME/IP Bridge, the RPCKinematicStateHan-
dler is called. This is the Handler that sends the Vehicle’s Odometry Information to the
ROS2 Autoware. It generates packets that contain Dummy Vehicle Odometry Information
generated during the simulation and sends them to the RPC Response. The data to be
transmitted are shown in Table 2.

Electronics 2024, 13, 1303 10 of 20

Table 2. Data Component.

Component Name Description

Contains the current location of the vehicle. Sent in the UTM

ition_x, y, z . .
postiion_xy coordinate system used by the Autoware Simulator.

Information indicating the direction of the vehicle. Represented

orientation_x, y, z, w .
as a quaternion.

Information about the vehicle’s Linear Velocity along the X, Y,

linearVelocity_x, y, z and 7 axes.

Information about the vehicle’s Angular Velocity along the X, Y,

angularVelocity_x, y, z and 7 axes.

RPCVehicleCommandHandler: This Handler is associated with the RPC Subscribe
Server. When an RPC request comes from the ROS2 SOME/IP Bridge, RPCVehicleCom-
mandHandler is called. This Handler processes the Vehicle Odometry Information that is
sent by the RPCKinematicStateHandler in the ROS2 Autoware, and it receives a packet
containing a command to follow the vehicle’s trajectory as a request. It extracts the infor-
mation from the request packet to be used by the Adaptive AUTOSAR Platform. The data
received are shown in Table 3.

Table 3. Vehicle Control Command Data Component.

Component Name Description

Represents the steering angle, which is the angle between the

steering_tire_angle front wheels of the vehicle and the vehicle body.

steering_tire_rotation_rate Rotational speed of the steering wheel.
acceleration Acceleration of the vehicle.
jerk Rate of change in the vehicle’s acceleration.

3.2.3. Implementation of ROS2 SOME/IP Bridge

After it receives the packet, ROS2 SOME/IP Bridge extracts the endpoint information
from the packet for the server to which the user wants to connect to. The endpoint
information contains the IP address and port information for the server, which constitutes a
client socket for SOME/IP RPC. The ROS2 SOME/IP Bridge contains two types of sockets.

Figure 4 shows the components of a multicast data packet that the ROS2 SOME/IP
Bridge receives to locate an SD Server and follows the R20-11 release AUTOSAR stan-
dard [26]. Among the components of this packet, the data that are primarily used by the
ROS SOME/IP Bridge are shown in Table 4.

Table 4. SOME/IP Service Discovery Packet components.

Type SD Type

Service ID Service Unique ID in vehicle

Instance ID Instance ID under service

IPv4/6 Address Endpoint IP Address of SOME/IP Server
L4-Proto Transport Layer Protocol

Port Number Endpoint Port of SOME/IP Server

Electronics 2024, 13, 1303

11 of 20

SOMEI/IP Service Discovery Packet

[ol+T2]sf4]s[ef7[8ofwo]r]r]rs[ra]rs]r6]r7[r8]19]20 21 22 28 24 25]26]or[28]20]00]51]
Flags [8 bit] Reserved [24 bit]
Length of Entries Array in Bytes [32 bit]
Type Index 15t options Index 24 optins | # of opt1 | # of opt2
Service ID Instance ID
Major Version TTL
Minor Version
Type Index 1st options Index 2nd optins | # of opt1 | # of opt2
Service ID Instance ID
Major Version TTL

Minor Version

Length of Entries Array in Bytes [32 bit]
Length Type Reserved
IPv4-Address
Reserved L4-Proto Port Number

Figure 4. SOME/IP Service Discovery Packet.

After receiving the packet, the ROS2 SOME/IP Bridge extracts the endpoint informa-
tion from the packet for the server to which the user wants to connect to. The endpoint
information contains the IP address and port information for the server, which constitutes a
client socket for SOME/IP RPC. The ROS2 SOME/IP Bridge contains two types of sockets.

KinematicStateSubscriber: Continuously sends an RPC Request to the RPC Publish
Server of the Adaptive AUTOSAR Platform to request the Kinematic State. The Adaptive
AUTOSAR Platform receives the request and sends information indicating the current
odometry of the vehicle in the response. The Bridge analyzes the Response packet, ex-
tracts the required information, and enters the data according to the nav_msgs/Odometry
Message type of the ROS2. The nav_msgs/Odometry message is as shown in Table 5.

Table 5. Odometry Message components.

Topic Type Description

Represents the current position and
Orientation (Pose) of the vehicle. A Pose
consists of a position (X, Y, Z) and a
direction (quaternion).

geometry_msgs/PoseWithCovariance pose

Fields representing the Linear and Angular

Velocities of the vehicle, including the speed of
geometry_msgs/TwistWithCovariance twist travel and rotation. Linear and Angular

Velocities are organized as

three-dimensional vectors.

Electronics 2024, 13, 1303

12 of 20

We populate the Odometry Message with the data extracted from the packet and
publish it on the ROS2 Platform to be used by Autoware.

ControlCommandPublisher: Subscribe to the Vehicle Control Command Topic pub-
lished by Autoware based on the ROS2 Platform. It has a steering wheel and a speed profile
that allows the vehicle to follow the trajectory generated by the Planning algorithm in
the autonomous driving platform. Data are extracted from this Topic and sent in an RPC
Request packet to the RPC Subscribe Server of the Adaptive AUTOSAR Platform. The
Vehicle Control Command Topic is structured as shown in Table 6.

Table 6. Vehicle Control Command Topic components.

Topic Name Description

Represents the vehicle’s lateral control commands based on
AckermannLateral Command the Ackermann drive mechanism. This includes commands
related to the steering angle of the vehicle.

Represents commands for the longitudinal control of the
LongitudinalCommand vehicle. This includes commands related to vehicle speed,
acceleration, and braking.

Based on the data extracted from the Topic, ControlCommandPublisher constructs a
packet to be sent to the Adaptive AUTOSAR Platform. The data content of the Ackerman-
nControlCommand Topic is then sent as a payload in an RPC Request to make the vehicle
control information available to the Adaptive AUTOSAR Platform.

4. System Validation

Section 4 describes the procedure for validating the ASIRA architecture built in this
paper. Section 4.1 describes the configuration of the environment to verify the system.
Section 4.2 describes the verification scenario and simulation method. In Section 4.3, we
show that the ASIRA architecture built in this study can be interoperable based on the
actual simulation results.

4.1. System Verification Environment

To verify the system that was implemented in this study, we created a Point Cloud
Map and a Vector Map for use on the ROS2 Autonomous Driving Platform. The red
square in Figure 5 shows the area where the LiDAR sensor was used to collect data as the
robotic platform moved to collect the data shown in Figure 6. While it collected 16-channel
3D LiDAR data, the robot constructed a Point Cloud Map by performing gicp/ndt scan
matching and Simultaneous Localization and Mapping (SLAM) using a graph-based SLAM
algorithm [27].

Figure 5. Scenario place.

Electronics 2024, 13, 1303 13 of 20

Figure 6. Sensor data acquisition robot.

The results of the SLAM are shown in Figure 7. We created a three-dimensional map
of points, which was used in the Localization and Perception process in Autoware. Along
with the Point Cloud Map, a Vector Map was constructed, and it is shown in the figure.
The Vector Map used a Lanelet2 format that contained the location information for the road
on which the vehicle could drive, such as left and right lanes, stop lines, traffic lights, and
the various constraints required for driving. Using TIER V4’s Vector Map Builder [28], we
constructed a Vector Map containing road information for use in the verification of the
simulation. In Figure 8, the yellow-colored part of the overlapping Point Cloud is the area
where the vehicle could drive.

Figure 8. Point Cloud Map with Vector Map.

4.2. Validation Scenarios

Figure 9 shows a scenario that was used to validate the system proposed in this study.
Below, we describe the implementation method for the verification of each part.

Electronics 2024, 13, 1303

14 of 20

[Adaptive Application] | AN
|
[Vehicle Odometry Data] ‘: |:> ‘ [Localization]
[Vehicle Control Data] _ <:| _ [Control]

[Perception][Planning]

: ek

11 1

AUTOSAR Runtime D”"‘""égt:m“e"'y)
Posiion Pointcloud Map Vector Map
ara::com XYz -
ara::phm O;ﬂ“za'x"
ara::exec VeIoLcii’:;j;(,Y,Z \)
L4 Angular

\ : j K Velocity_X,Y,Z j

Figure 9. System validation scenario.

Dummy Odometry Data File: The validation scenario assumes that a vehicle knows
its Position, Orientation, and Linear and Angular Velocities. The Adaptive AUTOSAR
Platform is equipped with Dummy Odometry Data. Dummy location information was
obtained by operating the actual data acquisition robot shown in Figure 6 in the scenario
environment. The odometry results obtained during this process were recorded at a 20 ms
interval along with Timestamps. This information was then converted into a CSV file for
use in the verification process of ASIRA.

Figure 10 shows some of the acquired Odometry Data converted to a CSV file with a
timestamp. Some Linear Velocities and accelerations are omitted for readability in Figure 10.
When a request is received from ROS2 SOME/IP Bridge, the CSV file is read row by row
to simulate the acquisition of the vehicle’s location information. The X, Y, and Z positions
of the vehicle are based on the UTM coordinate system using a latitude of 37.5422 and
a longitude of 127.0785 as the origin. Odometry Data also contain Orientation X, Y, Z,
and W values to indicate the Orientation of the vehicle, as well as Linear Velocity and
Angular Velocity.

Timestamp Frame ID Child Frame ID Position X Position Y Position Z Orientation X Orientation Y Orientation Z Orientation W Linear Velocity X
map base_link 2731285 -0.50689 -0.54082 0.0000000 0.0000000147095 0.999993 0.000434
map base_link -0.54082 0.0000000 0.0000001299158 0.999993 0.002161
map base_link 27.31297 -0.54082 0.0000000 0.0000005088407 0.999993 0.005558

map base_link -0.54082 0.0000000

0.010162

map base_link -0.54082 0.0000000 0.999993 0.015873

map base_link -0.50689 -0.54082 0.0000000

1706593812 map base_link -0.50689 -0.54082 0.0000000 0.0000065436845 0.999993 0.029553

Figure 10. Dummy Odometry Data file.

ROS2 SOME/IP Bridge: As described in Section 3.2, the ROS2 SOME/IP Bridge is
responsible for requesting and receiving vehicle location data and sending it to the ROS2
Topic. It receives the Vehicle Command Topic from Autoware and sends it to the Adaptive
AUTOSAR Platform via an RPC request. Also, it requests location information from the
Adaptive AUTOSAR Platform every 2.5 ms to match the rate of the odometry information
used by Autoware.

Electronics 2024, 13, 1303

15 of 20

Autoware: When Autoware receives odometry information from the ROS2 SOME/IP
Bridge, it uses the information obtained from localization. It also performs Perception
using the Point Cloud Map, performs Planning using Perception and Vector Map results,
and generates Trajectory information. This is used by the Control Node to finally publish
the Vehicle command Control Topic. In addition to the algorithmic part, the simulation
environment is configured through visualization using ROS2 Rviz.

Figure 11 shows the application of the Point Cloud Map and Vector Map for system
validation using Rviz, a simulator and visualization tool provided by Autoware. In the
Vector Map, the green Lanelet2 component represents the route that the vehicle can drive.
The shortest distance to the destination is calculated and the estimated route is displayed in
green. In the figure, the estimated route is currently displayed as a green line. The Global
Path is displayed in light green, and the possible route based on the current vehicle position
is displayed in dark green. You can set the initial position of the vehicle using the 2D Pose
Estimation button and set the destination of the vehicle using the 2D Goal Pose button.

Figure 11. Autoware Simulator with 3D Point Cloud and Vector Map.

4.3. System Verification

Figure 12 shows a simulation of the entire system. The top left terminal is the Kinematic
State Subscriber and the top right terminal is the Vehicle Command Publisher. The bottom
terminal is the Adaptive AUTOSAR Platform. On the right side of the figure is the Rviz
screen for visualizing the Autoware simulation.

Figure 13 shows the change in the trajectory and path over time. The Adaptive
AUTOSAR Platform receives the Dummy Odometry Information transmitted by ROS2 over
time and continuously drives to the destination, and the path of the vehicle is continuously
calculated and updated accordingly. This means that ROS2 and the Adaptive AUTOSAR
Platform are working together and exchanging data in real time. (Odometry Data should
be delivered within 20 ms to meet Autoware’s needs. Vehicle Control Commands should
be delivered within 50 ms to match Autoware’s cycle.)

Electronics 2024, 13, 1303

16 of 20

Kinematic State Subscriber

P Vehicle Command Publisher
. T

JSS— o avis
Autoware
0

Adaptive AUTOSAR Platform

kkkkkkk

Figure 12. Full system simulation.

SNAAANINN

Figure 13. Changes in Trajectory and Path over Time.

Figure 14 displays a terminal outputting data exchanged during a simulation. In the
top left of the figure is the Kinematic State Subscriber, which shows data exchange on
Terminal 1. It receives the vehicle’s Position, Orientation, Linear Velocity, and Angular
Velocity from the Adaptive AUTOSAR Platform and converts them into ROS2 messages for
publishing. As shown on Terminal 1, it receives packets containing the vehicle’s position X,
Y, and Z, Orientation X, Y, Z, and W, along with Linear and Angular Velocity, and analyzes
the payload to produce results.

The top right of the figure is the Vehicle Command Publisher, which receives the
Vehicle Control Command topic from Autoware and sends it to the Adaptive AUTOSAR
Platform. As displayed on Terminal 2, it captures Steering Tire Angle, Rotation Rate, Speed,
Acceleration, and Jerk information included in the Control Command topic before sending
the packet.

The bottom of the figure represents the Adaptive AUTOSAR Platform, which interfaces
with Autoware’s autonomous driving software through ROS2 Bridge for data transmission.
Terminal 3 shows the platform sending Odometry Data packaged in RPC Response Payload
and receiving Vehicle Command packets through Request Payload. The RPC Handler
parses these packets to display Steering Angle, Rotation Rate, Speed, Acceleration, and
Jerk information in double format. It also illustrates the process of receiving current
location information from Odometry Dummy Data, serializing it, and transmitting it in the
Response Payload.

Electronics 2024, 13, 1303

17 of 20

EI Kinematic State Subscriber

m Vehicle Command Publisher

[3] [Adaptive AUTOSAR Platform]

Figure 14. Terminal screen of Adaptive AUTOSAR Platform and ROS2 SOME/IP Bridge.

Table 7 documents the details of two types of data transmitted in a scenario, measured
over a 3 min driving session. The delay was measured from the moment data were
generated—through serialization, transmission via the ROS2-SOME/IP Bridge—to the
conversion of the packet into a usable data format. The Odometry Data transmitted from
the Adaptive AUTOSAR Platform to the Kinematic State Subscriber was aligned with the
50 Hz (20 ms) transmission cycle required by the Autoware autonomous driving platform.
The average and peak delay times were recorded at 10.95 ms and 13.45 ms, respectively.
These levels are significantly below the 20 ms cycle, indicating that they are sufficiently low
for use in the autonomous driving platform proposed in this study. Data transmission from
the Vehicle Command Publisher to the Adaptive AUTOSAR Platform also demonstrated
very low levels compared to the cycle, proving its suitability for use in the autonomous
driving platform described in this research.

Table 7. Analysis of average and peak delay times for data transmission in system simulation.

From To Frequency Average Delay Peak Delay
Adaptive Kinematic State
AUTOSAR Platform Subscriber 50 Hz 10.95 ms 13.45 ms
. Adaptive
Vehicle Command ;15 AR 20 Hz 5.19 ms 8.77 ms
Publisher
Platform

5. Conclusions and Future Improvements

In this study, we built an architecture that allowed Adaptive AUTOSAR and ROS2
to be interconnected through the Ethernet-based SOME/IP protocol and presented the
simulation results. We showed that it was possible to connect ROS2-based autonomous
driving and Adaptive AUTOSAR-based vehicle architecture, which have been studied in
different fields. The vehicle location information from the Adaptive AUTOSAR Platform
is transmitted to the ROS2 Bridge Node using the SOME/IP protocol, which is converted
to an ROS2 Topic that can be subscribed to by the autonomous driving system. In addi-
tion, instead of using only one-way data transmission, the ROS2 Platform uses received
data to perform the perception, judgment, and control required for autonomous driving,
and transmits the result to the Adaptive AUTOSAR Platform through the ROS2 Bridge.
Using this architecture, various robotics systems, sensor drivers, and sensor processing
technologies based on ROS2 that are in development, as well as various other software
currently available in the open-source community, can be implemented in the vehicle. It

Electronics 2024, 13, 1303

18 of 20

is also useful for rapid prototyping because the tests required for vehicle development
and the use of various sensors can be handled on the ROS2 Platform, where many drivers
and sensor processing algorithms are already available and thus do not have to be de-
veloped on the Adaptive AUTOSAR Platform. There are even open sources for LIDAR
and vision-related machine learning object detection and detection that are being actively
researched and applied to autonomous driving, enabling more advanced autonomous
driving implementations [29,30]. Since it is connected using SOME/IP, it has the potential
to work with not only Adaptive AUTOSAR, but also Classic AUTOSAR, which is currently
used continuously in the automotive industry for safety. This means that it can be quickly
adapted to the existing automotive industry and can be implemented at a low cost because
the hardware requirements are lower than other communication protocols. Furthermore,
as research to integrate ROS2 into the automotive industry continues, and to meet safety
standards, it can be applied to real vehicles by using the strengths of ROS2 and Adaptive
AUTOSAR beyond testing and prototyping.

The limitations and future development challenges of this study can be summarized
as follows.

1. The Adaptive AUTOSAR Platform used in this study is an open-source platform
that partially satisfies the AUTOSAR standard and is not software that is used in the actual
vehicle industry. SOME/IP, which was the focus of this study, satisfied the AUTOSAR
standard and was implemented in ara::com. However, in actual vehicles, various other
factors that are not implemented in this open source may cause unexpected conflicts. More
testing and research are needed.

2. The validation for this study was performed via simulation only. Hardware constraints,
such as computing power, should be considered when research to integrate ROS2 and the
Adaptive AUTOSAR Platform for autonomous driving are integrated for real devices.

3. In this study, we did not deeply consider network topology selection or traffic opti-
mization [31,32] and focused solely on implementing and verifying interoperability through
SOME/IP between Adaptive AUTOSAR and ROS2. Further consideration should be given
to more suitable QoS settings or traffic optimization in actual communication environments.

Through this study and other extended research, the automotive industry and au-
tonomous driving technologies that are developing in different areas will be combined.
Ultimately, the ROS2 Platform and the Adaptive AUTOSAR Platform will complement each
other, helping to reduce the time required for testing and prototyping during development.
This will lead to faster advancements in autonomous driving and hopefully create a better
transportation environment, including moving away from the congestion of traditional
traffic and paving the way for reducing the negative aspects of transportation, such as
energy consumption and emissions [33].

Author Contributions: Conceptualization, D.H. and C.M.; methodology, D.H.; software, D.H.;
validation, D.H.; formal analysis, D.H.; investigation, D.H.; resources, C.M.; data curation, D.H.;
writing—original draft preparation, D.H.; writing—review and editing, D.H. and C.M.; visualization,
D.H.; supervision, C.M.; project administration, D.H.; funding acquisition, C.M. All authors have
read and agreed to the published version of the manuscript.

Funding: This paper was supported by the Korea Institute for Advancement of Technology (KIAT)
grant funded by the Korea Government (MOTIE) (P0020536, HRD Program for Industrial Innovation).

Data Availability Statement: Data is available from the authors.

Conflicts of Interest: The authors declare no conflicts of interest.

Electronics 2024, 13, 1303 19 of 20

References

1. Navet, N.; Song, Y.; Simonot-Lion, E; Wilwert, C. Trends in Automotive Communication Systems. Proc. IEEE 2005, 93, 1204-1223.
[CrossRef]

2. Vetter, A,; Obergfell, P.; Guissouma, H.; Grimm, D.; Rumez, M.; Sax, E. Development Processes in Automotive Service-oriented
Architectures. In Proceedings of the 2020 9th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro,
8-11 June 2020; pp. 1-7. [CrossRef]

3. AUTOSAR. Available online: http://www.autosar.org (accessed on 13 March 2024).

4. The Open Group. The Open Group Base Specifications Issue 7, IEEE Std 1003.1™-2017 (POSIX.1-2017). 2018. Available online:
https:/ /pubs.opengroup.org/onlinepubs/9699919799.2018edition/ (accessed on 13 March 2024).

5. AUTOSAR AP R17-03; Explanations of Adaptive Platform Design. Available online: https://www.autosar.org/fileadmin/
standards/R22-11/AP/AUTOSAR_EXP_PlatformDesign.pdf (accessed on 13 March 2024).

6. Open Source Robotics Foundation (OSRF). ROS. Available online: https:/ /www.openrobotics.org/ (accessed on 13 March 2024).

7. Koenig, N.; Howard, A. Design and use paradigms for Gazebo, an open-source multi-robot simulator. In Proceedings of the
2004 IEEE/RS] International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), Sendai, Japan,
28 September-2 October 2004; Volume 3, pp. 2149-2154. [CrossRef]

8. Kam, HR; Lee, S.; Park, T.; Kim, C. RViz: A toolkit for real domain data visualization. Telecommun. Syst. 2015, 60, 337-345.
[CrossRef]

9. TCPROS. Available online: http://wiki.ros.org/ROS/TCPROS (accessed on 13 March 2024).

10. ROS Master. Available online: https:/ /wiki.ros.org/Master (accessed on 13 March 2024).

11. ROS.org—Open Source Robotics Foundation (OSRF). ROS2. Available online: https://index.ros.org/ (accessed on
13 March 2024).

12. Bellavista, P.; Corradi, A.; Foschini, L.; Pernafini, A. Data Distribution Service (DDS): A performance comparison of OpenSplice
and RTI implementations. In Proceedings of the 2013 IEEE Symposium on Computers and Communications (ISCC), Split, Croatia,
7-10 July 2013; pp. 000377-000383. [CrossRef]

13. Becker, J.; Sagar, M.; Pangercic, D. A safety-certified vehicle OS to enable software-defined vehicles. In Automatisiertes Fahren 2021;
Springer: Berlin/Heidelberg, Germany, 2021; pp. 51-67.

14. Apex.Al Available online: https://www.apex.ai/ (accessed on 13 March 2024).

15. Autoware. Available online: https://autoware.org/ (accessed on 13 March 2024).

16. Autoware Github. Available online: https://github.com/autowarefoundation/autoware (accessed on 13 March 2024).

17. Menard, C.; Goens, A.; Lohstroh, M.; Castrillon, J. Achieving Determinism in Adaptive AUTOSAR. In Proceedings of the
2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 9-13 March 2020; pp. 822-827.
[CrossRef]

18. AUTOSAR. Adaptive Autosar Platform Design. Available online: https://www.autosar.org/fileadmin/standards/R23-11/AP/
AUTOSAR_AP_EXP_PlatformDesign.pdf (accessed on 13 March 2024).

19. Quigley, M.; Conley, K.; Gerkey, B.; Faust,].; Foote, T.; Leibs,].; Wheeler, R.; Ng, A. ROS: An open-source Robot Operating System.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)—Workshop on Open Source Software,
Kobe, Japan, 12-17 May 2009; Volume 3.

20. Point Cloud Library (PCL). Available online: https://pointclouds.org/ (accessed on 13 March 2024).

21. Object Management Group (OMG). Available online: https://www.omg.org/ (accessed on 13 March 2024).

22. Henle, J; Stoffel, M.; Schindewolf, M.; Nagele, A.-T.; Sax, E. Architecture platforms for future vehicles: A comparison of ROS2
and Adaptive AUTOSAR. In Proceedings of the 2022 IEEE 25th International Conference on Intelligent Transportation Systems
(ITSC), Macau, China, 8-12 October 2022; pp. 3095-3102. [CrossRef]

23. Arestova, A.; Martin, M.; Kai-Steffen, J.; German, R. A service-oriented real-time communication scheme for AUTOSAR adaptive
using OPC UA and time-sensitive networking. Sensors 2021, 21, 2337. [CrossRef] [PubMed]

24. Adaptive-AUTOSAR Github. Available online: https://github.com/langroodi/Adaptive-AUTOSAR/wiki (accessed on
13 March 2024).

25. AUTOSAR, R21-11; Specification of Manifest. Available online: https://www.autosar.org/fileadmin/standards/R21-11/AP/
AUTOSAR_TPS_ManifestSpecification.pdf (accessed on 13 March 2024).

26. AUTOSAR, R21-11; SOME/IP Service Discovery Protocol Specification. Available online: https://www.autosar.org/fileadmin/
standards/R20-11/FO/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf (accessed on 13 March 2024).

27. lidarslam_ros2 Github. Available online: https:/ /github.com/rsasaki0109/lidarslam_ros2 (accessed on 13 March 2024).

28. TIER V4 Vector Map Builder. Available online: https://tools.tier4.jp/feature/vector_map_builder_112/ (accessed on
13 March 2024).

29. Laser Segmentation. Available online: https://github.com/ajtudela/laser_segmentation (accessed on 14 March 2024).

30. ROS2 Pointcloud Clustering and Segmentation for Autonomous Behaviour. Available online: https://github.com /noshluk2
/ROS2-Point-Cloud-Clustering-and-Segmentation-for- Autonomous-Behaviour (accessed on 14 March 2024).

31. Rahmani, M,; Steffen, R.; Tappayuthpijarn, K.; Steinbach, E.; Giordano, G. Performance analysis of different network topologies

for in-vehicle audio and video communication. In Proceedings of the 2008 4th International Telecommunication Networking
Workshop on QoS in Multiservice IP Networks, Venezia, Italy, 13-15 February 2008; pp. 179-184. [CrossRef]

https://doi.org/10.1109/JPROC.2005.849725
https://doi.org/10.1109/MECO49872.2020.9134175
http://www.autosar.org
https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/
https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_EXP_PlatformDesign.pdf
https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_EXP_PlatformDesign.pdf
https://www.openrobotics.org/
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1007/s11235-015-0034-5
http://wiki.ros.org/ROS/TCPROS
https://wiki.ros.org/Master
https://index.ros.org/
https://doi.org/10.1109/ISCC.2013.6754976
https://www.apex.ai/
https://autoware.org/
https://github.com/autowarefoundation/autoware
https://doi.org/10.23919/DATE48585.2020.9116430
https://www.autosar.org/fileadmin/standards/R23-11/AP/AUTOSAR_AP_EXP_PlatformDesign.pdf
https://www.autosar.org/fileadmin/standards/R23-11/AP/AUTOSAR_AP_EXP_PlatformDesign.pdf
https://pointclouds.org/
https://www.omg.org/
https://doi.org/10.1109/ITSC55140.2022.9921894
https://doi.org/10.3390/s21072337
https://www.ncbi.nlm.nih.gov/pubmed/33801628
https://github.com/langroodi/Adaptive-AUTOSAR/wiki
https://www.autosar.org/fileadmin/standards/R21-11/AP/AUTOSAR_TPS_ManifestSpecification.pdf
https://www.autosar.org/fileadmin/standards/R21-11/AP/AUTOSAR_TPS_ManifestSpecification.pdf
https://www.autosar.org/fileadmin/standards/R20-11/FO/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf
https://www.autosar.org/fileadmin/standards/R20-11/FO/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf
https://github.com/rsasaki0109/lidarslam_ros2
https://tools.tier4.jp/feature/vector_map_builder_ll2/
https://github.com/ajtudela/laser_segmentation
https://github.com/noshluk2/ROS2-Point-Cloud-Clustering-and-Segmentation-for-Autonomous-Behaviour
https://github.com/noshluk2/ROS2-Point-Cloud-Clustering-and-Segmentation-for-Autonomous-Behaviour
https://doi.org/10.1109/ITNEWS.2008.4488150

Electronics 2024, 13, 1303 20 of 20

32. Lim, H.-T,; Volker, L.; Herrscher, D. Challenges in a future IP/Ethernet-based in-car network for real-time applications. In
Proceedings of the 2011 48th ACM/EDAC/IEEE Design Automation Conference (DAC), San Diego, CA, USA, 5-10 June 2011;
pp- 7-12.

33. Vrbani¢, F; Mileti¢, M.; Tisljari¢, L.; Ivanjko, E. Influence of variable speed limit control on fuel and electric energy consumption,
and exhaust gas emissions in mixed traffic flows. Sustainability 2022, 14, 932. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/su14020932

	Introduction
	Background and Related Works
	Adaptive AUTOSAR
	ROS
	ROS 1
	ROS2

	Related Works

	System Architecture and Components
	System Architecture
	Adaptive AUTOSAR Platform
	ROS2 Autonomous Driving Platform
	Data Flow

	System Implementation
	Writing ARXML for the Adaptive AUTOSAR Platform
	Implementation of Adaptive Applications on an Adaptive AUTOSAR Platform
	Implementation of ROS2 SOME/IP Bridge

	System Validation
	System Verification Environment
	Validation Scenarios
	System Verification

	Conclusions and Future Improvements
	References

