

Electronics 2024, 13, 1248. https://doi.org/10.3390/electronics13071248 www.mdpi.com/journal/electronics

Article

A Swell Neural Network Algorithm for Solving Time-Varying

Path Query Problems with Privacy Protection

Man Zhao

School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China;

50301363@ncepu.edu.cn

Abstract: In this paper, a swell neural network (SNN) algorithm was proposed for solving time-

varying path query (TVPQ) problems with privacy protection with the following goals: (i) query-

ing the K-nearest paths with time limitations in a time-varying scenario, and (ii) protecting private

information from neighborhood attacks. The proposed SNN is a network in which the optimal

paths can be calculated at the same time with no need for training. For TVPQ, a node is considered

a neuron, and time-varying means that an edge has different costs in different time windows. For

SNN, the query paths are swell sets from the start to the target within an upper limit. An encrypt-

ed index is designed for privacy protection. The evaluation of the efficiency and accuracy of the

SNN was carried out based on New York road instances.

Keywords: time-varying path query (TVPQ); swell neural network (SNN); privacy protection;

encrypted index

1. Introduction

Path query problems with privacy protection have attracted attention in many

fields, such as industry [1,2], management science [3], computer science [4], and trans-

portation [5]. Path query problems with privacy protection were first proposed in 2011

by Cao [4], who proposed utilizing the principle of filtering and verification to keep

cloud data secure. Shang H [6], Gouda K [7], and Lin W [8] carried out further research

based on this idea. Meng X studied the problem of graph encryption and proposed an

approximate shortest distance query method (GRECS) for encrypted graphs [9]. A

CryptGraph scheme has been designed, with which graph analysis can be performed on

encrypted graphs, and the privacy of users’ graph data and analysis results can be pro-

tected [10]. However, these studies lack consideration of time variation.

There is a suite of studies addressing the time-varying path query problem. The

shortest path algorithm through a time-varying network was first proposed in 1966 by

Cooke and Halsey [11]. Such path query methods for dynamic graphs are valuable ref-

erences. Frigioni D proposed the global dynamic algorithm FMN to solve the single-

source shortest path problem for dynamic graphs [12]. Additionally, SWSF-FP was pro-

posed by Ramalingam G [13]. A global dynamic algorithm for computing the shortest

paths between all pairs of vertices in a dynamic graph was also proposed [14]. An im-

proved algorithm was proposed to maintain the shortest paths between all pairs of ver-

tices in a dynamic graph [15]. In addition, Liu C [16], Ghosh E [17], Sun F [18], and Wu B

[19] described their research on this topic. However, these works neglect privacy protec-

tion.

To our knowledge, current algorithmic models either ignore the effect of the time

factor or the need for privacy protection. There are still unresolved TVPQ problems re-

garding privacy protection, despite the urgent need for solutions in applications such as

mapping services [20]. Different departure times and expected arrival times lead to

Citation: Zhao, M. A Swell Neural

Network Algorithm for Solving

Time-Varying Path Query Problems

with Privacy Protection. Electronics

2024, 13, 1248. https://doi.org/

10.3390/electronics13071248

Academic Editors: Domenico Rosaci

Received: 14 March 2024

Revised: 24 March 2024

Accepted: 26 March 2024

Published: 27 March 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

Electronics 2024, 13, 1248 2 of 17

changes in planned routes. Users expect to obtain the top recommended routes under

the current time constraints. Pioneering works by Huang W [3,21,22], Zhang C [23], and

Shen M [24] provided schemes for reference. Huang W’s work lacks a design for multi-

ple paths, and accuracy cannot be fully guaranteed in Shen M’s work. Current algo-

rithms have limitations in terms of multipath requirements and accuracy guarantees.

In this paper, an SNN algorithm was proposed to solve TVPQ problems with priva-

cy protection. An SNN is a network in which the optimal paths can be calculated at the

same time and there is no need for training. For TVPQ, nodes are considered neurons,

and time-varying means that an edge has different costs in different time windows. The

core of the SNN is that the query paths are swell sets from the start node to the target

node, and their arrival times are less than the upper limit.

The main contributions of this paper are as follows:

1. The SNN algorithm can help to find multiple paths at once, including the shortest

paths. This is difficult to achieve with other algorithms under time-varying condi-

tions.

2. For privacy protection, a scheme was designed with an encrypted index that effec-

tively prevents the leakage of user information.

3. Theoretical analyses and contrasting experimental results prove the efficiency, se-

curity, and accuracy of the algorithm.

The remainder of this paper is organized as follows. Section 2 introduces prerequi-

sites, Section 3 presents the SNN algorithm, Section 4 reports the experimental results,

and concluding statements are presented in Section 5.

2. Preliminaries

This section introduces several prerequisites that will be used throughout this pa-

per.

2.1. Definition of Time-Varying Path Query

Definition 1 (Time-Varying Network). A time-varying network graph is defined as

(,)G N E= , where N represents the set of nodes and E denotes the set of network edges.

ijE E stands for the edge from node i to node j, and it is associated with different time weights

r

ijc for different time windows
r

ijD .

Definition 2 (Path of a Time-Varying Network). A path 1kP on a time-varying network is

defined as a sequence of nodes 1 ,, , ,i kn n n    , where n1 is the start node,
kn is the target

node, in is the ith node in the path, and eT is the arrival time at kn . A route based on 1kP is a

sequence of nodes 1, , , ,i kn n n    [25].

According to the definition of the path of a time-varying network, the arrival time is

1,

1
i i

k

n n

i

Te Ts c
+

=

= + for a path 1 1 i, ,n ,...,k kP n n=   .

2.2. Model of a Time-Varying Network Query

Given a directed graph (,)G N E= , a start node sn N , a target node tn N , a

start time sT , an upper limit of the arrival time uT , and the number f of paths to query

Electronics 2024, 13, 1248 3 of 17

for, a time-varying network query finds the set of paths ()1 , 2 ,st stp p  such that the

arrival time is less than
uT .

For node i, the successor set can be defined as { | }ji jS sd n N=  , where the

length of
id represents the number of swells from node i to other nodes.

 

 

1 2

1 2 1,

[

, , 1

, ...,[,] ,

], 0

i

k

i

k i

id

s t t d

t t t t

d

d k+

 =


= 



  = 

  = 

For node j, the predecessor set can be defined as { | }ij iF fd n N=  , where the

length of je represents the number of swells from other nodes to j.

 

 

1 2

1 2 1

, , 1

, ,...,[,

], 0

,

[

]

j

k

j

k

i

e

fd t t e

t t t t ej k+

 =


= 



  = 

 = 

Clearly, if there is one swell from in to jn , at 1t to 2t both jsd and ifd above

contain  1 2, t t . The predecessor set of
tn collects the swells leading to

tn with the ar-

rival times. Based on the above two features, paths can be obtained by tracing the prede-

cessor sets of tn iteratively.

For privacy protection, three algorithms were used: RSA, AES, and ORE.

In RSA, the encryption keys are public, while the decryption keys are not, so only

the person with the correct decryption key can decipher an encrypted message. This

avoids the need for a “courier” to deliver keys to recipients through another secure

channel before transmitting the originally intended message [26,27].

AES is a substitution-permutation network block cipher based on the design prin-

ciples of Ron Rivest, Adi Shamir, and Leonard Adleman’s earlier Data Encryption

Standard (DES). It uses a variable-length key from 128 bits to 256 bits and operates on

fixed-size blocks of 128 bits. Both parties must agree on the key in advance to ensure that

the key information cannot be obtained by a third party [27,28].

An order-revealing encryption (ORE) scheme is a tuple of three algorithms Π =

(ORE.Setup, ORE.Encrypt, ORE.Compare) defined over a well-ordered domain D with

the following properties:

ORE.Setup(1


) → sk : On inputting a security parameter  , the setup algorithm

outputs a secret key sk .

ORE.Encrypt(, sk m) → ct : On inputting a secret key sk and a message m D ,

the encryption algorithm outputs a ciphertext ct .

ORE.Compare(1, 2ct ct) →b : On inputting two ciphertexts 1ct , 2ct , the compare

algorithm outputs a bit  0, 1b .

An ORE scheme over a well-ordered domain D is correct if for

)1(.sk ORE Setup  and all messages 1, 2m m D [29–31]:

() () (). 1, 2 1 1 2 1 Pr ORE Compare ct ct m m negl = − = 

Definition 3 (Encrypted Index). An encrypted index consists of two parts, as follows:

Electronics 2024, 13, 1248 4 of 17

•
eT encrypted with the ORE key

•
stp encrypted with the public secret key of RSA-1.

Definition 4 (Encrypted Query). An encrypted message for a query consists of three parts, as

follows:

• (), , ss t T encrypted with the AES key

•
uT encrypted with the ORE key and the AES key

• f is the plaintext representing the number of paths queried.

3. Construction of the SNN

This section presents the SNN algorithm and its complexity and security analyses.

3.1. Design of the SNN Algorithm

The SNN is a swell neural network without any training. To formalize the SNN,

each node is viewed as a neuron and the graph composed of nodes and the edges con-

necting them is viewed as a neural network.

Figure 1 illustrates a general neuron structure for an SNN. As shown in Figure 1,

there are four parts in each loop: the input, the neuron state, the neuron feedback, and

the output. The main functions of these four parts are as follows: the input swell coming

from its predecessor nodes over time, the neuron state that determines whether to

spread, the feedback that updates the neuron state, and the output swells that spread to

the successor nodes.

Electronics 2024, 13, 1248 5 of 17

Figure 1. A general neuron structure of SNN.

1. Input: The input swells come from the predecessor nodes.

2. Neuron state: The neuron state consists of three parts: nodes, edges, and time win-

dows. The functions n(t), e(t) and tw(t) represent the processing of the node, edge,

and time window, respectively, and t represents the current time.

For in , the successor set can be defined as { | }i sdj nj NS =  , where the length of

id represents the number of swells from in to jn .

 

 

1 2

1 2 1,

[

, , 1

, ...,[,] ,

], 0

i

k

i

k i

id

s t t d

t t t t

d

d k+

 =


= 



  = 

  = 

The predecessor set can be defined similarly.

For edge ijE , the time set collects the arrival times of in for which no swell is cur-

rently formed.

Electronics 2024, 13, 1248 6 of 17

1 2

[],

[, ...],
ij

no
P

t t yes


= 


For time window
r

ijD ,
r

ijv represents the set of key-value pairs for arrival and avail-

able times when no swell is formed.

1 2

[],

[, ...],

r

ijv
no

t t yes


= 


3. Feedback: The swells spread along the edge in the time window for which the

available time ck satisfies the cost 𝑐𝑖𝑗
𝑟 , and ck is computed as follows:

,

,

r r

k ij k ij

r r

ij k ij

kc
t t if l t u

t l if t l

−  

−
=

=

 

4. Output: The output swells continue to spread to the successor nodes.

The overall algorithm, referred to as Algorithm 1, serves as the foundation for the

SNN. The partitioning algorithms of the SNN algorithm are introduced as follows. To

find the shortest paths, the SNN algorithm works as follows:

• Initialize the graph as Algorithm 2.

• Activate the start node directly as Algorithm 3.

• Iterate over the successor edges of the start node as Algorithm 4 to spread ripples.

• Iterate over all nodes over time to activate the nodes as Algorithm 4 until the target

node is activated. The path can be obtained if the current time is within the maxi-

mum time range. Otherwise, no path meets the requirements.

Algorithm 1 Encrypted Index Construction (EIC)

Input: , , , , , s uG s t T T f

Output: ,st eP T

Initialize G as Algorithm 2.

 e sT T=

Initialize
sn as Algorithm 3.

while stl f and e uT T= do

 1e eT T= +

 for in G do

 Try to activate in as Algorithm 4.

 if tF has been changed do

 st stp P as Algorithm 5.

 end if

end while

Encrypt each path with OREK and 2RSAPk .

First, initialize the graph as shown in Algorithm 2. A directed graph is constructed.

Each node is initialized with an empty father set and son set for collecting predecessors

and successors. For the edges, a time set is initialized for the arrival times of the prede-

cessors, and time windows with boundaries, costs, and the set of key-value pairs for ar-

rival and available times are initialized.

Electronics 2024, 13, 1248 7 of 17

Algorithm 2 Graph Initialization (GI)

Input: G

Output: G

for ijE G do

iF None=

iS None=

jF None=

jS None=

 ijc None=

 for
r

ij ijD D do

r

ijv None=

 end for

end for

return G

The start node is initialized according to Algorithm 3. The algorithm iterates over

the predecessor edges of the start node
sn and adds the start time

sT to its time set and

time window set.

Algorithm 3 Start Node Initialization (SI)

Input: , n , s sG T

Output: G

for
S

si sE E do

 js sT E

 for
r

si siD D do

 () , 0 r

s ijT v .

 end for

end for

To activate the nodes over time, if the input node is a start node or its father set is

not empty, then the algorithm iterates over the successor edges of the input node to

spread swells, as Algorithm 4.

Algorithm 4 Node Activation (NA)

Input: , ,i sG n n

Output: G

if i sn n= or iF None :

 for
S

ij iE E do

 Spread as Algorithm 6

 end for

end if

New paths are added to paths according to Algorithm 5. The function AP is execut-

ed iteratively until f paths are found that meet the requirements.

Electronics 2024, 13, 1248 8 of 17

Algorithm 5 Add Paths (AP)

Input: , , , ,i jt sG n p n f

Output:
stP

if
stl f do

 []it jtp i p= +

 if
i sn n=

 st stp P

 if
stl f= do

 break

 end if

 end if

 else

 for ij F do

 AP(Algorithm 5)

 end for

end if

The swells spread along the edge as shown in Algorithm 6. Whether the swells

spread is dependent on the determination of the time window over time. The swells are

retained, process records are deleted, and the network prepares for the next iteration, as

shown in Algorithm 3, after the swells spread.

Algorithm 6 Swell Spreading (SS)

Input: (), , ijG E T current time

Output: G

ijde None= //Initialize the set of arrival times to be deleted from ijE

for
r

ij ijD D

 key = Perform time window determination as Algorithm 7

 if key None do

 ijkey de

 end if

end for

for ijde de :

 Delete de from ijc

 Delete (de ,*) from
r

ijv

  () , , ji time FT  ,  () , , ij time ST  and (), 0 r

ijT v as Algorithm 3

end for

Determine each time window of the edges over time, as shown in Algorithm 7. The

swells spread along the edge in the time window for which the available time satisfies

the cost.

Electronics 2024, 13, 1248 9 of 17

Algorithm 7 Time Window Determination (TD)

Input: , , ()r

ijG D T currenttime .

Output: G

 de None= // Initialize the arrival time to be deleted from ijE

for
r

ijkey v (the key-value pair set of 𝐷𝑖𝑗
𝑟)

 if
r r

ij ijl key u=  do

 []r

ijv key T key= −

 else if
r

ijkey l do

 []r r

ij ijv key T l= −

 end if

 if []r r

ij ijv key c= do

 de key=

 end if

end for

return de

3.2. An Example of the SNN Algorithm

To illustrate the SNN algorithm, let us consider the example shown in Figure 2 and

Table 1. There are three nodes and three edges in the time-varying network, where A is

the start node, C is the target node, the start time is 0, the upper limit of the arrival time

is 5, and the number f of paths to query is 2. For each edge, there are two time windows.

Table 2 illustrates the detailed steps of the running algorithm on the SNN. It is evi-

dent that the paths are <A, C> and <A, B, C>. At moment 0, only An is reached and the

swell has not spread to the next node. At moment 1, a swell spread to Bn , which is a

child of An . At moment 2, a swell reaches C and a path from A to C is found as [A, C] in

time 2. At moment 3, the swell that spread to Bn at moment 1 arrived at Cn , and the

second path from A to C is found as [A, B, C], in time 3.

Figure 2. An example of a time-varying neural network.

Electronics 2024, 13, 1248 10 of 17

Table 1. Description of the example.

Node Edge Time Window Cost

A

AB
[0, 3) 1

[3, +∞) 2

AC
[0, 2) 2

[3, +∞) 4

B
BC

[0, 3) 2

 [3, +∞) 3

Table 2. Steps of SNN as an example.

node An
Bn Cn

edge ABE ACE BCE -

time

window
1

ABD
2

ABD
1

ACD
2

ACD
1

BCD
2

BCD -

(a) Running SI (0t =)

iS oneN oneN oneN

iF oneN oneN

ijP  0  0 oneN -

r

ijv  0 : 0  0 : 0  0 : 0  0 : 0 oneN oneN -

(b) Running NA (t = 1)

   : 0,1B    oneN oneN

 oneN   : 0,1A    oneN

ijP oneN  0 [1] -

r

ijv oneN oneN  0 :1  0 : 2−  1: 0  1: 0 -

(c) Running NA (2t =)

      : 0,1 , : 0,2B C       oneN oneN

 oneN    : 0,1A       : 0,2A   

 oneN oneN [1] -

 oneN oneN oneN oneN  1:1  1: 1− -

(d) Running AP

paths  , , 2A C  

(e) Running NA (3t =)

      : 0,1 , : 0,2B C          : 1,3C    oneN

    : 0,1A   
 

 

 : 0,2

: 1,3

A

B

     
 

    

  0 [0] oneN -

  0 : 0  0 : 0  0 : 0  0 : 0 oneN oneN -

(f) Running AP

oneN

iS

iF

iS

iF

ijP

r

ijv

iS

iF oneN

ijP

r

ijv

Electronics 2024, 13, 1248 11 of 17

paths  , , 2 , ,], ,3]A C A B C  

Furthermore, to ensure the data security of the cloud and users, four sets of keys for

three encryption algorithms were configured. Initially, the cloud server holds the private

key of RSA1. A user is authorized if he or she has obtained the private secret key of

RSA1 and the public secret key of RSA2. The user constructs the encrypted index, as

demonstrated in definition 3 for the graph, and outsources indexes to the cloud server.

The system interaction is as follows:

1. The user, say Bob, generates a unique secret key for AES AESK , distinguished from

those of other users to prevent leakage from others.

2. Bob→Cloud: Send AESK , which is encrypted by 2RSAPk

3. Bob→Cloud: Encrypt (), , 0, 5, 2A C as an encrypted query according to Defini-

tion 4, encrypt (), , 0A C with the AES key AESK and encrypt 5 with the ORE key

OREK and the AES key AESK .

4. Cloud: Decrypt the query with
AESK , use (), , 0A C to find f matching encrypted

indices, and compare the second part of the encrypted index with 5. If the former is

not greater, the item meets the query.

5. Cloud→Bob: Query the result encrypted with AESK .

6. Bob: Decrypt the information with KAES and then with SkRSA1 to obtain the query re-

sult , :1, , , : 3A C A B C    .

3.3. Complexity

Theorem 1 (Time Complexity of the SNN). A directed graph G with n nodes and m edges is

given, where each edge has an average of k time windows. The SNN algorithm finds the result in
2()n k m f    time for f paths.

Proof of Theorem 1. The complexity of Algorithm 1 needs to be combined with the

complexity of graph initialization, start node initialization, node activation, and path

addition, i.e., Algorithms 2–7.

(1) Algorithm 2 focuses on traversing the edges to initialize the time windows on

each edge. The complexity of graph initialization is ()m k  .

(2) Algorithm 3 involves traversing the time windows of the successor edge set of

in . The time complexity is approximately ()m k  .

(3) Algorithm 4 involves judgement. When the judgement condition is true, the

time complexity is ()m k n   , after considering Algorithm 6.

(4) Algorithm 5 is an iteration related to the number of nodes and edges. The time

complexity is ()m n  .

(5) Algorithm 6 includes two side-by-side cyclic operations, one related to the num-

ber of time windows of the edges, and the other is the removal operation in the process

processing which makes a call to Algorithm 3. The time complexity of Algorithm 6 is

approximately ()m k  .

(6) The complexity of Algorithm 7 is (1) obviously.

Combining the calls of Algorithm 1 to other algorithms and the call relationships

between the algorithms, the time complexity of the SNN can be calculated using the fol-

lowing expression:

2()n k m f   

Electronics 2024, 13, 1248 12 of 17

Theorem 1 is proven. □

3.4. Security

The design of the encrypted index incorporates three different cryptography tech-

niques: RSA, AES, and ORE. Each of these three algorithms plays an important role in

the field of cryptography, and together they provide a multi-layered security.

Assuming that the cloud provider is secure and trustworthy, i.e., it does not tamper

with the data and returns the query results truthfully, it is assumed that the key distribu-

tion process is secure.

The security of RSA depends on the key length and the complexity of the factoriza-

tion algorithm. As the computational power increases, the key length of RSA increases

to maintain its security. Although quantum computing may pose a threat to the security

of RSA, RSA keys of a sufficient length are still secure for the time being. RSA is used to

make real data transparent to the cloud provider and to protect the user’s independent

secret key [26,27].

The design of AES consists of a multi-round encryption process, with each round

including operations such as byte substitution, row shifting, column mixing, and round

key addition. The security of AES has been extensively researched and empirically veri-

fied, and to date, no effective attack method has been found that can break AES-256 in a

practicable amount of time. AES is used to prevent information leakage between users.

Even if a user has access to another user’s information, the data cannot be deciphered

without the user’s secret key [27,28].

ORE is designed to prevent the inference of sensitive information through sequen-

tial relationships, thus providing greater security than traditional OPE. ORE is secure, in

that it hides the sequential information of the data, making it impossible to infer any-

thing about the original data even when the encrypted data is sorted or a range query is

performed. ORE is for path filtering in the cloud [29–31].

4. Experiments

This section presents the evaluation of the SNN algorithm through experiments on

New York road instances.

To illustrate the efficiency and accuracy of the SNN algorithm, four random net-

work topologies with 50 nodes, 100 nodes, 500 nodes, and 1000 nodes were considered.

The time limits for the above topologies are 50, 200, 500, and 1000, respectively. All the

algorithms in our experiment are implemented in Python. The experiments are conduct-

ed using a desktop PC sourced from Dell, headquartered in Round Rock, Texas, USA.

The PC is equipped with an 11th Gen Intel(R) Core (TM) i7-11390H processor at 3.40

GHz and 16 GB of RAM.

The datasets used in our experiments are listed in Table 3.

Table 3. Datasets for Experiments.

Dataset Nodes Edges Time Windows Tu Storage

Dataset 1 50 115 230 50 4 KB

Dataset 2 100 230 460 200 7 KB

Dataset 3 500 1244 2488 500 44 KB

Dataset 4 1000 2493 4986 1000 92 KB

Table 4 shows the query time statistics of existing algorithms before as Dijkstra [32],

PCNN [33], and TDNN without the time-varying [25]. These algorithms have the same

accuracy, i.e., they all find the shortest paths. The optimal algorithm TDNN was selected

for comparison experiments with SNN.

Electronics 2024, 13, 1248 13 of 17

Table 4. Comparison of existing algorithms.

Dataset Dijkstra PCNN TDNN

Dataset 1 0.001 0.001 0.001

Dataset 2 0.004 0.003 0.003

Dataset 3 0.10 0.08 0.08

Dataset 4 0.26 0.31 0.24

Table 5 shows the efficiency comparison of TDNN and SNN with time-varying fac-

tors. As the size of datasets grows, both algorithms show a substantial increase in the

time required. However, the TDNN algorithm takes significantly longer than SNN, and

the time difference between the two algorithms is becoming greater. The SNN algorithm

has better efficiency than TDNN with time-varying factors, and it can find multiple

paths at once and contains the shortest path, which indicates that the accuracy of SNN is

significantly better than that of others (e.g., TDNN).

Table 5. Efficiency Comparison of SNN, TDNN, Connor.

Dataset SNN TDNN Connor

Dataset 1 0.03 0.08 0.05

Dataset 2 0.12 0.53 0.1

Dataset 3 3.13 64.10 0.8

Dataset 4 18.72 225.75 8.9

Accuracy comparison of SNN, TDNN, and Connor is presented in the form of line

chart in Figure 3. In addition, the SNN is significantly less efficient compared to the

Connor. However, the Connor framework has the obvious limitation that it sacrifices ac-

curacy [24]. This is less applicable in multiple scenarios such as map services. This leads

to its low applicability in scenarios where accuracy is required.

Figure 3. Accuracy Comparison of SNN, TDNN, and Connor.

Tables 6 and 7 show the time statistics for different numbers of edges, nodes, time

windows and uT , which are presented in the form of a line chart in Figure 4. For practi-

cal reasons, the number of time windows will not change exponentially. It can be easily

seen that the time consumption of SNN is positively correlated with the number of

nodes, edges, time windows, and the upper limit of time.

Table 6. SNN experimental results (k = 2).

Dataset Tu=50s Tu=200s Tu=500s Tu=1000s

Dataset 1 0.04 0.04 0.03 0.03

Dataset 2 0.04 0.17 0.16 0.16

Dataset 3 0.06 0.60 4.36 4.10

Dataset 4 0.08 0.88 5.34 26.41

Electronics 2024, 13, 1248 14 of 17

Table 7. SNN experimental results (k = 4).

Dataset Tu=50s Tu=200s Tu=200s Tu=200s

Dataset 1 0.04 0.04 0.04 0.04

Dataset 2 0.05 0.18 0.15 0.15

Dataset 3 0.07 0.4 3.16 3.32

Dataset 4 0.10 0.62 4.86 29.18

Figure 4. Comprehensive comparison of SNN experimental results.

In summary, the SNN algorithm shows more comprehensive advantages in terms

of efficiency, accuracy, etc. The SNN algorithm is of great significance for solving time-

varying path query problems with privacy protection.

However, the efficiency decreases significantly as the scale of the graph increases

according to the experimental results. To adapt to more demand scenarios, such as

large-scale graph applications, the hardware configuration can be improved or more re-

search on optimization and iteration needs to be performed.

5. Conclusions

In this paper, the SNN algorithm was proposed for solving TVPQ problems with

privacy protection. This approach is highly important for road planning, network rout-

ing, project scheduling, and other issues in data outsourcing scenarios. The most promi-

nent advantage is that it can find multiple paths at once, including the shortest paths,

which other algorithms cannot find. Additionally, an encrypted index for privacy pro-

tection has been designed. Experiments with New York road instances demonstrated the

efficiency and accuracy of the SNN algorithm.

In future work, further studies of path planning algorithms with privacy protection

can be conducted, such as optimization algorithms for large-scale encrypted graphs.

Funding: This research received no external funding.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data

can be found here: https://www.diag.uniroma1.it/challenge9/download.shtml (accessed on 15 Sep-

tember 2022).

Conflicts of Interest: The author declares no conflicts of interest. The funders had no role in the

design of the study; in the collection, analyses, or interpretation of data; in the writing of the man-

uscript; or in the decision to publish the results.

Electronics 2024, 13, 1248 15 of 17

Abbreviations

The following abbreviations are used in this manuscript:

Symbols Explanation

G The graph

sn The start node

tn The target node

sT The departure time

eT The arrival time

1RSASk The private key of RSA-1

1RSAPk The public key of RSA-1

2RSASk The private key of RSA-2

2RSAPk The public key of RSA-2

AESK The key of AES

OREK The key of ORE

uT The upper limit of the arrival time

stp One path from
sn to

tn

stP The paths set from
sn to

tn

stl The length of stP

ijE The edge from in to jn

ijD The time window of the edge from in to jn

r

ijD The rth time window of the edge from in to jn

r

ijl The lower boundary of
r

ijD

r

iju The upper boundary of
r

ijD

ijc The cost of ijE

r

ijc The cost of
r

ijD

r

ijv The cost of
r

ijD in real time

P

ijN The predecessor
in of jn

S

ijN The successor jn of node i

P

iE The predecessor edge set of in

S

iE The successor edge set of in

sN The number of nodes

f The number of paths queried

k The number of time windows of each edge

iF The father set of in

ijP
The arrival time set of jn with that swell has not spread to

next node currently

iS The son set of in

Electronics 2024, 13, 1248 16 of 17

References

1. References Ge, X.; Yu, J.; Zhang, H.; Bai, J.; Fan, J.; Xiong, N.N. SPPS: A search pattern privacy system for approximate short-

est distance query of encrypted graphs in iiot. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 136–150.

2. Zhou, Y.; Lu, Y.; Lv, L. Grid-based non-uniform probabilistic roadmap-based agv path planning in narrow passages and

complex environments. Electronics 2024, 13, 225–240.

3. Huang, W.; Gao, L. A time wave neural network framework for solving time-dependent project scheduling problems. IEEE

Trans. Neural Netw. Learn. Syst. 2020, 31, 274–283.

4. Cao, N.; Yang, Z.; Wang, C.; Ren, K.; Lou, W. Privacy-preserving query over encrypted graph-structured data in cloud com-

puting. In Proceedings of the 2011 31st International Conference on Distributed Computing Systems, Minneapolis, MN, USA,

20–24 June 2011; pp. 105–117.

5. Memon, I.; Arain, Q.A. Dynamic path privacy protection framework for continuous query service over road networks. World

Wide Web 2017, 20, 639–672.

6. Shang, H.; Zhang, Y.; Lin, X.; Yu, J.X. Taming verification hardness: An efficient algorithm for testing subgraph isomorphism.

Proc. Vldb Endow. 2008, 1, 364–375.

7. Gouda, K.; Hassaan, M. Compressed feature-based filtering and verification approach for subgraph search. In Proceedings of

the EDBT’13: Proceedings of the 16th International Conference on Extending Database Technology, Genoa, Italy, 18–22 March

2013; pp. 201–213.

8. Lin, W.; Xiao, X.; Cheng, J.; Bhowmick, S.S. Efficient algorithms for generalized subgraph query processing. In Proceedings of

the CIKM’12: Proceedings of the 21st ACM international conference on Information and knowledge management, Maui, HI,

USA, 29 October–2 November 2012; Association for Computing Machinery: New York, NY, USA, 2012; pp. 325–352.

9. Meng, X.; Kamara, S.; Nissim, K.; Kollios, G.N. GRECS: Graph encryption for approximate shortest distance queries. In Pro-

ceedings of the CCS’15: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security,

Denver, CO, USA, 12–16 October 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 25–42.

10. Xie, P.; Xing, E. CryptGraph: Privacy Preserving Graph Analytics on Encrypted Graph. arXiv 2014, arXiv:1409.5021.

11. Cooke, K.L.; Halsey, E. The shortest route through a network with time-dependent internodal transit times. J. Math. Anal.

Appl. 1966, 14, 493–498.

12. Frigioni, D.; Marchetti-Spaccamela, A.; Nanni, U. Fully dynamic output bounded single source shortest path problem. In Pro-

ceedings of the SODA’96: Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, Atlanta, GA,

USA, 28–30 January 1996; pp. 212–221.

13. Ramalingam, G.; Reps, T. An incremental algorithm for a generalization of the shortest-path problem. J. Algorithms 1996, 21,

267–305.

14. King, V. Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in digraphs. In Proceedings

of the 40th Annual Symposium on Foundations of Computer Science, New York, NY, USA, 17–19 October 1999; pp. 81–89.

15. Demetrescu, C.; Italiano, G. A new approach to dynamic all pairs shortest paths. J. ACM 2004, 51, 968–992.

16. Liu, C.; Zhu, L.; He, X.; Chen, J. Enabling privacy-preserving shortest distance queries on encrypted graph data. IEEE Trans.

Dependable Secur. Comput. 2021, 18, 192–204.

17. Ghosh, E.; Kamara, S.; Tamassia, R. Efficient graph encryption scheme for shortest path queries. In Proceedings of the ASIA

CCS’21: ACM Asia Conference on Computer and Communications Security, Hong Kong, China, 7–11 June 2021; pp. 31–43.

18. Sun, F.; Yu, J.; Ge, X.; Yang, M.; Kong, F. Constrained top-k nearest fuzzy keyword queries on encrypted graph in road net-

work. Comput. Secur. 2021, 111, 430–442.

19. Wu, B.; Chen, X.; Wu, Z.; Zhao, Z.; Mei, Z.; Zhang, C. Privacy-guarding optimal route finding with support for semantic

search on encrypted graph in cloud computing scenario. Wirel. Commun. Mob. Comput. 2021, doi 10.1155/2021/6617959.

20. Zhang, D.; Liu, Y.; Liu, A.; Mao, X.; Li, Q. Efficient path query processing through cloud-based mapping services. IEEE Access

2017, 5, 12963–12973.

21. Huang, W.; Sun, M.; Zhu, L.; Oh, S.; Pedrycz, W. Deep fuzzy min-max neural network: Analysis and design. IEEE Trans. Neu-

ral Netw. Learn. Syst. 2022, doi: 10.1109/TNNLS.2022.3226040.

22. Huang, W.; Wang, Y.; Zhu, L. A time impulse neural network framework for solving the minimum path pair problems of the

time-varying network. IEEE Trans. Knowl. Data Eng. 2023, 35, 7681–7692.

23. Zhang, C.; Luo, X.; Liang, J.; Liu, X.; Zhu, L.; Guo, S. POTA: Privacy-preserving online multi-task assignment with path plan-

ning. IEEE Trans. Mob. Comput. 2023, 4, 1–13.

24. Shen, M.; Ma, B.; Zhu, L.; Mijumbi, R.; Du, X.; Hu, J. Cloud-based approximate constrained shortest distance queries over en-

crypted graphs with privacy protection. IEEE Trans. Inf. Forensics Secur. 2018, 13, 940–953.

25. Huang, W.; Wang, J.; Wang, W. A time-delay neural network for solving time-dependent shortest path problem. Neural Netw.

2017, 90, 21–28.

26. Tahat, N.; Tahat, A.A.; Abu-Dalu, M. A new RSA public key encryption scheme with chaotic maps. Int. J. Electr. Comput. Eng.

2020, 10, 1430–1437.

27. Huang, X.; Wang, W. A novel and efficient design for an rsa cryptosystem with a very large key size. IEEE Trans. Circuits Syst.

2015, 62, 972–976.

Electronics 2024, 13, 1248 17 of 17

28. Masoumi, M. Novel hybrid cmos/memristor implementation of the aes algorithm robust against differential power analysis

attack. IEEE Trans. Circuits Syst. 2020, 67, 1314–1318.

29. Peyrin, T. Practical Order-Revealing Encryption with Limited Leakage; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9783,

pp. 474–493.

30. Zhang, C.; Zhao, M.; Liang, J.; Fan, Q.; Zhu, L.; Guo, S. NANO: Cryptographic enforcement of readability and editability gov-

ernance in blockchain databases. IEEE Trans. Dependable Secur. Comput. 2023, 4, 1–14.

31. Hu, C.; Zhang, C.; Lei, D.; Wu, T.; Liu, X.; Zhu, L. Achieving privacy-preserving and verifiable support vector machine train-

ing in the cloud. IEEE Trans. Inf. Forensics Secur. 2023, 18, 3476–3491.

32. Zhu, D.; Sun, J. A new algorithm based on dijkstra for vehicle path planning considering intersection attribute. IEEE Access

2021, 9, 19761–19775.

33. Sang, Y.; Lv, J.; Qu, H.; Yi, Z. Shortest path computation using pulse-coupled neural networks with restricted autowave.

Knowl.-Based Syst. 2016, 114, 1–11.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury

to people or property resulting from any ideas, methods, instructions or products referred to in the content.

