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Abstract: In this paper, a swell neural network (SNN) algorithm was proposed for solving time-

varying path query (TVPQ) problems with privacy protection with the following goals: (i) query-

ing the K-nearest paths with time limitations in a time-varying scenario, and (ii) protecting private 

information from neighborhood attacks. The proposed SNN is a network in which the optimal 

paths can be calculated at the same time with no need for training. For TVPQ, a node is considered 

a neuron, and time-varying means that an edge has different costs in different time windows. For 

SNN, the query paths are swell sets from the start to the target within an upper limit. An encrypt-

ed index is designed for privacy protection. The evaluation of the efficiency and accuracy of the 

SNN was carried out based on New York road instances. 

Keywords: time-varying path query (TVPQ); swell neural network (SNN); privacy protection;  

encrypted index 

 

1. Introduction 

Path query problems with privacy protection have attracted attention in many 

fields, such as industry [1,2], management science [3], computer science [4], and trans-

portation [5]. Path query problems with privacy protection were first proposed in 2011 

by Cao [4], who proposed utilizing the principle of filtering and verification to keep 

cloud data secure. Shang H [6], Gouda K [7], and Lin W [8] carried out further research 

based on this idea. Meng X studied the problem of graph encryption and proposed an 

approximate shortest distance query method (GRECS) for encrypted graphs [9]. A 

CryptGraph scheme has been designed, with which graph analysis can be performed on 

encrypted graphs, and the privacy of users’ graph data and analysis results can be pro-

tected [10]. However, these studies lack consideration of time variation. 

There is a suite of studies addressing the time-varying path query problem. The 

shortest path algorithm through a time-varying network was first proposed in 1966 by 

Cooke and Halsey [11]. Such path query methods for dynamic graphs are valuable ref-

erences. Frigioni D proposed the global dynamic algorithm FMN to solve the single-

source shortest path problem for dynamic graphs [12]. Additionally, SWSF-FP was pro-

posed by Ramalingam G [13]. A global dynamic algorithm for computing the shortest 

paths between all pairs of vertices in a dynamic graph was also proposed [14]. An im-

proved algorithm was proposed to maintain the shortest paths between all pairs of ver-

tices in a dynamic graph [15]. In addition, Liu C [16], Ghosh E [17], Sun F [18], and Wu B 

[19] described their research on this topic. However, these works neglect privacy protec-

tion. 

To our knowledge, current algorithmic models either ignore the effect of the time 

factor or the need for privacy protection. There are still unresolved TVPQ problems re-

garding privacy protection, despite the urgent need for solutions in applications such as 

mapping services [20]. Different departure times and expected arrival times lead to 
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changes in planned routes. Users expect to obtain the top recommended routes under 

the current time constraints. Pioneering works by Huang W [3,21,22], Zhang C [23], and 

Shen M [24] provided schemes for reference. Huang W’s work lacks a design for multi-

ple paths, and accuracy cannot be fully guaranteed in Shen M’s work. Current algo-

rithms have limitations in terms of multipath requirements and accuracy guarantees. 

In this paper, an SNN algorithm was proposed to solve TVPQ problems with priva-

cy protection. An SNN is a network in which the optimal paths can be calculated at the 

same time and there is no need for training. For TVPQ, nodes are considered neurons, 

and time-varying means that an edge has different costs in different time windows. The 

core of the SNN is that the query paths are swell sets from the start node to the target 

node, and their arrival times are less than the upper limit.  

The main contributions of this paper are as follows:  

1. The SNN algorithm can help to find multiple paths at once, including the shortest 

paths. This is difficult to achieve with other algorithms under time-varying condi-

tions.  

2. For privacy protection, a scheme was designed with an encrypted index that effec-

tively prevents the leakage of user information. 

3. Theoretical analyses and contrasting experimental results prove the efficiency, se-

curity, and accuracy of the algorithm. 

The remainder of this paper is organized as follows. Section 2 introduces prerequi-

sites, Section 3 presents the SNN algorithm, Section 4 reports the experimental results, 

and concluding statements are presented in Section 5. 

2. Preliminaries 

This section introduces several prerequisites that will be used throughout this pa-

per. 

2.1. Definition of Time-Varying Path Query 

Definition 1 (Time-Varying Network). A time-varying network graph is defined as 

( , )G N E= , where N  represents the set of nodes and E  denotes the set of network edges. 

ijE E  stands for the edge from node i to node j, and it is associated with different time weights 

r

ijc  for different time windows 
r

ijD . 

Definition 2 (Path of a Time-Varying Network). A path 1kP  on a time-varying network is 

defined as a sequence of nodes 1 ,, , ,i kn n n    , where n1 is the start node, 
kn  is the target 

node, in  is the ith node in the path, and eT  is the arrival time at kn . A route based on 1kP  is a 

sequence of nodes 1, , , ,i kn n n     [25]. 

According to the definition of the path of a time-varying network, the arrival time is 

1,

1
i i

k

n n

i

Te Ts c
+

=

= +  for a path 1 1 i, ,n ,...,k kP n n=   . 

 

2.2. Model of a Time-Varying Network Query 

Given a directed graph ( , )G N E= , a start node sn N , a target node tn N , a 

start time sT , an upper limit of the arrival time uT , and the number f of paths to query 
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for, a time-varying network query finds the set of paths ( )1 ,  2 ,st stp p   such that the 

arrival time is less than 
uT . 

For node i, the successor set can be defined as { | }ji jS sd n N=  , where the 

length of 
id  represents the number of swells from node i to other nodes. 

 

 

1 2

1 2 1,

[

, , 1

, ...,[ , ] ,

], 0

i

k

i

k i

id

s t t d

t t t t

d

d k+

 =


= 



  = 

  = 

  

For node j, the predecessor set can be defined as { | }ij iF fd n N=  , where the 

length of je  represents the number of swells from other nodes to j. 

 

 

1 2

1 2 1

, , 1

, ,...,[ ,

], 0

,

[

]

j

k

j

k

i

e

fd t t e

t t t t ej k+

 =


= 



  = 

 = 

  

Clearly, if there is one swell from in  to jn , at 1t  to 2t  both jsd  and ifd  above 

contain  1 2,  t t . The predecessor set of 
tn  collects the swells leading to 

tn  with the ar-

rival times. Based on the above two features, paths can be obtained by tracing the prede-

cessor sets of tn  iteratively. 

For privacy protection, three algorithms were used: RSA, AES, and ORE. 

In RSA, the encryption keys are public, while the decryption keys are not, so only 

the person with the correct decryption key can decipher an encrypted message. This 

avoids the need for a “courier” to deliver keys to recipients through another secure 

channel before transmitting the originally intended message [26,27]. 

AES is a substitution-permutation network block cipher based on the design prin-

ciples of Ron Rivest, Adi Shamir, and Leonard Adleman’s earlier Data Encryption 

Standard (DES). It uses a variable-length key from 128 bits to 256 bits and operates on 

fixed-size blocks of 128 bits. Both parties must agree on the key in advance to ensure that 

the key information cannot be obtained by a third party [27,28]. 

An order-revealing encryption (ORE) scheme is a tuple of three algorithms Π = 

(ORE.Setup, ORE.Encrypt, ORE.Compare) defined over a well-ordered domain D with 

the following properties: 

ORE.Setup(1


) → sk : On inputting a security parameter  , the setup algorithm 

outputs a secret key sk . 

ORE.Encrypt( ,  sk m ) → ct : On inputting a secret key sk  and a message m D , 

the encryption algorithm outputs a ciphertext ct . 

ORE.Compare( 1,  2ct ct ) →b : On inputting two ciphertexts 1ct , 2ct , the compare 

algorithm outputs a bit  0,  1b . 

An ORE scheme over a well-ordered domain D  is correct if for 

)1(.sk ORE Setup   and all messages 1,  2m m D  [29–31]: 

( ) ( ) ( ). 1,  2   1 1  2   1  Pr ORE Compare ct ct m m negl = − =    

Definition 3 (Encrypted Index). An encrypted index consists of two parts, as follows: 



Electronics 2024, 13, 1248 4 of 17 
 

 

• 
eT  encrypted with the ORE key 

• 
stp  encrypted with the public secret key of RSA-1. 

Definition 4 (Encrypted Query). An encrypted message for a query consists of three parts, as 

follows: 

• ( ),  ,  ss t T  encrypted with the AES key 

• 
uT  encrypted with the ORE key and the AES key 

• f  is the plaintext representing the number of paths queried. 

3. Construction of the SNN 

This section presents the SNN algorithm and its complexity and security analyses. 

3.1. Design of the SNN Algorithm 

The SNN is a swell neural network without any training. To formalize the SNN, 

each node is viewed as a neuron and the graph composed of nodes and the edges con-

necting them is viewed as a neural network. 

Figure 1 illustrates a general neuron structure for an SNN. As shown in Figure 1, 

there are four parts in each loop: the input, the neuron state, the neuron feedback, and 

the output. The main functions of these four parts are as follows: the input swell coming 

from its predecessor nodes over time, the neuron state that determines whether to 

spread, the feedback that updates the neuron state, and the output swells that spread to 

the successor nodes. 
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Figure 1. A general neuron structure of SNN. 

1. Input: The input swells come from the predecessor nodes. 

2. Neuron state: The neuron state consists of three parts: nodes, edges, and time win-

dows. The functions n(t), e(t) and tw(t) represent the processing of the node, edge, 

and time window, respectively, and t represents the current time. 

For in , the successor set can be defined as { | }i sdj nj NS =  , where the length of 

id  represents the number of swells from in  to jn . 

 

 

1 2

1 2 1,

[

, , 1

, ...,[ , ] ,

], 0

i

k

i

k i

id

s t t d

t t t t

d

d k+

 =


= 



  = 

  = 

  

The predecessor set can be defined similarly. 

For edge ijE , the time set collects the arrival times of in  for which no swell is cur-

rently formed. 
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1 2

[],

[ , ...],
ij

no
P

t t yes


= 


  

For time window 
r

ijD , 
r

ijv  represents the set of key-value pairs for arrival and avail-

able times when no swell is formed. 

1 2

[],

[ , ...],

r

ijv
no

t t yes


= 


  

3. Feedback: The swells spread along the edge in the time window for which the 

available time ck satisfies the cost 𝑐𝑖𝑗
𝑟 , and ck is computed as follows: 

,

,

r r

k ij k ij

r r

ij k ij

kc
t t if l t u

t l if t l

−  

−
=

=

 

  

4. Output: The output swells continue to spread to the successor nodes. 

The overall algorithm, referred to as Algorithm 1, serves as the foundation for the 

SNN. The partitioning algorithms of the SNN algorithm are introduced as follows. To 

find the shortest paths, the SNN algorithm works as follows: 

• Initialize the graph as Algorithm 2. 

• Activate the start node directly as Algorithm 3. 

• Iterate over the successor edges of the start node as Algorithm 4 to spread ripples. 

• Iterate over all nodes over time to activate the nodes as Algorithm 4 until the target 

node is activated. The path can be obtained if the current time is within the maxi-

mum time range. Otherwise, no path meets the requirements. 

Algorithm 1 Encrypted Index Construction (EIC) 

Input: ,  ,  ,  ,  ,  s uG s t T T f  

Output: ,st eP T  

Initialize G  as Algorithm 2. 

 e sT T=  

Initialize 
sn  as Algorithm 3. 

while stl f  and e uT T=  do 

  1e eT T= +   

 for in G  do 

  Try to activate in  as Algorithm 4. 

 if tF  has been changed do 

  st stp P  as Algorithm 5. 

 end if 

end while 

Encrypt each path with OREK  and 2RSAPk . 

First, initialize the graph as shown in Algorithm 2. A directed graph is constructed. 

Each node is initialized with an empty father set and son set for collecting predecessors 

and successors. For the edges, a time set is initialized for the arrival times of the prede-

cessors, and time windows with boundaries, costs, and the set of key-value pairs for ar-

rival and available times are initialized. 
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Algorithm 2 Graph Initialization (GI) 

Input: G  

Output: G  

for ijE G do 

 
iF None=  

iS None=  

jF None=  

jS None=  

 ijc None=  

 for 
r

ij ijD D  do 

                   
r

ijv None=  

          end for 

end for 

return G  

The start node is initialized according to Algorithm 3. The algorithm iterates over 

the predecessor edges of the start node 
sn  and adds the start time 

sT  to its time set and 

time window set. 

Algorithm 3 Start Node Initialization (SI) 

Input: ,  n ,  s sG T  

Output: G  

for 
S

si sE E  do 

 js sT E  

 for 
r

si siD D  do 

  ( )  ,  0 r

s ijT v . 

 end for 

end for 

To activate the nodes over time, if the input node is a start node or its father set is 

not empty, then the algorithm iterates over the successor edges of the input node to 

spread swells, as Algorithm 4. 

Algorithm 4 Node Activation (NA) 

Input: , ,i sG n n  

Output: G  

if i sn n=  or iF None : 

 for 
S

ij iE E  do 

  Spread as Algorithm 6 

 end for 

end if 

New paths are added to paths according to Algorithm 5. The function AP is execut-

ed iteratively until f  paths are found that meet the requirements. 
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Algorithm 5 Add Paths (AP) 

Input: , , , ,i jt sG n p n f  

Output: 
stP  

if 
stl f  do 

 [ ]it jtp i p= +  

 if 
i sn n=  

  st stp P  

  if 
stl f= do 

   break 

  end if 

 end if 

 else 

 for ij F  do 

  AP(Algorithm 5) 

 end for 

end if 

The swells spread along the edge as shown in Algorithm 6. Whether the swells 

spread is dependent on the determination of the time window over time. The swells are 

retained, process records are deleted, and the network prepares for the next iteration, as 

shown in Algorithm 3, after the swells spread. 

Algorithm 6 Swell Spreading (SS) 

Input: ( ),  ,    ijG E T current time  

Output: G  

ijde None= //Initialize the set of arrival times to be deleted from ijE  

for 
r

ij ijD D  

 key = Perform time window determination as Algorithm 7  

 if key None  do 

  ijkey de  

 end if 

end for 

for ijde de : 

 Delete de from ijc  

 Delete ( de ,*) from 
r

ijv  

  ( )   , , ji time FT  ,  ( )   , , ij time ST   and ( ),  0 r

ijT v  as Algorithm 3 

end for 

Determine each time window of the edges over time, as shown in Algorithm 7. The 

swells spread along the edge in the time window for which the available time satisfies 

the cost. 
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Algorithm 7 Time Window Determination (TD) 

Input: , , ( )r

ijG D T currenttime . 

Output: G  

  de None= // Initialize the arrival time to be deleted from ijE  

for 
r

ijkey v  (the key-value pair set of 𝐷𝑖𝑗
𝑟 ) 

 if 
r r

ij ijl key u=   do 

  [ ]r

ijv key T key= −  

 else if 
r

ijkey l  do 

  [ ]r r

ij ijv key T l= −  

 end if 

 if [ ]r r

ij ijv key c=  do 

  de key=  

 end if 

end for 

return de 

3.2. An Example of the SNN Algorithm 

To illustrate the SNN algorithm, let us consider the example shown in Figure 2 and 

Table 1. There are three nodes and three edges in the time-varying network, where A is 

the start node, C is the target node, the start time is 0, the upper limit of the arrival time 

is 5, and the number f of paths to query is 2. For each edge, there are two time windows. 

Table 2 illustrates the detailed steps of the running algorithm on the SNN. It is evi-

dent that the paths are <A, C> and <A, B, C>. At moment 0, only An  is reached and the 

swell has not spread to the next node. At moment 1, a swell spread to Bn , which is a 

child of An . At moment 2, a swell reaches C and a path from A to C is found as [A, C] in 

time 2. At moment 3, the swell that spread to Bn  at moment 1 arrived at Cn , and the 

second path from A to C is found as [A, B, C], in time 3. 

 

Figure 2. An example of a time-varying neural network. 
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Table 1. Description of the example. 

Node Edge Time Window Cost 

A 

AB 
[0, 3) 1 

[3, +∞) 2 

AC 
[0, 2) 2 

[3, +∞) 4 

B 
BC 

[0, 3) 2 

 [3, +∞) 3 

Table 2. Steps of SNN as an example. 

node An  
Bn   Cn  

edge ABE  ACE  BCE  - 

time 

window 
1

ABD  
2

ABD  
1

ACD  
2

ACD  
1

BCD  
2

BCD  - 

(a) Running SI ( 0t = ) 

iS  oneN  oneN  oneN  

iF  oneN   oneN  

ijP   0   0  oneN  - 

r

ijv   0 : 0   0 : 0   0 : 0   0 : 0  oneN  oneN  - 

(b) Running NA (t = 1) 

   : 0,1B     oneN  oneN  

 oneN    : 0,1A     oneN  

ijP  oneN   0  [1]  - 

r

ijv  oneN  oneN   0 :1   0 : 2−   1: 0   1: 0  - 

(c) Running NA ( 2t = ) 

      : 0,1 , : 0,2B C        oneN  oneN  

 oneN     : 0,1A        : 0,2A     

 oneN  oneN  [1]  - 

 oneN  oneN  oneN  oneN   1:1   1: 1−  - 

(d) Running AP 

paths  , , 2A C    

(e) Running NA ( 3t = ) 

      : 0,1 , : 0,2B C           : 1,3C     oneN  

     : 0,1A     
 

 

 : 0,2  

: 1,3

A

B

     
 

    

 

  0  [0]  oneN  - 

  0 : 0   0 : 0   0 : 0   0 : 0  oneN  oneN  - 

(f) Running AP 

oneN

iS

iF

iS

iF

ijP

r

ijv

iS

iF oneN

ijP

r

ijv
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paths  , , 2 , , ], ,3 ]A C A B C    

Furthermore, to ensure the data security of the cloud and users, four sets of keys for 

three encryption algorithms were configured. Initially, the cloud server holds the private 

key of RSA1. A user is authorized if he or she has obtained the private secret key of 

RSA1 and the public secret key of RSA2. The user constructs the encrypted index, as 

demonstrated in definition 3 for the graph, and outsources indexes to the cloud server. 

The system interaction is as follows: 

1. The user, say Bob, generates a unique secret key for AES AESK , distinguished from 

those of other users to prevent leakage from others. 

2. Bob→Cloud: Send AESK , which is encrypted by 2RSAPk  

3. Bob→Cloud: Encrypt ( ),  ,  0,  5,  2A C  as an encrypted query according to Defini-

tion 4, encrypt ( ),  ,  0A C  with the AES key AESK  and encrypt 5 with the ORE key 

OREK  and the AES key AESK . 

4. Cloud: Decrypt the query with 
AESK , use ( ),  ,  0A C  to find f matching encrypted 

indices, and compare the second part of the encrypted index with 5. If the former is 

not greater, the item meets the query. 

5. Cloud→Bob: Query the result encrypted with AESK . 

6. Bob: Decrypt the information with KAES and then with SkRSA1 to obtain the query re-

sult ,  :1,  ,  ,  : 3A C A B C    . 

3.3. Complexity 

Theorem 1 (Time Complexity of the SNN). A directed graph G with n nodes and m edges is 

given, where each edge has an average of k time windows. The SNN algorithm finds the result in 
2( )n k m f     time for f paths. 

Proof of Theorem 1. The complexity of Algorithm 1 needs to be combined with the 

complexity of graph initialization, start node initialization, node activation, and path 

addition, i.e., Algorithms 2–7. 

(1) Algorithm 2 focuses on traversing the edges to initialize the time windows on 

each edge. The complexity of graph initialization is ( )m k  . 

(2) Algorithm 3 involves traversing the time windows of the successor edge set of 

in . The time complexity is approximately ( )m k  . 

(3) Algorithm 4 involves judgement. When the judgement condition is true, the 

time complexity is ( )m k n   , after considering Algorithm 6. 

(4) Algorithm 5 is an iteration related to the number of nodes and edges. The time 

complexity is ( )m n  . 

(5) Algorithm 6 includes two side-by-side cyclic operations, one related to the num-

ber of time windows of the edges, and the other is the removal operation in the process 

processing which makes a call to Algorithm 3. The time complexity of Algorithm 6 is 

approximately ( )m k  . 

(6) The complexity of Algorithm 7 is (1)  obviously. 

Combining the calls of Algorithm 1 to other algorithms and the call relationships 

between the algorithms, the time complexity of the SNN can be calculated using the fol-

lowing expression: 

2( )n k m f      
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Theorem 1 is proven. □ 

3.4. Security 

The design of the encrypted index incorporates three different cryptography tech-

niques: RSA, AES, and ORE. Each of these three algorithms plays an important role in 

the field of cryptography, and together they provide a multi-layered security. 

Assuming that the cloud provider is secure and trustworthy, i.e., it does not tamper 

with the data and returns the query results truthfully, it is assumed that the key distribu-

tion process is secure. 

The security of RSA depends on the key length and the complexity of the factoriza-

tion algorithm. As the computational power increases, the key length of RSA increases 

to maintain its security. Although quantum computing may pose a threat to the security 

of RSA, RSA keys of a sufficient length are still secure for the time being. RSA is used to 

make real data transparent to the cloud provider and to protect the user’s independent 

secret key [26,27]. 

The design of AES consists of a multi-round encryption process, with each round 

including operations such as byte substitution, row shifting, column mixing, and round 

key addition. The security of AES has been extensively researched and empirically veri-

fied, and to date, no effective attack method has been found that can break AES-256 in a 

practicable amount of time. AES is used to prevent information leakage between users. 

Even if a user has access to another user’s information, the data cannot be deciphered 

without the user’s secret key [27,28]. 

ORE is designed to prevent the inference of sensitive information through sequen-

tial relationships, thus providing greater security than traditional OPE. ORE is secure, in 

that it hides the sequential information of the data, making it impossible to infer any-

thing about the original data even when the encrypted data is sorted or a range query is 

performed. ORE is for path filtering in the cloud [29–31]. 

4. Experiments 

This section presents the evaluation of the SNN algorithm through experiments on 

New York road instances. 

To illustrate the efficiency and accuracy of the SNN algorithm, four random net-

work topologies with 50 nodes, 100 nodes, 500 nodes, and 1000 nodes were considered. 

The time limits for the above topologies are 50, 200, 500, and 1000, respectively. All the 

algorithms in our experiment are implemented in Python. The experiments are conduct-

ed using a desktop PC sourced from Dell, headquartered in Round Rock, Texas, USA. 

The PC is equipped with an 11th Gen Intel(R) Core (TM) i7-11390H processor at 3.40 

GHz and 16 GB of RAM. 

The datasets used in our experiments are listed in Table 3. 

Table 3. Datasets for Experiments. 

Dataset Nodes Edges Time Windows Tu Storage 

Dataset 1 50 115 230 50 4 KB 

Dataset 2 100 230 460 200 7 KB 

Dataset 3 500 1244 2488 500 44 KB 

Dataset 4 1000 2493 4986 1000 92 KB 

Table 4 shows the query time statistics of existing algorithms before as Dijkstra [32], 

PCNN [33], and TDNN without the time-varying [25]. These algorithms have the same 

accuracy, i.e., they all find the shortest paths. The optimal algorithm TDNN was selected 

for comparison experiments with SNN. 
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Table 4. Comparison of existing algorithms. 

Dataset Dijkstra PCNN TDNN 

Dataset 1 0.001 0.001 0.001 

Dataset 2 0.004 0.003 0.003 

Dataset 3 0.10 0.08 0.08 

Dataset 4 0.26 0.31 0.24 

Table 5 shows the efficiency comparison of TDNN and SNN with time-varying fac-

tors. As the size of datasets grows, both algorithms show a substantial increase in the 

time required. However, the TDNN algorithm takes significantly longer than SNN, and 

the time difference between the two algorithms is becoming greater. The SNN algorithm 

has better efficiency than TDNN with time-varying factors, and it can find multiple 

paths at once and contains the shortest path, which indicates that the accuracy of SNN is 

significantly better than that of others (e.g., TDNN).  

Table 5. Efficiency Comparison of SNN, TDNN, Connor. 

Dataset SNN TDNN Connor 

Dataset 1 0.03 0.08 0.05 

Dataset 2 0.12 0.53 0.1 

Dataset 3 3.13 64.10 0.8 

Dataset 4 18.72 225.75 8.9 

Accuracy comparison of SNN, TDNN, and Connor is presented in the form of line 

chart in Figure 3. In addition, the SNN is significantly less efficient compared to the 

Connor. However, the Connor framework has the obvious limitation that it sacrifices ac-

curacy [24]. This is less applicable in multiple scenarios such as map services. This leads 

to its low applicability in scenarios where accuracy is required. 

 

Figure 3. Accuracy Comparison of SNN, TDNN, and Connor. 

Tables 6 and 7 show the time statistics for different numbers of edges, nodes, time 

windows and uT , which are presented in the form of a line chart in Figure 4. For practi-

cal reasons, the number of time windows will not change exponentially. It can be easily 

seen that the time consumption of SNN is positively correlated with the number of 

nodes, edges, time windows, and the upper limit of time. 

Table 6. SNN experimental results (k = 2). 

Dataset Tu=50s  Tu=200s  Tu=500s  Tu=1000s 

Dataset 1 0.04 0.04 0.03 0.03 

Dataset 2 0.04 0.17 0.16 0.16 

Dataset 3 0.06 0.60 4.36 4.10 

Dataset 4 0.08 0.88 5.34 26.41 
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Table 7. SNN experimental results (k = 4). 

Dataset  Tu=50s  Tu=200s  Tu=200s  Tu=200s 

Dataset 1 0.04 0.04 0.04 0.04 

Dataset 2 0.05 0.18 0.15 0.15 

Dataset 3 0.07 0.4 3.16 3.32 

Dataset 4 0.10 0.62 4.86 29.18 

 

Figure 4. Comprehensive comparison of SNN experimental results. 

In summary, the SNN algorithm shows more comprehensive advantages in terms 

of efficiency, accuracy, etc. The SNN algorithm is of great significance for solving time-

varying path query problems with privacy protection. 

However, the efficiency decreases significantly as the scale of the graph increases 

according to the experimental results. To adapt to more demand scenarios, such as 

large-scale graph applications, the hardware configuration can be improved or more re-

search on optimization and iteration needs to be performed. 

5. Conclusions 

In this paper, the SNN algorithm was proposed for solving TVPQ problems with 

privacy protection. This approach is highly important for road planning, network rout-

ing, project scheduling, and other issues in data outsourcing scenarios. The most promi-

nent advantage is that it can find multiple paths at once, including the shortest paths, 

which other algorithms cannot find. Additionally, an encrypted index for privacy pro-

tection has been designed. Experiments with New York road instances demonstrated the 

efficiency and accuracy of the SNN algorithm. 

In future work, further studies of path planning algorithms with privacy protection 

can be conducted, such as optimization algorithms for large-scale encrypted graphs. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

Symbols Explanation 

G  The graph 

sn  The start node 

tn  The target node 

sT  The departure time 

eT  The arrival time 

1RSASk  The private key of RSA-1 

1RSAPk  The public key of RSA-1 

2RSASk  The private key of RSA-2 

2RSAPk  The public key of RSA-2 

AESK  The key of AES 

OREK  The key of ORE 

uT  The upper limit of the arrival time 

stp  One path from 
sn  to 

tn  

stP  The paths set from 
sn  to 

tn  

stl  The length of stP  

ijE  The edge from in  to jn  

ijD  The time window of the edge from in  to jn  

r

ijD  The rth time window of the edge from in  to jn  

r

ijl  The lower boundary of 
r

ijD  

r

iju  The upper boundary of 
r

ijD  

ijc  The cost of ijE  

r

ijc  The cost of 
r

ijD  

r

ijv  The cost of 
r

ijD  in real time 

P

ijN  The predecessor 
in  of jn  

S

ijN  The successor jn  of node i 

P

iE  The predecessor edge set of in  

S

iE  The successor edge set of in  

sN  The number of nodes 

f  The number of paths queried 

k  The number of time windows of each edge 

iF  The father set of in  

ijP  
The arrival time set of jn  with that swell has not spread to 

next node currently 

iS  The son set of in  
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