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Abstract: To address susceptibility to noise interference in Micro-LED displays, a deep convolutional
dictionary learning denoising method based on distributed image patches is proposed in this paper.
In the preprocessing stage, the entire image is partitioned into locally consistent image patches,
and a dictionary is learned based on the non-local self-similar sparse representation of distributed
image patches. Subsequently, a convolutional dictionary learning method is employed for global
self-similarity matching. Local constraints and global constraints are combined for effective denoising,
and the final denoising optimization algorithm is obtained based on the confidence-weighted fusion
technique. The experimental results demonstrate that compared with traditional denoising methods,
the proposed denoising method effectively restores fine-edge details and contour information in
images. Moreover, it exhibits superior performance in terms of PSNR and SSIM. Particularly notewor-
thy is its performance on the grayscale dataset Set12. When evaluated with Gaussian noise σ = 50, it
outperforms DCDicL by 3.87 dB in the PSNR and 0.0012 in SSIM.

Keywords: micro-LED display; distributed image patches; deep convolutional dictionary learning;
confidence-weighted fusion technique

1. Introduction

Micro-LED displays are pivotal in human–computer interaction and are renowned
for their brightness and contrast [1,2]. They are indispensable in military applications
like helmet displays and tactical goggles [3–5] and have revolutionized civilian sectors,
enhancing automotive displays and medical imaging [6–8]. Despite their versatility, chal-
lenges during manufacturing, including thermal, optical, and Gaussian noise, compromise
image quality [9–11]. Thus, effective denoising methods are crucial for optimal visual
clarity. Traditional image denoising methods include filtering-based denoising methods,
which smooth the image to reduce the impact of noise. There are also some traditional
denoising methods based on the sparse representation theory of images, which remove
noise by finding sparse representations of images under appropriate dictionaries [12,13].
With the continuous advancement of science and technology, denoising methods based on
deep learning have been continuously proposed. Among them, deep learning models are
used to denoise images through end-to-end learning. There are also generative adversarial
networks that learn to generate noise-free images, resulting in more realistic images [14–16].

In addressing these challenges, traditional denoising methods offer foundational ap-
proaches and can be roughly divided into two categories [12,15]. The first category is based
on the filtering principle, including various noise reduction methods for different image
processing scenarios. Among them, bilateral filtering [17] stands out as a spatial method
which can reduce noise and effectively maintain edges. Gaussian filtering [18] is a common
method of traditional image denoising; using a Gaussian filter to smooth the image can
suppress the high-frequency noise in the image. Additionally, wavelet transform [19] excels
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at capturing both high- and low-frequency components, making it versatile for various
applications. In addition, block-matching 3D (BM3D) filtering [20] is a collaborative filter-
ing approach which uses the similarities in image patches to enhance the denoising effect.
The second category is based on sparse representation theory and includes various de-
noising methods that improve image restoration by using mathematical frameworks. One
prominent method within this category is K-singular value decomposition (K-SVD) [21].
K-SVD effectively captures the basic features of images by decomposing them into sparse
representations. Another noteworthy method is total variational (TV) [22] denoising, which
focuses on minimizing the total variation of the image, preserving its structural details
and reducing noise. Weighted nuclear norm minimization (WNNM) [23], another method
in this category, combines sparse representation with nuclear norm minimization, thus
enhancing its ability to handle complex noise patterns. Although these traditional denois-
ing methods exhibit good performance in certain image processing scenarios, they usually
need fine parameter adjustment and rely on prior information constructed manually.

In addition to traditional denoising methods, recent advancements in deep learning
have introduced novel approaches that leverage the power of neural networks for effec-
tive noise reduction in Micro-LED displays. Compared with traditional methods, deep
learning-based approaches do not require pre-made assumptions and can automatically
learn network parameters [14,24,25]. Therefore, they are widely used in image denoising.
Zhang et al. [18] proposed a simple and effective denoising convolutional neural network
(DnCNN), which enhances denoising performance by overlapping convolutional layers,
batch normalization, and residual networks. In the same year, they introduced an itera-
tive residual convolutional neural network (IRCNN) [26], employing multiple iterations
for image denoising. Zhang et al. [27] introduced a fast and flexible denoising network
(FFDNet). By learning the distribution and characteristics of image noise, the adaptability
and robustness of neural networks to different levels of noise were enhanced. Alsaiari
et al. [28] proposed a generative adversarial network (GAN) by using a small number
of samples for rendering and passing the noisy image to the network, which generates
high-quality realistic images. Im et al. [29] introduced a denoising approach utilizing
variational autoencoder (VAE), which learns to generate a noise-free rendition of an image,
thereby simulating noise and producing a clean image. Simon et al. [30] proposed the com-
pressed sparse column (CSC) with rotation-invariant convolution, a method that employs
convolutional neural networks to learn sparse coding constraints. Scetbon et al. [31] intro-
duced an end-to-end deep method based on K-singular value decomposition called learned
K-singular value decomposition (DK-SVD). They replaced the prior of L0 in K-SVD with
the prior of L1 and unfolded the sparse coding through the iterative shrinkage thresholding
algorithm (ISTA) [32]; the dictionary was parameterized by using a multi-layer perceptron
(MLP) module. Subsequently, Zheng et al. [33] proposed the deep convolutional dictionary
learning (DCDicL) denoising method, which simultaneously learns deep priors for both
dictionaries and coefficients. While these methods have made progress in adaptability,
robustness, the understanding of complex structures, and denoising effectiveness, most
deep denoising methods still face challenges such as a large number of parameters, high
complexity, and weak robustness.

Inspired by both traditional K-SVD and DCDicL methods, the current trend in re-
search is to integrate the strengths of each approach while mitigating their respective
limitations. The traditional K-SVD method excels in mathematical definitions and inter-
pretability, whereas the DCDicL method shines in adapting to complex data structures
and handling large-scale datasets. This paper proposes a deep convolutional dictionary
learning denoising method based on distributed image patches for Micro-LED displays, as
shown in Figure 1. At first, the whole image is divided into locally consistent distributed
image patches. Then, non-local self-similar sparse representation dictionary learning is
applied to distributed image patches, capturing their detailed structural characteristics.
Subsequently, a deep convolutional network is used to match the global self-similarity.
Finally, the denoising results of small image patches are merged through the weighted



Electronics 2024, 13, 1266 3 of 18

superposition of confidence evaluations. The proposed method makes full use of the advan-
tages of distributed image patches, dictionary learning, and convolutional sparse coding
structures and overcomes the limitations of the artificial prior. The experimental results
demonstrate that the method proposed in this paper achieves significant improvement in
image denoising, highlighting its potential contribution to the field of Micro-LED display
technology. The main contributions of this paper are listed below.

Figure 1. The overall structure of Dcidicl+.

• Novel denoising method. An improved denoising method based on deep convo-
lutional dictionary learning, where images are decomposed into small patches and
adaptive dictionary learning is conducted, is proposed. This method provides a better
representation of the fine structure of images, as both global and local features are
incorporated, allowing for a more comprehensive representation of the fine structure
present in images.

• Optimization algorithm. A new confidence-weighted fusion algorithm is developed
to optimize the proposed method in our model; it can utilize the structures of the
convolutional sparse coding structure, and local and global operators.

• Different applications. On the grayscale dataset Set12, compared with DCDicL, the
PSNR and SSIM of the proposed method are increased by 3.87 dB and 0.0012 at the
noise level of σ = 50. On the color dataset Urban100, compared with DCDicL, the
PSNR and SSIM of the proposed method are increased by 3.49 dB and 0.0133 at the
noise level of σ = 50.

The structure of this paper is as follows: Section 2 provides an extensive review
of the relevant literature. In Section 3, we introduce our denoising method in detail.
Comparative experiments demonstrating the effectiveness of the proposed denoising
method are presented in Section 4. Finally, Section 5 summarizes the research results of this
paper.

2. Related Works
2.1. Patch Denoising

Patch denoising is an image denoising method which eliminates or reduces noise
around the modeling and processing of small patches in the image. The motivation behind
patch denoising is to use the correlation between adjacent pixels in an image, aiming at
restoring the real information of the image more accurately through the modeling of local
patches. It is worth noting that the deep K-SVD (DK-SVD) method, which is integrated
with deep learning, is an outstanding example in this category.
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The DK-SVD method redesigns a learnable architecture based on K-SVD. Suppose that
x ∈ R

√
m×
√

m is the input clean image patch. We define x = Aα, where A ∈ Rm×n denotes
a dictionary atom and α ∈ Rn denotes the sparse vector. The noisy patch y ∈ R

√
m×
√

m is
degraded by additive white Gaussian noise (AWGN) with standard deviation σ. Unlike
K-SVD, DK-SVD uses the l1-norm instead of the l0-norm, replacing the greedy algorithm
with the l1-based iterative soft-thresholding algorithm (ISTA) [32]. This objective can be
formulated as

α̂ = arg min
α

1
2
∥Aα− y∥2

2 + λ∥α∥1, (1)

where λ is the regularization coefficient and ∥·∥1 denotes the sum of the absolute values of
the vector, which is the l1-norm.

DK-SVD employs the iterative soft-thresholding algorithm (ISTA) to learn sparse
matrix α̂, which can be represented by the following iterative formula:

α̂k+1 = Sλ/c(α̂k −
1
c

AT(Aα̂k − y)); α̂0 = 0, (2)

where k is the number of iterations, c denotes the square spectral norm of A, and Sλ/c
represents the soft-thresholding operator function.

[Sµ(w)]i = sgn(wi)(|wi| − µ)+, (3)

As illustrated in Formula (3), by utilizing the proximal gradient descent approach, the
sparse coding component is transformed into a trainable version. Performing operations
on each patch of the image is essentially equivalent to convolving the image.

To control the error in a manageable way, a separate parameter, λk, is learned for
each yk. A multi-layer perceptron (MLP) network is utilized to learn a regression function,
which maps inputs to outputs in the following manner: λ = fθ(y), where θ represents the
parameters of the MLP network.

During the patch reconstruction phase, the denoised image patch matrix (ŷ) is ob-
tained. Based on the already determined dictionary A and sparse vector α̂, the denoised
image patch can be reconstructed as follows: ŷ = Aα̂, where A represents a set of learn-
able parameters. The entire patch denoising and patch reconstruction process is highly
correlated with the convolutional sparse coding approach.

The complete end-to-end method architecture can be described as follows: The input
image is segmented into fully overlapping patches at first; then, each corrupted patch is
processed through the aforementioned patch denoising stage, and finally, the denoised
versions of these patches are averaged to reconstruct the image. In the final step, the original
K-SVD is abandoned, and a learnable method is designed to reconstruct the image. Let
u ∈ R

√
m×
√

m be the weight coefficient for each patch; the reconstructed image is obtained
by the following formula:

X̂ =

∑
k

RT
k (u⊙ α̂k)

∑
k

RT
k u

, (4)

where⊙ is the Schur product. In the entire algorithm, the parameters that can be learned are
θ (the vector of the parameters of the MLP), c (the step size in the ISTA), A (the dictionary),
and u (the average weight of patches).

The main contribution of DK-SVD is to propose an end-to-end framework for deep
learning methods. The framework retains the original computing path of K-SVD and
redesigns a framework based on supervised learning. This architecture needs fewer learn-
ing parameters and retains the essence of K-SVD. Compared with the classical K-SVD
method, its performance is significantly improved, and it is very close to the most advanced
denoising method based on deep learning.
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However, DK-SVD still uses fixed priors and adopts a generic dictionary rather than
an image adaptive dictionary. In addition, the performance of the DK-SVD method is still
behind that of many deep learning methods.

2.2. Convolutional Dictionary Learning

Convolutional dictionary learning denoising is a signal processing- and machine
learning-based method employed for handling images contaminated by noise [34,35]. This
method includes two key steps: dictionary learning and denoising processing.

In the initial stage, dictionary learning represents the first step of convolutional dic-
tionary learning denoising. During this stage, the method endeavors to learn a set of
fundamental structures or features from the input image, forming a dictionary. This dictio-
nary encompasses convolutional kernels capable of efficiently representing the content of
the image. The objective of dictionary learning is to compactly represent the input image,
ensuring that the dictionary can effectively capture the local structures within the image.

Following the acquisition of the dictionary, the input image can undergo sparse
representation using the dictionary. Sparse representation means that the image can be
represented as a linear combination of several bases in a dictionary, thus producing a more
concise representation. Through sparse representation, the basic structures of the image
can be extracted, and the noise is represented by a small coefficients.

The noise in the sparse representation coefficients can be effectively reduced by con-
volutional denoising. In this step, convolutional kernels are employed to filter the sparse
representation coefficients, eliminating noise components. Finally, through inverse sparse
coding and inverse convolutional operations, the denoised coefficients are restored to the
ultimate denoised image. Suppose that Yi ∈ Rh×w is the i-th training sample; the objective
function can be written as follows:

min
A,{Xi}

1
N

N

∑
i=1

1
2
∥A⊗ Xi −Yi∥2

2 + λXψ(Xi) + λAϕ(A), (5)

where A⊗ Xi =
C
∑

c=1
Ac ∗ Xi,c, ∗ is the two-dimensional convolutional operation, C is the

number of channels, A represents the convolutional dictionary, Xi = {Xi,c}C
c=1 is the sparse

feature map of image Yi, λXi and λA are penalty parameters for Xi and A, ψ(Xi) denotes the
prior distribution of input variable Xi, and ϕ(A) is a regularization term for dictionary A.

Based on the learning method of convolutional dictionary mentioned above, Zheng et
al. [33] proposed an improved deep convolutional dictionary learning (DCDicL) method.
This method not only learns the deep prior of coefficient X but also learns the deep prior of
convolutional dictionary A from the training data, and provides an adaptive dictionary for
each image. The learning process can be expressed by the following formula:

min
{Ai ,Xi}

1
N

N

∑
i=1

1
2
∥Ai ⊗ Xi −Yi∥2

2 + λXψ(Xi) + λAϕ(Ai), (6)

The expression above can be rewritten as the following optimization problem:

min
1
N

N

∑
i=1

F(Ai ⊗ Xi, Ygt
i )

s.t. M{Ai, Xi} = arg min
A,X

1
2σ2

i
∥A⊗ X−Yi∥2

2 + λXψ(X) + λAϕ(A),
(7)

where Ygt
i is the ground truth version of Yi, F(, ) is a function for measuring loss, and σi

represents the level of noise.
DCDicL strictly follows the mathematical formula of dictionary learning, learning

the prior knowledge of X and A from training data, and learning a specific dictionary
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for each image. The dictionary can adapt to the image content and perceive the global
information, thus giving DCDicL a powerful ability to recover the fine image structures
even under severe noise. However, the DCDicL denoising method still cannot represent
the fine structure of images very well, and its performance still needs to be improved.

3. Methodology
3.1. Proposed Method

Inspired by the related work, we put forward a deep convolutional dictionary learning
denoising method based on distributed image patches (DCDicL+). This method not only
processes the images globally but also processes the segmented image patches locally
through similar patches. The proposed method enhances the restoration of fine details in
the images. The fundamental method can be expressed as a minimization problem with
the following formula:

min
A,X

{
1
2
∥A⊗ X−Y∥2

F + λ1ψ(X) + λ2 φ(A)

}
. (8)

In this method, the complete noisy image is represented by Y, the global image
dictionary is denoted by A, and X is introduced as the sparse coefficient.

3.2. Optimization Algorithm

Convolutional dictionary learning decomposes the entire image using convolutional
operations, reducing redundancy in patch representations. Patch denoising helps preserve
more details in the image. To obtain an effective method, Equation (8) is rewritten in the
following forms of problems:

min
{Al ,Xl}

{
d

∑
l=1

1
2
∥Al ⊗ Xl −Yl∥2

F + λ1ψ(Xl) + λ2ϕ(Al)

}
,

s.t. Al ⊗ Xl ∈ M,

(9)

where M is the given global constraint, λ1 and λ2 are penalty parameters for Xl and Al ,
ψ(Xl) denotes the prior distribution of input variable Xl , and ϕ(Al) is a regularization
term for dictionary Al . By introducing auxiliary variables Xl

′ and Al
′ to incorporate the

denoising prior, Equation (9) can be expressed as

min
Xl ,Xl

′

{
1
2

∥∥Al ⊗ Xl
′ −Yl

∥∥2
F + λ1ψ(Xl)

}
,

s.t. Xl = Xl
′, Al ⊗ Xl ∈ M.

(10)

min
Al ,Al

′

{
1
2

∥∥Al
′ ⊗ Xl −Yl

∥∥2
F + λ2ϕ(Al)

}
,

s.t. Al = Al
′, Al ⊗ Xl ∈ M.

(11)

The constrained optimization problem above can be solved by using the half quadratic
splitting (HQS) method [36]; then, the optimization problems are equivalent to minimizing
the following two formulas:

min
Xl ,Xl

′

{
1
2

∥∥Al ⊗ Xl
′ −Yl

∥∥2
F + λ1ψ(Xl) +

µX
2

∥∥Xl − Xl
′∥∥2

F

}
,

s.t. Al ⊗ Xl ∈ M.
(12)

min
Al ,Al

′

{
1
2

∥∥Al
′ ⊗ Xl −Yl

∥∥2
F + λ2ϕ(Al) +

µA
2

∥∥Al − Al
′∥∥2

F

}
,

s.t. , Al ⊗ Xl ∈ M,
(13)
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where µX and µA are penalty parameters. The above equations can be solved iteratively,
and auxiliary variables Xl

Θ and Al
Θ are introduced in the following formulas. For the

update of sparse coefficient Xl , Equation (12) can be resolved by alternately optimizing the
following subproblems:

Xl,(t)
′ = arg min

Xl
Θ

{
1
2

∥∥∥Al,(t−1) ⊗ Xl
Θ −Yl

∥∥∥2

F
+

βX
2

∥∥∥Xl
Θ − Xl ,(t−1)

∥∥∥2

F

}

=
1

βX
F−1

{(
a ◦ y↑C + βXx

)
− a ◦

[
ā⊙

(
a ◦ y↑C + βXx

)
α1 + (ā⊙ a)

↑C

]}
,

s.t. βX = µXσ2, y = F(Yl), a = F(Al), x = F(Xl), Al ⊗ Xl ∈ M.

(14)

Xl,(t) = arg min
Xl

Θ

{
ψ(Xl

Θ) +
ωX
2

∥∥∥Xl,(t)
′ − Xl

Θ
∥∥∥2

F

}
= prior(Xl,(t−1)

′),

s.t. ωX = µX
/

λ1, Al ⊗ Xl ∈ M,

(15)

where σ represents the noise level of the image patch and t denotes the number of itera-
tions. Equation (14) obtains a closed-form solution for Xl,(t) through fast Fourier transform
(FFT) [37]. F() and F−1() represent 2D FFT and its corresponding inverse transform, re-
spectively. As a common operation in neural networks, the convolutional operation in the
equations is typically implemented through matrix multiplication. ◦ is the Hadamard prod-
uct. ↑C expands the channel dimension. d̄⊙ d = ∑C

C=1 d̄C ◦ dC. Equation (15) is updated
through a neural network for the variables. prior() represents the nonlinear mapping of the
neural network. The prior knowledge of sparse coefficients Xl is learned through a U-Net
structure [38]. For hyperparameters βX and ωX , we employ a configuration consisting of
two Conv layers followed by a SoftPlus layer with input σ to predict the hyperparame-
ters for each stage. For updating dictionary Al , Equation (13) can be reformulated as the
following subproblem:

Al,(t)
′ = arg min

Al
Θ

{
1
2

∥∥∥Al
Θ ⊗ Xl,(t) −Yl

∥∥∥2

F
+

βA
2

∥∥∥Al
Θ − Al ,(t−1)

∥∥∥2

F

}
= vec−1

{(
XTX + βA I

)−1(
XTΥ + βAA

)}
,

s.t. βA = µAσ2, A = vec−1(Al).

(16)

Al,(t) = arg min
Al

Θ

{
ϕ(Al

Θ) +
ωA
2

∥∥∥Al ,(t)
′ − Al

Θ
∥∥∥2

F

}
= prior(Al,(t−1)

′),

s.t. ωA = µA
/

λ2, Al ⊗ Xl ∈ M,

(17)

where vec() is the vectorization operator and vec−1() reverses the vectorization. X, Υ, and A
denote the dimensional transformation results of matrices Xl , Yl , and Al , respectively. The
convolutional multiplication in Equation (16) is expanded into matrix multiplication, and
the solution for Al,(t) is obtained using the least squares method. Furthermore, Equation (17)
is updated through a shallower neural network. Prior knowledge on dictionary Al is
learned through a relatively shallow network, consisting of six Conv layers with ReLU
activation. For hyperparameters βA and ωA, we employ a configuration consisting of two
Conv layers followed by a SoftPlus layer [39] with input σ to predict the hyperparameters
for each stage. For updating global parameter M, by introducing auxiliary variables
M′ to incorporate the global denoising prior, the problem can be reformulated as the
following formulas:

M(t)
′ = M(t−1)

′ − αMµM(M(t−1)
′ −M(t−1)). (18)
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M(t) = M(t−1) − αM∇ f (M(t−1)), (19)

where αM represents the learning rate and ∇ denotes the gradient. Specifically, ∇ f (M(t))
represents the gradient of the objective function ( f (M)) with respect to variable M at
iteration t. The output image patch can be obtained through convolutional multiplication:

Yl,(t)
′ = Al,(t) ⊗ Xl,(t) (20)

3.3. Confidence-Weighted Fusion of Image Patches

The denoised image patches processed as mentioned above are combined into a
complete output image according to specified offsets. Initially, a confidence matrix is
generated by calculating the probability density values for each point in the image patches.
Subsequently, the final denoised image is obtained by weighted summation of confidence-
weighted input image patches. This approach ensures the preservation of high-confidence
information and can be expressed as

P
(

Yl,(t)
′
)
=

exp
(
− 1

2

(
Yl,(t)

′ − α
)T

Σ−1
(

Yl,(t)
′ − α

)
+ τM

)
√
(2π)

k
det Σ

, (21)

Y′ =


∑
t

[
P
(

Y1,(t)
′
)
×Y1,(t)

′
]
,

∑
t

[
P
(

Y2,(t)
′
)
×Y2,(t)

′
]
,

..., ∑
t

[
P
(

Yd,(t)
′
)
×Yd,(t)

′
]
, (22)

where P() denotes the probability density function of a multivariate Gaussian distribution,
Yl
′ is the image patch processed after denoising, Y′ is the fully assembled denoised image,

τ represents the penalty term for the global component, ∑ represents the covariance matrix,
det ∑ is the determinant of ∑, k is the dimensionality, and α denotes the mean.

In conclusion, the solution steps of the method proposed in this paper are shown in
Algorithm 1. More specifically, InitNet, consisting of two Conv layers with ReLU activation,
is employed to learn initialization coefficient Xl,(0). Subsequently, for each of the t iterations,
the value of Xl,(t)

′ is calculated by Equation (14). This result is then fed into Equation (15),
which includes three connected up-sampling blocks and three down-sampling blocks,
allowing for the estimation of the sparse coefficient by using the prior learned from the
training data. Similar procedures are applied for updating dictionary Al,(t) and M(t). The
final image is obtained through convolutional operation and confidence fusion.

The effectiveness of our proposed method will be analyzed in the experimental part of
Section 4.
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Algorithm 1: DCDicL+

1 Input: Noisy Image Y, dictionary D ;

2 Initialize: Yl , Al,(0) = 0, Xl,(0) = InitNet
(

Yl,(0), σ
)

, t = 0 ;

3 for t← 1 to T do
4 compute Xl,(t)

′, via Equation (14);
5 compute Xl,(t), via Equation (15);
6 compute Al,(t)

′, via Equation (16);
7 compute Al,(t), via Equation (17);
8 compute M(t)

′, via Equation (18);
9 compute M(t), via Equation (19);

10 compute Yl,(t)
′, via Equation (20);

11 compute P
(

Yl,(t)
′
)

, via Equation (21);

12 t = t + 1

13 Output: Y′;

4. Experimental Results

In this section, we report the experimental results. The training data were generated by
using the WED [40] (4744 images), DIV2K [41] (900 images), and BSD400 [42] (400 images)
datasets. The tests were conducted on the grayscale datasets Set12 (12 images), BSD68 [43]
(68 images), and Urban100 [44] (100 images) and the color datasets Urban100 [44] (100
images), CBSD48 [43] (48 images), and Kodak24 [45] (24 images). All experiments were
carried out on the GTX 1080Ti GPU with CUDA version 11.2 using PyTorch.

Peak signal-to-noise ratio (PSNR) [46] and structural similarity (SSIM) [47] were
employed for assessing the local consistency within image patches. Additionally, the
consistency between different local regions was evaluated with the mean square error
(MSE) [48]. For the given clean image Y′ and noisy image Y with a size of m× n, MSE is
defined as follows:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[
Y′(i, j)−Y(i, j)

]2
,

where the PSNR value is contingent on the MSE, implying that a smaller MSE corresponds
to a higher PSNR value. This relationship indicates a diminished distinction between the
reconstructed image and the actual image. PSNR is defined as

PSNR = 10 · log10

(
MAX2

MSE

)
,

where MAX represents the maximum pixel value of the image. In parallel, SSIM serves as a
metric for gauging the likeness between the reconstructed and actual images in dimensions
such as brightness, contrast, and structure. SSIM can be mathematically formulated as
follows:

SSIM =
(2µY′µY + c1)(2σY′Y + c2)(

µ2
Y′ + µ2

Y + c1
)(

ε2
Y′ + ε2

Y + c2
) ,

where σY′Y is the covariance between the reconstructed and original images, µY′ and µY
represent the means, εY′ and εY represent the variance, and c1 and c2 are constants. A
greater SSIM value denotes heightened similarity between the two images, signifying
superior image quality.
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4.1. Parameter Settings
4.1.1. Training Iterations

For each input image, the image patch size was set to 128× 128, and the confidence
merging step size was set to 8. During the training process, Gaussian noise with zero
average value and a noise level in the range of σ ∈ [0, 50] was added to the images. These
noisy images were trained in batches. The learning rate was set to 10−4, and the batch size
was set to 16 on the GTX 1080Ti GPU. The loss function utilized L1 loss, and the Adam
optimizer [49] was employed for updating the network parameters. Iteration T was carried
out in four stages, which are discussed in Section 4.3. The number of atoms in dictionary A
was fixed at 64, and the size of A was set to 5. Simultaneously, to ensure the convergence
of the training function, this study employed a self-constructed dataset for validation.
Figure 2a,b illustrate the changes in PSNR (dB) and SSIM with the increase in training
iterations when the noise level is σ = 25. Figure 2c illustrates the changes in MSE with the
increase in training iterations. It can be observed that with a greater number of iterations,
the values of PSNR and SSIM gradually improve, and MSE gradually converges. After
4000 iterations, a favorable outcome is achieved, prompting the decision to establish the
final number of iterations at 4000.

(a) (b) (c)

Figure 2. Contrast curves of noise level of σ = 25 during training. (a) PSNR (dB) trends of DCDicL and
DCDicL+, (b) SSIM trends of DCDicL and DCDicL+, and (c) MSE trends of DCDicL and DCDicL+.

4.1.2. Confidence Scaling Factor

Different values of confidence scaling factor p produce different regions of interest,
potentially resulting in excessive smoothing or loss of local detail information in the image.
Parameter p controls the size of the covariance matrix for confidence-weighted multivariate
normal distributions, influencing the spatial range of the multivariate normal distribution
around the center of the image patch and consequently affecting the confidence distribution
of each pixel. A larger p value leads to a wider confidence distribution, exerting a greater
impact on surrounding pixels during the mosaic process, whereas a smaller p value results
in a more localized confidence distribution.

To assess the influence of different confidence scaling factors, this study additionally
performed ablation analysis by varying the scaling factor (p), demonstrating that p = 2 is
the optimal parameter selection. Moreover, it was observed that further increases in p did
not significantly enhance performance. Further details can be found in Section 4.3. The
experimental results are shown in Tables 1 and 2 (where the bold values represent the
best values).

Compared with p = 0.5 for original input images with noise levels of σ = 15, 25, and
50 in the grayscale dataset Urban100, using p = 2 for denoising can increase the PSNR by
0.01 dB, 0.02 dB, and 0.03 dB and SSIM by 0.0001, 0.0003, and 0.0006, respectively. In the
color dataset Urban100, compared with p = 0.5, using p = 2 for denoising can increase the
PSNR by 0.01 dB, 0.02 dB, and 0.02 dB and SSIM by 0.0002, 0.0002, and 0.0003, respectively.
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The experiments indicate that when the scale factor (p) is set to 2, the values of the PSNR
and SSIM are better, so p = 2 was set in subsequent experiments.

Table 1. Comparison of PSNR (dB)/SSIM average values with different scaling factors on
grayscale datasets.

Dataset Noise p = 0.5 p = 2

Set12
15 34.45/0.9142 34.45/0.9143
25 33.17/0.8765 33.19/0.8769
50 31.25/0.8109 31.87/0.8116

BSD68
15 32.14/0.9136 32.14/0.9137
25 31.15/0.8577 31.16/0.8579
50 30.23/0.7292 30.25/0.7295

Urban100
15 33.42/0.9472 33.43/0.9473
25 32.20/0.9179 32.22/0.9182
50 30.93/0.8556 30.96/0.8562

Table 2. Comparison of PSNR (dB)/SSIM average values with different scaling factors on
color datasets.

Dataset Noise p = 0.5 p = 2

Set12
15 34.45/0.9142 34.45/0.9143
25 34.16/0.9460 34.18/0.9462
50 32.46/0.9014 32.48/0.9017

CBSD68
15 34.90/0.9381 34.91/0.9381
25 33.32/0.8976 33.34/0.8977
50 31.94/0.8156 31.96/0.8159

Kodak24
15 35.70/0.9316 35.71/0.9317
25 34.11/0.8947 34.13/0.8949
50 32.63/0.8230 32.64/0.8233

4.2. Comparison Results

In order to verify the proposed denoising method, DCDicL+, noise levels of 15, 25,
and 50 were added to the original input images. DCDicL+ was compared with sev-
eral representative denoising methods, including BM3D [20], WNNM [23], FFDNet [27],
DnCNN [18], SwinIR [45], LKSVD [31], DCDicL [33], and SCUNet [47]. The imple-
mentation codes of these comparison methods are provided by their respective authors
(https://github.com/natezhenghy/DCDicL_denoising, accessed on 17 December 2023)
and tested on the same datasets.

4.2.1. Grayscale Datasets

As shown in Table 3, the best PSNR and SSIM for each noise level in each dataset are
displayed in bold, indicating the best results, and those underlined indicate the second
best results. It can be observed that compared with other denoising methods, the proposed
denoising method achieves superior performance on the grayscale datasets Set12, BSD68,
and Urban100. The improvement range for the PSNR is 0.15 dB to 11.03 dB, and the
improvement range for SSIM is 0.0002 to 0.1851. On the dataset Set12, compared with
DCDicL, the PSNR/SSIM of the proposed method are increased by 1.11 dB/0.0028, 2.16
dB/0.0021, and 3.87 dB/0.0012, respectively; Compared with SCUNet, they are increased
by 1.02 dB/0.0126, 2.10 dB/0.0015, and 3.83 dB/0.0002, respectively. This can be attributed
to the excellent learning capability of DCDicL+ with a large number of training data.
The proposed method explores the inherent characteristics in images and performs finer
denoising and restoration of the fine structure in the images.

https://github.com/natezhenghy/DCDicL_denoising
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Table 3. Comparison of PSNR (dB)/SSIM average values on different grayscale datasets.

Method

Dataset Set12 BSD68 Urban100

σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50

BM3D 32.37/ 29.97/ 26.72/ 31.07/ 28.57/ 25.60/ 32.35/ 29.70/ 25.95/
0.8952 0.8504 0.7676 0.8717 0.8013 0.6864 0.9220 0.8777 0.7791

WNNM 32.71/ 30.26/ 27.05/ 31.37/ 28.83/ 25.87/ 32.53/ 30.38/ 26.83/
0.8988 0.8557 0.7775 0.8766 0.8087 0.6982 0.9271 0.8885 0.8047

FFDNet 32.75/ 30.43/ 27.32/ 31.63/ 29.19/ 26.29/ 32.40/ 29.90/ 26.50/
0.9024 0.8631 0.7899 0.8902 0.8288 0.7239 0.9265 0.8979 0.8048

DnCNN 32.86/ 30.44/ 27.18/ 31.73/ 29.23/ 26.23/ 32.64/ 29.95/ 26.26/
0.9024 0.8617 0.7828 0.8907 0.8279 0.7189 0.9246 0.8781 0.7856

SwinIR 33.36/ 31.01/ 27.91/ 31.97/ 29.50/ 26.58/ 32.70/ 31.30/ 27.98/
0.8898 0.8482 0.8119 0.8959 0.8321 0.7298 0.9104 0.8724 0.8039

LKSVD 28.72/ 24.85/ 20.84/0 28.48/ 24.96/ 20.97/ 28.46/ 23.80/ 20.22/
0.7826 0.7354 0.7042 0.7835 0.7371 0.7035 0.7836 0.7331 0.7018

DCDicL 33.34/ 31.03/ 28.00/ 31.95/ 29.52/ 26.63/ 32.31/ 29.65/ 26.22/
0.9115 0.8748 0.8122 0.8957 0.8379 0.7395 0.9383 0.9129 0.8336

SCUNet 33.43/ 31.09/ 28.04/ 31.99/ 29.55/ 26.67/ 32.88/ 31.58/ 28.56/
0.9017 0.8754 0.8132 0.9001 0.8402 0.7456 0.9458 31.58/ 0.8392

Our 34.45/ 33.19/ 31.87/ 32.14/ 31.16/ 30.25/ 33.43/ 32.22/ 30.96/
0.9143 0.8769 0.8134 0.9137 0.8579 0.7478 0.9473 0.9182 0.8562

Simultaneously, this paper selected two images from Set12 and introduced Gaussian
noise at the level of σ = 50 to further validate the visual denoising effect. The experimental
results are shown in Figures 3 and 4. The green boxes are enlarged images of the red boxes.
Upon closer inspection of the enlarged comparison diagrams, it becomes evident that
DCDicL+ restores more edge and texture information. According to the analysis of specific
numerical values, the proposed method demonstrates significant improvement compared
with other methods on the image Starfish, exhibiting enhancements ranging from 0.98
dB to 6.92 dB in the PSNR and improvements from 0.0207 to 0.1504 in SSIM. Likewise,
on the image House, the proposed method exhibits clear superiority over other methods,
manifesting improvements in the PSNR from 2.57 dB to 12.59 dB and enhancements in
SSIM from 0.0308 to 0.1007.

Figure 3. Grayscale image Starfish with noise level σ = 50: results of different methods (PSNR
(dB)/SSIM).
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Figure 4. Grayscale image House with noise level σ = 50: results of different methods (PSNR
(dB)/SSIM).

4.2.2. Color Datasets

For the color datasets Urban100, CBSD68, and Kodak24, Table 4 provides a compara-
tive analysis of various methods based on the PSNR and SSIM. Compared with DCDicL, the
PSNR/SSIM of the proposed method are improved by 0.91 dB/0.0149, 1.41 dB/0.0162, and
3.49 dB/0.0133, respectively, on the color dataset Urban100. Compared with SCUNet, these
performance metrics are improved by 0.63 dB/0.0107, 1.15 dB/0.0120, and 2.34 dB/0.0116,
respectively. It can be observed that the proposed method also demonstrates effective
denoising performance on color images and restores them effectively.

Table 4. Comparison of PSNR (dB)/SSIM average values on different color datasets.

Method

Dataset Urban100 CBSD68 Kodak24

σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50

BM3D 33.93/ 31.36/ 27.93/ 33.50/ 30.69/ 27.36/ 34.26/ 31.67/ 28.44/
0.9408 0.9092 27.93/ 0.9215 0.8672 0.7626 0.9147 0.8670 0.7760

WNNM 32.86/ 32.86/ 27.18/ 31.73/ 31.73/ 26.23/ 32.64/ 29.95/ 26.26/
0.9024 0.9024 0.7828 0.8907 0.8907 0.7189 0.9246 0.8781 0.7856

FFDNet 33.83/ 31.40/ 28.05/ 33.87/ 31.21/ 27.96/ 34.63/ 32.13/ 28.98/
0.9418 0.9120 0.8476 0.9290 0.8821 0.7887 0.9224 0.8791 0.7952

DnCNN 32.98/ 30.81/ 27.59/ 33.89/ 31.23/ 27.92/ 34.48/ 32.03/ 28.85/
0.9314 0.9015 0.8331 0.9290 0.8830 0.7896 0.9209 0.8775 0.7917

SwinIR 35.13/ 32.90/ 29.82/ 34.42/ 31.78/ 28.56/ 35.34/ 32.89/ 29.79/
0.9532 0.9284 0.8675 0.9203 0.8862 0.7890 0.9212 0.8864 0.8041

LKSVD 32.76/ 30.37/ 27.12/ 31.63/ 29.15/ 26.19/ 32.46/ 29.80/ 26.22/
0.8106 0.7798 0.7187 0.8282 0.7848 0.7169 0.8236 0.7831 0.7318

DCDicL 34.90/ 32.77/ 28.99/ 34.36/ 31.75/ 28.57/ 35.38/ 32.97/ 29.96/
0.9511 0.9300 0.8884 0.9348 0.8930 0.8107 0.9300 0.8928 0.8219

SCUNet 35.18/ 33.03/ 30.14/ 34.40/ 31.79/ 28.61/ 35.34/ 32.92/ 29.87/
0.9553 0.9342 0.8901 0.9351 0.8931 0.8130 0.9293 0.8922 0.8198

Our 35.81/ 34.18/ 32.48/ 34.91/ 33.34/ 31.96/ 35.71/ 34.13/ 32.64/
0.9660 0.9462 0.9017 0.9381 0.8977 0.8159 0.9317 0.8949 0.8233

Similarly, from the visual representation in Figures 5 and 6, it can be observed that the
proposed method exhibits the best visual performance. As shown in Figure 5, compared
with other methods, the PSNR and SSIM of this method are improved by 0.38 dB to
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5.81 dB and by 0.0021 to 0.1783, respectively. As shown in Figure 6, it can be observed
that compared with other methods, DCDicL+ can recover a finer structure, achieving an
enhancement of 0.11 dB to 6.00 dB in the PSNR and an improvement of 0.0032 to 0.1879 in
SSIM. This fully proves the good performance of the denoising method proposed in this
paper.

Figure 5. Color image with noise level σ = 50 denoised with different methods (PSNR (dB) /SSIM).

Figure 6. Color image with noise level σ = 50 denoised with different methods (PSNR (dB) /SSIM).

4.3. Discussion

Figure 7 shows the experimental results of DCDicL+ compared with other methods.
All experiments were conducted on the dataset Set12. Figure 7a shows the PSNR com-
parison between the DCDicL+ and DCDicL methods in different stages T; the experiment
was carried out at σ = 25. It can be seen that the PSNR continues to increase with the
increase in stage T, but this also leads to an increase in time. However, we can also see
that the increase in PSNR is very small after setting stage T to 4, so we choose the value
of stage T as 4. Under the same conditions, the PSNR value of the proposed method is
about 2 dB higher than that of the DCDicL method. Furthermore, the inference time of the
proposed method was compared with that of the competitive methods; all experiments
were carried out at σ = 50. As can be observed in Figure 7b, DCDicL+ is slower than
DnCNN, FFDNet, LKSVD, and SCUNet, but it achieves better output in terms of PSNR.
Compared with SwinIR, the proposed method demonstrates higher performance in terms
of PSNR and requires less inference time, further confirming its effectiveness. In conclusion,
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it can be deduced that DCDicL+ provides a robust solution in terms of both effectiveness
and efficiency.

(a) (b)

Figure 7. Performance comparison of DCDicL+ with other methods. (a) Comparison of PSNR (dB)
obtained with DCDicL at different stages T. (b) Comparison of inference time and PSNR (dB) of
different methods.

For the experimental analysis, we systematically varied the p values from 0.5 to 10
to comprehensively evaluate their impact on denoising performance. The experiments
were conducted using the dataset Set12 with a noise level of σ = 50. The results, shown in
Figure 8, reveal a notable trend: both the PSNR (dB) and SSIM exhibit a discernible pattern
of convergence when p = 2. This convergence indicates that the denoising performance
reaches a stable state at this specific p value. Given this observation, we deduce that further
adjustments beyond p = 2 do not result in significant improvements in denoising quality.
Consequently, we conclude that p = 2 represents the optimal parameter selection for our
denoising method in terms of achieving the desired balance between edge preservation
and noise reduction.

(a) (b)

Figure 8. Variation curves of different p at noise level σ = 50. (a) PSNR (dB) trend of DCDicL and (b)
SSIM trend of DCDicL.

To evaluate the efficacy of our method in preserving edge details and overall image
quality, we utilized the Edge Preservation Index (EPI) [50], a quantitative measure of edge
sharpness and naturalness in denoised images. A higher EPI value, closer to 1, indicates
better edge preservation. The experimental images were obtained from the dataset Set12.
Table 5 illustrates the comparison between our method and DCDicL in preserving edge
details across various images. Notably, our method demonstrates better performance.
For instance, at noise levels of σ = 15, 25, and 50, the EPI values for the image Peppers
are 0.0103, 0.0073, and 0.0030 higher, respectively, compared with DCDicL. Furthermore,
the average EPI values are higher than those of DCDicL by 0.0027, 0.0030, and 0.0051,
respectively.
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Table 5. Comparison of EPI obtained with DCDicL on Set12.

Image

Method σ = 15 σ = 25 σ = 50

DCDicL Our DCDicL Our DCDicL DCDicL
C.man 0.7705 0.7702 0.6929 0.6903 0.5845 0.5840
Peppers 0.7445 0.7548 0.5765 0.5838 0.4968 0.4998
House 0.7633 0.7633 0.7204 0.7194 0.6513 0.6515
Airplane 0.8480 0.8482 0.7996 0.8011 0.7155 0.7193
Couple 0.8685 0.8720 0.8312 0.8369 0.7542 0.7651
Parrot 0.7598 0.7616 0.6870 0.6904 0.5749 0.5797
Man 0.8144 0.8167 0.7447 0.7485 0.6574 0.6623
Monarch 0.6675 0.6701 0.6067 0.6116 0.5136 0.5171
Starfish 0.8743 0.8815 0.8395 0.8500 0.7533 0.7804
Boat 0.6598 0.6642 0.5865 0.5888 0.4796 0.4824
Barbara 0.7205 0.7203 0.6261 0.6266 0.4789 0.4826
Lena 0.7209 0.7213 0.6521 0.6513 0.5442 0.5422
Average 0.7677 0.7704 0.6969 0.6999 0.6004 0.6055

5. Conclusions

In order to solve the noise interference problem of Micro-LED displays, a deep con-
volutional dictionary learning denoising method based on distributed image patches is
proposed. The initial stage includes preprocessing the original image into locally dis-
tributed image patches with uniform size and then obtaining the non-local self-similar
sparse representation dictionary customized for these patches. Subsequently, the intro-
duction of deep convolutional neural networks promotes global self-similarity matching,
and under the guidance of a confidence evaluation function, weighted fusion is used to
denoise the image. Notably, the experimental results show that the method is superior
in preserving the details of complex images, thus reducing the potential loss. In rigorous
objective and subjective evaluations, the proposed method consistently outperforms all
comparative methods, establishing itself as a novel and effective denoising solution for
Micro-LED displays.

In future works, there is potential for enhancing the adaptability of the denoising
method to diverse noise profiles and addressing more complex denoising challenges.
Additionally, exploring its scalability and applicability in Micro-LED display technologies
will be crucial. Integration with other image processing techniques could further improve
overall performance and contribute to advancements in image quality enhancement.
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