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Abstract: In the geological research of the Moon and other celestial bodies, the identification and
analysis of impact craters are crucial for understanding the geological history of these bodies. With
the rapid increase in the volume of high-resolution imagery data returned from exploration missions,
traditional image retrieval methods face dual challenges of efficiency and accuracy when processing
lunar complex crater image data. Deep learning techniques offer a potential solution. This paper
proposes an image retrieval model for lunar complex craters that integrates visual and depth fea-
tures (LC2R-Net) to overcome these difficulties. For depth feature extraction, we employ the Swin
Transformer as the core architecture for feature extraction and enhance the recognition capability for
key crater features by integrating the Convolutional Block Attention Module with Effective Channel
Attention (CBAMwithECA). Furthermore, a triplet loss function is introduced to generate highly
discriminative image embeddings, further optimizing the embedding space for similarity retrieval. In
terms of visual feature extraction, we utilize Local Binary Patterns (LBP) and Hu moments to extract
the texture and shape features of crater images. By performing a weighted fusion of these features
and utilizing Principal Component Analysis (PCA) for dimensionality reduction, we effectively
combine visual and depth features and optimize retrieval efficiency. Finally, cosine similarity is used
to calculate the similarity between query images and images in the database, returning the most
similar images as retrieval results. Validation experiments conducted on the lunar complex impact
crater dataset constructed in this article demonstrate that LC2R-Net achieves a retrieval precision
of 83.75%, showcasing superior efficiency. These experimental results confirm the advantages of
LC2R-Net in handling the task of lunar complex impact crater image retrieval.

Keywords: LC2R-Net; CBAM; ECA; impact crater; image retrieval; deep learning; triplet loss function

1. Introduction

Impact craters on the lunar surface are significant witnesses to the history of the Solar
System. Their size, shape, and distribution provide key insights into understanding the
geological history of the Moon and other celestial bodies [1–4]. With the advancement
of space exploration technology, we are now able to obtain high-resolution imagery of
the lunar surface. Over the past few decades, lunar exploration projects such as NASA’s
Apollo program, the Lunar Reconnaissance Orbiter, and China’s Chang’e program have
accumulated a vast amount of lunar data, which have been used for in-depth studies [5–9].
These images contain rich information, such as the morphology, structure, and geological
features of impact craters, as well as the distribution of rocks related to impact events.
However, this also presents a challenge: how to effectively retrieve and analyze the vast
amount of crater imagery data [10]. Content-based image retrieval (CBIR) technology may
be an effective solution to this problem.

Content-based image retrieval systems have a wide range of applications in lunar
and planetary science research. Traditional CBIR methods typically rely on the visual
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content of images, such as texture, shape, and color features, to index and retrieve images.
These methods depend on handcrafted features such as Speeded Up Robust Features
(SURF) [11], Hu moments, and Gabor features [12]. Although these features are effective in
certain scenarios, their application is limited in the complex lunar environment, where they
struggle to capture detailed information within images effectively. Moreover, these methods
often require meticulous feature engineering and parameter tuning, which is not only time-
consuming but also limits their generalization ability and scalability. With the rise of deep
learning technologies, particularly the successful application of Convolutional Neural
Networks (CNNs) in remote sensing image recognition and classification tasks [13–15],
researchers have begun to explore the use of deep features to enhance the performance of
CBIR systems.

The successful application of deep learning methods in the field of remote sensing
image retrieval has demonstrated their significant advantages over traditional manual
feature methods [16–18]. Deep learning models are capable of automatically extracting
abstract feature representations from images by learning from large-scale datasets. These
deep features can better capture the semantic information and contextual relationships
within images, thus enhancing the accuracy and robustness of CBIR systems. Given the
complexity of remote sensing image description, some scholars have begun to explore
strategies for feature fusion. Yan et al. have found through research that CNN features and
SIFT features are highly complementary and can significantly improve the performance
of image retrieval tasks [19]. Cheng et al. have proposed a distributed retrieval system
architecture suitable for high-resolution satellite images by combining deep features with
traditional manual features [20]. Their work indicates that the combination of deep features
and traditional manual features can provide a more comprehensive image representation
method. Although these methods have achieved commendable results, these models
generally use the cross-entropy loss function during training, which has certain limitations
in image retrieval tasks. In image retrieval tasks, we are more concerned with the similarity
between images rather than just the accuracy of categories. This means that models need to
be able to not only identify the categories of images but also capture the subtle differences
within categories and the significant distinctions between categories. To this end, deep
metric learning has become a key technology for addressing such problems.

Deep metric learning integrates the advantages of deep learning and metric learning.
This approach automatically extracts image features through deep learning models and
optimizes the distances between features through metric learning, making the distances in
feature space closer for similar images while expanding the distances between dissimilar
images. Deep metric learning has shown significant effectiveness in multiple applications
in the field of remote sensing, including image retrieval [21–25], image classification [26,27],
and object recognition [28,29], etc. However, the task of image retrieval for lunar impact
craters demands more complex and meticulous feature extraction requirements, and these
models do not always effectively capture all the key features of the craters. In this context,
the Swin Transformer, as a novel deep learning architecture [30], has demonstrated its pow-
erful performance in various visual tasks, which has inspired us to utilize this technology
to address the challenges of lunar impact crater image retrieval.

The Swin Transformer is a neural network architecture based on the Transformer,
widely applied as an efficient feature extractor in computer vision tasks [31–35]. Compared
to traditional CNNs, the Swin Transformer not only effectively models global contextual
information but also captures features at different scales through its hierarchical structure,
which is crucial for understanding complex scenes and relationships within images. In-
spired by this, we propose a lunar complex crater image retrieval model (LC2R-Net) that
fuses visual and depth features. We employ the Swin Transformer as the core architec-
ture for depth feature extraction and integrate LBP and Hu moments for visual feature
extraction. Moreover, to evaluate the effectiveness of our method, we have constructed
a lunar crater image retrieval dataset and conducted extensive experiments. Our main
contributions are as follows:
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1. The Swin Transformer is utilized as the feature extraction structure, and the CBAMwith-
ECA module is integrated into the linear embedding and patch merging modules.
Through the attention mechanism, the channel and spatial relevance of features are
enhanced, allowing for a comprehensive capture of the details and structural informa-
tion within images. This enhancement improves the model’s capability to recognize
and extract image features. It directs the model’s focus toward the global context, ele-
vating the perceptibility of key features while concurrently suppressing less important
features and noise information.

2. By integrating visual features (texture features, shape features) with deep features, we
balance the contribution of different features through a weighted approach, empha-
sizing important features during the fusion process. Furthermore, we apply PCA to
condense the dimensionality of the integrated feature set. This process not only trims
down the number of feature dimensions but also amplifies the retrieval process’s
swiftness and effectiveness.

3. Within the network’s training framework, we integrate a triplet loss function coupled
with a strategy for mining difficult negative examples. This approach is designed to
prompt the network to cultivate features with greater discrimination. By utilizing
triplet loss, we optimize the embedded space, ensuring that vectors of akin images
are positioned in closer proximity, whereas those of non-akin images are segregated,
thereby markedly boosting the precision of our retrieval system.

The structure of this document is laid out in the following manner: Section 2 introduces
the work related to content-based image retrieval. Section 3 delineates the method we
propose. Section 4 details the dataset used for the retrieval of complex impact crater images
on the lunar surface. Section 5 is dedicated to an in-depth presentation of experimental
outcomes and their subsequent analysis. Finally, Section 6 summarizes the findings and
conclusions of this study.

The related codes are publicly available at https://github.com/ZYNHYF/lunar-
complex-crater-image-retrieval (released on 27 March 2024).

2. Related Works

In this section, we provide a detailed overview of prior research work related to
content-based image retrieval. We categorize these studies into three groups: methods
based on traditional features, methods based on deep features, and methods based on
metric learning.

2.1. Methods Based on Traditional Features

Early CBIR systems primarily relied on traditional image processing techniques to
extract features, such as color histograms, texture features, and shape descriptors. The ad-
vantages of these methods lie in their computational simplicity and intuitive understanding,
and they have been extensively studied by scholars. Tekeste et al. conducted a comparative
study to explore the impact of different LBP variants on the results of remote sensing image
retrieval [36]. Aptoula applied global morphological texture descriptors to remote sensing
image retrieval and, despite the shorter length of the extracted feature vectors, achieved
high retrieval scores [37]. Xie et al. proposed an image retrieval method that combines
a dominant color descriptor with Hu moments, leveraging the advantages of color and
shape detection [38]. Chen et al. introduced a feature descriptor based on the relationships
between prominent craters on the lunar surface and a composite feature model composed
of different features. Based on these characteristics, similarity measurement rules and a
retrieval algorithm were proposed and detailed [39]. Hua et al. utilized a general saliency-
based landmark detection algorithm to identify regions of interest on the lunar surface,
then indexed and retrieved them using feature vectors extracted from the region-of-interest
images, evaluating the performance of saliency-based landmark detection [12]. However,
these methods also have apparent limitations; they perform well under specific conditions,
particularly when the image content structure is simple and changes little. Nevertheless,

https://github.com/ZYNHYF/lunar-complex-crater-image-retrieval
https://github.com/ZYNHYF/lunar-complex-crater-image-retrieval


Electronics 2024, 13, 1262 4 of 25

they often fail to effectively handle high-level semantic information and have limited
robustness in complex scenes.

2.2. Methods Based on Deep Features

With the advancement of deep learning technology, methods based on Convolutional
Neural Networks have become a research hotspot in the field of Content-Based Image
Retrieval. These methods automatically extract deep representations of image content by
learning multi-level abstract features. Compared to handcrafted features, deep features are
better at capturing the complex patterns and high-level semantic information in images.
Wang et al. designed a Multi-Attention Fusion Network with dilated convolution and label
smoothing capabilities, using label smoothing to replace the cross-entropy loss function,
which yielded competitive retrieval results [40]. Ye et al. proposed a query-adaptive feature
fusion method based on a CNN regression model, which can accurately predict the DCG
values of the ranked image list to assign weights to each feature, thereby enhancing retrieval
precision [41]. Wang et al. introduced a novel Wide Context Attention Network (W-CAN),
utilizing two attention modules to adaptively learn relevant local features in spatial and
channel dimensions, thus obtaining discriminative features with extensive contextual
information [42]. Chaudhuri et al. designed a GCN-based Context Attention Network,
including node and edge attention. Beyond highlighting the fundamental features within
each node, edge attention enables the network to learn the most critical neighborhood
structures from the RAG within each target class image [43]. Furthermore, methods based
on deep features can also leverage transfer learning to adapt these pre-trained models to
specific domains or datasets [40], further improving retrieval performance.

2.3. Methods Based on Metric Learning

Metric learning methods aim to learn an optimized distance metric such that similar
images are closer in the feature space while dissimilar images are farther apart. These
methods are often combined with deep learning, adjusting the feature space through the loss
function during training. Zhang et al. constructed a Triplet Non-Local Neural Network (T-
NLNN) model that combines deep metric learning with non-local operations, significantly
improving the performance of high-resolution remote sensing image retrieval [21]. Cao et al.
proposed a method based on a triplet deep metric learning network to enhance the retrieval
performance of remote sensing images [22]. Zhong et al. introduced an L2-normed attention
and multi-scale fusion network (L2AMF-Net) to achieve accurate and robust lunar image
patch matching [44]. Additionally, some scholars focus on constructing new loss functions
to enhance retrieval performance. Fan et al. proposed a ranking loss result, thereby
building a global optimization model based on feature space and retrieval outcomes,
which can be optimized in an end-to-end manner [45]. Zhao et al. designed a similarity-
preserving loss-based deep metric learning strategy, utilizing the ratio of easy to hard
samples within classes to dynamically weigh the selected hard samples in experiments,
learning the structural characteristics of intra-class samples [46]. Fan et al. introduced a
distribution consistency loss to address the problem of imbalanced sample distribution in
remote sensing datasets, constructing an end-to-end fine-tuned network suitable for remote
sensing image retrieval, achieving state-of-the-art performance [47]. Compared to methods
based on deep features, metric learning-based approaches are particularly suitable for tasks
requiring refined retrieval and sensitivity to similarity.

3. Proposed Method

The LC2R-Net model proposed in this paper achieves the task of lunar complex impact
crater image retrieval by fusing low-level visual features with deep features of images.
By integrating these two complementary types of features, a more comprehensive image
representation is formed, which enhances the model’s ability to recognize and differentiate
complex impact craters, thereby improving the accuracy of retrieval. Figure 1 outlines the
overall process by which LC2R-Net completes the retrieval task.
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As illustrated in Figure 1, the core steps include: (1) extracting deep features of im-
pact crater images using an improved Swin Transformer model, which, by integrating
the CBAMwithECA attention module, mines potential information within feature maps
across channel and spatial dimensions, achieving comprehensive calibration and metic-
ulous optimization of features, thereby enhancing the model’s capability to represent
image features; (2) utilizing LBP and Hu moments to extract texture and shape features
of impact crater images as low-level visual features; (3) the extracted low-level visual and
deep features are weighted and fused, followed by dimensionality reduction to create a
more compact and efficient feature representation for retrieval tasks; (4) finally, the model
employs the fused feature representation to perform the image retrieval task, matching
query images with images in the database, and identifying the most similar images based
on the queried features.

Figure 1. Image retrieval framework for lunar complex crater images based on the LC2R-Net.

3.1. Visual Feature Extraction

In order to effectively capture the distinctive visual attributes of intricate lunar crater
images, we utilized two resilient techniques for visual feature extraction: LBP [48] and Hu
Moments [49]. LBP serves as a potent texture descriptor, capturing local texture nuances
within an image by contrasting the grayscale intensity of a pixel with its neighboring
pixels. To elaborate, the LBP value for each pixel is computed by juxtaposing the grayscale
intensity of the surrounding pixels with that of the central pixel. This operation can be
mathematically represented as follows:

LBP(xc, yc) =
P−1

∑
i=0

s(I(xi, yi)− I(xc, yc))2i (1)

where P is the number of pixels in the domain, and s(z) is a sign function defined as:

s
(
z
)
=

{
1, z ≥ 0
0, z < 0

(2)
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In this way, for each pixel point I(xc, yc) is transformed into a P-bit binary number,
i.e., the LBP code, which reflects the texture structure of the region around that pixel.
By computing the histogram of the LBP code for the entire image, we can obtain the feature
vector characterizing the texture of the image.

Hu moments are similarly employed to serve as descriptors of shape features, encapsu-
lating the geometric characteristics of an image through the synthesis of its central moments,
which are inherently invariant to transformations such as translation, scaling, and rotation
of the image. The initial step in this process involves the calculation of the image’s raw
moments and central moments. Raw moments are defined by the following equation:

mpq = ∑
x

∑
y

xpyq I(x, y) (3)

where I(x, y) is the pixel intensity of the image at coordinate (x, y), and p and q are the
orders of the moments. Then, the center of mass of the image is computed using the original
moments (x̄, ȳ) :

x =
m10

m00
, y =

m01

m00
(4)

where m00 is the zero-order primitive moment, representing the total luminance of the
image, and m10 and m01 are the first-order primitive moments, related to the position of the
center of mass of the image in the x and y directions. Subsequently, the center moments
with respect to the center of mass are calculated:

µpq = ∑
x

∑
y
(x − x)p(y − y)q I(x, y) (5)

The central moment describes the shape of the image, and seven Hu moments are
calculated from the central moment in the following form:

H1 = µ20 + µ02

H2 = (µ20 − µ02)
2 + 4µ2

11

H3 = (µ30 − 3µ12)
2 + (3µ21 − µ03)

2

H4 = (µ30 + µ12)
2 + (µ21 + µ03)

2

H5 = (µ30 − 3µ12)(µ30 + µ12)

[
(µ30 + µ12)

2 − 3
(
µ21 + µ03

)2
]

+ (3µ21 − µ03)(µ21 + µ03)
[
3(µ30 + µ12)

2 − (µ21 + µ03)
2
]

H6 = (µ20 − µ02)
[
(µ30 + µ12)

2 − (µ21 + µ03)
2
]

+ 4µ11(µ30 + µ12)(µ21 + µ03)

H7 = (3µ21 − µ03)(µ30 + µ12)
[
(µ30 + µ12)

2 − 3(µ21 + µ03)
2
]

− (µ30 − 3µ12)(µ21 + µ03)
[
3(µ30 + µ12)

2 − (µ21 + µ03)
2
]

(6)

where µij is the central moment with respect to the center of mass, and Hi is the ith Hu moment.

3.2. Deep Feature Extraction

The deep features extracted through neural networks can effectively describe the se-
mantic information of complex lunar impact crater images. The strategy for extracting deep
features in this paper is to use the Swin Transformer as the backbone network, removing
the classification head from the network to extract deep feature representations. In addition,
this paper introduces the CBAMwithECA module at the patch merging layer and the linear
embedding layer of the Swin Transformer. The CBAMwithECA module combines the
spatial attention mechanism of Effective Channel Attention (ECA) and Convolutional Block



Electronics 2024, 13, 1262 7 of 25

Attention Module (CBAM), mining information in both the channel and spatial dimensions
of the feature map. This achieves comprehensive calibration and optimization of features,
further enhancing the model’s capability to express features.

3.2.1. Backbone: Swin Transformer

The core advantage of the Swin Transformer lies in its unique hierarchical structure,
which encodes images via a partitioning strategy, thereby effectively capturing multi-scale
features within the image. Specifically, the input image is segmented into patches by the
Patch Partition module, followed by the construction of feature maps at varying scales
through four stages. Beyond the initial stage, which begins with a Linear Embedding layer,
the subsequent three stages each commence with a Patch Merging operation and then
proceed with a series of stacked Swin Transformer Blocks to achieve a deep feature repre-
sentation of the image.

1. Patch Partition

At the outset of the Swin Transformer’s processing pipeline, the Patch Partition layer
plays a pivotal role in decomposing the incoming image into a sequential array of patches.
Given an image with dimensions H × W × 3, where H and W denote the height and
width, and the numeral 3 indicates the RGB color channels, this layer segments the image
into a grid of 4 × 4 patches. These patches are subsequently flattened along the channel
dimension and undergo a linear projection into an elevated dimensional space, culminating
in a feature map with dimensions of H

4 × W
4 × 48. This feature map is then subject to a

linear transformation within the Linear Embedding layer, producing an output feature map
dimensionally characterized as H

4 × W
4 × C. The ensuing feature map is channeled into

the initial Swin Transformer Block, referred to as Stage 1, for additional refinement. This
mechanism is conceptually analogous to the convolutional operation found in conventional
convolutional neural networks, and the intricacies of this process are graphically depicted
in Figure 2.

Figure 2. Schematic diagram of the Patch Partition operation.

2. Patch Merging

The Patch Merging technique in the Swin Transformer architecture functions analo-
gously to the pooling layers found in classical convolutional neural networks, effectively
generating a pyramidal hierarchy of representations through the downsampling of feature
maps. Imagine an input feature map with dimensions H × W × C. The Patch Merging
operation commences with the segmentation of the feature map into distinct 2 × 2 pixel
blocks, treating each as a separate patch. Within these patches, corresponding pixels are
extracted and amalgamated, yielding four distinct feature maps, each with a reduced size
of H

2 × W
2 × C. These quartet of feature maps are then concatenated along the channel axis,

resulting in a singular, enhanced feature map with dimensions H
2 × W

2 × 4C.
Following the concatenation, the resultant feature map is normalized by a LayerNorm

layer, which precedes the final transformation. A fully connected layer then undertakes a
linear transformation on the concatenated feature map, specifically targeting its channel
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depth. This transformation modifies the channel depth from 4C to 2C, effectively halving it.
The procedural specifics of this Patch Merging operation are visually detailed in Figure 3.

Figure 3. Schematic diagram of the Patch Merging operation.

3. Swin Transformer Block

The Swin Transformer Block represents the fundamental building block of the Swin
Transformer architecture. As illustrated in Figure 4, this block is structured as a sequence
of two Transformer Blocks. Each Transformer Block is crafted from a series of components:
an initial layer normalization (LN), a multi-head self-attention mechanism (MSA), a sub-
sequent layer normalization (LN), and a multilayer perceptron (MLP). To facilitate stable
training and mitigate the vanishing gradient issue in deep networks, both the MSA and
MLP are equipped with skip connections.

Figure 4. Swin Transformer Block.

The distinguishing feature between the two Transformer Blocks within the Swin Trans-
former Block is the type of self-attention mechanism employed. The first block integrates
a window-based multi-head self-attention (W-MSA), which confines the self-attention
process within predetermined window boundaries to lower computational demands and
hone in on local feature extraction. Conversely, the second block incorporates shifted win-
dow multi-head self-attention (SW-MSA). By offsetting the window alignment, SW-MSA
broadens the receptive field of the model, enabling feature interactions across neighboring
windows, which in turn amplifies the model’s global contextual comprehension. This
operation is encapsulated in Equation (7):
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Ẑl = W-MSA
[

LN
(

Zl−1
)]

+ Zl−1

Zl = MLP
[

LN
(

Ẑl
)]

+ Ẑ∧l

Ẑ
l+1

= SW-MSA
[

E
(

Zl
)]

+ Zl

Zl+1 = MLP
[

LN
(

Ẑl+l
)]

+ Ẑl+1

(7)

where Zl−1 and Zl+1 represent the input and output of the Swin Transformer Block, re-
spectively, while W-MSA, SW-MSA, and MLP denote the window-based multi-head
self-attention, the shifted window multi-head self-attention, and the multilayer perceptron
modules, respectively.

3.2.2. CBAMwithECA Attention Module

Due to the high homogeneity and rich detail of lunar complex crater imagery, relying
solely on the self-attention mechanism is insufficient to fully capture the prominent features
of impact craters. Therefore, we have introduced the CBAMwithECA module [50], which
combines the channel attention of ECA [51] and the spatial attention of CBAM [52] to
further enhance the representational capability of features. As shown in Figure 5, the core
of ECA-Net is the adaptive computation of the size k of the one-dimensional convolutional
kernel, which depends on the number of input channels C and the hyperparameters γ and
b. The formula is calculated as follows:

k =

∣∣∣∣ log2(C) + b
γ

∣∣∣∣
odd

(8)

where |t|odd represents the odd number closest to t, ensuring that the 1D convolutional ker-
nel has symmetric padding. In ECA-Net, adaptive average pooling and a 1D convolutional
layer are used to learn the channel attention weights:

Mchannel = σ(Conv1D(AvgPool(x))) (9)

where the input feature map is denoted by x and is a four-dimensional tensor within the
real number space RB×C×H×W , where B, C, H, and W represent the batch size, number of
channels, height, and width, respectively. The channel attention mechanism is encapsulated
by Mchannel , which is a tensor of dimensions RB×C×1×1, capturing the importance of each
channel. The Sigmoid function, symbolized by σ, is utilized to activate and normalize the
elements of Mchannel . Subsequently, the feature map x is modulated by Mchannel to produce
the channel-wise enhanced feature map xca, which is formulated as follows:

xca = Mchannel ⊙ x (10)

Figure 5. ECA channel attention module.
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Concerning the mechanism for spatial attention, illustrated in Figure 6, the process be-
gins by subjecting the feature map xca to both average pooling and max pooling operations
across the channel axis, resulting in a pair of distinct feature descriptors. Subsequently,
these descriptors are merged and proceed through a convolutional layer with a kernel size
of 7 × 7, culminating in the formation of the spatial attention map.

Mspatial = σ(Conv2D(Concat(Avgpool(xca), Maxpool(xca)))) (11)

The spatial attention map is then applied to the feature map xca, resulting in a weighted
feature map.

xsa = Mspatial ⊙ xca (12)

Figure 6. CBAM spatial attention module.

Finally, the feature map weighted by the attention mechanism is added to the original
input feature map to realize a residual connection, resulting in the enhanced feature map
xenhanced:

xenhanced = x + xsa (13)

The process of inserting the CBAMwithECA module into the linear embedding module
is illustrated in Figure 7.

Figure 7. Insertion of the CBAMwithECA module into the linear embedding module.

The process of inserting the CBAMwithECA module into the patch merging module
is shown in Figure 8.
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Figure 8. Insertion of the CBAMwithECA module into the patch merging module.

3.2.3. Loss Function

In our research, the training phase utilized a triplet loss function [53] to guide the
optimization. This loss function operates on triplets, which include an anchor image,
a corresponding positive image, and a contrasting negative image. The primary objective
is to amplify the model’s ability to discriminate between varying classes. This is achieved
by diminishing the distance metric between the anchor and the positive instance while con-
currently enlarging the gap between the anchor and the negative instance. The functional
form of the triplet loss is delineated below:

Ltriplet =
N

∑
i=1

max
(

0, ∥ f (ai)− f (pi)∥2 − ∥ f (ai)− f (ni)∥2 + α
)

(14)

where f (·) denotes the output of the feature mapping function derived from the Gempool
layer. The terms ai, pi, and ni correspond to the anchor, positive, and negative images
within the i-th triplet, respectively. Here, N signifies the aggregate count of triplets, while α
represents a predetermined margin parameter that delineates the threshold between the
proximities of positive and negative pairs. This loss function is instrumental in clustering
akin features of images and concurrently dispersing the features of dissimilar images,
an aspect that is crucial in areas where the terrain, such as the lunar surface, exhibits high
degrees of similarity.

During training, a hard negative sample mining strategy [53] was employed to enhance
the effectiveness of the triplet training. For each anchor image, we select negative samples
with lower structural similarity by calculating the Structural Similarity Index SSIM with
all negative samples in the dataset. SSIM is used to quantify the visual similarity between
two images, and its formula is as follows:

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (15)

where x and y are utilized to denote two distinct image windows. The terms µx and µy
refer to their respective mean intensity values. Variance for each window is indicated by σ2

x
and σ2

y , while σxy represents the covariance between the two windows. Constants c1 and
c2 are incorporated within the formulation to prevent the occurrence of division by zero,
ensuring numerical stability.
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During the hard negative sample mining process, for each anchor image a, we select
the negative sample n with the smallest SSIM value from all negative sample images,
satisfying the following condition:

n = arg min
n′

d
(

f (a), f (n′)
)

(16)

The hard negative mining strategy ensures that the anchor image and the selected
negative sample image have significant structural differences, providing more challenging
samples for training and enhancing the model’s discriminative ability.

3.3. Feature Fusion and Retrieval

Feature fusion is used to concatenate visual features and depth features to get a fused
feature vector. Let the visual feature be FVC and the depth feature be FDC. Set the feature
weight of FVC to λ and the feature weight of FDC to 1 − λ. Change the importance of the
feature by adjusting the size of λ. The fused feature is shown in Equation (17).

F = (λFVC, (1 − λ)FDC) (17)

Since the dimensionality of the fused feature vectors is too high, the fused features
are downscaled using PCA. The principle is to maximize the variance of the downscaled
features, and if the downscaled features are uncorrelated, then it can be expressed as an
optimization problem, as shown in Equation (18).

max
W

tr
(

WTStW
)

, s, t, WTW = I (18)

where St represents the covariance matrix of the sample features, tr
(
WTStW

)
is the variance

of the sample features after dimensionality reduction, wTwT = I denotes the constraint
conditions, and I is the identity matrix.

After the dimensionality reduction in the fused features, cosine similarity is used to
calculate the similarity between different impact crater images, as shown in Equation (19).

cosθ =
∑n

i=1
(

Ai × Bi
)√

∑n
i=1 A2

i × ∑n
i=1 B2

i

(19)

where Ai denotes the composite feature vector derived from the query image, whereas
Bi signifies the composite feature vector corresponding to the lunar impact crater images
within the image repository. The ultimate retrieval outcomes are the k highest-ranked
images determined by their respective cosine similarity measures.

4. Lunar Complex Crater Dataset

The lunar surface is home to a multitude of impact craters that cover much of its
terrain. To date, a vast number of lunar craters have been identified in images and Digital
Elevation Model (DEM) data through expert visual inspection as well as automated detec-
tion methods, leading to the establishment of numerous crater databases. This paper selects
3234 craters ranging from 20 to 30 km in diameter from the lunar impact crater database
(2015 revision) maintained by the Lunar and Planetary Institute as the research subjects to
construct the Lunar Complex Impact Crater Dataset; the data can be obtained from https:
//www.lpi.usra.edu/lunar/surface/Lunar_Impact_Crater_Database_v08Sep2015.xls (ac-
cessed on 1 January 2020). Utilizing 100-m resolution imagery and DEM data provided by
the Lunar Reconnaissance Orbiter (LRO), an analysis based on the morphological texture
features and profile characteristics of the craters is conducted (when a crater contains
two or more types of local structures, the most prominent feature is chosen as the basis
for classification). These craters are categorized into six types, including simple craters,
floor-fractured craters, central peak craters, multi-impacted floor craters, lunar oceanic

https://www.lpi.usra.edu/lunar/surface/Lunar_Impact_Crater_Database_v08Sep2015.xls
https://www.lpi.usra.edu/lunar/surface/Lunar_Impact_Crater_Database_v08Sep2015.xls
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remnant impact craters, and impact residual craters. Example images for each category are
shown in Figure 9.

Figure 9. Images of six different types of impact crater samples: simple craters, floor-fractured craters,
central peak craters, multi-impacted floor craters, lunar oceanic remnant impact craters, and impact
residual craters.

Due to the specificity of impact crater types, the number of different categories of
impact craters in the constructed dataset is severely imbalanced. To prevent overfitting
during network training, we employed a series of data augmentation techniques to expand
the original dataset. These techniques include random rotation, random horizontal flipping,
color jittering, random affine transformations, and random Gaussian blur, all aimed at
simulating the various conditions that impact craters may encounter during actual imaging
processes. Ultimately, we obtained 5597 images, of which 80% were randomly selected to
constitute the training data, with the remainder used for model validation.

5. Experiments and Analysis

This section presents a comprehensive evaluation of the performance of the proposed
method through a series of extensive experiments and provides a clear and accurate
description of the experimental results.

5.1. Implementation Details
5.1.1. Experimental Setup

All experiments in this study were conducted on a deep learning server equipped
with an Intel(R) Xeon(R) Platinum 8255C CPU and an RTX 3090 (24GB) GPU. The software
environment consisted of Pytorch 1.10.0 and Python 3.8, with the operating system being
Ubuntu 20.04. During the model training phase, weights trained on the ImageNet dataset
were used as the initial parameters. The model was optimized using the Adam optimizer,
and a cosine annealing algorithm was employed to dynamically adjust the learning rate.
Parameters were updated every 4 batches, with each batch containing 16 samples. The de-
tailed parameters are shown in Table 1. The experiments returned the top 20 images in the
retrieval results to evaluate the model’s retrieval accuracy.
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Table 1. Experimental parameter configuration.

Parameter Name Parameter Configuration

Initial learning rate 5 × 10−6

Weight decay 1 × 10−5

Margin α 2
Training epochs 25

5.1.2. Evaluation Metrics

During the experimental phase of this research, we employed three principal metrics
to assess the efficacy of the lunar complex crater image retrieval system: mean average
precision mAP, average normalized modified retrieval rank ANMRR, and the time taken
for retrieval.

1. Mean Average Precision (mAP)

When performing image retrieval for lunar complex craters, for a given query image
and an image database with a total of N images, the Average Precision (AP) is defined
as follows:

AP =
1
n

N

∑
k=1

P(k)· rel(k) (20)

where n is indicative of the aggregate count of images in the repository which are cat-
egorized under the identical impact crater classification as the query image. The index
k refers to the ordinal position within the ranked retrieval outcomes. The function P(k)
quantifies the precision attained at the juncture of the k-th result in the retrieval sequence.
The function rel(k) operates as a binary indicator, assigning a value of 1 when the k-th
result in the retrieval sequence is of the same impact crater category as the query image,
and 0 in all other instances. The mAP, is derived by computing the mean of precision
values across all query instances, which is elucidated in Equation (21).

mAP =
1
Q

Q

∑
q=1

AP(q) (21)

where Q stands for the cumulative quantity of all the queries processed, while AP(q)
signifies the Average Precision AP computed for each distinct query. The mAP value,
which falls within the interval [0, 1], serves as a performance indicator for the retrieval
system; a value approaching 1 denotes the superior performance of the system.

2. Average Normalized Modified Retrieval Rank (ANMRR)

In the dataset of images, every image is allocated a ranking Rank(i), with i denoting
the image’s sequence in the outcome set. Given a query’s reference image SK, the count
of analogous images within the dataset is denoted as G(SK). Within the uppermost K
images of the search outcomes, should the Rank(i) of an image surpass K, the Rank(i) is
recalibrated as per the subsequent expression:

Rank(i) =

{
Rank(i) Rank(i) ≤ K
1.25 × K Rank(i) > K

(22)

For each query SK, its average rank AνgRank(SK) is calculated as follows:

AνgRank(SK) =
1

G(SK)

G(SK)

∑
i=1

Rank(i) (23)
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The normalized and corrected retrieval rank is defined as NMRR(SK):

NMRR(SK) =
AνgRank(SK)− 0.5 × (K + 1)

1.25 × K − 0.5 × (K + 1)
(24)

In assessing the efficacy of image retrieval approaches within a collection of images,
suppose that M queries have been executed. To compute the aggregate mean normalized
modified retrieval rank, denoted as ANMRR, the following procedure is adopted:

ANMRR =
1
M

M

∑
j=1

NMRR
(

SKj

)
(25)

The value of ANMRR is within the range [0, 1]. It should be noted that the lower the
value of ANMRR, the higher the retrieval precision.

3. Retrieval Time

The retrieval duration stands as a crucial metric for gauging the performance of an
image retrieval system. It spans from the moment the query image is submitted to the point
when a full set of search outcomes is obtained. The efficiency of the system is inversely
proportional to the retrieval time; the less time it takes to complete the search, the more
efficient the system is considered to be.

5.2. Comparison of LC2R-Net with Other Methods

To verify the effectiveness of the LC2R-Net model and its advantages over traditional
methods in the task of complex lunar crater image retrieval, we selected several widely
used convolutional neural network models and Transformer models for comparative
analysis. These included VGG16 [54], ResNet101 [55], DenseNet121 [56], EfficientnetV2-
S [57], and Vision Transformer (ViT) [58]. The dataset, optimization algorithms, loss func-
tions, and hyperparameters during training were consistent with those used for LC2R-Net.
In LC2R-Net, λ was set to 0.2, and features were reduced to 128 dimensions using the
PCA method. The augmented dataset was used for training, while the original, unmod-
ified dataset was used for testing. The retrieval precision of each model was compared
by calculating the mAP for each category. Table 2 presents a detailed comparison of the
performance between LC2R-Net and the aforementioned models. The results indicate
that LC2R-Net achieves better retrieval precision, with the mAP of 83.75%. Compared to
VGG16, ResNet101, DenseNet121, EfficientnetV2-S, and Vision Transformer, the mAP of
LC2R-Net is higher by 32.31%, 39.85%, 30.65%, 26.58%, and 21.52%, respectively. These
results further demonstrate the significant advantage of LC2R-Net in integrating low-level
visual features and deep features for lunar image retrieval, achieving more precise retrieval
results compared to methods relying on the deep features of traditional CNN models.

Table 2. Mean average precision by category on the lunar complex crater dataset for different methods.

Category
Methods

VGG16 ResNet101 DenseNet121 EfficientnetV2-S ViT LC2R-Net

Simple Crater 55.33% 54.99% 58.73% 63.77% 61.91% 80.82%
Floor-Fractured Crater 31.32% 24.05% 53.51% 42.08% 55.33% 99.77%

Central Peak Crater 50.80% 43.83% 47.06% 58.33% 52.87% 70.52%
Multi-Impacted Floor Crater 43.50% 38.99% 41.88% 45.44% 46.08% 64.32%

Lunar Oceanic Remnant Impact Crater 80.62% 59.98% 73.61% 81.40% 89.78% 98.22%
Impact Residual Crater 47.09% 41.56% 43.81% 52.03% 52.23% 68.44%

Average 51.44% 43.90% 53.10% 57.17% 62.23% 83.75%

In Table 2, the retrieval accuracy for Multi-Impacted Floor Craters and Impact Residual
Craters is significantly lower compared to other categories. The reason is that the features
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of the crater images in these categories bear a high visual similarity to those of other cate-
gories, making it difficult to distinguish between them even with the use of fused features.
Nonetheless, in the face of such challenges of feature similarity, the LC2R-Net model still
demonstrates superior performance compared to traditional convolutional neural network
models that rely solely on deep features. This indicates the effectiveness of LC2R-Net in
integrating multi-level features, particularly in dealing with image categories with high
feature similarity, significantly enhancing the accuracy of retrieval. It is noteworthy that
among the mentioned convolutional neural networks, EfficientNetV2-S significantly out-
performs VGG16, ResNet-101, and DenseNet121. The reason lies in EfficientNetV2-S’s
effective balancing of model depth, width, and resolution through scaling methods and the
introduction of several novel architectures, thereby preserving more image detail informa-
tion, which is crucial for retrieval tasks. Furthermore, the Vision Transformer surpasses
traditional convolutional neural network models in performance, indicating that models
based on self-attention mechanisms can more effectively capture global dependencies,
thereby enhancing the model’s generalization capability.

To more visually demonstrate the effectiveness of LC2R-Net, Figures 10–12 present
some retrieval examples. Taking the top 10 returned images as an example, the retrieval
results of LC2R-Net are shown in Figure 10, and the comparative retrieval results of
LC2R-Net and other methods are shown in Figures 11 and 12.

5.3. Ablation Study

To evaluate the performance of the LC2R-Net model in the task of image retrieval for
complex lunar craters, this section conducts ablation experiments on the feature fusion and
attention mechanisms within the LC2R-Net network. The experiments are carried out on
the complex lunar crater dataset constructed for this paper, utilizing mAP and ANMRR
as metrics to assess retrieval performance. Table 3 presents the ablation study for the
attention mechanism.

Figure 10. Retrieval results of LC2R-Net for various crater categories (the first image in each row is
the query image, green borders indicate correct retrieval results, and red borders indicate incorrect
retrieval results): (a) Simple crater. (b) Floor-fractured crater. (c) Central peak crater. (d) Multi-
impacted floor crater. (e) Lunar oceanic remnant impact crater. (f) Impact residual crater.
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Figure 11. Examples of retrieving central peak craters using different methods (the first image
in each row is the query image, green borders indicate correct retrieval results, and red borders
indicate incorrect retrieval results): (a) LC2R-Net. (b) VGG-16. (c) ResNet-101. (d) DenseNet-121.
(e) EfficientNetV2-S. (f) ViT.

Figure 12. Examples of retrieving Lunar Oceanic Remnant Impact Craters using different methods
(the first image in each row is the query image, green borders indicate correct retrieval results,
and red borders indicate incorrect retrieval results): (a) LC2R-Net. (b) VGG-16. (c) ResNet-101.
(d) DenseNet-121. (e) EfficientNetV2-S. (f) ViT.
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Table 3. Ablation study on the attention mechanism.

Methods mAP/% ANMRR

Swin-T 83.01 0.0755
Swin-T + CBAMwithECA 83.65 0.0725

LC2R-Net 83.75 0.0721

As shown in Table 3, the features extracted using the Swin-T network achieve mAP and
ANMRR of 83.08% and 0.0755, respectively, on the dataset. By integrating the CBAMwith-
ECA attention module, the model’s mAP is improved by 0.64%, and the ANMRR is
reduced by 0.003. These results confirm that the introduction of attention mechanisms can
more effectively highlight key features in images, enhance the discrimination ability for
images of different categories, and thereby improve the accuracy of lunar complex crater
image retrieval tasks.

Ablation studies were conducted on the feature fusion module with the value of λ set
to 0.2. The results are shown in Table 4, where LBP represents texture features, and Hu
denotes shape features.

Table 4. Feature fusion ablation study.

Methods mAP/% ANMRR

LBP 39.85 0.3717
Hu 29.81 0.4064

LBP + Hu 41.37 0.3616
LC2R-Net 83.75 0.0721

The data in Table 4 reveal the limitations of relying solely on visual features for retriev-
ing complex images such as lunar impact craters, resulting in lower image retrieval accuracy.
Furthermore, although combining texture (LBP) and shape (Hu) features (LBP + Hu) can
improve retrieval performance to some extent, the retrieval accuracy on the complex lunar
crater dataset only increased by 1.52% and 11.56%, respectively, when using these features
in isolation. However, when deep features were fused, the mAP increased by 43.9% and
53.94%, and the ANMRR decreased by 0.2996 and 0.3343, respectively. It is noteworthy
that the contribution of texture features to retrieval performance was greater than that of
shape features, which may be due to the high visual similarity of lunar crater images. These
results fully demonstrate the effectiveness of fusing deep and visual features in improving
image retrieval accuracy.

5.4. Parametric Analyses

In the LC2R-Net model, the fusion of visual and deep features involves a key parameter
λ, which is used to adjust the weight between different features. The specific calculation
method is detailed in Section 3.3. This section designs a series of experiments to illustrate
the impact of the value of λ on the performance of LC2R-Net by adjusting its value (ranging
from 0 to 1, with an interval of 0.1). The features are reduced to 128 dimensions using the
PCA method, and the results are shown in Table 5.

From Table 5, it is evident that when the value of λ is set to 0.2, the mAP of the
LC2R-Net in the lunar complex crater dataset reaches 83.75%, with the ANMRR of 0.0721.
The retrieval accuracy of the fused features is higher than that of using depth features
alone when the value of λ ranges from 0 to 0.3. However, when the value of λ exceeds
0.4, the retrieval accuracy using fused features or visual features alone is lower than that
of using depth features alone. This indicates that the depth features extracted by the
Swin Transformer are more effective than traditional visual features in performing image
retrieval tasks for lunar complex craters.
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Table 5. Impact of different a values on the retrieval performance of LC2R-Net.

Method λ mAP/% ANMRR

LC2R-Net

0 83.65 0.0725
0.1 83.67 0.0716
0.2 83.75 0.0721
0.3 83.71 0.0728
0.4 83.29 0.0756
0.5 83.19 0.0769
0.6 82.91 0.0752
0.7 82.46 0.0798
0.8 81.73 0.0811
0.9 78.79 0.0934
1.0 37.99 0.3943

5.5. Comparison of Retrieval Time

In addition to accuracy, retrieval efficiency is also extremely important in practical
applications. To evaluate the performance of different models, we conducted tests on the
retrieval time for each model using the lunar complex crater dataset. Each model was
subjected to 20 retrieval trials, and the average retrieval time was calculated. The retrieval
time consumed by each model is shown in Table 6.

The data in Table 6 indicate that as the dimensionality of deep features is reduced, there
is a downward trend in model retrieval time. The incorporation of the CBAMwithECA
module results in a slight increase in the retrieval time for the Swin-T model. Among all the
models compared, the LC2R-Net model, which employs PCA for dimensionality reduction,
achieves the shortest retrieval time of only 0.1041 seconds, performing the best among all
models. This result demonstrates that the LC2R-Net model successfully reduces the dimen-
sionality and complexity of features while maintaining retrieval efficiency. Additionally,
the retrieval time for traditional visual features is also short, which is due to the fact that
deep features are denser; even with lower dimensions, they incur greater computational
and storage costs compared to sparse visual features. These results highlight the efficiency
advantages of the LC2R-Net model in the task of lunar crater image retrieval.

Table 6. Comparison of retrieval time by different methods on the lunar complex drater dataset.

Methods Feature Vector Length Retrieval Times/s

VGG-16 4096 0.2134
ResNet101 2048 0.2046

DenseNet121 1024 0.1922
EfficientNetV2-S 1280 0.1942

ViT 768 0.1878
Swin-T 768 0.1884

Swin-T + CBAMwithECA 768 0.1907
LBP + Hu 2367 0.1630
LC2R-Net 128 0.1041

5.6. Impact of PCA Dimensionality Reduction on Retrieval Accuracy

The LC2R-Net model proposed in this paper initially integrates the low-level visual
features with the deep features of lunar crater images to generate a feature vector with
3135 dimensions. Subsequently, to enhance the efficiency of retrieval, PCA is employed for
feature dimensionality reduction, enabling more efficient retrieval. Therefore, experiments
were conducted with different feature dimensions (16, 32, 64, 128, 256, and the original
3135 dimensions) to observe the impact on retrieval accuracy and retrieval time, with the
value of λ set to 0.2. The results are shown in Figure 13.
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Figure 13. The impact of feature dimensions on the retrieval of lunar complex crater images.

In Figure 13, the retrieval accuracy peaks at a feature vector dimensionality of 128,
with the mAP reaching 83.75%. Within the range of increasing feature dimensions from
16 to 128, the retrieval accuracy consistently improves. This phenomenon indicates that
within this range of dimensions, as the richness of feature information increases, the system
is able to more accurately distinguish and retrieve lunar crater images. However, when the
feature vector dimensionality exceeds 128, the retrieval accuracy begins to decline. This
decrease is due to the excessive expansion of the feature space, which introduces redundant
information or increases noise, thereby negatively impacting the model’s discriminative
ability. When the feature dimensionality is below 128, the retrieval time remains relatively
stable, suggesting that at this level of dimensionality, the system’s computational efficiency
is less affected by the number of features. In contrast, retrieval time significantly increases
when the dimensionality exceeds 128, reflecting the computational burden brought about
by higher dimensions. These results demonstrate that the PCA dimensionality reduction
technique plays a significant role in enhancing the accuracy and efficiency of lunar crater
image retrieval.

5.7. The Impact of Data Augmentation on Retrieval Accuracy

In this study, we address the challenge of imbalanced class distribution within our
dataset of lunar impact craters, a factor that may lead to overfitting of certain classes by the
neural network during the training process. To mitigate this issue, we have employed data
augmentation algorithms to expand our dataset and enhance the model’s generalization
capabilities. To assess the specific impact of data augmentation on the performance of lunar
impact crater image retrieval, we conducted model training on both the original dataset
and the augmented dataset. Throughout the training process, to ensure comparability
of results, we maintained consistency in our algorithmic optimization strategies, loss
function, and hyperparameter settings. For LC2R-Net, the λ was set to 0.2, and feature
dimensionality was reduced to 128 dimensions using the PCA method. The experimental
results are presented in Figure 14.
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Figure 14. The impact of image augmentation algorithms on the retrieval of lunar complex craters.
C1: Simple crater. C2: Floor-fractured crater. C3: Central peak crater. C4: Multi-impacted floor crater.
C5: Lunar oceanic remnant impact crater. C6: Impact residual crater.

In Figure 14, it is observed that when the model is trained on the augmented dataset,
its performance on the retrieval task is significantly superior to that of the model trained
directly on the original dataset. Specifically, the mAP saw a notable increase, improving
from 81.63% on the original dataset to 83.75%. This enhancement is reflected not only at
a global average level but also across the majority of individual classes, indicating the
universality of data augmentation in boosting model performance. However, it is important
to note that for the specific category of impact residual crater, the mAP of the model trained
on the augmented dataset was actually lower than that of the model trained on the original
dataset. This phenomenon suggests that data augmentation does not invariably lead to
positive effects. The performance decline in this particular category is attributed to the
failure to consider its unique characteristics during augmentation, which hindered the
model’s ability to effectively discern the differences between impact residual craters and
other categories. Therefore, when implementing data augmentation, it is crucial to adopt
targeted strategies for different categories to ensure that data augmentation effectively
enhances the model’s learning and recognition of the distinctions between categories rather
than merely increasing the quantity of data.

5.8. Further Discussion

In this study, in order to enhance the model’s capability to capture and represent
the features of lunar complex crater images, we utilized the CBAMwithECA attention
mechanism module during deep feature extraction. To discuss the impact of different atten-
tion modules on feature extraction and image retrieval tasks, we conducted comparative
experiments by introducing the SE attention mechanism module and the CBAM attention
mechanism module at the same position, respectively. The experimental results are shown
in Table 7.
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Table 7. The impact of different attention mechanisms on lunar complex crater image retrieval tasks.

Methods mAP/% ANMRR

Swin-T 83.01 0.0755
Swin-T + SE 82.16 0.0795

Swin-T + CBAM 78.23 0.1038
Swin-T + CBAMwithECA 83.65 0.0725

LC2R-Net 83.75 0.0721

As shown in Table 7, the introduction of the SE module and the CBAM module into the
Swin-T model did not enhance the model’s performance. On the contrary, the addition of
these attention mechanisms had a negative impact on the performance of the original Swin-
T model. However, upon integrating the CBAMwithECA attention module, the model’s
performance saw a significant improvement, with the mAP increasing by 0.64% and the
ANMRR decreased by 0.003. It is noteworthy that, in comparison to the attention modules,
the SE module outperformed the CBAM module because the SE module provided a more
effective feature weighting strategy in channel recalibration. These results indicate that the
CBAMwithECA attention module outperforms both the SE and CBAM attention modules
in the task of lunar crater image retrieval.

The experimental results adequately substantiate the efficacy of the method we pro-
posed. By integrating the CBAMwithECA module into both the patch embedding and
merging modules, LC2R-Net is enabled to capture image details with greater finesse,
markedly boosting the model’s capability in feature recognition and extraction when deal-
ing with complex crater imagery. Furthermore, we employed a weighted strategy to merge
visual and depth features, which not only facilitated an effective complementarity between
the two but also accentuated their individual significance. Concurrently, the introduction
of a triplet loss function and a hard negative sample mining strategy further encouraged
the network to learn more distinctive feature representations, thereby realizing a signifi-
cant improvement in precision for image retrieval tasks. These results demonstrate that
our approach can substantially enhance the model’s ability to learn and extract features,
significantly improving the accuracy of image retrieval for complex lunar crater imagery.

6. Conclusions

In this paper, we propose the LC2R-Net model, which achieves lunar complex crater
image retrieval by fusing the underlying visual features with deep features of images.
During the model training phase, we employed a triplet loss function and a hard negative
sample mining strategy to generate more distinctive features. In the deep feature extraction
stage, we integrated the CBAMwithECA module into the Swin Transformer, successfully
capturing the rich details and significant information in lunar crater images, thus enabling
better differentiation between different types of lunar complex crater images. In the vi-
sual feature extraction stage, we extracted texture and shape features, which effectively
complement the deep features. During the feature fusion stage, we introduced feature
fusion weights to highlight the importance of different features in retrieval and performed
PCA dimensionality reduction after feature fusion, significantly improving the model’s
retrieval efficiency. We conducted extensive experiments on the lunar complex crater
dataset generated in this paper, and the results show that compared to traditional deep
learning methods, LC2R-Net achieved the highest retrieval accuracy of 83.75% when the
feature fusion weight was set to 0.2 and PCA dimensionality was reduced to 128 while
maintaining a fast retrieval speed. Through ablation experiments, we detailed the key
role of the CBAMwithECA module and the feature fusion strategy in improving retrieval
performance. We explored the impact of different dimensionality reductions on retrieval
performance and found that the setting of 128 dimensions offered the best retrieval perfor-
mance. In addition, we compared the effects of different attention mechanisms on retrieval
results, and the experiments proved that the CBAMwithECA attention module performed
the best in this study. The LC2R-Net model not only advances the technology of lunar crater
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image retrieval but also provides a new perspective for the application of deep learning in
the analysis of complex geological images.

In future work, we will consider adopting deep hashing techniques to replace PCA
dimensionality reduction to further optimize the precision and efficiency of image retrieval.
Secondly, we will explore the feasibility of applying our method to video stream processing.
Although current research focuses on single image frames, our proposed network architec-
ture and algorithms can be extended through time series analysis to handle consecutive
frames within video streams. This will involve additional training of the network to adapt
to dynamic changes. Lastly, we plan to combine object detection methods with image
retrieval techniques to explore the detection of different types of impact craters within
single image frames to address more realistic application scenarios.
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