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Abstract: Kubernetes is an open-source container orchestration system that provides a built-in module
for dynamic resource provisioning named the Horizontal Pod Autoscaler (HPA). The HPA identifies
the number of resources to be provisioned by calculating the ratio between the current and target
utilisation metrics. The target utilisation metric, or threshold, directly impacts how many and how
quickly resources will be provisioned. However, the determination of the threshold that would allow
satisfying performance-based Service Level Objectives (SLOs) is a long, error-prone, manual process
because it is based on the static threshold principle and requires manual configuration. This might
result in underprovisioning or overprovisioning, leading to the inadequate allocation of computing
resources or SLO violations. Numerous autoscaling solutions have been introduced as alternatives
to the HPA to simplify the process. However, the HPA is still the most widely used solution due
to its ease of setup, operation, and seamless integration with other Kubernetes functionalities. The
present study proposes a method that utilises exploratory data analysis techniques along with moving
average smoothing to identify the target utilisation threshold for the HPA. The objective is to ensure
that the system functions without exceeding the maximum number of events that result in a violation
of the response time defined in the SLO. A prototype was created to adjust the threshold values
dynamically, utilising the proposed method. This prototype enables the evaluation and comparison of
the proposed method with the HPA, which has the highest threshold set that meets the performance-
based SLOs. The results of the experiments proved that the suggested method adjusts the thresholds
to the desired service level with a 1–2% accuracy rate and only 4–10% resource overprovisioning,
depending on the type of workload.

Keywords: dynamic CPU thresholds; threshold adjustment; HPA; autoscaler; Kubernetes; SLA; containers

1. Introduction

The evolution of containerised applications has resulted in the creation of container
orchestration platforms like Kubernetes [1]. Kubernetes uses the Horizontal Pod Autoscaler
(HPA) [2], which determines the number of resources to be provisioned based on resource
utilisation metrics such as the CPU, RAM, or network throughput. The HPA increases
the number of pod replicas if the current resource utilisation metric is above a particular
utilisation threshold (target utilisation). On the other hand, if the current resource utilisation
metric is below the target utilisation, the HPA decreases the number of pod replicas.
The target threshold utilisation setting is the most influential parameter to control the
application’s performance as it controls the amount of resource provision during each
autoscaling action. However, the authors of Kubernetes do not provide recommendations on
setting the threshold, especially for cases when the user aims to ensure that the application
performs as per the Service Level Objectives (SLOs) defined in a Service Level Agreement
(SLA). As a result, the determination of the threshold becomes a long and challenging
process [3]. If the thresholds are set too low, this can result in the overprovisioning of
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resources. However, this will allow for a quicker response to load changes and, as a result,
lead to improved application performance. Conversely, choosing a threshold that is too
high may lead to fewer replicas being provisioned and leaving no buffer for the detection of
and reaction to the load increase [4]. These two factors may cause a decline in performance
and an increased risk of failing to meet the application performance regarding the SLOs [5].

Also, the HPA has a slow reaction [6], so it is not enough to benchmark the application
performance and establish a relationship between the response time and resource utilisation
to find thresholds that ensure compliance with the SLOs. The utilisation threshold must be
set lower to allow time for a reaction to an increase in the load and wait for new replicas to
be provisioned. This buffer is essential for ensuring that the system can cope with sudden
changes in demand [4]; however, it is not clear how to estimate the size of such a buffer.

The threshold determination becomes even more challenging, as the cloud environ-
ment is not homogeneous, which causes inconsistency in resource provisioning [7–9].
Noisy neighbours are another problem that causes inconsistency in provisioned resources’
performance [10,11]. Additionally, cloud-native applications are constantly updated and
redeployed, requiring dynamic updates to autoscaling thresholds. As a result, finding
a suitable threshold is a challenging process, which can be viewed as an optimisation
that aims to identify the operating parameters that guarantee the desired level of system
performance [7,9,12]. As a result, practitioners and academia propose many alternatives to
the HPA in the form of custom autoscalers. Nevertheless, the HPA remains one of the most
popular horizontal autoscaling solutions [13].

According to Amiri et al. [14], efficient resource management in the cloud addresses
the SLA-fulfilment and resource-waste-avoidance aspects. When the solution is oriented
towards SLA fulfilment, it aims to ensure that the obligations of the cloud for its users
are met, even if this causes an increase in operational costs. On the other hand, resource
waste avoidance focuses on minimising the provisioning of the required resources for SLA
fulfilment, thereby reducing cost or energy waste. The HPA was specifically designed
to minimise operational costs, and as a result, it inherently addresses the resource-waste-
avoidance aspect. This research aims to introduce an approach for identifying the HPA
target utilisation threshold, which enables the HPA to address the SLA-fulfilment aspect
effectively.

It is important to note that most scientific studies addressing the issues of SLA-
fulfilment-oriented autoscalers [7,9,12,15,16] propose implementing prediction methods
based on complex machine learning algorithms. However, applying these methods can
be quite challenging and requires custom autoscaler implementations, which may com-
plicate their seamless integration into production environments. Additionally, operating
and adopting such solutions requires in-depth knowledge of the machine learning field.
In contrast, this article proposes a method that allows users to continue using the HPA.
The solution solely relies on data exploration analysis techniques to adjust the thresholds
without machine learning to avoid additional complexity when operating the HPA.

It is common for many solutions [7,16–18] to track the average response time to
improve the application’s performance. However, this monitoring approach might not
provide enough information about current or upcoming SLO violations, and information
about small amounts of events that were not compliant with the SLO is lost due to the
applied average value technique. To address this issue, the solution proposed in this work
tracks the number of events where the nth percentile of the response time values resulted in
SLO violations during the specified monitoring period. This approach helps identify the
potentially upcoming violations and also considers the violations that actually happened
while the system operated at a particular CPU utilisation level. This helps identify the
target utilisation threshold that minimises the number of SLO violations.

To summarise, the main contributions of this research are as follows:

• A novel approach is introduced that supports the process of identifying target utilisa-
tion thresholds for the HPA. It aims to ensure that the system performance conforms
to the defined SLO and does not exceed the number of allowed violations.
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• A prototype of a dynamic threshold update add-on to the Horizontal Pod Autoscaler,
named the SLA-Adaptive Threshold Adjuster (SATA), has been implemented. This
enables the evaluation and practical testing of the proposed target utilisation-detection
approach. The evaluation of the approach revealed that the type of smoothing tech-
niques and the length of the period during which data for threshold evaluation are
collected have a different impact on the efficiency of the algorithm depending on the
load pattern (slowly changing or volatile).

• The proposed approach was tested in a real environment under various workload
conditions using real-world workload traces to evaluate its effectiveness. The experi-
mental results demonstrated that the proposed solution enables the HPA to manage
resources in a way that ensures system performance alignment with the SLO with
negligible or only around 10% resource overprovisioning.

• The experiments revealed that, even though the same application and pods with the
same resource setting threshold were used, different target utilisation values must be
applied depending on the load pattern.

It is important to note that the purpose of the research is not to provide a new autoscaler
solution, but instead, to improve the autoscaling decision-making process of the HPA,
allowing users to continue using the HPA without introducing additional complexity, in
cases when there are strict SLOs, which must be met. In other words, the solution enables
the HPA to address the SLA-fulfilment [14] aspect of efficient resource management.

Before continuing with the next section, it is worth noting that SLOs can cover various
aspects of SLAs, including application availability, disaster recovery, and more, as men-
tioned in the SLA Catalog [5]. In this document, we will focus on performance-based SLOs
that are measured using service level indicators (SLIs), such as response time, throughput,
and tail latency.

The paper is organised in several sections. Section 2 introduces the background
and related work. Section 3 introduces the threshold determination approach proposed,
detailing the metrics and methods employed. Section 4 presents the prototype solution
necessary to test the proposed approach with the HPA. The experimental setup is detailed
in Section 5, while Section 6 presents the evaluation criteria, experiments, and the results
of the experiments. Finally, the paper is concluded with Section 7, which summarises the
findings and suggests areas for future research.

2. Background and Related Works

This section aims to provide a state-of-the-art overview of the autoscaling solutions
that are commonly used in Kubernetes. It presents the background on Kubernetes’ autoscaling
solutions, with a focus on the HPA and the research that has been performed to fine-tune
its performance, followed by an overview of custom autoscaling solutions in Kubernetes.
Next, as the research aims to identify target utilisation thresholds, the section provides an
overview of the Kubernetes autoscaling solutions that dynamically adjust the thresholds.
Moreover, the overview indicates which of the efficient resource-management aspects, SLA
fulfilment or resource waste avoidance, are covered in the research works.

The next sections provide an overview of how efficient resource management is ad-
dressed in Kubernetes.

2.1. Autoscaling in Kubernetes

The autoscaling of applications in Kubernetes can be divided into Kubernetes-native
and customer autoscaling solutions. There are two Kubernetes native solutions for auto-
mated application resource scaling: the Vertical Pod Autoscaler (VPA) and Horizontal Pod
Autoscaler (HPA). Although the main focus of the work is on the HPA, the section will
provide a brief description of the VPA to make it easier to understand the related works.
The VPA is used for resource autoscaling within a pod, that is setting the resources like the
CPU and RAM used by individual pods. The Horizontal Pod Autoscaler is responsible for
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the adjustment of a number of pod replicas reacting to load or resource utilisation changes.
It is very popular due to its easy-to-understand configuration [19].

Even though the HPA is considered simple, it is not trivial to configure it [6]. As a
result, the HPA is a paradigm worth its research area. For instance, HPA performance
can be optimised through various parameters. The stabilisation window is set to prevent
frequent fluctuations in the number of replicas due to the dynamic nature of the metrics
evaluated. Autoscaling policies control the rate and the maximum and minimum number
of replicas that can be provisioned or de-provisioned within the defined provisioning
window. The threshold tolerance setting ensures that small changes in utilisation above or
below the defined thresholds do not trigger unnecessary autoscaling actions. The target
utilisation threshold setting has a direct impact on the application’s performance, thus on
its ability to meet its SLO.

As can be seen, there are many configuration parameters in the HPA, so academia
has made several attempts to support users in the adoption of the HPA. Nguyen et al. [20]
aimed to support researchers and practitioners in configuring the HPA in Kubernetes.
Their work provides an overview of the HPA’s behaviour and the impact of various
characteristics and types of metrics collected on its performance and efficiency. They
offer a comprehensive set of recommendations. However, their study lacks a practical
implementation and recommendations for identifying threshold values.

One of the latest works that aims to dynamically optimise the performance of the HPA
and address resource waste avoidance is [21]. Augustyn et al. [21] suggest an approach
to identify the maximum number of pods to be provisioned by the HPA, which allows
customers to continue to use the HPA while improving resource utilisation. The work does
not aim to ensure system performance conforms with the [5] SLO.

Another solution that aims to minimise resource waste is provided by Huo et al. [6].
The authors found the HPA to be slow and inflexible and proposed to minimise the
stabilisation window to 0s when performing upscale actions and extend the stabilisation
windows for a downscale action to up to 9 min in order to minimise resource waste. This
work shows the impact of the stabilisation window length on the ability to react faster to
load spikes. However, it is unclear how efficient the strategy is for the risk minimisation of
SLO violations.

The HPA skips scaling if the current utilisation is within 10% above or below the target
utilisation. This 10% is a tolerance value and is globally configurable. Huo et al. [22] proposed
a strategy that sets a higher tolerance value for utilisation thresholds than the default one of
Kubernetes. The strategy minimises the number of timeout requests in high-concurrency-load
scenarios compared to the default HPA settings. However, tolerance threshold adjustment is
performed manually, and there are no guidelines on selecting the optimal one.

As can be seen, there are many different strategies for configuring the HPA to improve
performance from both the SLA-fulfilment and resource-waste-avoidance perspectives.
This makes it non-trivial to set up [6]. Consequently, several custom autoscalers have been
proposed by academia as alternative solutions to the HPA.

For instance, one of the latest works [3] suggests a custom autoscaler, which aims to
select the correct number of pod resources, such as the number of CPUs to be allocated
to pods (pod pinning). It predicts the load and calculates the number of CPU cores and
the number of pods allocated to a specific workload pinned to the CPU. The work results
show that such a strategy improves response times, minimises the number of violations,
and improves throughput compared to other autoscaling solutions described in their work.

An example of a solution that aims to address the resource-waste-avoidance aspect of
Kubernetes’ resource management is presented by Wu et al. [18]. The authors proposed a
custom autoscaler, which dynamically identifies nodes’ CPU utilisation thresholds using
rules. The approach involves running a stress test to find the highest possible threshold
based on the relationship between the CPU utilisation of the node and the application
response time. However, it does not consider delays in autoscaling actions that can cause
resource starvation and increased response time. Nevertheless, the authors claim that the
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method improves node utilisation by 28.9%. Still, it remains unclear whether the response
time requirements are still met in terms of an acceptable number of violations during the
SLA evaluation period.

An example of a custom autoscaling solution that aims to ensure SLA fulfilment
is the KOSMOS solution [23]. The solution the authors introduced was KOSMOS HPA
(KHPA) and KOSMOS VPA (KVPA) as alternatives to the HPA and VPA in Kubernetes,
respectively. The user of KOSMOS provides the SLA requirements such as the response
time, the minimum and maximum number of replicas, and the startup time. KHPA and
KVPA rely on response-time-threshold-based heuristics to adjust the amount and location
of resources. The utilisation thresholds used for node autoscaling are determined manually
by the users. There are also works that aim to address resource waste avoidance.

For example, Phuc et al. [24] proposed the Traffic-Aware Horizontal Pod Autoscaler
(THPA) in the Kubernetes-based Edge Computing Infrastructure—an autoscaler that uses
the HPA and, in addition, optimises the performance of the application through load
routing optimisation [25]. The algorithm distributes the number of desired pods across the
nodes proportionally to the traffic load sent towards the node. The solution improves the
performance of edge computing applications in terms of total throughput and response
times. However, the solution does not validate the performance conformance with the
defined SLO, nor does it use the HPA or dynamically adjust thresholds. Similar to Phuc et
al., Ruiz et al. [26] proposed an autoscaler that optimises traffic load distribution towards
pods. However, it also uses upscale and downscale thresholds to avoid the waste of
resources, improving overall response times and system utilisation. However, the user
needs to determine the thresholds manually to minimise resource waste.

As can be seen, the utilisation-threshold-identification problem is relevant currently.
The proposed solution in this work aims to adjust the HPA threshold dynamically. However,
before going deeper into it, this paper will provide an overview of custom-threshold-
based autoscaler solutions so the reader will gain a better understanding of what is being
performed in the research field of threshold identification and adjustment. The following
section provides an overview of the threshold adjustment approaches utilised by custom
autoscaler solutions.

2.2. Dynamic Threshold Adjustment

The dynamic-threshold-adjustment problem has been investigated by academia for
a long time. The oldest works analysed in this regard are Beloglazov and Buyya [27].
The authors have proposed a set of heuristics to dynamically adapt the thresholds using
the statistical analysis of historical data gathered during the lifetime of virtual machines
(VMs). The algorithm aims to minimise power consumption during VM live migration.
The struggle to identify and adjust appropriate thresholds remains a common problem for
autoscaling solutions developed for Kubernetes, irrespective of whether the solution is built
based on Kubernetes-native autoscalers or a custom-built solution.

2.2.1. Dynamic Threshold Adjustment in Custom Autoscalers

The solution of the adaptive scaling of Kubernetes pods, Libra [10], is a custom au-
toscaler solution that maps a number of requests the pod can serve within SLO constraints
to actual CPU utilisation. In this way, it dynamically detects the CPU resource limits of pod
resources and scales the application horizontally when the number of requests reaches 90%
of the served requests related to the actual CPU limit value. According to the authors, this
approach leads to better performance when compared to the HPA. However, Libra does
not track the delivered service compliance in terms of the number of violations, so it is not
clear if it ensures that the SLO is met over the SLO monitoring period.

Horovitz and Arian [28] adapted the Q-Learning algorithm from Reinforcement Learn-
ing to identify the dynamic threshold. The authors admitted that there is low adoption
of Q-Learning as it has many challenges. They suggested a way to simplify the use of Q-
Learning for threshold selection by selecting a state space that reflects the current allocation
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of resources and an action space that includes an action for each utilisation threshold value.
The solution was then tested using a threshold-based autoscaler that directs Kubernetes
when to initiate autoscaling. The solution does not modify the HPA’s thresholds. The HPA
was used as a baseline for the performance evaluation in the research, and the authors
manually adjusted the thresholds for the HPA for every experiment. Although the authors’
results demonstrate that their solution outperforms the HPA in terms of resource utilisa-
tion by 52%, it is uncertain whether the HPA target utilisation thresholds set during the
evaluation ensured compliance with the SLO.

RScale, described in [12], is an autoscaler that predicts the end-to-end tail latency
of microservice workflows using the Gaussian Process Regression (GP) model, which
predicts the threshold by utilising the predicted tail latency and historical data of resource
usage for a particular tail latency value. The RScale evaluation results have shown that
the proposed system can meet the system SLOs (e.g., tail latency) even in the presence of
varying interference and evolving system dynamics. However, it is unclear how efficient
the approach is from the resource consumption point of view. RScale is a machine learning-
based autoscaling algorithm that adjusts its own thresholds, but it is not used for HPA
threshold adjustment.

The self-adaptive autoscaling algorithm for SLA-sensitive applications (SAA) in [17]
focuses on ensuring SLA fulfilment through the use of dynamically adjusted thresholds.
Although it does not explicitly address the threshold-adjustment problem as the primary goal,
it employs dynamic thresholds to achieve the SLA-fulfilment [14] goal. The effectiveness of
the solution in achieving the desired Service Level Objective (SLO) was demonstrated without
high overprovisioning as compared to two other algorithms—HPA and Dynamic Multi-level
Auto-scaling Rules (DMAR) [29]. The latter algorithm (DMAR) outperforms the cloud service
provider’s state-of-the-art autoscaling algorithms.

The next section goes into an overview of solutions that aim to adjust the HPA thresh-
old dynamically.

2.2.2. Dynamic Thresholds Adjustment for HPA

Khaleq and Ra [7] proposed the multi-component system for intelligent autoscaling,
which aims to adjust the thresholds for the HPA reactively [30] in order to maintain perfor-
mance below or equal to the defined SLI, such as the average response time. The solution
aims to identify the maximum resource utilisation used by the application container. Then,
the detected utilisation value is used as a target utilisation threshold for the HPA. This
threshold is updated constantly based on the latest collected maximum utilisation values.
The experiment results show that this strategy allows for a 20% improvement in response
time compared to the default HPA. To improve the results, the authors proposed a theoreti-
cal threshold-adjustment solution and autoscaler based on Reinforcement Learning (RL).
They found that training and validating RL agents to identify threshold values for autoscal-
ing has the potential to satisfy the quality of service (QoS) of response time. However, all
tests of the solutions were performed based on real application data, but in a simulated
MatLab environment. So, the efficiency of the solution has not been evaluated in a real
infrastructure environment and is left for future development and research. The SATA
solution was tested in the cloud environment, demonstrating the efficacy of the solution
under real-life conditions.

This work introduces an approach to identify thresholds that ensure the HPA provides
a sufficient number of resources to meet the performance-based SLOs, enabling the HPA
to address the SLA-fulfilment aspect. The data exploratory analysis techniques used to
implement the approach are described in more detail in Section 3. The paper evaluates the
proposed threshold-detection approach using a rules-based dynamic threshold adjuster
prototype solution called SLA Adaptive Threshold Adjuster (SATA), which is defined in
detail in Section 4.

Tables 1 and 2 summarise the differences between the above-mentioned works. Table 1
presents the solution that aims to improve HPA performance by addressing different
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resource-management aspects. The improvements are applied to the HPA manually or
automatically. The table displays whether the suggested approaches were tested in real
infrastructure or simulated environments. As indicated in the table, the method proposed
in this study is the only one that aims to adjust the HPA threshold dynamically and
has been tested in a real-life environment. Table 2 presents autoscaling solutions based
on dynamic thresholds. In addition to the already-mentioned categories, the solutions
are also categorised based on the timing of the decisions made (reactive and proactive
autoscaling), the indicators used for autoscaling (utilisation, number of resources, response
time, etc.) [30], and the autoscaling approaches used [31]. As can be seen, most of the
works, which are threshold-based autoscaling solutions, use machine learning to predict
the required thresholds proactively.

As can be seen from the summary tables, the solution proposed in this paper counts
the number of violations of an SLO metric, making it more abstract compared to the use of
commonly used service level indicators (SLIs), such as response times [30]. The solution
is reactive and does not make any predictions about future SLIs. Consequently, there is
no need for any model development or machine learning since it relies on a set of rules
and uses basic exploratory data analysis techniques [32]. The solution was implemented
and validated in real-life environments using real-world workload patterns. Based on the
related work overview, it can be concluded that the work suggests the first rules-based
HPA dynamic threshold-adjustment solution, which was practically evaluated in a real
cloud infrastructure environment.

Table 1. Overview of the approaches aiming to enhance Kubernetes’ HPA.

Authors Enhancement Adjustment Resource
Management Aspect Test Environment

Huo et al. [6]
Strategy for

stabilisation window
length setup

Manual Resource waste
avoidance Real infrastructure

Huo et al. [22] Strategy for setting up
tolerance threshold Manual SLA fulfilment Real infrastructure

Augustyn [21]
Determination of the
maximum number of

pod replicas
Automated Resource waste

avoidance Real infrastructure

Khaleq and Ra [7] Dynamic utilisation
threshold adjustment Automated SLA fulfilment Simulation in MatLab

This work Dynamic utilisation
threshold adjustment Automated SLA fulfilment Real infrastructure

Table 2. Overview of the characteristics of autoscalers employing dynamic threshold-adjustment
algorithms.

Authors Timing Strategy Scale Indicators Methods SLI
Resource-

Management
Aspect

Custom

Beloglazov and
Buyya [27] Proactive Node CPU

utilisation Rules-based

Difference between
requested and

allocated MIPS for
all VMs

Resource waste
avoidance

Kang and
Lama [12] Proactive Resource

utilisation
Gaussian Process

Regression Tail latency SLA fulfilment

Horovitz and
Arian [28] Proactive Number of

resources

Rules-based,
Reinforcement

Learning
Tail latency SLA fulfilment

Pozdniakova et al. [17] Reactive Resource
Utilisation Rule-based Number of

violations SLA fulfilment



Electronics 2024, 13, 1242 8 of 28

Table 2. Cont.

Authors Timing Strategy Scale Indicators Methods SLI
Resource-

Management
Aspect

HPA based

This work Reactive Resource
utilisation Rules-based Number of

violations SLA fulfilment

Khaleq and Ra [7] Reactive Resource
utilisation

Rules-based,
Reinforcement

Learning
QoS: response time SLA fulfilment

The following sections provide an in-depth description of the proposed threshold-
detection approach and a prototype solution called SATA for dynamic threshold adjust-
ment.

3. Threshold-Determination Approach

In this section, we introduce an approach to identify the target utilisation threshold
that ensures the system performs at the level defined in the SLA. The implementation of this
process is constituted by a series of steps. As the first step, a sufficient number of metrics
are collected to be able to provide the suggestion. In the second step, the collected metrics
are cleaned up, and outliers are removed to improve the accuracy of the algorithm. As a
third step, the collected metrics are aggregated into CPU ranges, and the ratio between the
number of compliant events and violations is calculated per each range. In the fourth step,
the collected metrics are aggregated into CPU ranges, and the ratio between the number of
compliant events and violations is calculated for each range. As the last step, the suitable
threshold is determined by finding the highest CPU value where the desired SLO is met.
The steps described above are elaborated on in more detail in the text below.

Step 1: collection of a sufficient number of monitoring data points.
As the first step, the system should collect enough metrics Msu f f to be able to identify

the number of violations per threshold. To achieve the goal, the following metrics are
collected at each moment n:

• CPUn—average CPU utilisation;
• SLIn—performance-based service level indicator value, such as average response time,

tail latency, throughput (e.g., requests per second (rps));
• RPSn—average number of requests per second;
• Podn—number of pods in “Ready” state.

Let us denote the set of the metrics provided above as tuple m. Then, Msu f f can be
defined as Msu f f = ⟨m0, m1, . . . mn⟩, where mn = ⟨CPUn, SLIn, RPSn, Podn⟩.

The size of Msu f f depends on two factors: the length of the period during which the
data for threshold evaluation are collected (threshold evaluation period Teval) and how
frequently the metrics are collected (length of metric-collection period Tm). In other words,
|Msu f f | = Teval/Tm. The experiment results showed that, while detecting the threshold is
possible with 150 samples per evaluation period, the recommended number of samples is
300 for improved accuracy.

The RPSn and Podn metrics are optional and are collected to remove outliers in the
CPU performance values, which appear when the number of pods is very small. The
process of removing outliers is explained in the following step, along with the specifics on
how to clean invalid data.

Step 2: data cleaning.
This step is applied to refine the accuracy of the algorithm. It involves identifying

and removing invalid values and outliers that might have been introduced due to system-
specific monitoring issues. It is possible for empty requests per second or response time
values to occur in the monitoring system when it is overloaded and unable to report the
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metrics, depending on its configuration. To clean up the data, as the first step, empty
metrics are removed from Msu f f . For instance, data points (Mnosli) where the m(SLI)
metric is not available are removed as presented in Equation (1).

Msli = Msu f f \Mnosli. (1)

Here, Mnosli = {m : m ∈ Msu f f ∧m(SLI) does not exist}.
Next, to ensure that the algorithm does not propose very low CPU utilisation, the

metrics collected when there was no load are removed, denoted as Mnoload in Equation (2).

Mnozeros = Msli \Mnoload. (2)

Here, Mnoload = {m : m ∈ Msli ∧ ((m(RPS) = 0) ∧ (m(SLI) = 0) ∧ (m(RPS) = 0) ∧
(m(Pod) = 0))}.

During the upscale and downscale actions where the number of pod replicas is low,
outliers can be introduced. For instance, during an upscale action, the system may report
many violations while CPU utilisation drops. This happens because the load has yet to
be distributed across all replicas, and some replicas still report high response times with
low CPU utilisation. Removing such anomalous data is recommended to improve the
accuracy of the algorithm. To follow the recommendation, the interquartile range (IQR)
method [33,34] for outlier detection is used in this work.

The interquartile range (IQR) is a statistical technique that is used to identify outliers
within a dataset. The dataset is first sorted and then divided into four equal parts. The
points dividing the dataset into four equal parts are known as quartiles. The first quartile
(Q1) represents the initial 25% of the data or the 25th percentile, while the third quartile
(Q3) represents the final 25% or the 75th percentile. The interquartile range represents the
middle half of the data, which includes all the data between the third quartile (Q3) and the
first quartile (Q1). Values falling at least 1.5× IQR above Q3 or below Q1 are considered
anomalous. The IQR, Q1, and Q3 are computed as presented in Equation (3).

IQR = Q3−Q1, where Q1 = X⌈(z+1)/4⌉, Q3 = X⌈3×(z+1)/4⌉. (3)

Here, X is an element of an ordered dataset, z is the number of elements in the dataset (size
of the dataset), and the subscript of X represents the equation used to identify the index of
the element belonging to the respective quartile (Q1, Q3).

As described at the beginning of the step description, the system may report anomalous
metrics. The number of requests per second (rps) that a single CPU can handle (RPC) and
the number of rps that a single pod can handle (RPP) can help detect the anomalous
container performance of pods. For each metric mz ∈ Mnozeros, the RPC and RPP values
are calculated as presented in Equation (4) and Equation (5), respectively.

RPCz =
RPSz

CPUz
(4)

RPPz =
RPSz

Podz
. (5)

Once the RPC and RPP are calculated, the metrics Mnozeroes are sorted by the RPC
value in ascending order and the IQR method is applied to remove anomalies. The value
of the first quartile (Q1RPC ) and third quartile (Q3RPC ) of the RPC is identified using Equa-
tion (3). Finally, all the metrics, where RPCz /∈ (Q1RPC − 1.5× IQR; Q3RPC + 1.5× IQR),
are considered as outliers and are removed from Mnozeroes. The same procedure is repeated
using the RPP, to obtain a set of metrics to proceed with CPU threshold estimation, denoted
as Meval .

Step 3: the data grouping by CPU range and number of violations’ calculation per
CPU range.
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In this step, the collected and cleaned metrics are grouped into ranges by the CPU
using the following actions, denoted as A:

• A1. The cleaned metrics Meval are first ordered by the CPU from the low to high CPU
value. Let the new sequence be denoted as MC = {mc : mc ∈ Meval , mc(CPU) ≤
mc+1(CPU))}}.

• A2. The elements of MC are grouped into smaller subsequences, or ranges, based
on their CPU values. Metrics with CPU values that fall into the same 1% CPU range
are placed into the same group (MCRi). This procedure is applied to all available
metrics while maintaining their original sorting by the CPU value. In such a way, the
sequence of sequences is created MCR = {MCRi : i is an integer, i ∈ [0; 100]}, where
MCRi = {mcr(i) : mcr(i) ∈ MCRi, i− 1 < mcr(i)(CPU) < i + 1} is the sequence of
metrics belonging to the same 1% CPU. Here, i is an index of the CPU range.

• A3. It is assumed that the 1% CPU range should contain at least 1% of all collected
metrics during the threshold evaluation period (Teval). However, MCRi might contain
a smaller number of elements. As a result, up to three subsequent MCRi subse-
quences might be united into a bigger or the same size range MCRr to ensure they
contain at least 1% of all metrics collected during Teval , but not less than five elements
(minSize = max(5, |Meval |

100 )). If |MCRr| < minSize, then MCRr = ∅. Here, r denotes
an index equal to the index of the last CPU range included in the combined range.
For instance, if MCRr unites the MCR2 and MCR3 ranges, then r = 3; if MCRr unites
only one range, then r = i.

After grouping the metrics, the SLO (SLOr) for each CPU range MCRr is calculated as
presented in Equation (6).

SLOr =



100− 1
b

p=b
∑

p=0
Vp, if |MCRr| ≥ minSize,

100, if r = 0,
0, if r >= 99,
SLOr−1, otherwise.

(6)

Here, [∑
p=b
p=0 Vp] represents the total number of events Vp where the SLI value (mcp(SLI) ∈

MCRr) exceeded the SLI target value (SLItgt), indicating a violation of the SLO, as shown
in Equation (7). The index p corresponds to the elements in the set MCRr, and b indicates
the index of the last element in the range.

As can be seen in the first line of Equation (6), SLOr is the percentage of events that
conform with the target SLI value within a range. An SLO of 100% is assigned to the CPU
range of 0%, as there are no violations when there is no or minimal load. Conversely,
SLO compliance is equal to 0% when the CPU range index is 99 or higher because the
SLO cannot be met when CPU utilisation is near 100%. This allows the imputation [35] of
missing values by replacing missing initial and last values for the SLO.

Vp =

{
1, if mcp(SLI) > SLItgt

0, if mcp(SLI) ≤ SLItgt.
(7)

The mapping is created between the SLOr and MCRr(CPU) ranges corresponding
the IDs, denoted as CTR in Equation (8).

f : CTR =⇒ SLOr. (8)

Here, CTR = ⌈max MCRr(CPU)⌉ is the ID of a range that is equal to the value of the CPU
metric with the highest value in the range.

Before proceeding to the next step, it is important to note that the metrics are grouped
into ranges larger than 1% to ensure that each range has enough metrics to calculate the
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SLO metric accurately. This minimises fluctuations between neighbouring values. Let us
say we have two metrics collected at a very low CPU utilisation, where the CPU value is
around 3%. In this scenario, each metric will be given a weight of 50% when calculating
the SLO of the range. For instance, if the next range has a CPU value of 4% and contains
10 compliant values, then the SLO for the range will be 100%. However, if there is only
one non-compliant event in the range of 3%, the SLO for the range may fluctuate up
to 50%. While it is possible to unite more than three 1% CPU ranges (MCRi), it is not
recommended to estimate the SLO for ranges larger than 3% as this would negatively
impact the algorithm’s accuracy.

The next step aims to improve the accuracy of threshold prediction and remove noise
caused by fluctuations between neighbouring values.

Step 4: smoothing of the values of the SLO per the CPU range.
As the algorithm might work with a relatively low number of events, the low number

of events per MCRr might introduce fluctuations in the relation between CTR and SLOr,
as seen in Figure 1a and described in the previous step. To address this issue, a smoothing
technique called the Simple Moving Average (SMA) is applied to remove fluctuations and
reveal underlying trends [36]. The SMA calculates the average value of a set of numbers
over a specified number of previous periods, known as a window or lag. The formula for
calculating the Simple Moving Average (SMA) is presented in Equation (9).

SLOrw =
1
w

w

∑
i=1

SLOr−i. (9)

Here, SLOrw is the SLO value of a range r smoothed over a window of size w; SLOr−i are
the SLO values of the CPU ranges with indexes varying within the window size w (from
r− i to r).

The recommendation provided by [37] and discussed in [38] is followed to determine
the appropriate window size w, or lag, to be applied for SMA smoothing (Equation (10)).

w = min(|MCR|/5, 10). (10)

Step 5: suggestion for the desired CPU threshold value.
After smoothing out the CPU values, the next step is to choose the highest CPU

range that has a number of violations (SLOrw ) that is lower than or equal to the SLO-
defined number of violations (SLOtgt). This chosen threshold is then considered the target
utilisation threshold CTRslo and is determined using Equation (11).

CTRslo = max
SLOr≥SLOtgt

{ f−1(SLOrw) : SLOrw ≥ SLOtgt exists}. (11)

Here, f−1(SLOrw) = {CTRslo ∈ R : f (CTRslo = SLOrw)}
Before concluding this section, it is worth mentioning that, in this work, the use of the

Centred Moving Average (CMA) [37] was also evaluated to smooth out the fluctuations and
identify the target utilisation threshold. It was assumed that this method would provide
more conservative suggestions for thresholds compared to the SMA. Three experiments
using the HPA were executed, and the utilisation thresholds were set to values of 44%, 48%,
and 50% to evaluate these approaches. The results are presented in Figure 1b,c, where the
lines present the relationship between the CPU range ID and SLO, and the SLOs achieved
by the end of each experiment are presented as dots. As can be seen, the relationship
between the threshold and SLO values is identified more accurately by the SMA than
the CMA. So, the SMA is used as the main smoothing technique in this work. However,
experiments later demonstrated that the CMA may be effective in volatile load scenarios
due to its tendency to slightly underestimate the threshold value. This causes a faster
reaction to an increase in load, thus minimising the risk of SLO violation.
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Figure 1. (a) A line graph of the achieved Service Levele Objective (SLO) values per CPU range
without smoothing. (b) A line graph of the achieved Service Levele SLO values per CPU range using
Simple Moving Average smoothing. (c) A line graph of the achieved SLO values per CPU range using
Centred Moving Average smoothing. Dots represent the SLO achieved in the experiments when the
Horizontal Pod Autoscaler (HPA) was configured with a static CPU utilisation threshold.

The algorithm presented in this section assists in the identification of a threshold value
that autoscaling algorithms can use to maintain the desired quality of service (QoS) levels.
This approach is most effective when there are no significant changes in performance or
load during the period when the threshold was estimated. Additionally, it is best suited
when there is no significant difference in the load patterns between the future period
and the period for which the threshold was estimated. However, in real-life production
environments, load fluctuations are common, and the algorithm may select the lowest CPU
threshold when assessing performance for longer periods, leading to resource overpro-
visioning. Additionally, the performance of cloud resources can also fluctuate, and the
provisioned resources may not be uniform. As a result, the target utilisation threshold
that ensures that the system operates at the performance level required to achieve the SLO
during the night might fail to achieve the SLO during the day. Therefore, there is a need to
adjust the proposed threshold value dynamically to meet the SLA requirements.

In the following section, the dynamic threshold-adjustment algorithm will be outlined
to address the above-mentioned issues. The algorithm is then implemented as a prototype
solution (SATA) to assess the effectiveness of the dynamic CTRslo adjustment.

4. Dynamic Threshold-Adjustment Algorithm

In this section, we present a prototype solution that has been developed to assess
the effectiveness of the suggested methodology under varying workload conditions. The
prototype is designed to work with the HPA, which employs threshold-based policies as an
autoscaling mechanism. The aim of the HPA is to optimise resource utilisation and reduce
infrastructure costs. The HPA method calculates the number of desired replicas podd by
comparing the target utilisation value (Md) and the current utilisation value, represented by
Mn, when making autoscaling decisions. This calculation is performed using Equation (12).

podd =

⌈
podn ×

Mn

Md

⌉
. (12)

To adjust the target utilisation metric, which is the CPU utilisation threshold (CTd) in
our case, the SATA solution uses a different set of rules and algorithms. The algorithm and
rules section depends on operational conditions, which are as follows:

• The system is in the initialisation phase, meaning that there are not enough metrics
yet collected to estimate the target utilisation threshold (|M| < |Msu f f |);

• The system is in a resource underprovisioning state, meaning it is impossible to
identify CTRslo since all the SLOrw values are below SLOtgt, indicating that not enough
resources are provisioned;
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• The normal operational conditions cover all other cases not mentioned above.

A different CTd adjustment logic is then used based on the operational state of the
system identified.

The following subsection explains in detail how the resource underprovisioning is
identified and how it affects the length of the threshold-adjustment period (Tadjust). Then,
Section 4.2 explains how the CTd value is adjusted based on the system’s operational condi-
tion.

4.1. Resource Underprovisioning Detection

It is important to detect if a system is starving resources as it can negatively impact
the SLO state. This condition must be detected as soon as possible. Algorithm 1 is used to
determine if the system is experiencing resource underprovisioning. It counts the number
of underprovisioning events that occur between autoscaling actions. The calculated algo-
rithm values are used as the input parameters by the expedite function, which is defined in
Equation (13). This function checks if the number of consequent Tscale periods that contain
underprovisioning events (underpov) exceeds the threshold of bndryunder or if the number of
periods between which the SLO value decreases (SLOdrop) exceeds a boundary of bndryslo.

Algorithm 1 The resource-underprovisioning-detection algorithm

Require: SLOtgt;
SLOnow—current SLO value;
SLOlastScale—the SLO value before the last autoscaling action taken;
Tscale—time between autoscaling actions (autoscaling period);
MTscale is a set of metrics collected during the Tscale period;
|Munder| is the number of metrics collected when the system was in a high under-
provisioning state during the autoscaling period, where Munder = {mu : mu ∈
MTscale , mu(CPU) ̸= 0 ∧(mu(RPS) = 0∨mu(SLI) = 0)}.

Ensure: Count and return:
underpov—the number of consequent periods during which underprovisioning events
occur, that is |Munder| > 0, or when fewer metrics were collected than expected to
collect during Tscale;
SLOdrop—the number of consequent periods during which the SLO decreased between
the two latest autoscaling actions.

1: if (SLOnow − SLOlastScale < 0) ∧(SLOnow < SLOtgt) then
2: SLOdrop ← SLOdrop + 1
3: else
4: SLOdrop ← 0
5: end if
6: if (|MTscale | < |MTscale | ×

Tscale
Tm

) ∨ (|Munder| > 0) then
7: underpov← underpov + 1
8: else
9: underpov← 0

10: end if
11: return SLOdrop, underpov

If none of the bndryslo, bndryunder thresholds are exceeded, the time taken to initiate
an update of the target threshold (timeToUpdate()) is equal to Tadjust. However, if any of
the thresholds are exceeded, timeToUpdate() is reduced to three scale periods, as described
in Equation (14). This is performed to expedite the threshold-adjustment process defined
in Algorithm 2, in order to react more quickly to resource underprovisioning and minimise
the risk of SLA violation. The length of three upscale events is chosen to ensure that the
previous scaling action takes effect on the collected metrics and minimises fluctuations:
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expedite(SLOdrop, underpov, bndryslo, bndryunder) =


true, if SLOdrop > bndryslo

true, if underpov > bndryunder

f alse, other.

(13)

Here, bndryslo and bndryunder identify the maximum number of SLOdrop and underpov
events that trigger the CTd’s recalculation earlier than under normal operation conditions.

timeToUpdate(SLOdrop, underpov, tupdated, tnow, Tadjust, Tscale) =
true, if |tupdated − tnow| > Tadjust

true, if |tupdated − tnow| > 3× Tscale ∧ expedite(SLOdrop, underpov) = true
f alse, other.

(14)

Here, tupdated is the time when the CPU threshold was last updated, and tnow is the cur-
rent time.

As seen from Algorithm 2, the boundary counters are dropped after the scaling action
if SLOdrop and underpov exceed their boundaries.

Algorithm 2 The dynamic threshold-adjustment algorithm

Require: Tadjust, Tscale, tupdated, tnow, SLOdrop, underpov
Ensure: Reset the SLOdrop and underpov counters to zero if autoscaling action was trig-

gered due to resource underprovisioning, and return CTd.
1: if timeToUpdate(Tadjust, Tscale, tupdated, tnow, SLOdrop, underpov) = true then
2: if SLOdrop > bndryslo then
3: SLOdrop ← 0
4: end if
5: if underpov > bndryunder then
6: underpov← 0
7: end if
8: return CTd
9: end if

After determining if the system is underprovisioning or not, the target utilisation
threshold can be calculated and adjusted as described below.

4.2. Target-Utilisation-Threshold Selection

As mentioned at the beginning of this section, the prototype solution uses rules to
select different target utilisation thresholds depending on the operational state of the system.
The behaviour under various operation conditions is presented in Equation (15).

CTd(SLOnow, SLOlastUpdate, CTnow) =

CTRslo, if SLOnow ≥ SLOtgt ∧ ∃CTRslo

CTRSLOexpedite , if expedite = true ∧ ∃CTRslo

CTexpedite, if ̸ ∃CTRslo ∧expedite = true
CTexpedite, if |Meval | < |Msu f f | ∧SLOdi f f < 0.5%∧ SLOnow < 80%
CTnow/SLOnow, if |Meval | < |Msu f f | ∧ < 0.5%∧ SLOnow > 80%
CTnow, other.

(15)

Here, SLOdi f f = SLOnow − SLOlastUpdate is the difference between the SLO values collected
during the last threshold-adjustment action (SLOlastUpdate) and the currently collected SLO
value (SLOnow).

When the algorithm initialises, Msu f f is not collected yet. Therefore, the current CPU
threshold (CTnow) is selected. However, the current threshold is adjusted to a lower value if
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underprovisioning, or SLA violations are detected. The adjusted threshold is denoted as
CTexpedite in Equation (15).

Equation (16) presents how CTexpedite is calculated. When CTexpedite is used, the system
increases the number of replicas progressively. For instance, if a target threshold of 50%
is set, then the number of replicas will increase by a maximum of twice during each scale
iteration (100/50 = 2), as per Equation (12). In order to expedite the recovery of the service
level as per the SLA, the subsequent threshold CTexpedite will be set at 33%, resulting in the
provision of three-times the number of replicas (100/33 ≈ 3). The following threshold will
be set at 25%, leading to an increase of four-times the number of pod replicas provisioned.
This process will be repeated until the measured SLO value stops declining.

CTexpedite = 100÷
⌈

100
CTnow + 1

⌉
. (16)

Additionally, CTexpedite is selected when the service’s SLO has dropped more than 80%
to avoid an infinite increase in replicas. Setting a threshold higher than 80% would not
have any impact due to the tolerance threshold setting. By default, the HPA algorithm
will perform the scaling only if the ratio between Md and Mn is less than 0.9 or larger than
1.1 [2].

It is worth noting that the CTexpedite threshold value adjustment was introduced
because the HPA could not break out of the failures loop when a threshold above 50% was
set. This was because each autoscaling interaction only allowed it to increase the number
of replicas twice. However, having a threshold below 33% allowed the HPA to come out of
the failure loop.

When enough metrics (Msu f f ) are gathered, the algorithm calculates the threshold
CTRslo using the method described in Section 3. If the algorithm detects that the resources
are being underprovisioned, it will select a threshold lower than the current threshold
(CTRSLOexpedite ) from the SLOr values (Equation (17)).

CTRSLOexpedite = max
CTRslo<CTnow

{ f (SLOr) : SLOr ≥ SLOtgt exists}. (17)

If there are no suitable CTRslo or CTRSLOexpedite , then CTnow or CTexpedite is selected, re-
spectively.

It is important to mention that the recommended threshold adjustment period (Tadjust)
should be at least 3–5 upscale periods. This ensures that the system can accurately evaluate
the impact of the previous threshold change. If the update period is too short, the algorithm
will become overly sensitive to load fluctuations. If the update period is too long, the
system will operate at lower thresholds for an extended period, leading to increased
overprovisioning of the resources. However, it will be less sensitive to accidental load
spikes. For the same reasons, threshold evaluation periods should be equal to at least
3–5 threshold evaluation periods (Teval).

The following sections describe the experimental environments and experiments used
to evaluate the proposed threshold-detection approach with the prototype.

5. Experimental Setup

The environment, metrics, and evaluation criteria used to assess the efficacy of the
proposed threshold-determination approach are introduced in this section.

5.1. Infrastructure

The proposed solution was experimentally evaluated using the Azure Kubernetes
Service platform [39]. The deployment consisted of a master node and four to five worker
nodes, all of which ran Ubuntu 18.04. The worker nodes were configured as “Standard D8
v5” instances, each providing 8 vCPUs and 16 GiB of RAM, while the master node utilised
a “Standard DS2 v2” instance with 2 vCPUs and 7 GiB of RAM.
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The Gatling [40] application was used to conduct load tests. The Gatling load-generating
tool was hosted on a virtual machine with 4 vCPUs and 16 GiB of RAM. The operating system
used was Ubuntu 20.04.

The Azure load balancer [41] enabled access from the load generator to applications on
the Kubernetes cluster.

5.2. Target Application and Monitoring Setup

To evaluate the solutions presented in this article, a CPU-intensive application was
used [42]. When the application receives a request, it calculates factorials of an arbitrary
number, resulting in a high CPU workload. The arbitrary number is selected to ensure that
the system simulates a real-world environment where requests to the API might require
different processing times and resources. An arbitrary delay is added to the response time
when an HTTP request is received to mimic interactions with external systems, such as
calls to external databases. This method creates a more realistic environment where each
request needs a different amount of computing resources and external systems are involved
in communication.

The application was installed as a Docker container with a limit of 1 CPU and 1 GiB of
memory allocated to it. To ensure the incoming load was handled effectively [20], readiness
probes were set up to prevent the system from sending data to unprepared replicas.

The implemented solution utilised the open-source Prometheus tool [43] to collect ap-
plication performance data. The following metrics were scraped from the target application:
the count of transactions and the duration of requests measured using a histogram with
four buckets (1 s, 1.5 s, 2 s, and >2 s). The metrics were collected or scraped every 6 s
(Tm = 6). The CPU utilisation and requests per second were averaged over a 30 s period.

5.3. SLO Measurement and Calculation

In order to measure the performance of the system, the response time of the requests
was used as the service level indicator (SLI). The target SLO (SLOtgt (Equation (18))) was
set to ensure a response time of 1.5 s for 98% of all requests within a defined service
window. The measurement of the SLO value began from the moment the system served
the first request. Moreover, the SLO value was also measured from the moment a sufficient
number of events were collected, and SLOtgt was achieved to evaluate the system’s ability
to support the SLO value.

SLOtgt =
∑n

0 l1.5 s
n

∑n
0 lall

n
. (18)

Here, n represents the number of data points evaluated. The term l1.5 s
n is the number of

requests that were delivered with a response time of 1.5 s or less, while lall
n is the total

number of requests served by the system.
It is important to note that the service level indicators can be set to any metrics as long

as those are used for system performance measurement, such as the response time, error
rate, packet loss, etc.

5.4. Evaluation Criteria

The algorithms in the experiments are evaluated using three criteria. Firstly, the total
number of containers used in each monitoring period is calculated to measure the efficiency
of resource provisioning (Equation (19)). Fewer containers are considered to be a better
result if the SLO is achieved.

Ptotal =
n

∑
t=1

M(P)t. (19)

Here, Ptotal is the total number of pods reported at each monitoring data point, n is the
number of data points, and M(P)t is the number of ready pods reported at time t.

Secondly, the accuracy of the algorithm, that is the ability to operate as close as possible
to the defined SLO (SLOtgt), is measured using the symmetric Mean Absolute Percentage
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Error (sMAPE) [44] (Equation (20)). This helps understand if overprovisioning of the
resources is justified.

sMAPE =
100%

n

n

∑
t=1

2× (
∣∣M(SLA)t − SLOtgt

∣∣)
|M(SLA)t|+ |SLOtgt|

. (20)

Here, n is the number of data points and M(SLA)t is the SLA value at time t.
The algorithm’s ability to meet the defined SLO is the third and most important

criterion of the evaluation.
It is worth noting that each experiment described below includes a period (Mtrain)

required to collect sufficient events for threshold estimation and the time required for the
system to change its behaviour (4–5 upscale actions). Metrics collected from the period are
excluded from the evaluation criteria in order to see the ability of the algorithm to support
the defined SLOs.

The following section presents the experiments and their results.

6. Evaluation and Results

A set of experiments was executed in order to assess the efficacy of the proposed dy-
namic threshold-adjustment algorithm using the SATA prototype. One set of experiments
was conducted to assess the influence of various settings on algorithm performance. The as-
sessment includes an evaluation of the impact of varying threshold evaluation period lengths,
the frequency of threshold updates, and the implementation of different types of moving-
average-smoothing techniques on the efficacy and efficiency of the solution. The second set of
experiments assesses how the algorithm performs under changing workload conditions.

To evaluate the performance of the solutions, three types of workloads were used—the
WorldCup98 dataset [45], the EDGAR dataset [46], and the On–off workload pattern.

The WorldCup98 dataset used in this work contains all the requests made to the
1998 World Cup Website between 30 April 1998 and 26 July 1998, and is commonly refer-
enced in research articles [15,29,47–50]. This pattern has unpredictable high load spikes
followed by a stable load without high deviation. Each experiment uses logs from different
time intervals, and the interval details are provided in each experiment section.

The EDGAR dataset is the logs of the filling search of the Electronic Data Gathering,
Analysis, and Retrieval (EDGAR) system. It is a public database allowing users to research,
for example, a public company’s financial information and operations by reviewing the
filings the company makes with the U.S. Securities and Exchange Commission. The load
is characterised as a lightly shaking load with constant small fluctuations of 10–15% in
magnitude. The dataset used in this work contains all the search requests made for EDGAR
filings through the SEC.gov site on 30 June 2023, between 02:00 and 05:00.

The experiment involved evaluating a workload pattern known as the On–off work-
load, which is commonly used in batch-processing systems. This pattern involves an
increase in the number of requests to 140 per second over a 2 s interval, which is then
maintained for 45 s. The load is then decreased to 0 requests per second over 2 s, followed
by a 45 s period of no load. This pattern is repeated throughout the experiment, causing
stress conditions that require constant upscaling and downscaling of pods. This synthetic
workload was introduced to identify SATA behaviour under volatile traffic patterns with
a constant load. This allows us to see the behaviour patterns of the algorithm, as load
pattern repeats.

Other load types were not included as the WorldCup98 dataset already had various
patterns, and adding specific synthetic loads would have made the experiments redundant.
The following subsections describe the experiments and their results in detail.

6.1. Evaluation of the Impact of the Threshold Adjustment and Evaluation Periods on the
Algorithm Performance

Four experiments were conducted to evaluate the influence of threshold adjustment
frequency (length of threshold adjustment period Tadjust) and the impact of the duration of
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the period used to collect metrics for the threshold value estimation Teval on autoscaling
efficiency and the ability to dynamically determine the threshold that allows operating as
close as possible to the SLO-defined performance target (CTRslo).

Table 3 shows the values of Tadjust and Teval used in each experiment. These values
are presented as multiples of the upscale period (Tscale). The value of Tadjust was set to 4,
as it is the minimum number of periods required for the system to detect the impact of
the latest threshold adjustment action. The setting of Tadjust to 8 should be sufficient to
observe the impact of a longer update period without requiring a drastic extension of the
experiment’s length.

For clarity, each of the experiments will be referred to as n × m, where n and m are
multipliers of the scale periods used in Tadjust = n × Tscale and Teval = m × Tscale. For
example, 4 × 10 means that the threshold is adjusted every 4th scale period based on data
collected from the last 10 scale periods. The evaluation periods, Teval , of lengths 10 and 20,
were used in the evaluation. This covers cases when the Tadjust length is close to Teval (8 ×
10 case), when Tadjust is 2.5- or 5-times longer than Teval (4 × 10, 8 × 20, and 4 × 10 cases,
accordingly).

The following are the common settings for all the experiments:

• Load: WorldCup98 on 78th day from 19:37 to 21:37.
• Application: calculation of the factorial of a number between 8000 and 12,000.
• HPA initial threshold: 50.
• Pod replicas: Min: 1, Max: 35.

The results of these experiments are presented in Figure 2 and Table 3.
Based on the data presented in Figure 2 and Table 3, it appears that the SATA solution

is the most accurate in meeting the defined SLOs (the system performs closest to the desired
SLO value) when Tadjust is equal to 4 (red and dark red lines). Longer Teval periods tended
to suggest a lower threshold, but the system was able to make more granular suggestions
as more events were collected (dark red and dark blue lines). However, extending Teval also
increased the overprovisioning period, as the algorithm adapted to the lowest threshold
that satisfied the target SLO over the period, leading to persistent overprovisioning. On the
other hand, longer update periods proved advantageous when the load was fluctuating, as
a lower threshold minimised the risk of violations and ensured that the autoscaling work
was more stable and did not repeat the fluctuation pattern. Experiment 8 × 10 showed
the worst performance and was the least adaptive to the detected changes (light blue line).
However, it was still able to support the SLO.

Table 3. Impact of threshold adjustment periods on algorithm effectiveness.

Settings 4 × 10 4 × 20 8 × 10 8 × 20

SLO supported Fully Fully Fully Fully
sMAPE, % 1 1.6 1.8 1.9 1.9
Total pods 14,194 14,463 15,875 15,796

Difference from the best result for total pods in % 0 1.8 11.8 11.2
1 Symmetric Mean Absolute Percentage Error (sMAPE).

It can be concluded that the evaluation time (Teval) should be at least 2–3-times as
long as the update time (Tadjust). The algorithm performed well with Msu f f set to 150, but
when Msu f f was increased to 300, the approach demonstrated better prediction accuracy.
However, there was slight overprovisioning as it took longer to collect the events, and as a
result, lower thresholds were selected.

6.2. Evaluation of the Impact of the Smoothing Technique on the Algorithm Performance

In this experiment, we tested different types of moving averages (CMA and SMA) to
evaluate their impact on the ability of the approach to adapt to frequent load changes.

The experiment was executed under the following conditions:
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• Load: On–off scenario, repeating pattern for 140 periods with a maximum load of
140 rps.

• Application: calculation of the factorial of a number between 8000 and 12,000.
• Pod replicas: Min: 1, Max: 27.
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Figure 2. Evaluation of the impact of threshold adjustment and evaluation period length on the effec-
tiveness of the SLA-adaptive threshold adjustment (SATA) solution using Simple Moving Average
(SMA). (a) The SLO value after collecting a sufficient number of events (after the dotted line). (b) The
average CPU utilisation. (c) The applied target utilisation threshold in each period. (d) The number
of pods provisioned in each period. (e) The generated workload requests per second.

As can be seen from Figure 3 and Table 4, both the CMA (red line) and SMA (green line)
were able to support the desired SLO levels, but with a high resource overprovisioning.

As can be seen from panels (a) and (b) by the dashed blue line in Figure 3, the threshold
of value above 48% CPU utilisation was causing a high drop in the quality of services as a
high amount of violations were happening when the system operated above the value. This
was causing the SATA algorithms to select lower CPU thresholds, which guaranteed the
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performance at the level required to support SLO compliance, showing that the solution
aims to restore the SLO in the case of SLO violations [17].
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Figure 3. Evaluation of adoption of Centred Moving Average and Simple Moving Average on SLA-
adaptive threshold adjustment (SATA) solution performance in On–off workload scenario. (a) The
achieved SLO value after collecting a sufficient number of events. (b) The average CPU utilisation.
(c) The applied target utilisation threshold at each period. (d) The number of pods provisioned in each
period. (e) The generated workload requests per second.

Table 4. Results of evaluation of algorithms in On–off workload scenario.

Algorithms SATA-CMA SATA-SMA

SLO Met Partially Fully
sMAPE, % 0.8 1.6
Total pods 32,937 36,169

Difference from the best result
for total pods in % 0 10
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As can be seen in Table 4, the SATA algorithm using CMA smoothing demonstrated
superior precision, accuracy, and resource provisioning results. However, as seen in
Figure 3a, it experienced multiple periods where the SLO was violated. Despite this, the
HPA, using the SATA with the CMA, restored the SLO at the desired level without reaching
the maximum number of pod replicas in most cases.

Based on the data presented in Figure 3c, it can be observed that the SATA algorithm
with the CMA makes less granular steps than the SMA while approaching the 48% thresh-
old. This enables the algorithm to respond to sudden changes in load with fewer steps and
minimises the periods of the overprovisioning and underprovisioning of resources. How-
ever, it also increases the likelihood of SLA violations due to a higher chance of suggesting
too high thresholds.

The SATA with the SMA was less sensitive to load changes than the SATA with the
CMA. Based on the data presented in Figure 3c, it can be observed that the threshold-
adjustment process was more granular and required more iterations in comparison to the
CMA method while approaching the 48% utilisation threshold. This led to longer periods
of overprovisioning and shorter periods of underprovisioning, resulting in more consistent
conformance with the SLO.

The experiments conducted in this section were aimed at gaining a better understand-
ing of the behaviour of the proposed approach under different settings. The experiments
showed that the CMA is suitable for cases where a light tolerance for SLA stability is
acceptable to save costs. The SMA is more suitable where the SLA must be met, even at the
cost of overprovisioning.

In the next section, experiments that are designed to evaluate the performance of SATA
under varying load conditions and to compare its performance with the state-of-the-art
technology, the HPA, will be described.

6.3. Evaluation of Performance under Different Workload Scenarios

In this section, the experiments were executed to evaluate the algorithms’ performance
under varying load conditions and their ability to support the SLO for the whole period
while the experiment was conducted. Two real-world workload scenarios were evaluated:

• Mixed load pattern (WorldCup98);
• Shaky load pattern (EDGAR).

The efficacy of the SATA approach was evaluated under different load patterns by
comparing it to the Horizontal Pod Autoscaler (HPA) in order to understand the improve-
ments brought to the HPA by SATA. The HPA is also used as a baseline in multiple arti-
cles [6,10,15,17,18,28,51] when the efficiency and efficacy of the proposed solution are evalu-
ated.

In order to evaluate SATA’s impact on the HPA, the HPA should be set up with a
threshold that allows the system to operate at the edge of the allowed SLO value, as this is
what SATA aims to achieve. This requires that, during all experiment lengths, the measured
SLA (see Section 5.3) should be as close as possible to its target of 98%, which was chosen
as the SLO for the experiments. The approximate target utilisation values for the HPA
were identified using the approach defined in this article and further tuned by conducting
experiments to validate that the system is able to meet the desired SLO level as closely
as possible. The performance of the system met the requirements with the HPA static
utilisation threshold set to 47% for the WorldCup98 workload and 35% for EDGAR. During
the experiments with the HPA enabled by SATA, the initial threshold was set to 50% at the
start of each experiment.

The next sections describe the evaluation of the workloads and the achieved results in
more detail.

6.3.1. Evaluation of SATA Performance in WorldCup98 Workload Scenario

In this experiment, we assessed the ability of the algorithms to adjust the thresholds
under the real-world mixed pattern load. The following settings were applied:
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• Load: WorldCup98 on the 78th day from 19:00 to 22:00 and its inverse version.
• Application: calculation of the factorial of a number between 8000 and 12,000.
• Pod replicas: Min: 1, Max: 34.

As the WorldCup98 load in the selected time window had a tendency to increase
constantly, its inverse version was appended to see how algorithms perform when the load
tends to decrease constantly. The load pattern is presented in Figure 4e.
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Figure 4. An evaluation of the SLA-adaptive threshold adjustment (SATA) solution using two
different smoothing techniques—Simple Moving Average (SMA) and Centred Moving Average
(CMA)—with two different settings: Tadjust = 4 and Teval = 10 autoscaling periods (4 × 10) and
Tadjust = 4 and Teval = 20 autoscaling periods (4 × 20) for the WorldCup98 workload scenario.
(a) The achieved SLO value after collecting a sufficient number of events. (b) Average CPU utilisation.
(c) The number of pods provisioned in each period. (d) The applied target utilisation threshold in
each period. (e) The generated workload requests per second.

The experiment results presented in Figure 4 and Table 5 show that all of the evaluated
approaches were compliant with the SLO throughout the experiment.
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Table 5. Results of evaluation of algorithms in WorldCup98 workload scenario.

Approach CMA 4 × 10 CMA 4 × 20 SMA 4 × 10 SMA 4 × 20 HPA 47%

SLO supported Fully Fully Fully Fully Fully
sMAPE, % 1.3 1.4 0.9 1.8 1.4
Total pods 43,364 44,157 43,340 45,531 41,773

Difference from
the best result for

total pods in %
4 6 4 9 0

As can be seen from Figure 4a,b, there is a noticeable decrease in the SLO value when
the CPU threshold exceeds the target utilisation threshold of 47% (dark blue dashed line
in Figure 4b).

As seen in Figure 4c, in the event of sudden increases in workload, the algorithms
decrease the threshold value, and vice versa. At the same time, all the algorithms tend
to approach the target utilisation value, aiming to increase efficiency by adjusting the
provisioned resource number to actual resource demand. When the load is decreasing,
it suggests higher thresholds than the CMA, thus becoming more efficient in downscale
scenarios. However, in upscale scenarios, it is less efficient. This can be observed in the
last half of the experiment (Figure 4d) for downscale scenarios and in the first half of the
experiment for upscale scenarios.

As can be seen from Table 5, SATA required a slightly higher number of pod replicas
in all scenarios compared to the HPA. In general, SATA achieved higher precision in
4 × 10 scenarios and was less precise for 4 × 20 scenarios compared to the HPA. When
using the CMA as the smoothing method, the length of the threshold evaluation period did
not significantly affect the efficiency and accuracy of SATA. However, when adopting the
SMA, a longer period had a positive impact on the precision of SATA.

The experiment with the SMA in a 4 × 10 scenario showed the highest accuracy across
SATA algorithms while supporting the defined SLO. The performance of the CMA in a
4 × 10 scenario was similar to that of the HPA but with slight overprovisioning. However,
the SMA in a 4 × 10 scenario was more accurate in meeting the desired SLO. This is because
SATA with SMA smoothing has higher accuracy in detecting threshold values and is more
vulnerable to unexpected load growth when a shorter threshold evaluation period is used.
This can be seen in Figure 4a at around the 600th and 1200th metrics’ collection periods
(light green line).

The HPA with a static threshold was the most efficient, with precision and accuracy
similar to SATA with the CMA with a shorter threshold evaluation period (a 4 × 10 scenario).
It must be emphasised that it is hard to achieve such precision in practice without knowing
the workload and number of violations per threshold in advance, as was done for this
experiment, meaning that the threshold might not be suitable to handle the load changes
in the pattern in the future, causing SLO violations. The resource overprovisioning of 4%
produced by SATA could be considered as neglectable as it is within the HPA tolerance
range of 10% [2] and is expected from SLA-fulfilment-oriented solutions. For example,
Prametsi et al.’s [51] experiments show that autoscalers that use a performance-based SLI,
such as response time, to ensure compliance with the SLA, require more resources than the
HPA, which uses CPU-utilisation-based thresholds.

Interestingly, the HPA enabled by the SATA solution achieved the SLO support goal by
solely manipulating the threshold values. It dynamically adapted to the workload to ensure
that the desired SLO is achieved consistently. As the experiment shows, the SATA solution
is self-adaptive to load changes and automatically updates the thresholds to achieve the
desired SLO. The SATA increases the threshold value in the case of downscaling, leading to
faster downscaling and resulting cost savings. In the case of a load increase, it automatically
decreases the threshold, leading to faster resource provisioning and minimising SLO
violations.

The next section describes the experiments with a slightly shaky workload scenario.
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6.3.2. Evaluation of SATA Performance in EDGAR Workload Scenario

In this experiment, we assessed the ability of the algorithms to adjust the thresholds
under the real-world shaky load pattern. The following settings were applied:

• Load: EDGAR access logs on 30 July 2023, from 02:00 to 05:00.
• Application: calculation of the factorial of a number between 8000 and 12,000.
• Pod replicas: Min: 1, Max: 27.

Figure 5e presents the EDGAR workload. While the load might be seen as constant,
it contains a big number of periods where the load changes unexpectedly, but with low
magnitude, that is the number of requests changes more than twice in a short period of
time, e.g., see the number of events at around 600th the 900th monitoring periods.

The experiment results are presented in Figure 5 and Table 6. As seen in Figure 5a,
all of the evaluated approaches were compliant with the SLO throughout the experiment,
with the exception of the SATA CMA 4 × 10 use case, where the suggested threshold value
was higher than required. However, the system has been adjusted in the next two upscale
periods by altering the thresholds, and hence, the operation has been restored to the desired
level. The HPA algorithm was the most accurate in maintaining the target SLO value.

Table 6. Results of evaluation of algorithms in EDGAR workload scenario.

Approach CMA 4 × 10 CMA 4 × 20 SMA 4 × 10 SMA 4 × 20 HPA 35%

SLO supported Partially Fully Fully Fully Fully
sMAPE, % 0.7 1.6 1.6 1.5 0.9
Total pods 25,329 24,066 25,953 21,955 20,021

Difference from
the best result for

total pods in %
27 20 29 10 0

As seen in Figure 5a,b, any increase in CPU utilisation above 35% caused a decrease in
the SLO value. As presented in Figure 5c, SATA suggested lower threshold values in all
cases as the solution is sensitive to frequent load fluctuations. However, longer threshold
evaluation periods resulted in better stability and adjustment of the threshold to a value
close to 35%. All scenarios, with the exception of CMA 4 × 10, showed similar accuracy,
with SMA 4 × 20 demonstrating slightly better accuracy in identifying the target utilisation
threshold. Thus, HPA with SMA 4 × 20 operated closer to the desired utilisation threshold
of 35%, resulting in more efficient resource provisioning than other SATA setups, as seen in
Figure 5d and Table 6.

During the experiment, it was observed that, in the HPA without the SMA scenario,
the supported SLO values began to decrease towards the end of the experiment, as depicted
in Figure 5a. This suggests that the current baseline threshold may not be suitable for future
workload changes and might not restore the SLO. On the other hand, the SATA approaches
have proven to be effective in ensuring compliance with the SLO and the ability to restore
the SLO, as evidenced by the achieved results.

As presented in Table 6, the HPA achieved the best resource-management efficiency
and accuracy across algorithms that met the SLO during all evaluation periods. The CMA
4 × 10 had the best accuracy, but did not manage to support the SLO in all periods, even
though it was the second most overprovisioning solution in this experiment. In Section 6.2,
it is shown that, while SMA’s tendency to underestimate the target utilisation threshold
improves efficiency in volatile load scenarios, it causes a decrease in efficiency when the
load is stable, as evidenced by the data presented in Table 6. According to the results, SMA
4 × 20 performed the best in terms of accuracy and efficiency across all SATA settings and
had only 10% overprovisioning in comparison to the HPA with a static threshold setup. As
mentioned in Section 6.3.1, overprovisioning is expected, and a 10% overprovisioning rate
can be considered a good outcome when the algorithm’s aim is to ensure SLA fulfilment.
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Figure 5. An evaluation of the SLA-adaptive threshold adjustment (SATA) solution using two
different smoothing techniques—Simple Moving Average (SMA) and Centred Moving Average
(CMA)—with two different settings: Tadjust = 4 and Teval = 10 autoscaling periods (4 × 10) and
Tadjust = 4 and Teval = 20 autoscaling periods (4 × 20) for the EDGAR workload scenario. (a) The
achieved SLO value after collecting a sufficient number of events. (b) Average CPU utilisation. (c) The
number of pods provisioned in each period. (d) The applied target utilisation threshold in each
period. (e) The generated workload requests per second.

The experiments conducted with the WorklCup98 and EDGAR workloads demon-
strated that, depending on the workload pattern and SATA settings, the solution can
identify thresholds that allow the system to operate close to the defined SLO. The amount
of resource overprovisioning can vary from negligible to deviating from 10% to 30% de-
pending on the workload and settings. This is in comparison to using the Horizontal Pod
Autoscaler (HPA) with the target utilisation threshold set as closely as possible to the value
that allows the system to operate at a performance level where the number of violations
does not exceed the maximum allowed. This value is never known upfront, so, in practice,
it is challenging to achieve such precision threshold settings. As a result, such a level of
overprovisioning is expected.
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This section presents the experiments conducted in this work and the achieved results.
The next section aims to conclude and discuss the results.

7. Discussion and Conclusions

Container orchestration solutions have become increasingly popular with the rise
of containerised applications. The Kubernetes platform is the most widely used container
orchestration solution and has its own implementation for horizontal application autoscal-
ing, known as the Horizontal Pod Autoscaler. Determining resource utilisation thresholds
for the HPA to ensure desired service levels can be challenging. In an effort to address
the limitations of the HPA, various attempts have been made to implement alternative
solutions. However, these alternatives would require the implementation of autoscaling
solutions that are not natively supported by Kubernetes. Additionally, such alternative
solutions have relied on machine learning algorithms [7,12,28] or complex rules [17,27],
which may be challenging to understand for those without a deep understanding of the
field.

In this work, a threshold-detection approach and SATA prototype for dynamic thresh-
old adjustment were presented. The approach is based on data explanatory analysis and
moving average smoothing, which helps to understand and implement the solution with-
out extensive knowledge of machine learning. The SATA prototype, using the Simple
Moving Average, is able to detect the desired threshold in real-world workloads with slight
overprovisioning. On the other hand, the Centred Moving Average approach showed
better accuracy, but was less stable in meeting the SLO values. Therefore, the SMA method
is recommended to ensure SLO compliance, and the CMA can be used when cost saving is
more important in volatile load scenarios. Longer evaluation periods showed better effi-
ciency where there is a low deviation in the load; in contrast, shorter threshold evaluation
periods allowed the algorithm to perform more efficiently in scenarios with high-variation
loads.

Interestingly, the experiments revealed that, while the experiments used the same
application and pods with the same resource settings, different target utilisation values
must be applied depending on the load pattern in order to ensure compliance with the SLO.
Based on that, it can be concluded that approaches that use load testing on a single pod
instance to determine the maximum CPU utilisation at which the application’s performance
meets the SLO requirements may not be sufficient for determining the target utilisation
threshold for the HPA.

To improve the algorithm’s performance, it can be customised by adjusting the thresh-
old and evaluation period length based on the expected load pattern. The type of moving
average can also be selected to control accuracy depending on the load pattern, whether
it is highly volatile or not. Overall, the developed dynamic threshold-detection approach
showed good potential. Further prototype stability improvement, experimentation with
different SLIs, and adopting the approach to other autoscaling solutions are areas for future
research and improvements.
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