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Abstract: Face recognition techniques have been widely employed in real-world biomimetics appli-
cations. However, traditional approaches have limitations in recognizing faces correctly with large
age differences because of significant changes over age in the same person, leading to unsatisfactory
recognition performance. To address this, previous studies propose to decompose and identify age
and identity features independently in facial images across diverse age groups when optimizing the
discriminative model so as to improve the age-invariant face recognition accuracy. Nevertheless,
the interrelationships between these features make it difficult for the decomposition to disentangle
them properly, thus compromising the recognition accuracy due to the interactive impacts on both
features. To this end, this paper proposes a novel deep framework that incorporates a novel Hybrid
Spatial-Channel Attention Module to facilitate the cross-age face recognition task. Particularly, the
proposed module enables better decomposition of the facial features in both spatial and channel
dimensions with attention mechanisms simultaneously while mitigating the impact of age variation
on the recognition performance. Beyond this, diverse pooling strategies are also combined when
applying those spatial and channel attention mechanisms, which allows the module to generate dis-
criminative face representations while preserving complete information within the original features,
further yielding sounder recognition accuracy. The proposed model is extensively validated through
experiments on public face datasets such as CACD-VS, AgeDB-30, and FGNET, where the results
show significant performance improvements compared to competitive baselines.

Keywords: age-invariant face recognition; attention mechanism; generative model; deep network
optimization

1. Introduction

Face recognition technology is a method of identifying and verifying individuals by an-
alyzing their facial features using computer vision and pattern recognition techniques [1–5].
This technology has been widely adopted in various fields such as security, identity ver-
ification, and social media [1,2]. However, traditional face recognition approaches have
limitations when it comes to recognizing faces with large age differences. This is because
the human face changes significantly over time due to factors such as skin loosening and
subtle bone changes, making it difficult for ordinary face recognition systems to identify
the same person at different ages [6]. To deal with this, Age-Invariant Face Recognition
(AIFR) has been proposed as a promising solution [4]. Nevertheless, significant differences
in facial features and poor image quality still pose challenges in recognizing faces across
diverse age groups, which can compromise the overall recognition accuracy [5,7]. Figure 1
shows examples of face images of different people over time.

Previous studies have explored ways to differentiate between faces of various ages
by analyzing age-related features such as skin texture, wrinkles, and eye bags [8]. To do
this, they have proposed various deep neural network-based techniques that learn age-
specific feature representations. Additionally, these researchers have developed face image
datasets that contain different age groups to train and evaluate cross-age face recognition
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algorithms [9]. For example, many researchers have used generative models like Generative
Adversarial Networks (GANs) [10] (e.g., Conditional Generative Adversarial Networks
(cGANs) [11]) to improve the quality of synthetic face images. A face-aging model is then
constructed to extract features from the input image and generate a face image with a
specific age, where subsequently face recognition is performed using a target image of the
same age generated by this model. However, it is important to note that generative models
often have drawbacks such as high computational complexity and even model instability.

3              26              38             46              54             75             80

 18              29             32             47              52             66            72

 7              17              22             59             62             77             88

Figure 1. Example of the CACD-VS dataset [12] showing images of each subject at different ages,
using three of them as examples.

On the contrary, the approach based on discriminative models is considered a more
reliable option for face recognition as it is less prone to model instability. It is supposed
to directly extract age-independent identity feature information from hybrid features to
mitigate the age impact to facilitate the subsequent cross-age recognition. For instance, the
hidden factor analysis is used to eliminate age factors from hybrid face features, resulting
in high robustness and improved cross-age face recognition accuracy [5,9]. However, it
is worth noting that there can still be strong interrelationships between the decomposed
identity components, which may contain age information to some extent and could in turn
affect the recognition results.

To this end, this paper proposes a deep-face recognition framework that adopts a novel
hybrid attention mechanism to address the issue of poor identity discrimination in current
discriminative models, where the latter struggle to extract complete and undisturbed
identity features from face attributes. Particularly, the proposed Hybrid Spatial-Channel
Attention Module (HSCAM) can decompose the face features completely by using spatial
and channel attention simultaneously while preserving the rich information within images
to improve the accuracy of cross-age face recognition. The main contributions of this paper
are summarized as follows:

• In this work, we propose a new deep-face recognition framework that incorporates a
novel Hybrid Spatial-Channel Attention Module (HSCAM) for better facial feature
representation to enhance cross-age face recognition performance.

• The proposed HSCAM significantly benefits cross-age face recognition by decom-
posing the hybrid face features with both spatial and channel attention mechanisms
to eliminate the age variations on the recognition performance. Moreover, it inte-
grates various pooling strategies when performing those attention mechanisms, which
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enables the preservation of complete information within original features, further
boosting recognition accuracy with more distinctive face representations.

• Extensive experiments on three benchmark datasets demonstrate the superiority of
the proposed method in improving the accuracy of cross-age face recognition in the
testing phase. These results further validate the effectiveness of the HSCAM.

The remaining part of this paper is arranged as follows: Section 2 discusses some
related works. In Section 3, we elaborate on the proposed deep framework, including the
overall network structure, learning modules, objective function, and optimization. Next, we
evaluate and analyze the proposed method on public datasets and compare it with recent
baselines in the experiments. We report the results in Section 4. Finally, we summarize the
conclusion of this work in Section 5.

2. Related Works

Many deep-based approaches have been proposed in the field of AIFR. This paper
aims to introduce relevant works by categorizing them into two groups: general AIFR
methods and multi-task learning-based AIFR methods. In this case, general AIFR methods
focus on building and optimizing discriminative models to better distinguish facial features
of different age groups. These methods extract specific age and identity information from
images to enhance the accuracy and robustness of cross-age face recognition. On the
other hand, multi-task learning-based AIFR methods combine multiple tasks such as face
synthesis and recognition into a unified framework. These approaches improve the overall
performance of the system in the field of cross-age facial recognition by involving diverse
learning strategies.

2.1. General AIFR Methods

Discriminative models extract age-independent features of individuals directly and
use them for matching in face recognition. Among them, the method termed hidden factor
analysis (HFA) that was proposed in [13] captures two factors affecting face features—an
age-invariant identity factor and an age factor affected by aging. Observed facial appear-
ance features containing age and identity factors are then modeled. In 2016, a deep-face
recognition framework with two parallel networks (LF-CNN) [14] was launched to learn
age-invariant deep-face features. Subsequently, the researchers proposed Orthogonal
Embedding CNN (OE-CNN) [15] to learn age-invariant identity features. OE-CNN decom-
poses facial features into two orthogonal components, trains identity-related features as a
multi-class classification task with A-Softmax loss supervised by identity labels, and trains
age-related features as a regression task supervised by age labels [16].

Then, the Decorrelated Adversarial Learning (DAL) algorithm proposed in [17] aims
to find the maximum correlation between pairs of features generated by a backbone mesh
by introducing a canonical mapping module (CMM) while training the backbone mesh and
decomposition module to generate features with reduced correlation. This results in the
removal of age-related components from the hybrid features. The algorithm decomposes
the hybrid face features into two uncorrelated components: the identity component and the
age component. The identity component provides useful information for face recognition.
Therefore, the model decomposes age and identity features to significantly reduce their
correlation. To ensure that both contain the correct information, the identity and age
features are supervised by ID and age-preserving signals, respectively.

Consequently, a recent study has proposed a method for age-invariant face recog-
nition called Implicit and Explicit Feature Purification (IEFP) [18]. This method helps
to remove age information from facial features and obtain a purer representation of the
same. Another method, called Low-Complexity Attention Module (LCAM) [19], uses three
parallel branches of the attention mechanism with only one convolutional operation in
each branch. It is a lightweight method and shows better performance in face recognition
tasks. Another approach, called Lightweight Attentive Angular Distillation (LIAAD) [20],
has been introduced to extract age-invariant attentional and angular knowledge into a
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lightweight student network. This approach uses two high-performance heavy networks
as teachers with different expertise, making it more robust with higher FR accuracy and
robustness to age factors.

2.2. Multi-Task Learning-Based AIFR Methods

Researchers have been working on methods to improve cross-age face recognition by
combining multiple models [21]. One approach is to use multi-task learning to simulta-
neously learn feature representations of multiple attributes such as age and identity. This
improves the robustness and generalization ability of cross-age face recognition algorithms
by transforming and expanding training data.

For example, a model called Parallel Multi-path Age Distinguish Network (PMADN)
has been proposed in a recent study [22]. This model comprises two networks: Age
Distinguish Mapping Network (ADMN) and Cross-Age Feature Recombination Network
(CFRN). These networks can effectively extract age-robust features for identity features
and identity classification, especially for younger ages. In 2021, a unified multitasking
framework called MTLFace [23] was proposed, which jointly handles both tasks. The
approach decomposes features into two uncorrelated components like identity-related and
age-related features, and de-correlates them through multi-task training and continuous
domain adaptation. A new identity conditional module is also proposed to improve the
age smoothing of synthesized faces.

In addition, a method called MT-MIM (i.e., mutual information minimization) [24]
has been proposed to train a de-entanglement network using a multi-task learning frame-
work that minimizes the mutual information between the identity and age components.
This is achieved by using the learning of de-entangled representations as an information-
constrained objective. The aim is to unravel age and identity embeddings of facial images,
which is achieved by using a multi-task learning and Wasserstein distance discrimina-
tor to minimize the mutual information between these embeddings [25]. Another semi-
supervised learning method, termed Cross-Age Contrastive Learning (CACon) [26], has
been proposed to address the problem of limited supervised data in age-invariant face
recognition. CACon introduces a new contrastive learning method that uses additional
synthetic samples from the input image and proposes a new loss function associated with
contrastive learning on ternary samples.

Although the discriminant model can improve the accuracy of cross-age face recogni-
tion, there are still potential interrelationships between the decomposed components, and
the decomposed identity component still contains age information [27]. This largely affects
the recognition effect. The face synthesis method in the joint model still has the problem
of generating faces that are too smooth or with poor model interpretability. Therefore,
there is much room for improvement [28]. Our research focuses on using a discriminative
model to improve the decomposition of face image features. We proposed to use HSCAM
to decompose face feature images into age- and identity-related features to reduce the
relevance of age information in identity features and vice versa. This improves the accuracy
of cross-age face recognition by improving the age smoothing degree [15,29].

3. Proposed Method

To start this section, the proposed framework is summarized first. Then, the involved
modules and optimization goals are elaborated part by part.

3.1. Overall Framework

This paper proposes a novel face recognition framework that incorporates a Hybrid
Spatial-Channel Attention Module (HSCAM) to accurately extract identity features from
facial images while disregarding age information [30]. The overall framework consists of
three modules: the face feature extraction module, the separated age identity feature mod-
ule, and the cross-age recognition module, as illustrated in Figure 2. Initially, hybrid face
features are extracted from the input face images. Next, the feature decomposition module
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separates the face image features into age-related and identity-related features [31]. Fi-
nally, the cross-age recognition module trains the identity-related features and age features
through dedicated modeling for better performance in cross-age face recognition tasks.
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Figure 2. The overall structure of the model consists of three modules: (a) Face Feature Extraction
Module, (b) Separation Age Identity Module, and (c) Cross-age Recognition Module. In the first
stage, we extract the facial representations from the input face images through the improved ResNet
network to obtain the face image features. In the second stage, we decompose the extracted face
image features into age-related information and identity-related information using the HSCAM
to reduce the degree of rubrication of age and identity information. Finally, we perform the age
estimation task and identity recognition task with the age and identity-related information obtained
from decomposition.

3.2. Face Feature Extraction

The face feature extraction module in this paper uses an improved ResNet network [32]
as its backbone. This network addresses the gradient vanishing and gradient explosion
problems in deep neural networks by using residual modules, allowing for the construction
of very deep neural networks [33]. The ReLU activation function is replaced with the
PReLU activation function, and the BN layer and PReLU activation layer are placed in front
of the CONV layer [34]. This enhances the training efficiency, stability, and generalization
performance of the network. Mathematically, the PReLU function can be represented
as f (x), where x is the input data and f (x) is the output value after the convolutional
layer operation.

f (x) =

{
x, if x > 0;
ax, if x ≤ 0.

(1)

The PReLU function outputs x when the input x is greater than 0. Otherwise, it outputs
ax, where a is a learnable parameter with a value less than 1.

To aid in explaining the modules, this paper defines some basic symbols beforehand.
The initial input image is represented by I, the mixed facial feature map resulting from
feature extraction as X, the feature map obtained through the hybrid channel attention
mechanism in the separated age identity module as Mc, and the feature map obtained
through the hybrid spatial attention mechanism as Ms. The HSCAM is referred to as M. The
face feature extraction module H extracts the initial hybrid face feature map X ∈ RC×H×W

from the input image I, indicated as X = H(I). This hybrid face feature map contains both
age and identity-related information. The formula for the composition of the face feature
map is as follows:
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X = Xid + Xage. (2)

Among them, Xage and Xid represent age-related and identity-related information,
respectively.

3.3. Age Identity Separation

While decomposing the extracted face feature images, we introduce the HSCAM to
segregate age features and identity features from their hybrid source more effectively. This
is for pointing out that the hybrid learning mechanism has two meanings: (1) we use both
channel and spatial attention mechanisms to better fully decompose age and task informa-
tion; (2) within the two attention mechanisms, we combine diverse pooling strategies (e.g.,
max pooling and average/mean pooling) to preserve facial image information as much
as possible from different dimensions. This can result in better facial representation and
achieve improved cross-age recognition performance.

3.3.1. Hybrid Channel Attention

The channel attention mechanism is a technique that dynamically adjusts the impor-
tance of the channels in a neural network. This allows the network to focus more on the
channels that are most relevant for solving a particular task. This technique has been
introduced in recent works like [35,36]. On the other hand, Global Average Pooling (GAP)
calculates the average activation of each channel, producing a weight vector. This weight
vector is then used to adjust the feature map of each channel to obtain the attention-adjusted
feature representation.

Firstly, we have improved the traditional channel attention mechanism by optimizing
the use of GAP. This method helps in capturing the weight of each channel and compressing
the spatial dimension of the feature graph, thereby improving efficiency. GAP captures
the average activity value of each channel in the feature map, which better represents the
contribution of each channel to the overall features. In Convolutional Neural Networks
(CNNs) [37], max pooling and average pooling [38] are typically used to reduce the spatial
dimensions of the feature map, extract important features, and reduce computational
complexity. The choice between them in channel attention mechanisms typically depends
on the nature of the task and the data characteristics. Max pooling emphasizes the salient
features in the channel, while average pooling is more beneficial for the smoothing process
and overall feature capture.

To this end, we propose a hybrid channel attention mechanism that combines average
pooling and max pooling along the channel dimensions to work simultaneously. The
model diagram of the hybrid channel attention mechanism is shown in Figure 3. These two
pooling operations are used in conjunction with a Multi-Layer Perceptron (MLP) [39] to
model the complex relationships between channels and generate weights for tuning the
attention. Ultimately, the channel attention mechanism is implemented by applying these
weights to the feature graph so that the activation values of each channel are weighted with
different weights.

Here, we denote the attention weight obtained through the traditional channel atten-
tion mechanism as Ai, which will be used to weight the feature maps of the corresponding
channels. The formula for traditional channel attention is as follows:

Ai = σ(MLP(AvgPool(xi))), (3)

where xi is the c-th channel of the input feature map, AvgPool denotes the global average
pooling operation, and σ is the activation function (usually Sigmoid or Softmax). In the
overall framework, we define Mc as the hybrid channel feature map X obtained through
the hybrid channel attention mechanism. Therefore, the formula for the hybrid channel
attention mechanism proposed in this paper is as follows:
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Mc(X) = σ(MLP(AvgPool(X))⊕ MLP(MaxPool(X))). (4)

The equation mentioned above uses the feature map denoted as X, which is gener-
ated by the modified ResNet network backbone. In the equation, the operation MaxPool
represents max pooling, whereas AvgPool(X) and MaxPool(X) represent average pooled
features and maximum pooled features, respectively. The symbol ⊕ denotes the splicing
operation in the channel attention mechanism. The resulting feature then goes through
an MLP network to generate the final channel attention feature map, which is denoted
as Mc(X).
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Figure 3. The hybrid channel attention mechanism combines average pooling and max pooling
operations along the channel dimension to work simultaneously. These two pooling operations are
combined with an MLP using the DO-Conv layer [40], which replaces the conventional convolutional
layer. The output is then passed through the ReLU and batch normalization (BN) layer, followed by
another DO-Conv layer. Finally, the channel features are obtained by mapping the output through
the Sigmoid activation function.

3.3.2. Hybrid Spatial Attention

Spatial attention mechanisms are a commonly used technique in image processing that
help to highlight the importance of different areas in an image. Figure 4 shows the model
diagram of the hybrid spatial attention mechanism, which allows the model to focus on the
areas of the image that contain essential information [41]. To process the input data more
effectively, the spatial locations are weighted. The feature map consists of representations
of features at different locations in the image, and we use global pooling for each channel
to obtain global information for each channel. We use mean and max pooling operations
to better capture the global information. By combining the results of these two pooling
methods, the model can obtain weights for the spatial information, which helps it focus on
the features in different areas of the input image.

In the spatial attention mechanism, the global mean pooling step calculates the average
of the feature values within each channel of the input feature map, which outputs a single
value. To illustrate this concept, we consider a simplified example of the mean pooling
operation. Suppose we have an input feature map, denoted by X, where Xi,j,c represents
the eigenvalue at position (i, j) in channel c. To perform the mean pooling operation, we
take the average of all the feature values within each channel of the input feature map:

MeanPool(Xc) =
1

H × W

H

∑
i=1

W

∑
j=1

Xi,j,c, (5)



Electronics 2024, 13, 1257 8 of 18

The equation demonstrates how to calculate the MeanPool value by taking the average
eigenvalue of all positions in the c-th channel, where H and W represent the height and
width of the feature map, respectively.
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Figure 4. The hybrid spatial attention module uses max pooling and mean pooling operations to
extract important features from each spatial position. It replaces the traditional convolutional layer
with a DO-Conv layer, which then goes through the BN layer, as well as ReLU and Sigmoid activation
functions to learn the weights for each position. The weights learned are then applied to every spatial
position of the feature map, enhancing its spatial importance, and generating more informative
feature representations.

To obtain the output for each channel, the maximum eigenvalue of all positions in that
channel is calculated over the entire feature map. This maximum value is then used as the
output for that specific channel. This operation is known as global max pooling and can be
represented as follows:

MaxPool(Xc) = Maxi,j(Xi,j,c). (6)

In the process of calculating spatial attention weights, a linear transformation and
activation function is performed on the concatenated feature maps to generate the final spa-
tial attention weights. Firstly, the feature map is combined with max pooling and average
pooling, and then it passes through the DO-Conv layer, BN layer, ReLU layer, and sigmoid
layer in sequence.The resulting hybrid spatial feature map obtained through the hybrid
spatial attention mechanism is defined as Ms. Additionally, the formula for the hybrid
channel attention mechanism in this process can be expressed by the following equation:

C(X) = MeanPool(X)⊕ MaxPool(X), (7)

Ms(X) = Sigmoid(ReLU(BN(DO − Conv(C(X))))). (8)

The notation used in this formulation is as follows: ⊕ denotes the element-level
splicing operation, while C(X) combines the maximum and average pooling results along
the channel dimensions. DO-Conv refers to the convolution operation, which can be a
learnable convolution kernel that transforms features in the spliced results. BN denotes the
batch normalization operation which normalizes the output of the convolution layer. ReLU
is the modified linear unit operation that introduces non-linearities. Sigmoid is the operation
that maps the output to the interval [0, 1] to obtain the final spatial attention weights.

The ReLU layer can help alleviate the problem of vanishing gradient, while the
derivatives of the Sigmoid layer have better gradients both near zero and near one, which
helps with backpropagation. In this paper, we have added the ReLU layer between the BN
layer and the Sigmoid layer to enhance the non-linear capability of the model and make it
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more adaptable to complex data distributions. It also enables the model to better learn the
differentiation of features and improves the sensitivity of the model to different features.
Such an operation can be used to adjust the importance of channels or spaces in the feature
map to better focus on the information of interest in subsequent computations.

3.3.3. Hybrid Spatial-Channel Attention Module

The proposed HSCAM in the research combines channel attention and spatial attention
mechanisms to the feature map. This means that the feature maps are essentially given
weights using both channel attention and spatial attention weights. The process is described
by the following equations:

X′ = Mc(X)⊙ X, (9)

X′′ = Ms(X)⊙ X, (10)

X = X′ + X′′ = (Mc(X)⊕ Ms(X))⊙ X. (11)

To summarize, we involve the input feature map X, the channel attention feature map
Mc(X), and the spatial attention feature map Ms(X) to complete a hybrid spatial-channel
attention mechanism termed M. The channel attention mechanism operation is denoted as
X′, and the spatial attention mechanism operation is denoted as X′′. The weighted feature
map by the HSCAM is represented as X.

To enhance the performance, computational efficiency, and generalization ability of
the model, we substitute the conventional convolutional layer with a DO-Conv layer [40].
The DO-Conv layer comprises an additional depthwise convolution, which establishes
an over-parameterized convolutional layer. First, we apply a depthwise convolution
operation to the input features, followed by a regular convolution operation to the output
intermediate results. The use of the DO-Conv layer optimizes the deep learning model’s
parameters, effectively integrates the attention mechanism, and leads to better performance
and faster training.

3.4. Cross-Age Recognition

In the above-mentioned HSCAM, we separate the features related to age and identity
from their hybrid features. This allows us to perform age estimation and identity recogni-
tion tasks using the separated information [42]. The formulas used for separating the age
and identity-related information are presented below.

X = X ⊙ M(X)︸ ︷︷ ︸
Xage

+
(
1 − X ⊙ M(X)

)︸ ︷︷ ︸
Xid

, (12)

where age-related information is separated from the feature map using M, namely HSCAM,
leaving identity-related information intact. The symbol ⊙ denotes element-by-
element multiplication.

3.4.1. Age Estimation Task

The hybrid facial features are divided into two categories: age-related and identity-
related information using the hybrid channel space attention module. Then, to estimate the
age change, we use the L1 loss function [43]. This function calculates the absolute difference
between the predicted age and the true age, adds up all the differences, and calculates the
average. We use the L1 loss function because it is more resistant to outliers and improves
the model’s robustness for age estimation [42]. The loss function for age estimation can be
defined as follows:

Lage =
1
N

N

∑
i=1

|Xagei − Yagei |, (13)
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where the decomposed age feature is Xage and the true age label is Yage, while N denotes
the number of samples. Xagei denotes the age information obtained from the decomposition
of the feature map for the i-th sample and Yagei is the corresponding true age label.

3.4.2. Identity Recognition Task

In the identity recognition task, each label for an identity is usually treated as a
category. Therefore, the cross-entropy loss function is a suitable choice for this task, as
noted in Zhang’s work [44]. We have opted to use the cross-entropy loss function for the
identity recognition task, as it aids the model in learning effective identity features and
makes it more resilient in multi-category classification problems, as suggested by [45]. The
loss function used for this task can be defined as:

Lid = − 1
N

N

∑
i=1

Yidi
· log(Xidi

), (14)

where the identity feature decomposed by the model is Xid and the real identity label is
Yid, Yidi

is the real identity label corresponding to the i-th sample, and Xidi
is the identity

information obtained from the model decomposition [46]. From the above, we define the
total loss function as Ltotal, and the overall loss function can be derived as follows:

Ltotal = α · Lage + β · Lid, (15)

where α and β are the weights of the loss function. The weights are dynamically adjusted
according to the model performance during training.

4. Experiments and Results

We conducted extensive experiments on three of the most popular face image datasets,
namely AgeDB-30 [47], CACD-VS [12], and FGNET [48]. The experiments are divided into
two parts. Firstly, the methodology will be evaluated by comparing the experimental results
with state-of-the-art methods in Section 4.2. Secondly, the effects of different modules as
well as hyperparameters from the proposed framework will be evaluated in Section 4.3.

4.1. Experimental Details
4.1.1. Data Preparation

During the pretraining stage, we utilized two mega-datasets, namely MS1M-ArcFace [49]
and CASIA-Webface [50], due to their vast and diverse facial image data and label information.
We divided these datasets into eight different age groups with no overlap: 0–12, 13–18, 19–25,
26–35, 36–45, 46–55, 56–65 years, and 66+ years. This allowed us to perform the age estimation
task based on the grouped age labels, following previous studies [23,25].

In the performance evaluation, we trained three benchmark datasets: AgeDB-30 [47],
CACD-VS [12], and FGNET [48]. We used their test sets to assess the recognition results.
Specifically, we divided these three datasets into training and testing sets in a 4:1 ratio during
the implementation phase. Four copies were used for the training process, and one copy
was used for the testing process. To ensure fair comparisons, we employed these settings for
all baselines. We discuss more detailed information about the datasets in the corresponding
experiment sections, where some examples are presented in Figure 5.

4.1.2. Training Settings

The ResNet network modified for improved performance, pre-trained on the MS-
Celeb-1M [49] and CASIA WebFace [50] datasets, is chosen as the backbone network to
extract identity and age recognition features. The model is trained iteratively 200 times,
with the initial learning rate set to 0.1 for the classifier and 0.01 for the features part in the
age estimation task. We use the SGD optimizer with a momentum value of 0.9. α and β
are set to 0.01 and 0.01, respectively. For the identity recognition task, we use the Adam
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optimizer with a learning rate set to 0.01 for the classifier and 0.0001 for the features part.
We also employ a weight decay mechanism with an intensity of 1 × e−4.

AgeDB 30                CACD-VS               FGNet

Figure 5. The figure displayed above showcases the facial images utilized in our cross-age facial
recognition research. These images are taken from the AgeDB-30, FGNET, and CACD-VS datasets.
We have incorporated these datasets to ensure that our study covers a wide range of age spans
and face image qualities, thereby making it diverse and challenging. The sample images from each
dataset are presented in a grid format, making it easier for readers to comprehend the context of
our experiments.

4.2. Comparison Results

Our next step involves conducting a thorough evaluation of our proposed method
on various widely used face recognition datasets, including the AgeDB-30 [47], CACD-
VS [12], and FGNET [48] datasets. Our goal is to gain a comprehensive understanding of
how effectively our method performs under different age spans and data distributions.
In our experiments, we compared our approach with existing state-of-the-art methods
and evaluated its accuracy and improvement. The improvement indicates the accuracy
difference between our approach and existing methods.

4.2.1. Experiments on CACD-VS Dataset

Researchers in the field of cross-age face recognition often use public datasets to verify
the accuracy of their methods. One such dataset is the cross-age celebrity dataset (CACD),
which contains 163, 446 images of 2000 celebrities. However, in this study, we utilized
the CACD verification subset (CACD-VS) [12] to evaluate our method. This subset was
manually sampled and annotated to minimize mislabelling and duplicate images, making
it more reliable than the CACD dataset. Our results, as shown in Table 1, demonstrate
that our method outperformed other state-of-the-art methods, achieving 99.77% accuracy.
Our proposed method has achieved a 1.27% improvement in accuracy compared to LF-
CNN [14] (i.e., 98.50% → 99.77%), and a 0.2% improvement compared to WMI-AI [25]
(i.e., 99.57% → 99.77%). The results of our experiment indicate that our hybrid attention
mechanism is effective in disentangling age and identity features in facial images. In fact,
it outperformed the WMI-AI method that uses the Wasserstein distance discriminator
for multitask learning. This suggests that our approach is successful in minimizing the
mutual information between age and identity features, thus improving the performance



Electronics 2024, 13, 1257 12 of 18

of cross-age face recognition tasks [51]. Our hybrid attention mechanism considers both
spatial and channel information, which enables it to fully utilize local and global features
in the images. By doing so, the mechanism comprehensively understands the features in
the images, allowing it to more effectively distinguish age and identity features.

Table 1. Face verification results evaluated using the CACD-VS dataset, with the highest accuracy
result highlighted in bold.

Method Accuracy (%) Improvement (%)

LF-CNN [14] 98.50 1.27
OE-CNN [15] 99.20 0.57

DAL [17] 99.40 0.37
WMI-AI [25] 99.57 0.20
MTLFace [23] 99.55 0.22
PMADN [22] 99.20 0.57

Ours 99.77 -

4.2.2. Experiments on AgeDB-30 Dataset

The AgeDB dataset is a publicly available dataset that consists of 16488 face images
belonging to 568 different individuals, each of which is manually labeled with age in-
formation. This dataset divides all data into four age groups (age differences of 5 years,
10 years, 20 years, and 30 years). Each age group consists of 300 positive and 300 negative
samples. A new dataset named AgeDB-30 has been created from the AgeDB dataset [47].
The AgeDB-30 dataset is a validation set using facial images of people with an age span of
over 30 years. As a result, this dataset covers a wider age range and is considered more
challenging than the original dataset. This enhances the ability to assess the performance
of models across different age groups. The increased number of subsets in AgeDB-30
also makes it more difficult to generalize to different ages, thus requiring the model to
be more robust. The performance of the proposed model has been evaluated using the
AgeDB-30 dataset. Table 2 displays the superior performance of our model. Our proposed
method improves accuracy by 1.95% over IEFP [18] (i.e., 95.82% → 97.77%) and 4.07% over
LCAM [19] (i.e., 93.70% → 97.77%), demonstrating its effectiveness. Based on experimental
results, it can be observed that while the Low-Complexity Attention Module (LCAM)
approach has a slight advantage over past modules that employed channel and spatial
attention, our proposed hybrid channel-spatial mechanism offers higher flexibility. Our
model utilizes facial features in the image and recognition target, employing a hybrid
attention mechanism that combines spatial and channel attention to dynamically allocate
attention. This allows the model to better adapt to diverse image features, leading to
improved recognition performance and increased accuracy in cross-age face recognition.

Table 2. Face verification results evaluated using the AgeDB-30 dataset, with the best accuracy result
highlighted in bold.

Method Accuracy (%) Improvement (%)

MT-MIM [24] 96.10 1.67
MTLFace [23] 96.23 1.54

IEFP [18] 95.82 1.95
PocketNet [52] 96.78 0.99

LCAM [19] 93.70 4.07
Ours 97.77 -

4.2.3. Experiments on FGNET Dataset

The FGNET dataset, as described in [53], is a relatively small dataset that includes
82 different individuals of various ages, from infants to seniors. This dataset features
multiple age images per individual and contains approximately one thousand images in
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total. It provides face images of different races, genders, and backgrounds, covering a
diverse range of appearance features, along with age annotations for each face image. As
a result, it has been widely used in previous face recognition research. Our model will
be experimented on the FGNET dataset, and we will also use the Megaface challenge 1
(MF1) protocol [54]. Table 3 displays the results. Our approach outperforms other models,
improving by 5.22% compared to CACon [26] (i.e., 64.37% → 69.59%) and by 11.67%
compared to DAL [17] (i.e., 57.92% → 69.59%). While the CACon method introduces
a contrast learning method along with the identity preservation capability based on the
face synthesis model, our method is improved based on the discriminative model and
does not introduce a contrast learning method. These texture-based methods may have
stronger expressive power and robustness; however, the experimental results indicate that
our method still holds the dominant position, which also demonstrates the superiority of
the HSCAM in this paper. Additionally, Figure 6 is presented to showcase the success and
failure of the matching cases for the three datasets.

Table 3. State-of-the-art approaches are evaluated on the FGNET dataset in comparison to our
method. The best accuracy result is highlighted in bold.

Method Accuracy (%) Improvement (%)

OE-CNN [15] 58.18 11.41
DAL [17] 57.92 11.67

MTLFace [23] 57.18 12.41
LIAAD [20] 60.11 9.48
CACon [26] 64.37 5.22

Ours 69.59 -

a.Successful Match Cases

AgeDB-30

CACD-VS

FGNET

b.Failed Match Cases

1 0

1 0

1

1

0

0

1

1

0

0

Figure 6. Some examples of matching and non-matching pairs in randomly selected images in three
datasets, AgeDB, CACD-VS, and FGNET, using the method proposed in this paper. In this figure,
(a) Successful Match Cases and (b) Failed Match Cases represent examples of successful and failed
matches, where 1 indicates successful face detection and 0 indicates failure. Two sets of cases were
extracted from the AgeDB-30, CACD-VS, and FGNET datasets in sequence for display.
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4.3. Ablation Study

The ablation experiments were designed to further analyze the impact of the HSCAM
on the cross-age face recognition task as well as the hyperparameter settings.

4.3.1. Analysis on Attention Module Settings

In the first experiment, the hybrid features were decomposed into age- and identity-
related information, and then directly used for identity recognition. The other experiments
were designed to validate the validity of the modules in the hybrid channel attention
mechanism and to verify the effectiveness of the max-pooling and mean-pooling operations
in the hybrid channel attention mechanism. Particularly, different settings were employed:

1. Baseline: The hybrid features were decomposed into age- and identity-related in-
formation, and then directly used for identity recognition without any attention
mechanism components;

2. SA + Channel avg: The hybrid spatial attention (i.e., SA) mechanism was kept un-
changed, and the hybrid channel attention mechanism was tested by eliminating
the splicing of max pooling and average pooling in the channel dimension and only
performing the max pooling operation;

3. SA + Channel max: Similar to the second setting, but only the global average pooling
operation was performed;

4. CA + Spatial mean: The hybrid channel attention (i.e., CA) mechanism was kept un-
changed, and the effectiveness of the hybrid max-pooling and mean-pooling modules
was tested by canceling the splicing of max-pooling and mean-pooling in the channel
dimension and only performing max-pooling operations;

5. CA + Spatial max: Similar to the fourth setting, but only max-pooling operations were
carried out to verify the difference in the effect of splicing the max-pooling and the
mean-pooling with the effect obtained from separate pooling operations;

6. Baseline + DO-Conv: A normal conv layer was replaced with a DO-Conv layer
without using any attention mechanism model;

7. Baseline + CA’+ SA’: Among them, CA’: CA (max ∧ avg); SA’: SA (mean ∧ max). ∧
denotes the splicing role. The traditional conv layer was not replaced with a DO-
Conv layer, and the attention of the hybrid channel space was kept unchanged for
the experiment;

8. Ours: The traditional conv layer was replaced with a DO-Conv layer along the
HSCAM that was used to evaluate the three face validation sets.

The results of the ablation experimental tests, as shown in Table 4, indicate that the
performance improvement on these three datasets was achieved by our methods. It also
verifies that HSCAM performs better compared to the normal channel attention mechanism
and spatial attention mechanism. Additionally, the introduction of DO-Conv to change the
traditional convolution also improves the performance of the experiment.

Table 4. Comparison of the performance of ablation experiment results in the form of accuracy (%)
for different age prediction model components on the CACD-VS, AgeDB-30, and FGNET datasets.
∧ denotes the splicing role, i.e., the splicing of both maximum and average pooling along the
channel dimension. The bold values indicate the best results.

Network Settings CACD-VS [12] AgeDB-30 [47] FGNET [48]

Baseline 88.38 92.56 50.20
SA + Channel avg 93.25 91.82 63.94
SA + Channel max 90.89 93.65 55.98
CA + Spatial mean 92.79 95.02 62.22
CA + Spatial max 94.68 94.38 60.52

Baseline + DO-Conv 95.02 95.19 62.35
Baseline + CA’ + SA’ 97.66 96.94 65.26

Ours 99.77 97.77 69.59
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4.3.2. Analysis on Hyperparameter Settings

As mentioned in the previous section, we introduce hyperparameters α and β to
balance the different loss terms in the whole loss function. In order to investigate the effects
of α and β, we conduct a series of experiments on the CACD-VS dataset to judge their
effectiveness by face verification accuracy. In this experiment, we set the hyperparameter
values of α and β interchangeably to [0.001, 0.01, 0.1, 1] while keeping one of them fixed. By
thoroughly optimizing the model performance with diverse parameter settings, the best
performance can be achieved when both α and β are set at 0.01. Figure 7 briefly presents the
accuracy variations under different α and β values like 0.01 and 1, which further confirms
the parameter settings are consolidated.

Figure 7. The face verification accuracy is evaluated on the CACD-VS dataset at different α and β

values. The results show that the accuracy reaches the highest level when both α and β are 0.01.

5. Conclusions

In this work, we have presented a new deep framework for age-invariant face recogni-
tion. Our proposed HSCAM effectively distinguishes between age-related and identity-
related features in the feature decomposition process. By incorporating spatial and channel
attention simultaneously, we can fully capture the information in the face images, which
leads to an improvement in the accuracy of cross-age face recognition. The proposed
module also dynamically learns the weights, which helps to mitigate the influence of
these two features and ultimately achieves better face representation. We have conducted
extensive experiments on three public face datasets, including AgeDB-30, CACD-VS, and
FGNET, which validate our approach. The proposed method has demonstrated significant
improvements in recognition accuracy compared to previous methods. Notably, our model
successfully addresses the challenge of face recognition across age groups of 30 and above
in the AgeDB-30 dataset, indicating its excellent performance in dealing with wide age dif-
ferences. While there is still room for improvement, we plan to incorporate more effective
learning techniques into our model in the future.
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