
Citation: Zhao, M. A Swell Neural

Network Algorithm for Solving

Time-Varying Path Query Problems

with Privacy Protection. Electronics

2024, 13, 1248. https://doi.org/

10.3390/electronics13071248

Academic Editor: Domenico Rosaci

Received: 14 March 2024

Revised: 24 March 2024

Accepted: 26 March 2024

Published: 27 March 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Swell Neural Network Algorithm for Solving Time-Varying
Path Query Problems with Privacy Protection
Man Zhao

School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China;
50301363@ncepu.edu.cn

Abstract: In this paper, a swell neural network (SNN) algorithm was proposed for solving time-
varying path query (TVPQ) problems with privacy protection with the following goals: (i) querying
the K-nearest paths with time limitations in a time-varying scenario, and (ii) protecting private
information from neighborhood attacks. The proposed SNN is a network in which the optimal paths
can be calculated at the same time with no need for training. For TVPQ, a node is considered a
neuron, and time-varying means that an edge has different costs in different time windows. For SNN,
the query paths are swell sets from the start to the target within an upper limit. An encrypted index
is designed for privacy protection. The evaluation of the efficiency and accuracy of the SNN was
carried out based on New York road instances.

Keywords: time-varying path query (TVPQ); swell neural network (SNN); privacy protection;
encrypted index

1. Introduction

Path query problems with privacy protection have attracted attention in many fields,
such as industry [1,2], management science [3], computer science [4], and transportation [5].
Path query problems with privacy protection were first proposed in 2011 by Cao [4], who
proposed utilizing the principle of filtering and verification to keep cloud data secure.
Shang H [6], Gouda K [7], and Lin W [8] carried out further research based on this idea.
Meng X studied the problem of graph encryption and proposed an approximate shortest
distance query method (GRECS) for encrypted graphs [9]. A CryptGraph scheme has
been designed, with which graph analysis can be performed on encrypted graphs, and the
privacy of users’ graph data and analysis results can be protected [10]. However, these
studies lack consideration of time variation.

There is a suite of studies addressing the time-varying path query problem. The
shortest path algorithm through a time-varying network was first proposed in 1966 by
Cooke and Halsey [11]. Such path query methods for dynamic graphs are valuable refer-
ences. Frigioni D proposed the global dynamic algorithm FMN to solve the single-source
shortest path problem for dynamic graphs [12]. Additionally, SWSF-FP was proposed by
Ramalingam G [13]. A global dynamic algorithm for computing the shortest paths between
all pairs of vertices in a dynamic graph was also proposed [14]. An improved algorithm
was proposed to maintain the shortest paths between all pairs of vertices in a dynamic
graph [15]. In addition, Liu C [16], Ghosh E [17], Sun F [18], and Wu B [19] described their
research on this topic. However, these works neglect privacy protection.

To our knowledge, current algorithmic models either ignore the effect of the time factor
or the need for privacy protection. There are still unresolved TVPQ problems regarding
privacy protection, despite the urgent need for solutions in applications such as mapping
services [20]. Different departure times and expected arrival times lead to changes in
planned routes. Users expect to obtain the top recommended routes under the current
time constraints. Pioneering works by Huang W [3,21,22], Zhang C [23], and Shen M [24]

Electronics 2024, 13, 1248. https://doi.org/10.3390/electronics13071248 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13071248
https://doi.org/10.3390/electronics13071248
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13071248
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13071248?type=check_update&version=2

Electronics 2024, 13, 1248 2 of 14

provided schemes for reference. Huang W’s work lacks a design for multiple paths, and
accuracy cannot be fully guaranteed in Shen M’s work. Current algorithms have limitations
in terms of multipath requirements and accuracy guarantees.

In this paper, an SNN algorithm was proposed to solve TVPQ problems with privacy
protection. An SNN is a network in which the optimal paths can be calculated at the same
time and there is no need for training. For TVPQ, nodes are considered neurons, and
time-varying means that an edge has different costs in different time windows. The core of
the SNN is that the query paths are swell sets from the start node to the target node, and
their arrival times are less than the upper limit.

The main contributions of this paper are as follows:

1. The SNN algorithm can help to find multiple paths at once, including the shortest
paths. This is difficult to achieve with other algorithms under time-varying conditions.

2. For privacy protection, a scheme was designed with an encrypted index that effectively
prevents the leakage of user information.

3. Theoretical analyses and contrasting experimental results prove the efficiency, security,
and accuracy of the algorithm.

The remainder of this paper is organized as follows. Section 2 introduces prerequisites,
Section 3 presents the SNN algorithm, Section 4 reports the experimental results, and
concluding statements are presented in Section 5.

2. Preliminaries

This section introduces several prerequisites that will be used throughout this paper.

2.1. Definition of Time-Varying Path Query

Definition 1 (Time-Varying Network). A time-varying network graph is defined as G = (N, E),
where N represents the set of nodes and E denotes the set of network edges. Eij ∈ E stands for
the edge from node i to node j, and it is associated with different time weights cr

ij for different time
windows Dr

ij.

Definition 2 (Path of a Time-Varying Network). A path P1k on a time-varying network is
defined as a sequence of nodes < n1, . . . , ni, . . . , nk >, where n1 is the start node, nk is the target
node, ni is the ith node in the path, and Te is the arrival time at nk. A route based on P1k is a
sequence of nodes < n1, . . . , ni, . . . , nk > [25].

According to the definition of the path of a time-varying network, the arrival time is

Te = Ts +
k
∑

i=1
cni ,ni+1 for a path P1k =< n1, . . . , ni, . . . , nk >.

2.2. Model of a Time-Varying Network Query

Given a directed graph G = (N, E), a start node ns ∈ N, a target node nt ∈ N, a start
time Ts, an upper limit of the arrival time Tu, and the number f of paths to query for, a
time-varying network query finds the set of paths (p1st, p2st,) such that the arrival
time is less than Tu.

For node i, the successor set can be defined as Si =
{

sdj
∣∣nj ∈ N

}
, where the length of

di represents the number of swells from node i to other nodes.

sdi =

[], di = 0
[[t1, t2]], di = 1
[[t1, t2], . . . , [tk, tk+1]], di = k

Electronics 2024, 13, 1248 3 of 14

For node j, the predecessor set can be defined as Fj = { f di|ni ∈ N}, where the length
of ej represents the number of swells from other nodes to j.

f di =

[], ej = 0
[[t1, t2]], ej = 1
[[t1, t2], . . . , [tk, tk+1]], ej = k

Clearly, if there is one swell from ni to nj, at t1 to t2 both sdj and f di above contain
[t1, t2]. The predecessor set of nt collects the swells leading to nt with the arrival times.
Based on the above two features, paths can be obtained by tracing the predecessor sets of
nt iteratively.

For privacy protection, three algorithms were used: RSA, AES, and ORE.
In RSA, the encryption keys are public, while the decryption keys are not, so only the

person with the correct decryption key can decipher an encrypted message. This avoids
the need for a “courier” to deliver keys to recipients through another secure channel before
transmitting the originally intended message [26,27].

AES is a substitution-permutation network block cipher based on the design principles
of Ron Rivest, Adi Shamir, and Leonard Adleman’s earlier Data Encryption Standard (DES).
It uses a variable-length key from 128 bits to 256 bits and operates on fixed-size blocks of
128 bits. Both parties must agree on the key in advance to ensure that the key information
cannot be obtained by a third party [27,28].

An order-revealing encryption (ORE) scheme is a tuple of three algorithms Π =
(ORE.Setup, ORE.Encrypt, ORE.Compare) defined over a well-ordered domain D with the
following properties:

ORE.Setup(1λ)→sk: On inputting a security parameter λ, the setup algorithm outputs
a secret key sk.

ORE.Encrypt(sk, m)→ct: On inputting a secret key sk and a message m ∈ D, the
encryption algorithm outputs a ciphertext ct.

ORE.Compare(ct1, ct2)→b: On inputting two ciphertexts ct1, ct2, the compare algo-
rithm outputs a bit b ∈ {0, 1}.

An ORE scheme over a well-ordered domain D is correct if for sk← ORE.Setup(1λ)
and all messages m1, m2 ∈ D [29–31]:

Pr[ORE.Compare(ct1, ct2) = 1(m1 < m2)] = 1− negl(λ)

Definition 3 (Encrypted Index). An encrypted index consists of two parts, as follows:

• Te encrypted with the ORE key
• Pst encrypted with the public secret key of RSA-1.

Definition 4 (Encrypted Query). An encrypted message for a query consists of three parts, as
follows:

• (s, t, Ts) encrypted with the AES key
• Tu encrypted with the ORE key and the AES key
• f is the plaintext representing the number of paths queried.

3. Construction of the SNN

This section presents the SNN algorithm and its complexity and security analyses.

3.1. Design of the SNN Algorithm

The SNN is a swell neural network without any training. To formalize the SNN, each
node is viewed as a neuron and the graph composed of nodes and the edges connecting
them is viewed as a neural network.

Figure 1 illustrates a general neuron structure for an SNN. As shown in Figure 1,
there are four parts in each loop: the input, the neuron state, the neuron feedback, and

Electronics 2024, 13, 1248 4 of 14

the output. The main functions of these four parts are as follows: the input swell coming
from its predecessor nodes over time, the neuron state that determines whether to spread,
the feedback that updates the neuron state, and the output swells that spread to the
successor nodes.

Electronics 2024, 13, 1248 5 of 17

Figure 1. A general neuron structure of SNN.

1. Input: The input swells come from the predecessor nodes.
2. Neuron state: The neuron state consists of three parts: nodes, edges, and time win-

dows. The functions n(t), e(t) and tw(t) represent the processing of the node, edge,
and time window, respectively, and t represents the current time.
For in , the successor set can be defined as { | }i sdj nj NS = ∈ , where the length of

id represents the number of swells from in to jn .

[]
[]

1 2

1 2 1,

[

, , 1

, ...,[,] ,

], 0

i

k

i

k i

id

s t t d

t t t t

d

d k+

 =
=

 =
 =

The predecessor set can be defined similarly.
For edge ijE , the time set collects the arrival times of in for which no swell is cur-
rently formed.

Figure 1. A general neuron structure of SNN.

1. Input: The input swells come from the predecessor nodes.
2. Neuron state: The neuron state consists of three parts: nodes, edges, and time win-

dows. The functions n(t), e(t) and tw(t) represent the processing of the node, edge,
and time window, respectively, and t represents the current time. For ni, the successor
set can be defined as Si = {sdj|nj ∈ N}, where the length of di represents the number
of swells from ni to nj.

sdi =

[], di = 0
[[t1, t2]], di = 1
[[t1, t2], . . . , [tk, tk+1]], di = k

Electronics 2024, 13, 1248 5 of 14

The predecessor set can be defined similarly. For edge Eij, the time set collects the
arrival times of ni for which no swell is currently formed.

Pij =

{
[], no
[t1, t2 . . .], yes

For time window Dr
ij, vr

ij represents the set of key-value pairs for arrival and available
times when no swell is formed.

vr
ij =

{
[], no
[t1, t2 . . .], yes

3. Feedback: The swells spread along the edge in the time window for which the
available time ck satisfies the cost cr

ij, and ck is computed as follows:

ck =

{
t− tk, i f lr

ij <= tk < ur
ij

t− lr
ij, i f tk < lr

ij

4. Output: The output swells continue to spread to the successor nodes.

The overall algorithm, referred to as Algorithm 1, serves as the foundation for the
SNN. The partitioning algorithms of the SNN algorithm are introduced as follows. To find
the shortest paths, the SNN algorithm works as follows:

• Initialize the graph as Algorithm 2.
• Activate the start node directly as Algorithm 3.
• Iterate over the successor edges of the start node as Algorithm 4 to spread ripples.
• Iterate over all nodes over time to activate the nodes as Algorithm 4 until the target

node is activated. The path can be obtained if the current time is within the maximum
time range. Otherwise, no path meets the requirements.

Algorithm 1 Encrypted Index Construction (EIC)

Input: G, s, t, Ts, Tu, f
Output: Pst, Te
Initialize G as Algorithm 2.
Te = Ts
Initialize ns as Algorithm 3.
while lst < f and Te <= Tu do

Te = Te + 1
for ni ∈ G do

Try to activate ni as Algorithm 4.
if Ft has been changed do

pst >> Pst as Algorithm 5.
end if

end while
Encrypt each path with KORE and PkRSA2.

First, initialize the graph as shown in Algorithm 2. A directed graph is constructed.
Each node is initialized with an empty father set and son set for collecting predecessors and
successors. For the edges, a time set is initialized for the arrival times of the predecessors,
and time windows with boundaries, costs, and the set of key-value pairs for arrival and
available times are initialized.

The start node is initialized according to Algorithm 3. The algorithm iterates over the
predecessor edges of the start node ns and adds the start time Ts to its time set and time
window set.

Electronics 2024, 13, 1248 6 of 14

Algorithm 2 Graph Initialization (GI)

Input: G
Output: G
for Eij ∈ G do

Fi = None
Si = None
Fj = None
Sj = None

cij = None
for Dr

ij ∈ Dij do
vr

ij = None
end for

end for
return G

Algorithm 3 Start Node Initialization (SI)

Input: G, ns, Ts
Output: G
for Esi ∈ ES

s do
Ts >> Esj
for Dr

si ∈ Dsi do
(Ts, 0) >> vr

ij.
end for

end for

To activate the nodes over time, if the input node is a start node or its father set is not
empty, then the algorithm iterates over the successor edges of the input node to spread
swells, as Algorithm 4.

Algorithm 4 Node Activation (NA)

Input: G, ni, ns
Output: G
if ni = ns or Fi ̸= None:

for Eij ∈ ES
i do

Spread as Algorithm 6
end for

end if

New paths are added to paths according to Algorithm 5. The function AP is executed
iteratively until f paths are found that meet the requirements.

The swells spread along the edge as shown in Algorithm 6. Whether the swells spread
is dependent on the determination of the time window over time. The swells are retained,
process records are deleted, and the network prepares for the next iteration, as shown in
Algorithm 3, after the swells spread.

Determine each time window of the edges over time, as shown in Algorithm 7. The
swells spread along the edge in the time window for which the available time satisfies
the cost.

Electronics 2024, 13, 1248 7 of 14

Algorithm 5 Add Paths (AP)

Input: G, ni, pjt, ns, f
Output: Pst
if lst < f do

pit = [i] + pjt
if ni = ns

pst >> Pst
if lst = f do

break
end if

end if
else
for j ∈ Fi do

AP(Algorithm 5)
end for

end if

Algorithm 6 Swell Spreading (SS)

Input: G, Eij, T (current time)
Output: G
deij = None//Initialize the set of arrival times to be deleted from Eij
for Dr

ij ∈ Dij

key = Perform time window determination as Algorithm 7
if key ̸= None do

key >> deij
end if

end for
for de ∈ deij:

Delete de from cij
Delete (de,*) from vr

ij
(i , [time, T]) >> Fj, (j , [time, T]) >> Si and (T, 0) >> vr

ij as Algorithm 3
end for

Algorithm 7 Time Window Determination (TD)

Input: G, Dr
ij, T(currenttime).

Output: G
de = None// Initialize the arrival time to be deleted from Eij
for key ∈ vr

ij (the key-value pair set of Dr
ij)

if lr
ij <= key < ur

ij do
vr

ij[key] = T − key
else if key < lr

ij do
vr

ij[key] = T − lr
ij

end if
if vr

ij[key] = cr
ij do

de = key
end if

end for
return de

3.2. An Example of the SNN Algorithm

To illustrate the SNN algorithm, let us consider the example shown in Figure 2 and
Table 1. There are three nodes and three edges in the time-varying network, where A is the
start node, C is the target node, the start time is 0, the upper limit of the arrival time is 5,
and the number f of paths to query is 2. For each edge, there are two time windows.

Electronics 2024, 13, 1248 8 of 14

Electronics 2024, 13, 1248 9 of 17

Algorithm 7 Time Window Determination (TD)

Input: , , ()r
ijG D T currenttime .

Output: G
 de None= // Initialize the arrival time to be deleted from ijE

for r
ijkey v∈ (the key-value pair set of 𝐷)

 if r r
ij ijl key u<= < do

 []r
ijv key T key= −

 else if r
ijkey l< do

 []r r
ij ijv key T l= −

 end if
 if []r r

ij ijv key c= do

 de key=
 end if
end for
return de

3.2. An Example of the SNN Algorithm
To illustrate the SNN algorithm, let us consider the example shown in Figure 2 and

Table 1. There are three nodes and three edges in the time-varying network, where A is
the start node, C is the target node, the start time is 0, the upper limit of the arrival time
is 5, and the number f of paths to query is 2. For each edge, there are two time windows.

Table 2 illustrates the detailed steps of the running algorithm on the SNN. It is evi-
dent that the paths are <A, C> and <A, B, C>. At moment 0, only An is reached and the

swell has not spread to the next node. At moment 1, a swell spread to Bn , which is a

child of An . At moment 2, a swell reaches C and a path from A to C is found as [A, C] in

time 2. At moment 3, the swell that spread to Bn at moment 1 arrived at Cn , and the
second path from A to C is found as [A, B, C], in time 3.

Figure 2. An example of a time-varying neural network.

Figure 2. An example of a time-varying neural network.

Table 1. Description of the example.

Node Edge Time Window Cost

A

AB
[0, 3) 1

[3, +∞) 2

AC
[0, 2) 2

[3, +∞) 4

B
BC

[0, 3) 2

[3, +∞) 3

Table 2 illustrates the detailed steps of the running algorithm on the SNN. It is evident
that the paths are <A, C> and <A, B, C>. At moment 0, only nA is reached and the swell
has not spread to the next node. At moment 1, a swell spread to nB, which is a child of nA.
At moment 2, a swell reaches C and a path from A to C is found as [A, C] in time 2. At
moment 3, the swell that spread to nB at moment 1 arrived at nC, and the second path from
A to C is found as [A, B, C], in time 3.

Furthermore, to ensure the data security of the cloud and users, four sets of keys for
three encryption algorithms were configured. Initially, the cloud server holds the private
key of RSA1. A user is authorized if he or she has obtained the private secret key of
RSA1 and the public secret key of RSA2. The user constructs the encrypted index, as
demonstrated in definition 3 for the graph, and outsources indexes to the cloud server.

The system interaction is as follows:

1. The user, say Bob, generates a unique secret key for AES KAES, distinguished from
those of other users to prevent leakage from others.

2. Bob→Cloud: Send KAES, which is encrypted by PkRSA2
3. Bob→Cloud: Encrypt (A, C, 0, 5, 2) as an encrypted query according to Definition 4,

encrypt (A, C, 0) with the AES key KAES and encrypt 5 with the ORE key KORE and
the AES key KAES.

4. Cloud: Decrypt the query with KAES, use (A, C, 0) to find f matching encrypted
indices, and compare the second part of the encrypted index with 5. If the former is
not greater, the item meets the query.

5. Cloud→Bob: Query the result encrypted with KAES.
6. Bob: Decrypt the information with KAES and then with SkRSA1 to obtain the query

result < A, C >: 1,< A, B, C >: 3.

Electronics 2024, 13, 1248 9 of 14

Table 2. Steps of SNN as an example.

node nA nB nC

edge EAB EAC EBC -

Time
window D1

AB D2
AB D1

AC D2
AC D1

BC D2
BC -

(a) Running SI (t = 0)

Si None None None
Fi None None None
Pij [0] [0] None -
vr

ij {0 : 0} {0 : 0} {0 : 0} {0 : 0} None None -

(b) Running NA (t = 1)

Si {B : [[0, 1]]} None None
Fi None {A : [[0, 1]]} None
Pij None [0] [1] -
vr

ij None None {0 : 1} {0 : −2} {1 : 0} {1 : 0} -

(c) Running NA (t = 2)

Si { B : [[0, 1]], C : [[0, 2]]} None None
Fi None { A : [[0, 1]]} { A : [[0, 2]]}
Pij None None [1] -
vr

ij None None None None {1 : 1} {1 : −1} -

(d) Running AP

paths [[A, C, 2]]

(e) Running NA (t = 3)

Si { B : [[0, 1]], C : [[0, 2]]} { C : [[1, 3]]} None
Fi None { A : [[0, 1]]}

{
A : [[0, 2]]

B : [[1, 3]]

}
Pij [0] [0] None -
vr

ij {0 : 0} {0 : 0} {0 : 0} {0 : 0} None None -

(f) Running AP

paths [[A, C, 2],[A, B, C, 3]]

3.3. Complexity

Theorem 1 (Time Complexity of the SNN). A directed graph G with n nodes and m edges is
given, where each edge has an average of k time windows. The SNN algorithm finds the result in
O(n2 × k×m× f) time for f paths.

Proof of Theorem 1 . The complexity of Algorithm 1 needs to be combined with the
complexity of graph initialization, start node initialization, node activation, and path
addition, i.e., Algorithms 2–7.

(1) Algorithm 2 focuses on traversing the edges to initialize the time windows on each
edge. The complexity of graph initialization is O(m× k).

(2) Algorithm 3 involves traversing the time windows of the successor edge set of ni.
The time complexity is approximately O(m× k).

(3) Algorithm 4 involves judgement. When the judgement condition is true, the time
complexity is O(m× k× n), after considering Algorithm 6.

(4) Algorithm 5 is an iteration related to the number of nodes and edges. The time
complexity is O(m× n).

(5) Algorithm 6 includes two side-by-side cyclic operations, one related to the number
of time windows of the edges, and the other is the removal operation in the process
processing which makes a call to Algorithm 3. The time complexity of Algorithm 6 is
approximately O(m× k).

(6) The complexity of Algorithm 7 is O(1) obviously.

Electronics 2024, 13, 1248 10 of 14

Combining the calls of Algorithm 1 to other algorithms and the call relationships
between the algorithms, the time complexity of the SNN can be calculated using the
following expression:

O(n2 × k×m× f)

Theorem 1 is proven. □

3.4. Security

The design of the encrypted index incorporates three different cryptography tech-
niques: RSA, AES, and ORE. Each of these three algorithms plays an important role in the
field of cryptography, and together they provide a multi-layered security.

Assuming that the cloud provider is secure and trustworthy, i.e., it does not tamper
with the data and returns the query results truthfully, it is assumed that the key distribution
process is secure.

The security of RSA depends on the key length and the complexity of the factorization
algorithm. As the computational power increases, the key length of RSA increases to
maintain its security. Although quantum computing may pose a threat to the security of
RSA, RSA keys of a sufficient length are still secure for the time being. RSA is used to make
real data transparent to the cloud provider and to protect the user’s independent secret
key [26,27].

The design of AES consists of a multi-round encryption process, with each round
including operations such as byte substitution, row shifting, column mixing, and round key
addition. The security of AES has been extensively researched and empirically verified, and
to date, no effective attack method has been found that can break AES-256 in a practicable
amount of time. AES is used to prevent information leakage between users. Even if a user
has access to another user’s information, the data cannot be deciphered without the user’s
secret key [27,28].

ORE is designed to prevent the inference of sensitive information through sequential
relationships, thus providing greater security than traditional OPE. ORE is secure, in that it
hides the sequential information of the data, making it impossible to infer anything about
the original data even when the encrypted data is sorted or a range query is performed.
ORE is for path filtering in the cloud [29–31].

4. Experiments

This section presents the evaluation of the SNN algorithm through experiments on
New York road instances.

To illustrate the efficiency and accuracy of the SNN algorithm, four random network
topologies with 50 nodes, 100 nodes, 500 nodes, and 1000 nodes were considered. The time
limits for the above topologies are 50, 200, 500, and 1000, respectively. All the algorithms
in our experiment are implemented in Python. The experiments are conducted using a
desktop PC sourced from Dell, headquartered in Round Rock, Texas, USA. The PC is
equipped with an 11th Gen Intel(R) Core (TM) i7-11390H processor at 3.40 GHz and 16 GB
of RAM.

The datasets used in our experiments are listed in Table 3.

Table 3. Datasets for Experiments.

Dataset Nodes Edges Time Windows Tu Storage

Dataset 1 50 115 230 50 4 KB
Dataset 2 100 230 460 200 7 KB
Dataset 3 500 1244 2488 500 44 KB
Dataset 4 1000 2493 4986 1000 92 KB

Table 4 shows the query time statistics of existing algorithms before as Dijkstra [32],
PCNN [33], and TDNN without the time-varying [25]. These algorithms have the same

Electronics 2024, 13, 1248 11 of 14

accuracy, i.e., they all find the shortest paths. The optimal algorithm TDNN was selected
for comparison experiments with SNN.

Table 4. Comparison of existing algorithms.

Dataset Dijkstra PCNN TDNN

Dataset 1 0.001 0.001 0.001
Dataset 2 0.004 0.003 0.003
Dataset 3 0.10 0.08 0.08
Dataset 4 0.26 0.31 0.24

Table 5 shows the efficiency comparison of TDNN and SNN with time-varying factors.
As the size of datasets grows, both algorithms show a substantial increase in the time
required. However, the TDNN algorithm takes significantly longer than SNN, and the time
difference between the two algorithms is becoming greater. The SNN algorithm has better
efficiency than TDNN with time-varying factors, and it can find multiple paths at once and
contains the shortest path, which indicates that the accuracy of SNN is significantly better
than that of others (e.g., TDNN).

Table 5. Efficiency Comparison of SNN, TDNN, Connor.

Dataset SNN TDNN Connor

Dataset 1 0.03 0.08 0.05
Dataset 2 0.12 0.53 0.1
Dataset 3 3.13 64.10 0.8
Dataset 4 18.72 225.75 8.9

Accuracy comparison of SNN, TDNN, and Connor is presented in the form of line
chart in Figure 3. In addition, the SNN is significantly less efficient compared to the Connor.
However, the Connor framework has the obvious limitation that it sacrifices accuracy [24].
This is less applicable in multiple scenarios such as map services. This leads to its low
applicability in scenarios where accuracy is required.

Electronics 2024, 13, 1248 13 of 17

Table 4. Comparison of existing algorithms.

Dataset Dijkstra PCNN TDNN
Dataset 1 0.001 0.001 0.001
Dataset 2 0.004 0.003 0.003
Dataset 3 0.10 0.08 0.08
Dataset 4 0.26 0.31 0.24

Table 5 shows the efficiency comparison of TDNN and SNN with time-varying fac-
tors. As the size of datasets grows, both algorithms show a substantial increase in the
time required. However, the TDNN algorithm takes significantly longer than SNN, and
the time difference between the two algorithms is becoming greater. The SNN algorithm
has better efficiency than TDNN with time-varying factors, and it can find multiple
paths at once and contains the shortest path, which indicates that the accuracy of SNN is
significantly better than that of others (e.g., TDNN).

Table 5. Efficiency Comparison of SNN, TDNN, Connor.

Dataset SNN TDNN Connor
Dataset 1 0.03 0.08 0.05
Dataset 2 0.12 0.53 0.1
Dataset 3 3.13 64.10 0.8
Dataset 4 18.72 225.75 8.9

Accuracy comparison of SNN, TDNN, and Connor is presented in the form of line
chart in Figure 3. In addition, the SNN is significantly less efficient compared to the
Connor. However, the Connor framework has the obvious limitation that it sacrifices ac-
curacy [24]. This is less applicable in multiple scenarios such as map services. This leads
to its low applicability in scenarios where accuracy is required.

Figure 3. Accuracy Comparison of SNN, TDNN, and Connor.

Tables 6 and 7 show the time statistics for different numbers of edges, nodes, time
windows and uT , which are presented in the form of a line chart in Figure 4. For practi-
cal reasons, the number of time windows will not change exponentially. It can be easily
seen that the time consumption of SNN is positively correlated with the number of
nodes, edges, time windows, and the upper limit of time.

Table 6. SNN experimental results (k = 2).

Dataset Tu = 50 s Tu = 200s Tu = 500 s Tu = 1000 s
Dataset 1 0.04 0.04 0.03 0.03
Dataset 2 0.04 0.17 0.16 0.16
Dataset 3 0.06 0.60 4.36 4.10
Dataset 4 0.08 0.88 5.34 26.41

Figure 3. Accuracy Comparison of SNN, TDNN, and Connor.

Tables 6 and 7 show the time statistics for different numbers of edges, nodes, time
windows and Tu, which are presented in the form of a line chart in Figure 4. For practical
reasons, the number of time windows will not change exponentially. It can be easily seen
that the time consumption of SNN is positively correlated with the number of nodes, edges,
time windows, and the upper limit of time.

In summary, the SNN algorithm shows more comprehensive advantages in terms of
efficiency, accuracy, etc. The SNN algorithm is of great significance for solving time-varying
path query problems with privacy protection.

However, the efficiency decreases significantly as the scale of the graph increases
according to the experimental results. To adapt to more demand scenarios, such as large-

Electronics 2024, 13, 1248 12 of 14

scale graph applications, the hardware configuration can be improved or more research on
optimization and iteration needs to be performed.

Table 6. SNN experimental results (k = 2).

Dataset Tu = 50 s Tu = 200s Tu = 500 s Tu = 1000 s

Dataset 1 0.04 0.04 0.03 0.03
Dataset 2 0.04 0.17 0.16 0.16
Dataset 3 0.06 0.60 4.36 4.10
Dataset 4 0.08 0.88 5.34 26.41

Table 7. SNN experimental results (k = 4).

Dataset Tu = 50 s Tu = 200 s Tu = 200 s Tu = 200 s

Dataset 1 0.04 0.04 0.04 0.04
Dataset 2 0.05 0.18 0.15 0.15
Dataset 3 0.07 0.4 3.16 3.32
Dataset 4 0.10 0.62 4.86 29.18

Electronics 2024, 13, 1248 14 of 17

Table 7. SNN experimental results (k = 4).

Dataset Tu = 50 s Tu = 200 s Tu = 200 s Tu = 200 s
Dataset 1 0.04 0.04 0.04 0.04
Dataset 2 0.05 0.18 0.15 0.15
Dataset 3 0.07 0.4 3.16 3.32
Dataset 4 0.10 0.62 4.86 29.18

Figure 4. Comprehensive comparison of SNN experimental results.

In summary, the SNN algorithm shows more comprehensive advantages in terms
of efficiency, accuracy, etc. The SNN algorithm is of great significance for solving time-
varying path query problems with privacy protection.

However, the efficiency decreases significantly as the scale of the graph increases
according to the experimental results. To adapt to more demand scenarios, such as
large-scale graph applications, the hardware configuration can be improved or more re-
search on optimization and iteration needs to be performed.

5. Conclusions
In this paper, the SNN algorithm was proposed for solving TVPQ problems with

privacy protection. This approach is highly important for road planning, network rout-
ing, project scheduling, and other issues in data outsourcing scenarios. The most promi-
nent advantage is that it can find multiple paths at once, including the shortest paths,
which other algorithms cannot find. Additionally, an encrypted index for privacy pro-
tection has been designed. Experiments with New York road instances demonstrated the
efficiency and accuracy of the SNN algorithm.

In future work, further studies of path planning algorithms with privacy protection
can be conducted, such as optimization algorithms for large-scale encrypted graphs.

Funding: This research received no external funding.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data
can be found here: https://www.diag.uniroma1.it/challenge9/download.shtml (accessed on 15 Sep-
tember 2022).

Conflicts of Interest: The author declares no conflicts of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the man-
uscript; or in the decision to publish the results.

Figure 4. Comprehensive comparison of SNN experimental results.

5. Conclusions

In this paper, the SNN algorithm was proposed for solving TVPQ problems with
privacy protection. This approach is highly important for road planning, network routing,
project scheduling, and other issues in data outsourcing scenarios. The most prominent
advantage is that it can find multiple paths at once, including the shortest paths, which
other algorithms cannot find. Additionally, an encrypted index for privacy protection has
been designed. Experiments with New York road instances demonstrated the efficiency
and accuracy of the SNN algorithm.

In future work, further studies of path planning algorithms with privacy protection
can be conducted, such as optimization algorithms for large-scale encrypted graphs.

Funding: This research received no external funding.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can be
found here: https://www.diag.uniroma1.it/challenge9/download.shtml (accessed on 15 September
2022).

Conflicts of Interest: The author declares no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

https://www.diag.uniroma1.it/challenge9/download.shtml

Electronics 2024, 13, 1248 13 of 14

Abbreviations
The following abbreviations are used in this manuscript:
Symbols Explanation
G The graph
ns The start node
nt The target node
Ts The departure time
Te The arrival time
SkRSA1 The private key of RSA-1
PkRSA1 The public key of RSA-1
SkRSA2 The private key of RSA-2
PkRSA2 The public key of RSA-2
KAES The key of AES
KORE The key of ORE
Tu The upper limit of the arrival time
pst One path from ns to nt
Pst The paths set from ns to nt
lst The length of Pst
Eij The edge from ni to nj
Dij The time window of the edge from ni to nj
Dr

ij The rth time window of the edge from ni to nj

lr
ij The lower boundary of Dr

ij
ur

ij The upper boundary of Dr
ij

cij The cost of Eij
cr

ij The cost of Dr
ij

vr
ij The cost of Dr

ij in real time
NP

ij The predecessor ni of nj

NS
ij The successor nj of node i

EP
i The predecessor edge set of ni

ES
i The successor edge set of ni

Ns The number of nodes
f The number of paths queried
k The number of time windows of each edge
Fi The father set of ni
Pij The arrival time set of nj with that swell has not spread to next node currently
Si The son set of ni

References
1. References Ge, X.; Yu, J.; Zhang, H.; Bai, J.; Fan, J.; Xiong, N.N. SPPS: A search pattern privacy system for approximate shortest

distance query of encrypted graphs in iiot. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 136–150.
2. Zhou, Y.; Lu, Y.; Lv, L. Grid-based non-uniform probabilistic roadmap-based agv path planning in narrow passages and complex

environments. Electronics 2024, 13, 225–240. [CrossRef]
3. Huang, W.; Gao, L. A time wave neural network framework for solving time-dependent project scheduling problems. IEEE Trans.

Neural Netw. Learn. Syst. 2020, 31, 274–283. [CrossRef] [PubMed]
4. Cao, N.; Yang, Z.; Wang, C.; Ren, K.; Lou, W. Privacy-preserving query over encrypted graph-structured data in cloud computing.

In Proceedings of the 2011 31st International Conference on Distributed Computing Systems, Minneapolis, MN, USA, 20–24 June
2011; pp. 105–117.

5. Memon, I.; Arain, Q.A. Dynamic path privacy protection framework for continuous query service over road networks. World
Wide Web 2017, 20, 639–672. [CrossRef]

6. Shang, H.; Zhang, Y.; Lin, X.; Yu, J.X. Taming verification hardness: An efficient algorithm for testing subgraph isomorphism.
Proc. Vldb Endow. 2008, 1, 364–375. [CrossRef]

7. Gouda, K.; Hassaan, M. Compressed feature-based filtering and verification approach for subgraph search. In Proceedings of the
EDBT’13: Proceedings of the 16th International Conference on Extending Database Technology, Genoa, Italy, 18–22 March 2013;
pp. 201–213.

8. Lin, W.; Xiao, X.; Cheng, J.; Bhowmick, S.S. Efficient algorithms for generalized subgraph query processing. In Proceedings of the
CIKM’12: Proceedings of the 21st ACM international conference on Information and knowledge management, Maui, HI, USA, 29
October–2 November 2012; Association for Computing Machinery: New York, NY, USA, 2012; pp. 325–352.

https://doi.org/10.3390/electronics13010225
https://doi.org/10.1109/TNNLS.2019.2900544
https://www.ncbi.nlm.nih.gov/pubmed/30908243
https://doi.org/10.1007/s11280-016-0403-3
https://doi.org/10.14778/1453856.1453899

Electronics 2024, 13, 1248 14 of 14

9. Meng, X.; Kamara, S.; Nissim, K.; Kollios, G.N. GRECS: Graph encryption for approximate shortest distance queries. In
Proceedings of the CCS’15: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security,
Denver, CO, USA, 12–16 October 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 25–42.

10. Xie, P.; Xing, E. CryptGraph: Privacy Preserving Graph Analytics on Encrypted Graph. arXiv 2014, arXiv:1409.5021.
11. Cooke, K.L.; Halsey, E. The shortest route through a network with time-dependent internodal transit times. J. Math. Anal. Appl.

1966, 14, 493–498. [CrossRef]
12. Frigioni, D.; Marchetti-Spaccamela, A.; Nanni, U. Fully dynamic output bounded single source shortest path problem. In

Proceedings of the SODA’96: Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, Atlanta, GA,
USA, 28–30 January 1996; pp. 212–221.

13. Ramalingam, G.; Reps, T. An incremental algorithm for a generalization of the shortest-path problem. J. Algorithms 1996, 21,
267–305. [CrossRef]

14. King, V. Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in digraphs. In Proceedings of
the 40th Annual Symposium on Foundations of Computer Science, New York, NY, USA, 17–19 October 1999; pp. 81–89.

15. Demetrescu, C.; Italiano, G. A new approach to dynamic all pairs shortest paths. J. ACM 2004, 51, 968–992. [CrossRef]
16. Liu, C.; Zhu, L.; He, X.; Chen, J. Enabling privacy-preserving shortest distance queries on encrypted graph data. IEEE Trans.

Dependable Secur. Comput. 2021, 18, 192–204. [CrossRef]
17. Ghosh, E.; Kamara, S.; Tamassia, R. Efficient graph encryption scheme for shortest path queries. In Proceedings of the ASIA

CCS’21: ACM Asia Conference on Computer and Communications Security, Hong Kong, China, 7–11 June 2021; pp. 31–43.
18. Sun, F.; Yu, J.; Ge, X.; Yang, M.; Kong, F. Constrained top-k nearest fuzzy keyword queries on encrypted graph in road network.

Comput. Secur. 2021, 111, 430–442. [CrossRef]
19. Wu, B.; Chen, X.; Wu, Z.; Zhao, Z.; Mei, Z.; Zhang, C. Privacy-guarding optimal route finding with support for semantic search

on encrypted graph in cloud computing scenario. Wirel. Commun. Mob. Comput. 2021, 2021, 6617959. [CrossRef]
20. Zhang, D.; Liu, Y.; Liu, A.; Mao, X.; Li, Q. Efficient path query processing through cloud-based mapping services. IEEE Access

2017, 5, 12963–12973. [CrossRef]
21. Huang, W.; Sun, M.; Zhu, L.; Oh, S.; Pedrycz, W. Deep fuzzy min-max neural network: Analysis and design. IEEE Trans. Neural

Netw. Learn. Syst. 2022. [CrossRef]
22. Huang, W.; Wang, Y.; Zhu, L. A time impulse neural network framework for solving the minimum path pair problems of the

time-varying network. IEEE Trans. Knowl. Data Eng. 2023, 35, 7681–7692. [CrossRef]
23. Zhang, C.; Luo, X.; Liang, J.; Liu, X.; Zhu, L.; Guo, S. POTA: Privacy-preserving online multi-task assignment with path planning.

IEEE Trans. Mob. Comput. 2023, 4, 1–13. [CrossRef]
24. Shen, M.; Ma, B.; Zhu, L.; Mijumbi, R.; Du, X.; Hu, J. Cloud-based approximate constrained shortest distance queries over

encrypted graphs with privacy protection. IEEE Trans. Inf. Forensics Secur. 2018, 13, 940–953. [CrossRef]
25. Huang, W.; Wang, J.; Wang, W. A time-delay neural network for solving time-dependent shortest path problem. Neural Netw.

2017, 90, 21–28. [CrossRef]
26. Tahat, N.; Tahat, A.A.; Abu-Dalu, M. A new RSA public key encryption scheme with chaotic maps. Int. J. Electr. Comput. Eng.

2020, 10, 1430–1437. [CrossRef]
27. Huang, X.; Wang, W. A novel and efficient design for an rsa cryptosystem with a very large key size. IEEE Trans. Circuits Syst.

2015, 62, 972–976. [CrossRef]
28. Masoumi, M. Novel hybrid cmos/memristor implementation of the aes algorithm robust against differential power analysis

attack. IEEE Trans. Circuits Syst. 2020, 67, 1314–1318. [CrossRef]
29. Peyrin, T. Practical Order-Revealing Encryption with Limited Leakage; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9783,

pp. 474–493.
30. Zhang, C.; Zhao, M.; Liang, J.; Fan, Q.; Zhu, L.; Guo, S. NANO: Cryptographic enforcement of readability and editability

governance in blockchain databases. IEEE Trans. Dependable Secur. Comput. 2023, 4, 1–14. [CrossRef]
31. Hu, C.; Zhang, C.; Lei, D.; Wu, T.; Liu, X.; Zhu, L. Achieving privacy-preserving and verifiable support vector machine training in

the cloud. IEEE Trans. Inf. Forensics Secur. 2023, 18, 3476–3491. [CrossRef]
32. Zhu, D.; Sun, J. A new algorithm based on dijkstra for vehicle path planning considering intersection attribute. IEEE Access 2021,

9, 19761–19775. [CrossRef]
33. Sang, Y.; Lv, J.; Qu, H.; Yi, Z. Shortest path computation using pulse-coupled neural networks with restricted autowave.

Knowl.-Based Syst. 2016, 114, 1–11. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/0022-247X(66)90009-6
https://doi.org/10.1006/jagm.1996.0046
https://doi.org/10.1145/1039488.1039492
https://doi.org/10.1109/TDSC.2018.2880981
https://doi.org/10.1016/j.cose.2021.102456
https://doi.org/10.1155/2021/6617959
https://doi.org/10.1109/ACCESS.2017.2725308
https://doi.org/10.1109/TNNLS.2022.3226040
https://doi.org/10.1109/TKDE.2022.3217394
https://doi.org/10.1109/TMC.2023.3315324
https://doi.org/10.1109/TIFS.2017.2774451
https://doi.org/10.1016/j.neunet.2017.03.002
https://doi.org/10.11591/ijece.v10i2.pp1430-1437
https://doi.org/10.1109/TCSII.2015.2458033
https://doi.org/10.1109/TCSII.2019.2932337
https://doi.org/10.1109/TDSC.2023.3330171
https://doi.org/10.1109/TIFS.2023.3283104
https://doi.org/10.1109/ACCESS.2021.3053169
https://doi.org/10.1016/j.knosys.2016.08.027

	Introduction
	Preliminaries
	Definition of Time-Varying Path Query
	Model of a Time-Varying Network Query

	Construction of the SNN
	Design of the SNN Algorithm
	An Example of the SNN Algorithm
	Complexity
	Security

	Experiments
	Conclusions
	References

