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Abstract: In the pursuit of energy efficiency in next-generation communication systems, approximate
computing is emerging as a promising technique. In the proposed work, efforts are made to address
the challenge of bridging the gap between the level of approximation and the Quality-of-Service
(QOS) of the system. The application of approximate multiplication to wireless signal detection is
explored systematically, illustrated by employing Truncated Multiplication (TM) on Quadrature
Phase Shift Keying (QPSK) Minimum Mean Square Error (MMSE) detection. The irregularities
induced by approximation in the multiplication operation employed in wireless signal detection
are captured by the Approximate Multiplication Noise (AMN) model, which aids in the analysis
of signal fidelity and resiliency of the system. The energy efficiency gains through approximation
are highlighted in the approximation analysis. Signal fidelity analysis provides the capability to
predict system output for varying levels of approximation, which aids in improving the stability of
the system. The higher approximation levels are advantageous in low Signal-to-Noise Ratio (SNR)
regimes, whereas lower approximation levels prove beneficial in high SNR regimes.

Keywords: wireless signal detection; approximate computing; energy efficiency; arithmetic multiplication;
noise; resiliency

1. Introduction.

The explosive growth of mobile traffic, driven by the emergence of new services
and applications [1] is propelling the development of next-generation communication
systems. This surge in mobile traffic necessitates an increase in the communication system
capability [2]. Crucial enabling technologies for next-generation communication systems
operate at the spectrum-level, protocol-level, and infrastructure-level [3]. On the spectrum
level, efforts are concentrated on increasing carrier frequencies, while at the protocol level,
gains are projected through adjustments in data packet packaging. Infrastructure-level
advancements in hardware technology play a pivotal role in enabling next-generation
communication systems, where energy consumption is a key design factor impacting the
scalability of the system [4].

The work [5] emphasizes the increasing importance of energy efficiency in system
design, aligning it with considerations of spectral efficiency and spatial reuse. In wireless
communication systems, energy consumption at Base Station (BS) and core networks be-
came a noteworthy concern due to the imperative for extensive coverage, heightened BS
density in populated areas, and management of data. Remarkably, a substantial portion,
ranging from 60% to 80%, of the overall energy consumption is attributed solely to BS [6].
This energy consumption in active mode at the physical layer of BS is linked to base-
band processing, RF processing, and signal power amplification. The average baseband
energy consumption for a 4G LTE and 5G NR BS is approximately 150 and 220 Watts,
respectively, constituting up to 5–15% of the total BS energy consumption [7]. Moreover,
the energy efficiency of RF and power amplification is influenced by the efficiency of
baseband processing [8].
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The work [9] underscores the importance of integrating energy-efficient techniques
into the design of baseband processing, addressing both operational costs and environ-
mental concerns related to BS operation. Enhancing the energy efficiency of baseband
processing, which plays a crucial role in BS operation, has a cascading effect on the overall
energy consumption of the BS. Likewise, since wireless signal detection is fundamental
to baseband signal processing, enhancing the energy efficiency of the former leads to an
improvement in the energy efficiency of the latter. Going further, a system-wide perspective
needs to include a real-time assessment and control of the energy consumption for wireless
signal detection to cater to the incorporation of future technologies.

The following contributions are presented in this work:

• Modeling of a constant noise model for wireless signal detection to evaluate the impact
of irregularities caused by approximate multiplication. AMN is a novel constant noise
model that effectively captures irregularities of TM for QPSK MMSE signal detection.

• Gauging the effect of TM on Symbol Error Rate (SER) of QPSK MMSE signal detection.
The derived analytical expression computes SER by using AMN.

• Proposition of resiliency metrics to provide insights into resilient TM configurations
for QPSK MMSE signal detection. A TM configuration characterized by a low level
of approximation proves advantageous in high SNR regimes, whereas one with a
high level of approximation is preferable in low SNR regimes.

In Section 1, the motivation for the work is established, and the contributions of the
proposed work are laid out. Section 2 outlines the related work. In Section 3, the method-
ology is detailed, utilizing components to derive entities and primary metrics for the
proposed work. Section 4 presents the derivation of secondary metrics and analysis. Finally,
in Section 5, the conclusion of the proposed work is presented.

2. Related Work

QOS in wireless communication encompasses a set of components that collectively
define and manage the level of service quality. Bit Error Rate (BER), SER, and Frame
Error Rate (FER) are key factors in ensuring the QOS, directly impacting received signal
fidelity [10]. Monitoring and controlling these factors is crucial for maintaining the reliabil-
ity and stability of communication systems, especially in accuracy-sensitive applications.
Several efforts are made in integrating energy efficiency with QOS. Energy awareness has
been induced at the algorithmic level for Internet-of-Things (IOT) application and analyzed
as a QOS factor in the work [11]. The work [12] highlights the integrated approach of
QOS parameters including energy efficiency and their influence on the dynamic network
condition and mobility of wireless sensor nodes. The work [13] explores the development
of an optimal radio resource allocation method in 5G LTE networks based on adaptive
selection of channel bandwidth depending on the QOS requirements.

As there has been a recent outburst to employ Artificial Intelligence (AI) techniques
for intelligent automation, this approach has also been explored to achieve energy efficiency
in communication systems [14,15]. However, the direct application of this approach at
the physical layer of communication systems can incur additional computational over-
heads [16] related to ancillary data processing, which could potentially negate the energy
efficiency benefits obtained at the foremost. Moreover, baseband processing of the physical
layer is also being incorporated into resource-constrained edge computing devices, where
the power budget is very stringent, but the performance constraints might be relaxed.
The work [17] underscores the challenges of meeting the commercial budget requirements
of power consumption of communication systems designed for THz frequency, which
limits their operating frequency.

Approximate computing intentionally introduces errors into systems to enhance
energy and resource consumption efficiency, albeit at the expense of tunable accuracy
loss [18,19]. This methodology relies on the error-resilient nature of applications and
employs disciplined methods for inserting errors into the system. The approach spans
hardware, software, and cross-layer methodologies across diverse application domains to
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achieve efficiency improvements [20]. The work [21] delves into approximate computing
techniques, exploring security issues and analyzing the impact of application level on
neural network processing, as well as image, speech, and baseband signal processing.
The work [22] specifically investigates the analysis of the impact of approximate computing
on application quality through a three-step process involving error characterization, error
propagation, and linking errors with the quality metric of the application. The work [23]
explores the integration of approximation techniques with conventional computing tasks
to enhance the efficient utilization of computational infrastructure. By characterizing
a library of approximated operators, the work [24] proposes a Bayesian model for pre-
dicting error propagation. Their work demonstrates improved accuracy evaluations and
computational efficiency, positioning it as a valuable tool for design space exploration in
approximate computing.

In the context of next-generation communication systems, which prioritize flexible
performance targets for enhanced energy efficiency [5,25], the use of approximate com-
puting techniques becomes relevant, which is another approach for improving energy
efficiency. These techniques allow a controlled trade-off in system performance, contribut-
ing to improved efficiency in communication systems. A comprehensive survey [26] on the
potential of approximate computing techniques for existing and future B5G communication
highlights SER as a crucial Key Performance Indicator (KPI) for channel-related problems
while energy efficiency as a prime KPI for resource allocation. By employing approxi-
mate computing techniques within a fixed power budget for communication systems, it
becomes possible to reduce overall system power consumption. This reduction in power
consumption consequently frees up additional capacity for system scaling within the same
power budget.

Recent advancements in approximate computing techniques for communication sys-
tems are summarized in Table 1. The decoder based on the Successive Cancellation (SC)
algorithm enhances the Forward Error Correction (FEC) performance of polar codes; how-
ever, it limits the throughput of its hardware implementations. To tackle this challenge,
configurable approximation units are introduced in optimized computation function blocks
used in the SC algorithm to improve the throughput of the decoder in the work [27].
The work in [28] harnesses the error-resilient nature of the inherent Fast Fourier Trans-
form (FFT) operation in the industrial wireless communication system to demonstrate the
potential of approximate computing. The exact add/subtract operators in the butterfly
structure of the FFT are replaced with approximate adders, and the impact of the modi-
fied FFT operations is analyzed at the system level. Additionally, the work emphasizes
the challenges related to system reliability and suitable error metrics, stressing the need
to establish a connection between the characteristics of approximate adders and system
performance. The work in [29] explores the application of approximate computing in the
expectation propagation algorithm used for the Sparse Code Multiple Access (SCMA)
receiver. By employing approximation techniques, the complexity of the algorithm is re-
duced, which is characterized by the number of arithmetic operations. Approximations are
incorporated into the expectation propagation algorithm at the variable and function node
updates, as well as the log-likelihood ratio calculation, to decrease algorithmic complexity.
Moreover, parameter optimizations are proposed to strike a balance between detection
performance and algorithm complexity. In the work [30], exact computing units are substi-
tuted with approximate ones in Root Raised Cosine (RRC) Finite Impulse Response (FIR)
filters used for pulse shaping at the BS and decoders/equalizers at the User Equipment
(UE) in Single Input Single Output (SISO) and Multiple Input Multiple Output (MIMO)
6G downlink operations. The BER performance of the proposed approximate computing-
empowered 6G SISO downlink is superior to its MIMO counterpart, where the induced
approximations achieve substantial power savings. The BER performance degradation
is more pronounced in the high SNR regime compared to the low/medium SNR regime.
The work in [31] exploits gradient bounds to propose a novel encoding scheme for Quadra-
ture Amplitude Modulation (QAM) mapping in the communication system required for a
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federated learning model. The results highlight the significance of quantifying the effects
of approximation on the overall application. In a fixed SNR scenario, the test accuracy of
the model deteriorates as the QAM modulation order increases.

Table 1. Approximate computing techniques for communication systems.

Work Description Approximation Modulation QoS

Zhou (2018) [27]

Throughput
improvement by

utilizing approximate
computation blocks for

decoding FEC polar
codes.

SC decoder. - FER

Hao (2019) [28]

Reliability assessment
on utilizing

approximate adders for
industrial wireless
communication.

FFT. QPSK FER

Xiao (2019) [29]

Complexity reduction
of expectation

propagation algorithm
utilized for SCMA.

Variable and functional
node update, log
likelihood ratio
computation.

- BER

Idrees (2021) [30]

Gains by utilizing
approximate

computing units in
digital signal

processing filters in 6G
downlink operation.

FIR filter at pulse
shaping/equaliza-

tion/decoding.
BPSK, QPSK, 8-PSK

BER (link), Structural
Similarity Index and

Correlation Coefficient
(Image transmission)

Ma (2023) [31]

Approximate
communication scheme
for federated learning

application.

Gradients. QPSK, 16-QAM,
256-QAM Test accuracy

While approximation techniques can enhance performance at the expense of reduced
accuracy, their application tends to diminish the reliability of the system. In the work [32],
strategies for testing approximate circuits are delineated, emphasizing the critical role
of reliability in the application of approximation techniques to any system. To address
the reliability challenge, it is necessary to precisely estimate the accuracy of the approxi-
mate system in correlation to the level of induced approximation. The work [33] delves
into approximation techniques grounded in the determinism of system accuracy and the
granularity control provided by these techniques. The objective is to bolster the reliabil-
ity of approximate systems by accurately estimating system accuracy reflecting the level
of approximation.

Multiplication operations are pivotal in communication systems, influencing overall
processing capability and the efficiency of handling complex mathematical transformations.
Precision in these operations is vital for maintaining system accuracy, directly impacting
signal fidelity during reception. Moreover, the resource-intensive nature of multiplication
operations consumes substantial computational resources. In the context of energy efficient
communication system design, particularly in environments with resource constraints and
battery-powered devices, optimizing the efficiency of multiplication operations becomes
paramount. Therefore, the introduction of approximations in multiplication operations
presents an opportunity to improve the overall energy efficiency of communication systems.

Arithmetic functional units performing operations like multiplication inherently func-
tion as nonlinear static systems and approximating them introduces irregularities in the
system. The challenge lies in the insufficient capacity of current statistical metrics to
fully capture these irregularities arising from approximation, creating a barrier to the
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widespread adoption of approximate arithmetic units as concerns about system reliability
emerge. In one such attempt, the work [34] seeks to assess the impact of a nonlinear
approximate adder on the application using statistical metrics. Accurately measuring the
irregularities introduced in the computing system due to approximation is essential for
enhancing the reliability of approximated systems and making more informed choices
regarding the selection of approximation techniques.

Noise models are prevalent to model the cause of irregularities in the system, which
may be deterministic or non-deterministic [35]. The peak value evaluation error method
in wireless receivers was studied in the work [36] for urban noise impulses using past
experimental data for different frequency bands, modulation schemes, and bit rates. Non-
Gaussian noise was statistically modeled in the work [37] for signal processing applications.
The work [38] provides an overview of impulse noise and its models, highlighting their
similarities and differences in communication systems and by comparing the performance
of single-carrier and multi-carrier communication systems under impulse noise. A compu-
tationally intensive Gaussian mixture model is employed to model the impulsive noise for
computing analytical expression of SER [39].

In the systematic analysis depicted in Figure 1, the preliminary entities are derived
from components. These entities are utilized to formulate primary metrics, while secondary
metrics are derived from the primary ones. All analyses are conducted using primary
and secondary metrics. The proposed work introduces an AMN model to characterize
irregularities resulting from the approximate multiplication operation in wireless signal
detection as shown in Figure 2. The TM structure is used as an approximate multiplication
technique, while the MMSE technique is utilized for signal detection in the proposed
work. Utilizing the AMN, a closed-loop expression for the SER is derived for QPSK
MMSE signal detection with TM. This expression serves to assess the resilience of various
configurations of TM for MMSE detection.

Components Entities Metrics Analysis

Approximate Multiplication
Noise

Regression estimate 

Average energy per
operation

Circuit latency

Signal Fidelity

Approximation

Resiliency

Primary

Secondary

Symbol Error Rate

Approximation Gain

Energy Efficiency

Resiliency Ratio

Normalized Resiliency
Ratio

Average Normalized
Resiliency Ratio

Approximate
multiplication circuit

Signal detection
technique

Minimum Mean
Square Error

(MMSE)

~
~

~

~ ~

~

~

~

~

~

~

~

~

~

Truncated
Multiplication

(TM) 
with Radix-4

Booth encoding

Figure 1. System analysis for energy-efficient wireless signal detection using approximate mul-
tiplication circuit. The relationship between entities, metrics, and analysis with components is
explicitly demonstrated.
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AWGN
Transmitter

Wireless Channel MMSE Detection

~

AMNAWGN

Transmitter

Wireless Channel MMSE Detection

(a)

(b)

Figure 2. (a) MMSE detection using approximate multiplication. (b) Equivalent model for computing
x̂ using AMN and accurate multiplication.

3. Methodology
3.1. Preliminary

The notation |.| signifies the absolute value, while E denotes the expectation operator.
The symbols ℜ and ℑ represent the real and imaginary components, respectively. P{G } de-
notes the probability of occurrence of any event G . [.]2 denotes integer values represented in
two’s complement form. The Probablity Distribution Function (PDF) of normal distribution

with mean µ and variance σ2 is represented as N (µ, σ) = 1
σ
√

2π
exp

(
− 1

2

(
x−µ

σ

)2
)

, where

exp(.) is the exponential function. Adding a constant k to N (µ, σ) results in a new distribu-
tion, N (k + µ, σ). Multiplying a normal distribution by k yields new normal distribution
N (kµ, kσ). For two normal distributionsN (µ1, σ1) andN (µ2, σ2), the resultant normal dis-

tribution is given as N (µ1, σ1) +N (µ2, σ2) = N (µ1 + µ2,
√

σ2
1 + σ2

2 ). The complementary
error function, erfc(.), evaluates to 0 as ∞ is approached and to 2 as −∞ is approached.
Using the symmetry property of erfc(.), it can be inferred that erfc(−x) = 2− erfc(x).
The integration of a normal distribution within the interval [a, b] is expressed as the definite
integral [40]:

∫ b

a
N (µ, σ) =

1
2

(
erfc

(
a− µ

σ
√

2

)
− erfc

(
b− µ

σ
√

2

))
(1)

Cov(.) represents the covariance operation. The linear operations performed on a
complex random variable apply to its real and imaginary components. The symbol ×∼ is
used to denote the approximate multiplication of two operands.

3.2. Truncated Multiplication

Consider bit signals ai, bi, ϕi ∈ {0, 1} for i = 0, 1, . . . , N − 1. In the context of signed
multiplication, the N-bit multiplicand and multiplier operands are represented in two’s
complement form as [A]2 = −aN−12N−1 + ∑N−2

i=0 ai2i and [B]2 = −bN−12N−1 + ∑N−2
i=0 bi2i,

respectively. The multiplication product is denoted as [P]2 = −ϕ2N−122N−1 + ∑2N−2
i=0 ϕi2i.

In the Radix-4 Booth algorithm for encoding the multiplier [41], the multiplication product
[P]2 is computed using the Algorithm 1.
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Algorithm 1 Signed multiplication using Radix-4 Booth algorithm.

1: [A]2 and [B]2 are N-bit multiplicand and multiplier.
2: procedure ([A]2, [B]2, N)
3: Initialize product [P]2 as 0 with 2N bits.
4: Initialize b−1 as 0.
5: for i← 0 to N/2− 1 do ▷ N2 clock cycles
6: if b2i+1b2ib2i−1 = 001 or b2i+1b2ib2i−1 = 010 then
7: [P]2 ← [P]2 + ([A]2 ≪ 2i) ▷ 2N clock cycles
8: else if b2i+1b2ib2i−1 = 101 or b2i+1b2ib2i−1 = 110 then
9: [P]2 ← [P]2 − ([A]2 ≪ 2i) ▷ 2N clock cycles

10: else if b2i+1b2ib2i−1 = 011 then
11: [P]2 ← [P]2 + ([A]2 ≪ 4i) ▷ 2N clock cycles
12: else if b2i+1b2ib2i−1 = 100 then
13: [P]2 ← [P]2 − ([A]2 ≪ 4i) ▷ 2N clock cycles
14: end if
15: end for
16: return [P]2
17: end procedure

The multiplication operation is approximated for TM by truncating the M least signif-
icant bits of every partial product generated by the multiplication operation, as illustrated
in Figure 3. Thus, a TM configuration is decided by M. The TM product is obtained as
[P̂]2 = −ϕ2N−122N−1 + ∑2N−2

i=M ϕi2i.

~

Figure 3. TM implemented using Radix-4 Booth algorithm for signed N bit operands [A]2 and [B]2.

However, the operands used in baseband processing are rational numbers with a
fractional part. Therefore, N-bit signed multiplication with fixed-point representation is
considered for baseband processing, with N/2 bits allocated for the integer part and N/2
bits for the fractional part. Consequently, the operands for baseband processing are scaled
by a factor of 2N/2 to convert them into two’s complement form. The multiplication product
is then converted back to fixed-point representation from two’s complement form by using
a scaling factor of 2−N . With operands [A]2 = A · 2N/2 and [B]2 = B · 2N/2, the accurate
multiplication is represented as P = ([A]2[B]2)2−N , while the TM product is represented
as P̂ = ([A]2 ×∼ [B]2)2−N .

The mean of the error between accurate multiplication and TM is given by
µP̂ = E{[A]2[B]2} −E{[A]2 ×∼ [B]2}. Considering the two’s complement form of operands,
the exact value of µP̂ is obtained through exhaustive simulation of all possible multiplication
values for a particular N, as given in Table 2. For exhaustive simulation, all integer values
from range [−2N−1, 2N−1 − 1) are considered for multiplicand and multiplier operand.
However, when it is not feasible to perform exhaustive simulation for a particular N, µP̂ is
point estimated with selective multiplication values. For point estimating µP̂, KN samples
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from range [−2N−1, 2N−1− 1) are considered for multiplicand and multiplier operand with
an equal step size of 2N−1−1

KN /2−1 = 2N−2
KN−2 . The mean of the error for fixed-point representation

is given by:

νP̂ = E{P− P̂} = E{P} −E{P̂} = µP̂2−N (2)

Table 2. Error mean νP̂ values for N = 8, 12, 16, 20. νP̂ values for N = 8, 12 are calculated with ex-
haustive simulation of operands, while νP̂ values for N = 16, 20 are point estimated using KN = 4096
and represented by †.

νP̂

M N = 8 N = 12 N=16 † N=20 †

1 9.77× 10−4 6.10× 10−5 3.81× 10−6 2.38× 10−7

2 3.91× 10−3 2.44× 10−4 1.57× 10−5 9.56× 10−7

3 1.37× 10−2 8.54× 10−4 5.64× 10−5 3.35× 10−6

4 3.71× 10−2 2.32× 10−3 1.55× 10−4 9.09× 10−6

5 9.96× 10−2 6.23× 10−3 4.13× 10−4 2.44× 10−5

6 2.40× 10−1 1.50× 10−2 9.88× 10−4 5.89× 10−5

7 5.84× 10−1 3.65× 10−2 2.38× 10−3 1.43× 10−4

8 1.33× 100 8.34× 10−2 5.41× 10−3 3.27× 10−4

9 - 1.93× 10−1 1.24× 10−2 7.56× 10−4

10 - 4.27× 10−1 2.75× 10−2 1.67× 10−3

11 - 9.58× 10−1 6.15× 10−2 3.76× 10−3

12 - 2.08× 100 1.33× 10−1 8.16× 10−3

13 - - 2.93× 10−1 1.80× 10−2

14 - - 6.27× 10−1 3.85× 10−2

15 - - 1.36× 100 8.35× 10−2

16 - - 2.88× 100 1.77× 10−1

17 - - - 3.81× 10−1

18 - - - 8.04× 10−1

19 - - - 1.71× 100

20 - - - 3.59× 100

3.2.1. Regression Estimate for P̂

The P̂ values are obtained through the operation of TM. To derive an analytical
expression for the SER, there is a necessity for a mathematical model representing P̂.
The P̂ values exhibit slight deviation from the P values for a specific operand pair. This
relationship between approximate and accurate multiplication values is depicted in Figure 4
for N = 8, where P and P̂ values display linear co-variation. This inference can be extended
to other values of N without loss of generality. Utilizing this sufficient statistical information
about covariance, it is possible to estimate P̂ from P as the predictor variable in a linear
regression model [42].
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Figure 4. Variance of accurate multiplication values P and TM values P̂ for N = 8 for varying M.
P and P̂ have linear covariance.

Consider a linear regression model P̂ = β0 + β1P + ϵ, where β0 and β1 are regression
coefficients and ϵ ∼ N (0, σ2) is the error term. The estimated regression model is given as
P̂ ≈ β0 + β1P and the values of estimated regression coefficients β̂0 and β̂1 are calculated
as follows:

β̂1 =
Cov(P̂, P)
Cov(P, P)

(3)

and
β̂0 = E{P̂} − β̂1E{P} (4)

Since Cov(P̂, P) ≈ Cov(P, P) as inferred from Figure 4, it implies that β̂1 ≈ 1; hence,
β̂0 can be evaluated from Equation (4) and Equation (2) as follows:

β̂0 = E{P̂} −E{P} = −νP̂ (5)

The estimated regression model can be calculated as follows:

P̂ ≈ P− νP̂ (6)

The linear regression model for P̂ in Equation (6) provides a crude estimate of the
multiplication product values of TM, which will be used for SER computation.

3.2.2. Energy Efficiency

The energy efficiency of TM for a particular N and M is computed with respect to the
accurate multiplication. For the analysis of energy efficiency, an approximate expression
is computed henceforth. For any multiplication operation performed using a digital logic
processor, the total power consumed can be expressed as E · # multiplication/sec, where
E is the average energy consumed per multiplication operation. The latency T of the
multiplication operation is computed as the product of total clock cycles and the processor
clock frequency. The number of multiplication operations per second is thus 1

T . Low E
signifies a more energy-efficient multiplication operation.

For accurate multiplication operation using the Radix-4 Booth algorithm, the total
clock cycles consumed by the multiplication operation stem from the steps outlined in
Algorithm 1. Primarily, every partial product computation consumes about 2N clock cycles
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for a typical ripple carry addition operation. As there are N/2 partial products to be
computed, the total clock cycles consumed are about N/2(2N) = N2. In the case of TM as
shown in Figure 3, the operand bit-width for partial product addition is 2N −M. Hence,
the total clock cycles for TM are:

N
2
(2N −M) = N2 − NM

2
(7)

For a processor operating at a clock frequency of F Hz, the latency of accurate multi-
plication and TM is computed as:

TP = N2F, TP̂ =

(
N2 − NM

2

)
F (8)

For a power budget of Q Joule intended for multiplication operation on the processor,
consider both accurate multiplication and TM for a specific task. Then, the relation between
energy per operation for accurate multiplication denoted as EP and EP̂ for TM can be
derived as follows:

Q =
EP
TP

, Q =
EP̂
TP̂

=⇒ EP
TP

=
EP̂
TP̂

(9)

To quantify the reduction in average energy consumed per multiplication operation,
the fractional gain due to approximation caused by TM can be computed as approximation
gain as follows:

Approximation Gain =
EP
EP̂

=
TP
TP̂

=
N2F(

N2 − NM
2

)
F
=

2N
2N −M

(10)

The relative change in EP̂ with respect to EP is calculated as:

EP − EP̂
EP

= 1−
EP̂
EP

(11)

Expressing Equation (11) in terms of N and M as:

Energy Efficiency =
EP − EP̂

EP
=

M
2N

(12)

The expressions for approximation gain and energy efficiency enable us to compare
the gains achieved due to approximation for multiplication operation with accurate multi-
plication and TM.

3.3. SER Expression

For the QPSK constellation of symbols with each symbol represented by 2 bits, the al-
phabets for symbols are represented by set X = {−1− j1,−1+ j1, 1− j1, 1+ j1}. Let x be
the signal representing the transmit symbol such that x ∈ X considering Additive White
Gaussian Noise (AWGN) channel and constant fading channel h. Es represents the energy
per symbol. AWGN for the receiver system is represented by w and the random variable W is
used to represent the values of w such that W ∼ CN (0, σ2

n), where σ2
n = N0 and N0 being the

Noise Spectral Density (NSD). Es/N0 is used to denote the SNR. The noise variance is evenly
distributed between real and imaginary components of the symbol such that the variance per

component is σ2
n
2 . The scaling factor for energy normalization for x is given as S =

√
Es
2 .

The received signal is represented as:

y = Shx + w (13)
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Consider AMN as δ = δℜ + jδℑ. The received signal with AMN:

y = Shx + w + δ = y + δ (14)

MMSE detection [43] is a signal detection technique derived using optimization of the
mean square error between transmit and receive symbols. MMSE detection achieves near-
optimal performance while maintaining low computational complexity, rendering it highly
suitable for implementation across a wide array of computing platforms, particularly those
with limited computing resources. Additionally, MMSE detection exhibits high robustness
across various SNR conditions, particularly in scenarios characterized by low SNR levels.
This robustness enhances error resilience within the system, which enables expansion of
the scope for approximation with high reliability.

The transmit symbol is estimated using MMSE at the receiver represented by x̂ such that:

x̂ =
1
S

E{|x|2}
E{|x|2}|h|2 + N0

h∗y =
h∗

S|h|2 y (15)

as E{|x|2}|h|2 ≫ N0.

3.3.1. AMN Model

The MMSE computes x̂ for transmit symbol x; however, by employing TM at the
detection stage, an approximated x̂ is obtained. To compute expression for δ, the signal x̂
approximated by using TM at the receiver as shown in Figure 2a is equated to equivalent
model of x̂ approximated by employing AMN and accurate multiplication as shown in
Figure 2b. The approximate value of x̂ using TM at the receiver is computed as follows:

x̂ ≈ h∗

S|h|2 ×∼ y =
1

S|h|2 (hℜ ×∼ yℜ + hℑ ×∼ yℑ) +
j

S|h|2 (hℜ ×∼ yℑ − hℑ ×∼ yℜ)

≈
(

hℜ
S|h|2 yℜ +

hℑ
S|h|2 yℑ −

2ν
P̂

S|h|2

)
+ j
(

hℜ
S|h|2 yℑ −

hℑ
S|h|2 yℜ

)
(16)

The approximate value of x̂ using accurate multiplication by employing AMN is
computed as follows:

x̂ ≈ h∗

S|h|2 y =

(
hℜ

S|h|2 yℜ +
hℑ

S|h|2 yℑ

)
+ j
(

hℜ
S|h|2 yℑ −

hℑ
S|h|2 yℜ

)
≈
(

hℜ
S|h|2 yℜ +

hℑ
S|h|2 yℑ +

hℜδℜ + hℑδℑ
S|h|2

)
+

j
(

hℜ
S|h|2 yℑ −

hℑ
S|h|2 yℜ +

hℜδℑ − hℑδℜ
S|h|2

)
(17)

Equating Equations (16) and (17):

hℜδℜ + hℑδℑ = −2νP̂ (18)

and hℜδℑ − hℑδℜ = 0 (19)

From Equations (18) and (19), the values of δℜ, δℑ and eventually δ can be evaluated as:

δ =
−2ν

P̂
hℜ

|h|2 − j
2ν

P̂
hℑ
|h|2 =

−2hν
P̂

|h|2 (20)

AMN facilitates use of signal ȳ in x̂ detection.

3.3.2. SER Evaluation Using AMN

With signal x, consider the approximate detection of x̂ using MMSE detection by using
signal ȳ. For AWGN channel, the random variable for ȳ is modeled as Y = Shx + W + δ.
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Separating Y into real and imaginary components Yℜ ∼ N (Shℜxℜ − Shℑxℑ + δℜ, σn/
√

2)
and Yℑ ∼ N (Shℜxℑ + Shℑxℜ + δℑ, σn/

√
2). Hence,

x̂ ≈ h∗

S|h|2 y =⇒ X̂ ≈ h∗

S|h|2 Y (21)

X̂ ≈
(

hℜ
S|h|2 Yℜ +

hℑ
S|h|2 Yℑ

)
+ j
(

hℜ
S|h|2 Yℑ −

hℑ
S|h|2 Yℜ

)
(22)

The linear combination of two random variables also results in a random variable [44].
Using the PDF for Yℜ and Yℑ in Equation (22) and δ, the PDF expressions for real and
imaginary parts for X̂ are evaluated as follows.

fX̂ℜ
≈ 1

S|h|2N
(

hℜ(Shℜxℜ − Shℑxℑ + δℜ) + hℑ(Shℜxℑ + Shℑxℜ + δℑ),
σn√

2

√
h2
ℜ + h2

ℑ

)
≈ 1

S|h|2N
(

xℜS(h2
ℜ + h2

ℑ)− 2 νP̂,
σn√

2
|h|
)

≈ N
(

xℜ −
2ν

P̂
S|h|2 ,

σn√
2S|h|

)
(23)

fX̂ℑ
≈ 1

S|h|2N
(

hℜ(Shℜxℑ + Shℑxℜ + δℑ)− hℑ(Shℜxℜ − Shℑxℑ + δℜ),
σn√

2

√
h2
ℜ + h2

ℑ

)
≈ 1

S|h|2N
(

xℑS(h2
ℜ + h2

ℑ),
σn√

2

√
h2
ℜ + h2

ℑ

)
≈ N

(
xℑ,

σn√
2S|h|

)
(24)

To compute the area under the inference regions for QPSK as shown in Figure 5,
consider integrals I1, I2, I3, and I4. Using fX̂ℜ

and fX̂ℑ
when xℜ, xℑ = ±1, these integrals

are computed as follows:

Figure 5. Inference regions for the QPSK constellation.
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I1 =
∫ ∞

0
fX̂ℜ

∣∣∣
xℜ=1

=
∫ ∞

0
N
(

1−
2ν

P̂
S|h|2 ,

σn√
2S|h|

)

=
1
2

erfc

(
−S|h|2 + 2ν

P̂
σn|h|

)
(25)

I2 =
∫ 0

−∞
fX̂ℜ

∣∣∣
xℜ=−1

=
∫ 0

−∞
N
(
−1−

2ν
P̂

S|h|2 ,
σn√
2S|h|

)

=
1
2

(
2− erfc

(
S|h|2 + 2ν

P̂
σn|h|

))
=

1
2

erfc

(
−S|h|2 − 2ν

P̂
σn|h|

)
(26)

I3 =
∫ ∞

0
fX̂ℑ

∣∣∣
xℑ=1

=
∫ ∞

0
N
(

1,
σn√
2S|h|

)
=

1
2

erfc
(
−S|h|

σn

)
(27)

I4 =
∫ 0

−∞
fX̂ℑ

∣∣∣
xℑ=−1

=
∫ 0

−∞
N
(
−1,

σn√
2S|h|

)

=
1
2

(
2− erfc

(
S|h|
σn

))
=

1
2

erfc
(
−S|h|

σn

)
(28)

These integrals are used in evaluating the probability of correct symbol detection by
the receiver for every symbol in X . The SER for QPSK is computed by evaluating the
union probability that each of the symbols in X is transmitted and received correctly at the
receiver [45]. The SER expression is computed as follows:

SER = 1− 1
4

4

∑
i=1
P(x̂ = si|x = si)

= 1− 1
4
(I1 I3 + I2 I3 + I2 I4 + I1 I4) = 1− 1

4
(I3 + I4)(I1 + I2)

= 1− 1
8

erfc
(
−S|h|

σn

)(
erfc

(
−S|h|2 + 2ν

P̂
σn|h|

)
+ erfc

(
−S|h|2 − 2ν

P̂
σn|h|

))
(29)

Substituting the values of S and σn,

= 1− 1
8

erfc

(
−|h|

√
Es

2N0

)(
erfc

(
−|h|2

√
Es + 2

√
2ν

P̂
|h|
√

2N0

)
+

erfc

(
−|h|2

√
Es − 2

√
2ν

P̂
|h|
√

2N0

))
(30)

SER is computed by simulation in Figure 2a using 5000 symbols in Python. The
analytical expression of Equation (30) tracks SER obtained using simulation for N = 8, 16
as shown in Figure 6. It can be observed that for both N = 8 and N = 16, the SER starts
increasing with an increase in SNR after M = N/2.
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Figure 6. Comparison of SER for N = 8, 16 with channel gain |h|2 = 0.25 for varying M calculated
analytically using Equation (30) and by simulation for (a) N = 8; (b) N = 16.

4. Analysis
4.1. Signal Fidelity Analysis

The SER of the QPSK MMSE signal detection using TM is evaluated in Figure 7
under varying channel gain conditions. The SER for a specific N, a specific channel gain
and a specific SNR is bounded within an interval. The SER exhibits resilience for a range
of M, forming the lower bound and begins to degrade thereafter with an increase in M.
Furthermore, after a certain value of M, it becomes constant with a further increase in M,
establishing the upper bound of SER.
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Figure 7. Signal fidelity analysis for QPSK MMSE signal detection using TM for varying M for
N = 8, 16, 12 and 20 for channel gain (a) |h|2 = 0.25; (b) |h|2 = 1.
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For a given channel gain, the bound interval increases with an increase in SNR.
Although the lower bound of SER decreases with an increase in channel gain, the bound
interval increases significantly. This implies that approximation causes more degradation
of SER for high channel gain. However, the resiliency is sustained for higher values of M
when channel gain is increased for the same SNR. Additionally, resiliency is maintained
for lower values of M, when SNR is increased for the same channel gain.

4.2. Approximation Analysis

TM configurations for N = 8, 12, 16 and 20 are analyzed for approximation gain and
energy efficiency in Figure 8. Approximation gain is assessed using Equation (10) and
energy efficiency is evaluated using Equation (12). Both approximation gain and energy
efficiency increase with an augmentation in M for all values of N. However, the rate
of increase in approximation gain and energy efficiency decreases as N increases. This
observation implies that the approximation gain and energy efficiency are lower for higher
values of N for a specific value of M.
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Figure 8. Approximation analysis with varying M truncation bits: (a) Approximation Gain; (b) En-
ergy efficiency.

4.3. Resiliency Analysis

For achieving high energy efficiency of the TM configuration in QPSK MMSE signal
detection, it is crucial to choose a configuration that exhibits a high approximation gain for
high energy efficiency. However, high approximation gain necessitates a corresponding
increase in the value of M, resulting in a rise in the SER. Balancing a high approximation
gain and minimizing the SER is key to achieving optimal performance when utilizing a TM
for QPSK MMSE signal detection. The resiliency of TM configuration can be considered
high if it provides high approximation gain without degrading much of the SER.

The Resiliency Ratio (RR) serves as a metric to quantify the resiliency of TM opera-
tion for QPSK MMSE detection for a specific combination of M, SNR and channel gain
computed as follows:

RR |SNR,|h|2 =
Approximation Gain

SER |SNR,|h|2
(31)

The Normalized Resiliency Ratio (NRR), defined as the ratio of RR to the maximum
RR for a given h and SNR across all values of M scales the RR in range of [0, 1] and is
computed as follows:
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NRR |SNR,|h|2 =
RR |SNR,|h|2

max
M≤N

(
RR |SNR,|h|2

) (32)

While the NRR is a useful metric to analyze resiliency, it depends on SNR and channel
gain. Hence, Average Normalized Resiliency Ratio (ANRR) provides insights into overall
resiliency of the TM and is computed by averaging NRR values for KSNR samples of SNR
in range [−10, 10) and K|h| samples of channel gain in range of [0, 1) as follows:

ANRR =
1

KSNRK|h|

1

∑
|h|=0

10

∑
SNR=−10

(
NRR |SNR,|h|2

)
(33)

The graph of NRR and ANRR exhibits a distinct resiliency dip, commencing at the
resiliency crest and concluding at the resiliency trough. An examination of Figure 9 reveals
that for lower values of M, NRR tends to be lower for lower SNR regime, as depicted in
Figure 9a,d, in contrast to its behavior in high SNR regime seen in Figure 9c,f. Conversely,
at higher values of M, NRR significantly rises at low SNR compared to its performance at
high SNR. The resilience of approximations with low M is more pronounced in the high SNR
regime, while those with high M are more resilient in the low SNR regime. The extent of the
resiliency dips expands with an increase in both SNR and channel gain. Also, the value of M
required to reach the resiliency crest rises with SNR.
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Figure 9. NRR analysis for QPSK MMSE signal detection using TM for varying M. NRR evaluated
for (a) |h|2 = 0.25, Es/N0(dB) = −10; (b) |h|2 = 0.25, Es/N0(dB) = 0; (c) |h|2 = 0.25, Es/N0(dB) =
10; (d) |h|2 = 1, Es/N0(dB) = −10; (e) |h|2 = 1, Es/N0(dB) = 0; (f) |h|2 = 1, Es/N0(dB) = 10.
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In the lower SNR regime, NRR experiences low resiliency dips, while dips begin to form
with an increase in channel gain. NRR approaches 0 after the resiliency trough for high M in
high SNR regime and high channel gain. The resiliency trough decreases with an increase in
SNR for all values of N. After a resiliency dip, surpassing the NRR beyond the resiliency crest
towards 1 becomes increasingly difficult with an increase in SNR and channel gain. Until the
resiliency crest is achieved, the rate of increase of NRR amplifies with an increase in both
SNR and channel gain. Approximation with higher M is advantageous in low SNR regime,
while that with lower M is advantageous in high SNR regime.

From the ANRR analysis presented in Figure 10 using KSNR = 20 and K|h| = 100, it
is evident that the rate of increase in ANRR diminishes with an increase in N. Resiliency
dips for ANRR intensify with an increase in N and the resiliency trough decreases with an
increase in N.
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RR
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Figure 10. ANRR analysis for QPSK MMSE signal detection using TM for varying M with
KSNR = 20 and K|h| = 100.

5. Conclusions

The proposed work systematically investigates the impact of employing approximate
multiplication, represented by TM, on wireless signal detection, represented by QPSK
MMSE detection. It aims to address the challenge of linking approximation level with QOS
of the system through analyses of signal fidelity, resilience, and approximation. The study
evaluates the AMN model to understand the effects of irregularities induced in the system
by approximation and derives an analytical expression for the SER using the AMN model
for signal fidelity analysis. A summary of all the simulations conducted for the proposed
work is depicted in Table 3.

Signal fidelity analysis forecasts system output at different approximation levels,
thereby enhancing the stability of the system. Energy efficiency increases with higher levels
of approximation in TM. However, an increase in TM approximation leads to degradation
of SER, and system reliability begins to decline after error resilience has been exhausted
beyond a certain level of approximation. Resilience metrics capture this phenomenon and
provide insights into reliable approximate configurations. Higher levels of approximation
exhibit more resilience in low SNR scenarios, while lower levels of approximation are more
resilient in high SNR scenarios. In the context of the proposed work, future avenues for
exploration include extending the AMN model to accommodate high modulation schemes,
diverse channel models, a variety of approximate multiplication schemes, and alternative
receiver techniques.
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Table 3. Simulation Summary.

Analysis Metric Parameter Description

Entities

Computation νP̂
N = 8, 12; M = 1 . . . N; KN = 2N ;
Operand range [−2N−1, 2N−1 − 1)

As given in Table 2, νP̂ values are com-
puted by exhaustive simulation.

Computation νP̂

N = 16, 20; M = 1 . . . N; KN =
4096; Operand range:[−2N−1, 2N−1− 1);
step size = 2N−2

KN−2

As given in Table 2, νP̂ values are com-
puted by point estimation.

Covariance P, P̂ N = 8; M = 1 . . . N; KN = 2N ;
Operand range [−2N−1, 2N−1 − 1)

As depicted in Figure 4, P and P̂ have
linear covariance.

Verification SER N = 8, 16; M = 1 . . . N; |h|2 = 0.25,
5000 symbols per Es/N0(dB)

As depicted in Figure 6, the analytical
expression for SER tracks the SER com-
puted by simulation.

System

Signal Fidelity SER N = 8, 12, 16, 20; M = 1 . . . N;
|h|2 = 0.25, 1; Es/N0(dB) = −10, 0, 10

As depicted in Figure 7, the bound in-
terval increases with both the SNR and
channel gain, which indicates a greater
degradation in SER.

Approximation Approximation Gain N = 8, 12, 16, 20; M = 1 . . . N
As shown in Figure 8a, approximation
gain increases with M for all N, while
the rate of increase decreases with N.

Approximation Energy Efficiency N = 8, 12, 16, 20; M = 1 . . . N
As shown in Figure 8b, energy efficiency
increases with M for all N, while the rate
of increase decreases with N.

Resiliency NRR N = 8, 12, 16, 20; M = 1 . . . N;
|h|2 = 0.25, 1; Es/N0(dB) = −10, 0, 10

As shown in Figure 9, high NRR is
achieved by low M in high SNR regime
and high M in low SNR regime.

Resiliency ANRR N = 8, 12, 16, 20; M = 1 . . . N;
KSNR = 20; K|h| = 100

As shown in Figure 10, rate of increase in
ANRR decreases with N and resiliency
dips increase with N.
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