
Citation: Xie, G.; Hou, G.; Pei, Q.;

Huang, H. Lightweight Privacy

Protection via Adversarial Sample.

Electronics 2024, 13, 1230.

https://doi.org/10.3390/

electronics13071230

Academic Editor: Paulo Ferreira

Received: 7 February 2024

Revised: 18 March 2024

Accepted: 25 March 2024

Published: 26 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Lightweight Privacy Protection via Adversarial Sample
Guangxu Xie 1 , Gaopan Hou 1,* , Qingqi Pei 1,* and Haibo Huang 2

1 The State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an 710071, China;
guangxxie@126.com

2 School of Electrical & Information Engineering, Hubei University of Automotive Technology,
Shiyan 442002, China; huang7855@163.com

* Correspondence: gphou@stu.xidian.edu.cn (G.H.); qqpei@mail.xidian.edu.cn (Q.P.)

Abstract: Adversarial sample-based privacy protection has its own advantages compared to tra-
ditional privacy protections. Previous adversarial sample privacy protections have mostly been
centralized or have not considered the issue of hardware device limitations when conducting privacy
protection, especially on the user’s local device. This work attempts to reduce the requirements of ad-
versarial sample privacy protections on devices, making the privacy protection more locally friendly.
Adversarial sample-based privacy protections rely on deep learning models, which generally have a
large number of parameters, posing challenges for deployment. Fortunately, the model structural
pruning technique has been proposed, which can be employed to reduce the parameter count of deep
learning models. Based on the model pruning technique Depgraph and existing adversarial sample
privacy protections AttriGuard and MemGuard, we design two structural pruning-based adversarial
sample privacy protections, in which the user obtains the perturbed data through the pruned deep
learning model. Extensive experiments are conducted on four datasets, and the results demonstrate
the effectiveness of our adversarial sample privacy protection based on structural pruning.

Keywords: structural pruning; privacy protection; adversarial sample

1. Introduction

In recent years, deep learning models have received extensive research and applica-
tion. Deep learning has effectively improved productivity and, to some extent, promoted
societal development. However, science and technology are double-edged swords, and the
automated inference of deep learning has posed unprecedented challenges to the personal
privacy of Internet users.

Adversarial samples, as a weakness of deep learning, have been proposed [1]. By
adding small perturbations to the input of a pre-trained deep learning model, it is easy to
cause misclassification, and these inputs with added noise are referred to as adversarial
samples. The existence of adversarial samples has had a significant impact on the practical
application of deep learning and has become an important metric for evaluating the
robustness of deep learning models.

However, in the field of data privacy protection, the emergence of adversarial samples
could present a new opportunity for privacy protection techniques. Adversarial samples
can cause misclassification in deep learning models, and if they can achieve misclassification
specifically for sensitive attributes, they can protect the privacy of the underlying data.
Now, there exist several approaches that utilize adversarial samples for privacy protection,
including [2–4], and so on. In [2], inspired by [5], adversarial samples are generated by
modifying the most influential elements of the input to achieve privacy attribute protection.
Ref. [3] is a defense strategy against membership inference attacks [6], drawing inspiration
from [7]. It employs multi-step gradients to generate adversarial samples and incorporates
the magnitude of noise into the loss function, striking a balance between input utility
and security.

Electronics 2024, 13, 1230. https://doi.org/10.3390/electronics13071230 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13071230
https://doi.org/10.3390/electronics13071230
https://doi.org/10.3390/electronics13071230
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-2222-8017
https://orcid.org/0000-0001-6043-4167
https://orcid.org/0000-0001-7614-1422
https://orcid.org/0009-0009-4773-1365
https://doi.org/10.3390/electronics13071230
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13071230?type=check_update&version=1

Electronics 2024, 13, 1230 2 of 18

Compared to traditional differential privacy [8], optimization-based approaches [9],
and heuristic algorithms [10], it has been demonstrated that some adversarial sample-
based privacy protections achieve better balance in terms of computational complexity,
security, and data utility [2–4], making them more effective for privacy protection to some
extent. Despite their own weaknesses, such as the attacks in [11], these approaches are
still capable of altering the designs to enhance robustness. Privacy protections based on
adversarial samples have their own advantages and can demonstrate their effectiveness in
certain domains.

Inspired by the local differential privacy algorithm [12], we consider the question of
whether privacy protection based on adversarial samples can be applied locally to better
serve its privacy protection function. The greatest advantage of local differential privacy is
that it does not require a trusted third party. We refer to the privacy protection based on
adversarial samples deployed locally on the user’s device as the local adversarial sample
privacy protection (LASPP).

Although [2] mentions that the defender can be software or browser plug-ins deployed
on the user side, which may suggest a local solution without the need for additional local
solutions, a closer examination of the process reveals that the model has a large number
of parameters, making it difficult for users with poor devices to deploy locally. This issue
was not considered in [2]. Although the model can be placed on a cloud device and called
by local users, the non-trusted third parties who fully understand the defense model may
still be able to gain access to users’ private information through backdoors. In addition,
calling cloud devices locally will also bring about communication overhead and security
issues. This paper prunes the deep learning model first and then distributes it to users
locally, adding noise locally to reduce the threshold for users to use the model.

For [3], the defender itself is the model provider or the trusted third party. Hence,
[3] is more likely to lean towards central deployment rather than on user devices. Deploying
the defense locally on the user side can weaken the assumption that the defender is a
trusted third party. However, user devices are limited, and deploying centralized models
locally still faces challenges in making the models locally friendly. Therefore, this paper’s
solution has a certain promoting effect on deploying LASPP locally on users’ devices.
Furthermore, even in a centralized deployment of adversarial sample privacy protection
solutions, the more lightweight ML model is more environmentally friendly.

Unlike the local differential privacy algorithm, the privacy protection based on adver-
sarial samples requires a deep learning model, and generally, deep learning models have a
large number of parameters, which poses a significant challenge for the LASPP. For exam-
ple, in [2], the number of parameters in defending deep learning models exceeds 4× 108,
such a large parameter size will inevitably impose a significant burden on user devices.
The limited computational capabilities of users’ local devices may be the biggest challenge
in applying adversarial sample privacy protections locally at present. Fortunately, model
pruning techniques [13–24] may bring new possibilities for the LASPP. Model pruning is a
technique used to reduce the size and complexity of deep learning models. Through model
pruning, unnecessary parameters, connections, and layers can be removed from the model,
reducing the storage requirements of the model, accelerating inference speed, and reducing
the consumption of computing resources.

Mainstream model pruning techniques can be broadly categorized into structural
pruning [13–21] and non-structural pruning [22–24]. Structural pruning is a pruning
technique based on the model’s structure. It reduces the size and complexity of the model
by removing entire neurons, layers, or modules from the model. In non-structural pruning,
thresholding is used to zero out or remove the parameters with smaller absolute values,
resulting in a reduction in the number of parameters in the model. Non-structural pruning
can significantly reduce the size and complexity of the model without altering its structure.
Compared to non-structural pruning, structural pruning does not rely on specific AI
accelerators or software to reduce memory overhead and computational costs, making it
more widely applicable in practice [25,26].

Electronics 2024, 13, 1230 3 of 18

The model pruning technique used in this article is structural pruning, mainly based
on reference [15], which proposes using dependency graphs to enable structural pruning
of any neural network. In this work, we apply the structural pruning technique to [2,3]
to derive two privacy protections for adversarial samples based on the pruned model.
We refer to these two privacy protections as structural pruning-based adversarial sample
privacy protections (SP-ASPPs). Unlike [2,3], our scheme attempts to generate adversarial
noise on the pruned model. As the pruned model has fewer parameters, it has the potential
to be placed on the user side. To clearly illustrate our scheme, we illustrate our SP-ASPP
in Figure 1. Through our attempt in this paper, we hope to provide some inspiration for
future LASPPs.

Figure 1. The privacy protection based on adversarial samples requires a deep learning model. In this
paper, the model pruning technique is employed to prune the deep learning model D and obtain the
pruned model d. The pruned model d is then used to generate adversarial noise. Through the pruning
process, the threshold for using adversarial sample privacy protection is reduced, making it easier to
deploy adversarial sample privacy protection locally and thus achieve better privacy protection.

We adopt four datasets to validate the SP-ASPPs. Building upon references [2,3], we
have designed a lightweight adversarial sample-based privacy protection scheme for this
paper. To demonstrate the effectiveness of our approach, we need to compare it with the
original scheme. Therefore, the four datasets chosen in this paper are exactly the same as
those used in [2,3]. The first dataset is used to validate the first SP-ASPP. The subsequent
three datasets are used to validate the second SP-ASPP. The first dataset is derived from [2],
while the subsequent three datasets are derived from [3].

We evaluate our SP-ASPP scheme by subjecting it to the attacks used in [2,3]. We
compare our SP-ASPPs with [2,3] separately. For the same dataset, our first SP-ASPP uses
the same attack model as [2], and our second SP-ASPP uses the same attack model as [3].
The inference accuracy of the attack model represents the effectiveness of the defense
scheme, where a higher accuracy indicates a weaker defense effect, and vice versa. With the
reduction in ML model parameters, if the decrease in defense model accuracy is minimal
and the increase in attack model inference accuracy is also minimal, it demonstrates the
effectiveness of the proposed SP-ASPPs in this paper.

The effectiveness of our approach is demonstrated by comparing the accuracy, size,
and effectiveness of noising before and after pruning the defense model. The impact of
noising is measured by the inference accuracy of the attack model. Thorough experiments
demonstrate the effectiveness of our SP-ASPPs. The contributions of this article include
the following.

• To our best knowledge, our research is one of the early considerations in weakening
the contradiction between limited user device capabilities and a large number of
parameters of deep learning models in privacy protection via adversarial samples.

• We use state-of-the-art model pruning techniques and combine them with advanced
adversarial sample privacy protections to design two structural pruning-based adver-
sarial sample privacy protections and verify their effectiveness.

• Thorough experiments on four real-world datasets demonstrate that the performance
of the defense model after pruning is not significantly affected and prove the feasibility
of the proposed locally-based privacy protection for adversarial samples.

Electronics 2024, 13, 1230 4 of 18

The remaining parts of this paper are organized as follows. In Section 2, we discuss the
related work. In Section 3, we introduce the participants and define the key issues of our
work. In Section 4, we propose the pruning principle and our two structural pruning-based
adversarial sample privacy protections. In Section 5, we describe our experimental setup,
and provide the experimental results to validate the effectiveness of our work. Finally,
in Section 6, we conclude our work.

2. Related Work

This section mainly introduces the related work of this paper, which mainly includes
two aspects closely related to this paper. One is the privacy protection scheme based on
adversarial samples, which forms the basis of this paper. The other is the related work on
model structure pruning, which is the source of the pruning algorithm in this paper.

2.1. Privacy Protection Based on Adversarial Samples

Jia et al. [2] proposed a defense against attribute inference attack, which consists of
two stages: noise generation and noise injection. In the noise generation stage, they draw
inspiration from [5] and consider both the elements that have the most significant impact
on the output and the degree to which these elements can be altered. They modify the
elements that have a significant impact and can be changed substantially, iteratively altering
one element at a time until the desired output is achieved and then stop the iteration and
output the noised data that satisfies the requirements. In the second stage, random noise is
added to make the inference of the attack model resemble random guessing.

Jia et al. [3] proposed a defense against membership inference attack, which consists of
two stages: noise generation and noise injection. In the noise generation stage, they draw
inspiration from multi-step adversarial sample generation methods [7]. However, their
loss function takes into account three elements. The first element ensures that the attack
model’s binary classifier cannot obtain useful information. The second element ensures that
the output label of the target model remains unchanged. The third element ensures that
the magnitude of the noise is as small as possible. The noisy data are generated through
multiple iterative steps. In the second step, random noise is added to prevent the attacker
from inferring the added noise through the output.

Shao et al. [4] utilized adversarial samples to protect the text-based CAPTCHA. Their
scheme consists of two stages: In the first stage, they construct foreground and background
using randomly sampled fonts and background images and then combine them to create
recognizable pseudo-adversarial CAPTCHA images. In the second stage, they design and
apply a highly transferable text CAPTCHA adversarial attack method to better impede
CAPTCHA solvers.

Li et al. [27] proposed a face image de-identification scheme, which includes four
stages: face feature evaluation, privacy-oriented face obfuscation, targeted natural image
synthesis, and adversarial perturbation. Their scheme demonstrates that adversarial
samples can be used in the domain of face image de-identification.

Salman et al. [28] proposed PhotoGuard, which employs adversarial examples to
protect users’ private photos from malicious editing by large diffusion models. Two privacy
protection mechanisms, Encoder attack and Diffusion attack, are developed for the encoder
and the entire large diffusion model.

Shan et al. [29] proposed Glaze, a solution that adds imperceptible noise to images to
prevent large models from learning their style, thus protecting the copyright of artists.

The above are all privacy protections based on adversarial samples. Although they
have considered the security of the model and the availability of data, and have demon-
strated that their solution achieves a good balance between security and usability, they
have not taken into account the limitations of users’ local devices and their knowledge.
Knowledge limitations may arise because users may not be professional data security
workers and may be unfamiliar with certain operations. In this paper, we have explored

Electronics 2024, 13, 1230 5 of 18

some issues that were not considered in previous research, with the expectation that our
study can contribute to advancing the development of LASPP to a certain extent.

2.2. Model Pruning

Model pruning techniques can be divided into two categories: structural pruning
and non-structural pruning. In this paper, we are solely concerned with structured prun-
ing techniques.

Inspired by the linear properties of convolutions, Ding et al. [13] attempted to make
filters gradually approach each other and eventually become identical to achieve network
slimming. To this end, they proposed a new optimization method called centripetal SGD
(C-SGD), which can train multiple filters to converge to a point in the parameter space.
When training is complete, removing the identical filters can prune the network without
causing performance loss, thus eliminating the need for fine-tuning.

You et al. [14] introduced a global filter pruning algorithm that transforms the out-
put of a conventional CNN module by multiplying it with channel-wise scaling factors
(i.e., gates). Setting the scaling factor to zero is equivalent to removing the corresponding
filter. They utilized the Taylor expansion to estimate the change in the loss function when
setting the scaling factor to zero and used the estimation to rank the global importance
of filters. Subsequently, they pruned the network by removing unimportant filters. Af-
ter pruning, all scaling factors were merged back into the original module, eliminating the
need for introducing special operations or structures. Additionally, they introduced an iter-
ative pruning framework called Tick-Tock to improve the accuracy of pruning. Extensive
experiments demonstrated the effectiveness of their approach.

Shen et al. [16] combined the benefits of post-training pruning and pre-training prun-
ing to propose a method that performs early pruning during training without compromis-
ing performance. Instead of pruning at initialization, this method quickly determines the
model structure using a few rounds of training, evaluates the importance ranking of the
main subnetworks, and then triggers pruning to ensure model stability and achieve early
pruning during the training process.

Gao et al. [17] proposed a novel channel pruning method to reduce the computational
and storage costs of convolutional neural networks. The target subnetwork is learned
during model training and then used to guide the learning of model weights via partial
regularization. The target subnetwork is learned and generated using an architecture
generator, which can be effectively optimized. In addition, they also derived the proximal
gradient for their proposed partial regularization to facilitate the structural alignment
process. By these designs, the gap between the pruned model and the subnetwork is
reduced, which improves pruning performance.

Shen et al. [18] proposed hardware-aware latency pruning, which formalizes struc-
tured pruning techniques as a resource allocation optimization problem aimed at maxi-
mizing accuracy while constraining latency within a budget on the target device. They
ultimately solved the optimization problem using an enhanced knapsack problem solver,
and this approach has been demonstrated to surpass previous work in achieving a balance
between accuracy and efficiency.

Fang et al. [19] proposed a pruning scheme for large diffusion models, called Diff-
Pruning, with the aim of learning lightweight diffusion models from existing models
without extensive retraining. The essence of Diff-Pruning is encapsulated in a Taylor
expansion over pruned timesteps, a process that disregards non-contributory diffusion
steps and ensembles informative gradients to identify important weights.

Hou et al. [20] proposed a simple yet effective channel pruning technique, called
pruning via resource reallocation (PEEL), to rapidly generate pruned models with negligible
cost. Specifically, PEEL first constructs a predefined backbone and then conducts resource
reallocation on it to shift parameters from less informative layers to more important layers
in one round, thus amplifying the positive effect of these informative layers.

Electronics 2024, 13, 1230 6 of 18

Ma et al. [21] addressed the compression problem of large language models (LLMs)
within two constraints: task-agnosticism and minimizing reliance on the original training
dataset. Their method, called LLM-Pruner, utilizes structured pruning techniques to
selectively remove non-critical coupling structures based on gradient information while
preserving a significant portion of the functionality of LLMs. To achieve this, with the help
of the LoRA technique, the performance of the pruned model can be effectively restored in
just 3 h with only 50 K data.

Fang et al. [15] investigated a highly challenging yet rarely explored task of general
structure pruning for any architecture such as CNNs, RNNs, GNNs, and Transformers.
The most prominent obstacle to achieving this goal is structural coupling, which not only
forces different layers to be pruned simultaneously but also expects all deleted param-
eters to be always unimportant, avoiding structural issues and significant performance
degradation after pruning. To address this issue, they proposed a generic fully automated
method—DepGraph, which explicitly models the dependency relationships between layers
and comprehensively groups coupled parameters for pruning. They extensively eval-
uated their method on several architectures and tasks, including ResNe(X)t, DenseNet,
MobileNet, and Vision Transformer for images, GAT for graphs, DGCNN for 3D point
clouds, and LSTM for language, and demonstrated that the proposed method consistently
yields satisfactory performance even using simple norm-based criteria.

There exist many types of model pruning techniques, including those targeted at
convolutional models and large diffusion models. In fact, these model pruning techniques
can be applied to reduce the size of deep models. We ultimately chose [15] as our pruning
scheme mainly because it demonstrated strong applicability and showed promising perfor-
mance in their paper. However, other pruning schemes could also be explored, and this
remains future work.

3. Model Preparation

This section mainly introduces the preparatory work for the lightweight adversarial
sample privacy protection scheme, discussing the potential participants in the lightweight
adversarial sample privacy protection scheme including three parties: defender, user,
and attacker. In order to effectively propose a lightweight adversarial sample privacy
protection scheme, three definitions are put forward to ensure the effectiveness of the
model: the first one ensures that there is little change in the accuracy of the defense model
before and after model pruning, the second guarantees a certain pruning ratio, and the third
ensures the defensive effect of noise on the pruned model. Generally speaking, the first
definition forms the basis for satisfying the second and third definitions.

3.1. Participating Parties
3.1.1. Defender

The defender designs and trains the defense model and distributes the obtained
defense model to users assuming that the defender designs a larger model, denoted as
D. To meet the diverse hardware requirements of users, assume that the defender can
compress the model and control the pruning ratio, resulting in multiple pruned defense
models d1, d2, . . . , dM. After obtaining the pruned models, the defender further trains each
model and finally distributes them to the user. One key operation that the defender needs
to perform during this process is:

D −→ dj, j = 1, 2, 3, . . . , M, (1)

where the long arrow in Formula (1) represents the structural pruning operation. To facili-
tate the comparison of results, the defender also generated adversarial noise data using
the unpruned defense model. We denote the data to which the noise is added as x. This
process can be expressed as follows:

{x, D} −→ x′, (2)

Electronics 2024, 13, 1230 7 of 18

where the long arrow in Formula (2) represents the defender’s adversarial noise injec-
tion process.

3.1.2. User

For each user, distinguished by a subscript i, i = 1, 2, 3, . . . , N. N represents the
number of users. Firstly, user i has their own data xi, which is a vector or matrix of a certain
dimension that needs to be compatible with the defense models distributed by the defender.
Based on the defense models, the user can generate adversarial samples and obtain a noisy
vector x̂i. This process can be expressed as follows:

{xi, dj} −→ x̂i, i = 1, . . . , N, j = 1, . . . , M, (3)

where the long arrow in Formula (3) represents the local perturbation process of user i.

3.1.3. Attacker

The attacker can train an attack model A to infer the noisy data. The information
acquired by the attack model on x̂ is defined as A(x̂).

3.2. Problem Definition

We use |·| to represent the number of model parameters. In order to ensure that
the pruned model maintains high accuracy, has a small parameter scale, and local noise
addition is effective, we provide the following three definitions.

Definition 1. Before and after model pruning, the models are represented as D and d, with their
accuracy on the test set denoted as Acc(D) and Acc(d), respectively. If the model d has certain
effects, there exists a small positive number m > 0 such that |Acc(D)− Acc(d)| ≤ m.

Definition 2. Before and after model pruning, the models are represented as D and d, with their
parameter sizes denoted as |D| and |d|, respectively. If the model parameters of d are small enough
to satisfy a certain condition, then there exists a positive number r such that |d|/|D| ≤ r.

Definition 3. Before and after model pruning, the models are represented as D and d, with the
obtained adversarial noisy data being xD and xd, respectively. For any attack model, its inference
accuracy on xD is represented as AccA(xD), and its inference accuracy on xd is represented as
AccA(xd). To ensure the effectiveness of the model pruning privacy protection, there exist two small
positive numbers q and n such that AccA(xd) ≤ q and |AccA(xd)− AccA(xD)| < n.

4. The Proposed Scheme

This section mainly introduces the model pruning algorithm adopted in this paper,
the first adversarial sample privacy protection scheme based on structural pruning, and the
second adversarial sample privacy protection scheme based on structural pruning.

4.1. Model Pruning

The model pruning technique used in this study is referenced from [15], which in-
volves dependency graph, grouping, and importance assessment. For ease of reference
in the subsequent discussion, we denote this pruning process as d = pruner(D), where D
represents the defense model and d represents the pruned defense model.

4.1.1. Dependency Graph and Grouping

The neural network is represented as F (x; w), which is decomposed into finer and
fundamental components, i.e., F = { f1, f2, . . . , fL}. Here, each component f represents
a parameterized layer such as convolution or a non-parameterized operation such as
residual addition. The input and output of component fi are denoted as f−i and f+i , respec-

Electronics 2024, 13, 1230 8 of 18

tively. Thus, for any network, the final decomposition becomes F = { f−1 , f+1 , . . . , f−L , f+L }.
The network can be redefined as follows:

(f−1 , f+1)↔ (f−2 , f+2) · · · ↔ · · · (f−L , f+L), (4)

where the symbol↔ represents the connection between two adjacent layers, and L repre-
sents the total number of layers. This leads to the existence of inter-layer dependency and
intra-layer dependency. Inter-layer dependency exists in the connected layers f−i ↔ f+j ,

denoted as f−i ⇔ f+j . Intra-layer dependency exists when f−i and f+i have the same

pruning scheme, represented as sch(f−i) = sch(f+i), denoted as f−i ⇔ f+i . Based on the
above symbols, the dependency model is constructed as follows:

D(f−i , f+j) = 1[f−i ↔ f+j] ∨ 1[i = j ∧ sch(f−i) = sch(f+j)], (5)

where the symbols ∨ and ∧ represent logical or and logical and, respectively. The function
1(·) is an indicator function that returns true if the connection exists. Based on the above
dependency graph, the components are divided into multiple groups, where there is no
dependency relationship between each group, but there is a dependency relationship within
each group.

4.1.2. Importance Evaluation

We assume there is a group g = {w1, w2, . . . , w|g|} under L1-norm, where the im-
portance of each parameter is defined as I(w) = |w| for each parameter w in group g.
The importance of group g used in this article is defined as I(g) = Σw∈g I(w). The survival
of each group is determined according to their importance ranking.

4.2. The First SP-ASPP

We designed our privacy protection based on reference [2]. However, unlike [2], our
scheme involves users performing the noise injection process themselves and uploading
the perturbed data to the server, while attackers collect the user’s perturbed data for final
inference. Similar to [2], the first SP-ASPP consists of two phases: the noise generation
phase and the random noise injection phase.

In the noise generation phase, the machine learning model is primarily pruned.
The pruned model is then distributed to each user. Upon receiving the pruned and trained
model, each user starts adding noise to their own data. For simplicity, this paper does not
consider communication overhead and assumes that the defender performs model pruning
and training tasks. Unlike [2], we assume that users have all the necessary permissions
for modifying and adding privacy, which is reasonable locally since users have the most
authority over their own data.

The algorithm is presented in Algorithm 1. The variable maxiter denotes the maximum
number of iterations for generating adversarial noise, which is determined by user i and
can be different for each user. The term rand_mech in the algorithm represents a random
selection mechanism that chooses perturbed data with a probability of Ψi. The calculation
of Ψi is obtained by solving the following optimization problem:

Ψ̂i = arg min
Ψ

KL(pi∥Ψi)

s.t.
T

∑
t=1
∥x̂i,t − xi∥ ≤ βi

Ψi
t > 0, ∀t ∈ {1, 2, ..., T}

T

∑
t=1

Ψi
t = 1,

(6)

Electronics 2024, 13, 1230 9 of 18

where pi represents the probability distribution that user i wants the output to satisfy, Ψi

is the optimal probability obtained by user i, and βi is the noise amplitude set by user
i with βi ≥ βmin. The optimization problem above is solved by user i. “KL” refers to
the Kullback–Leibler divergence [30]. The theoretical solution to the above optimization
problem can be found in [2], and can be directly used to obtain Ψi.

Algorithm 1 The first SP-ASPP

Input: Number of users N, data of the ith user xi, dimension of xi K, defense model D,
minimum perturbation magnitude βmin.

Output: x̂1, x̂2, ..., x̂N .
1: DEFENDER:
2: dj = pruner(D), j = 1, 2, 3, . . . , M
3: send dj to user i, i = 1, 2, 3, . . . , N
4: USER i:
5: for t in T then
6: while dj(xi) ̸= t and iter < maxiteri do

7: einc = arg maxk∈[1,K]{(1− xi
k)

∂(dj
t(xi))

∂xi
k
}

8: edec = arg maxk∈[1,K]{−xi
k

∂(dj
t(xi))

∂xi
k
}

9: vinc = (1− xi
einc

)
∂(dj

t(xi))

∂xi
einc

10: vdec = −xi
edec

∂(dj
t(xi))

∂xi
edec

11: if vinc > vdec then
12: xi

einc
= 1.0

13: else
14: xi

edec
= 0.0

15: end if
16: x̂i,t = xi

17: iter = iter + 1
18: end while
19: end for
20: x̂i ← rand_mech{x̂i,1, x̂i,2, ..., x̂i,T ; Ψ̂i}
21: return x̂i

22: N users repeat the above operation.
23: return x̂1, x̂2, ..., x̂N

4.3. The Second SP-ASPP

We have designed a second structural pruning-based adversarial sample privacy
protection based on [3]. The key difference is that users perform the noise generation
process locally and then upload it to the server. This privacy protection also consists
of two stages: noise generation stage and random noise addition stage. In the noise
generation stage, the defender needs to train the defense model D and then perform
pruning. The pruned model undergoes secondary training to obtain d. During this process,
the defender needs to ensure that the model accuracy satisfies Definition 1. After receiving
d, the user applies noise to the logits vector obtained from the target model, resulting in the
noisy data.

We present the entire process in Algorithm 2. For the sake of uniformity, x is used
to represent the data to be noised, and x̂ is used to represent the noised data. The acti-
vation function of the output layer of the pruned defense model d is a sigmoid function,
and the structure before the activation function is represented as h. Thus, the loss L can be
expressed as:

L1 = |h(so f tmax(x + e))| (7)

Electronics 2024, 13, 1230 10 of 18

L2 = relu(−xl − el + max
j|j ̸=l
{xj + ej}) (8)

L3 = |so f tmax(x)− so f tmax(x + e)| (9)

L = c1 · L1 + c2 · L2 + c3 · L3, (10)

where the values of maxiteri and βi are chosen by the user i. c1, c2, and c3 are constants
that can be selected by the user. rand_mech refers to the one-time randomness mentioned
in [3]. When sampling noise data, the user employs one-time randomness to ensure that
they always return the same noised data for the same data sample.

Algorithm 2 The second SP-ASPP

Input: Number of users N, data of the ith user xi, defense model D.
Output: x̂1, x̂2, ..., x̂N .

1: DEFENDER:
2: dj = pruner(D)={hj, sigmoid},j = 1, 2, . . . , M
3: send {hj, sigmoid} to user i, i = 1, 2, . . . , N
4: USER i:
5: while True do
6: l = arg max{xi}
7: ei = 0
8: iter = 1
9: while iter < maxiteri and {arg max{xi + ei} ̸= l or hi(so f tmax(xi)) ·

hi(so f tmax(xi + ei)) > 0} do

10: u = ∂L(hi ;xi)
∂e

11: u = u/∥u∥2
12: ei = ei − γi · u
13: iter = iter + 1
14: end while
15: c3 = 10 · c3
16: if c3 > 100000 then
17: break
18: end if
19: end while
20: x̂i ← rand_mech{xi, xi + ei; βi}
21: N users repeat the above operation.
22: return x̂1, x̂2, ..., x̂N

5. Experiment

This section mainly introduces the experiments conducted in this paper, including the
experimental setup and results. The setup section mainly covers the datasets used in the
paper and the detailed configurations of the two SP-ASPPs. The results section presents
the experimental results of the two SP-ASPPs.

5.1. Experimental Settings
5.1.1. Datasets

The used dataset consists of four parts, with the first dataset sourced from [2] and the
following three datasets sourced from [3]. For distinction, the first dataset is referred to
as “Att”. Here, only a brief introduction to the datasets is provided, while specific usage
instructions can be found in [2,3].

Att. This dataset can be obtained from GitHub (https://github.com/jinyuan-jia/
~AttriGuard (accessed on 25 November 2023)). The dataset comprises 16,238 samples,
with each sample consisting of 10,000 features. Each feature represents a user’s rating for a
specific app, and the rating values are normalized to 0, 0.2, 0.4, 0.6, 0.8, and 1.0. If a feature

https://github.com/jinyuan-jia/~AttriGuard
https://github.com/jinyuan-jia/~AttriGuard

Electronics 2024, 13, 1230 11 of 18

is missing, it is replaced with 0. The privacy attribute pertains to the user’s city of residence
or past residence, encompassing a total of 25 cities.

Location. This dataset can be obtained from GitHub (https://github.com/privacytrustlab/
datasets/dataset_location.tgz (accessed on 25 November 2023)). This dataset contains 5010 sam-
ples, each with 446 binary features representing whether the user has visited a certain
location or not. The samples are categorized into 30 classes.

Texas100. This dataset can be obtained from GitHub (https://github.com/privacytrustlab/
datasets/dataset_texas.tgz (accessed on 25 November 2023)). This dataset comprises 67,330 sam-
ples, each with 6170 binary features representing external causes of injury, diagnosis, patient
procedures, and general information. These samples are divided into 30 classes, with each
class representing a common disease.

CH-MNIST. This dataset can be obtained from Kaggle (https://www.kaggle.com/
kmader/colorectal-histologymnist (accessed on 25 November 2023)). This dataset contains
tissue slice image data of colon cancer patients, with each image having dimensions of
64× 64. There are a total of 5000 samples in this dataset, which are divided into eight classes.

5.1.2. The First SP-ASPP

The experimental settings include the defense model, the attack model, and the
other settings.

The defense model. The defense model is trained by the defender. The structure of the
defense model consists of a three-layer fully connected neural network with neuron counts
of 10,000, 40,000, and 25, respectively. The activation function used in the middle layer
is ReLU, while the output layer uses the softmax activation function. There is a dropout
layer between the second and third layers, with a dropout rate of 0.7. The optimizer used is
Adam, and the loss function is cross-entropy. The learning rate is set to 0.0005, and each
training batch contains 200 samples. The training is performed for 100 epochs.

The pruned defense model is also trained by the defender. The only modification made
is changing the neuron count in the middle layer while keeping the input and output layer
neuron counts unchanged. A speed-up factor is introduced, defined as speed-up = (Base
MACs)/(Pruned MACs), where MAC represents multiply–accumulate operations. In the
experiments, the speed-up factor is set to 2, 4, 6, . . . , 200 to observe the effect of different
speed-up factors on the final noise addition. A speed-up factor of 1 corresponds to no pruning,
and larger speed-up factors indicate higher pruning ratios. After pruning the defense model, it
is further trained with parameters similar to those before pruning.

The attack model. To verify the defense effectiveness of the model, an attack model
is also trained. The structure of the attack model consists of a three-layer fully connected
neural network with neuron counts of 10,000, 30,000, and 25, respectively. The activation
function used in the middle layer is ReLU, while the output layer uses the softmax activation
function. There is a dropout layer between the second and third layers, with a dropout rate
of 0.7. The optimizer used is SGD, and the loss function is cross-entropy. The learning rate
is set to 0.05, and each training batch contains 100 samples. The training is performed for
50 epochs.

The purpose of training the attack model is to evaluate the defense effectiveness of the
defense model by measuring its ability to resist attacks launched by the attack model.

The other setting. User i in the noise generation process has multiple options for
the selection of pi. In this paper, the selected pi represents the proportion of users from
the training set residing in the 25 cities. The value of βmin is set to 1.5. In Algorithm 1,
βmin = 1.5, N = 1631, M = 1, T = 25, and K = 10, 000.

5.1.3. The Second SP-ASPP

The experimental settings include the defense model, the attack model, and the
other settings.

The defense model. The second local privacy protection is mainly validated us-
ing the last three datasets. The defense models are all fully connected neural networks,

https://github.com/privacytrustlab/datasets/dataset_location.tgz
https://github.com/privacytrustlab/datasets/dataset_location.tgz
https://github.com/privacytrustlab/datasets/dataset_texas.tgz
https://github.com/privacytrustlab/datasets/dataset_texas.tgz
https://www.kaggle.com/kmader/colorectal-histologymnist
https://www.kaggle.com/kmader/colorectal-histologymnist

Electronics 2024, 13, 1230 12 of 18

and for the three datasets, the intermediate and output layers are the same, consisting
of (256, 128, 64, 1). The input dimensions for Location, Texas100, and CH-MNIST are 30,
100, and 8, respectively. The activation function between layers is relu, and the activation
function for the output layer is sigmoid. The defender compresses the defense model and
then re-trains it. Throughout the process, the SGD optimizer is used, as well as binary
cross-entropy loss, a learning rate of 0.01, and a batch size of 64. The number of training
epochs for the defense model before and after compression is 400 and 100, respectively.

The attack model. The attack model is a fully connected neural network, and for the
three datasets, the intermediate and output layers are the same, consisting of (512, 256, 128, 1).
The input dimensions for Location, Texas100, and CH-MNIST are 30, 100, and 8, respectively.
The activation function between layers is relu, and the activation function for the output layer
is sigmoid. The SGD optimizer is used, as well as binary cross-entropy loss, a learning rate
of 0.01, and a batch size of 64. The number of training epochs for the attack model is 400.
The other setting. For Location, Texas100, and CH-MNIST, N is 2000, 20,000, and 2000,
respectively. M = 1, γ = 0.1, c1 = 1.0, c2 = 10.0, and the initial value of c3 is set to 0.1.

5.2. Experimental Results
5.2.1. The First SP-ASPP

We evaluate the first SP-ASPP from three aspects: defense model accuracy, model size,
and attack inference accuracy, corresponding to Definitions 1–3 in the previous section,
respectively.

The accuracy of the defense model. The accuracy of the defense model before pruning
is 0.4549. After pruning, the speed-up ranges from 2 to 200, with the maximum defense
model accuracy being 0.4697 and the minimum defense model accuracy being 0.4433. It can
be observed that the accuracy of the defense model does not change significantly. The result
is shown in Figure 2. In Definition 1, when m = 0.0148, the result satisfies the definition.

� ��
� ��� ��� ���
��������

����

����

����

����

���	

���

�
��

��
�

��
��

��
��
��

��
��

��
��

Figure 2. The accuracy of the defense model varies with speed-up. It can be roughly observed that
the accuracy ranges from 0.44 to 0.47, with a variation range of [0, 0.03].

The number of parameters. The change in defense model parameter count with
respect to speed-up is shown in Figure 3. The parameter count before model pruning is
401.04 Mb. After pruning, with speed-up ranging from 2 to 200, the minimum parameter
count is 0.99 Mb, indicating a continuous decrease in parameter count. The minimum
parameter count is achieved at a speed-up of 200. When r = 0.002469, the result satisfies
Definition 2. In addition to defending model parameters, another metric is floating point
operations (FLOPs). Since the defense model adopts a fully connected network, the amount
of defense model parameters and FLOPs are equivalent, so we will not display it separately.

The inference accuracy of the attack model. The change in inference accuracy of the
attack model with respect to speed-up under different noise budgets is shown in Figure 4.
Prior to defense model pruning, the attack model’s inference accuracy at noise budgets of
1.5, 2.0, 3.0, 4.0, and 5.0 is 0.3721, 0.3603, 0.3492, 0.3439, and 0.3401, respectively.

Electronics 2024, 13, 1230 13 of 18

• When the noise budget is set to 1.5, the maximum inference accuracy is 0.3771, and the
minimum inference accuracy is 0.3283. When n = 0.0437, the results satisfy Definition 3.

• When the noise budget is set to 2.0, the maximum inference accuracy is 0.3666, and the
minimum inference accuracy is 0.3020. When n = 0.0583, the results satisfy Definition 3.

• When the noise budget is set to 3.0, the maximum inference accuracy is 0.3569, and the
minimum inference accuracy is 0.2707. When n = 0.0785, the results satisfy Definition 3.

• When the noise budget is set to 4.0, the maximum inference accuracy is 0.3518, and the
minimum inference accuracy is 0.2548. When n = 0.0890, the results satisfy Definition 3.

• When the noise budget is set to 5.0, the maximum inference accuracy is 0.3480, and the
minimum inference accuracy is 0.2459. When n = 0.0942, the results satisfy Definition 3.

At a speed-up of 80, the attack model’s inference accuracy corresponding to noise
budgets of 1.5, 2.0, 3.0, 4.0, and 5.0 are 0.3354, 0.3111, 0.2827, 0.2686, and 0.2607, respectively.
All of these values are lower than the inference accuracy prior to defense model pruning, in-
dicating that the defense performance is better than before pruning. It can be observed that
the relationship between model pruning and defense performance is not strictly monotonic,
and in some cases, model pruning may improve defense effectiveness. This also demon-
strates the feasibility of adding noise to the pruned models locally. However, this study is
only an attempt, and researchers can explore other related areas for further investigation.

� �� 	� ��� ��� ���
��������

�

���

���

���

���

�
�
�
��
��
��
��

��
���

��

Figure 3. The change in the number of defense model parameters with respect to speed-up. The parameter
count gradually decreases as the speed-up increases, approaching zero around a speed-up of 80.

� �� 	� ��� ��� ���
��������

����

����

����

����

����

����

�
��
��
�
��
�
�
��
�
��
���

���
�
��

��
��

���
���
���
���
���

Figure 4. The change in inference accuracy of the attack model with respect to speed-up under
different noise budgets is shown. As the noise budget increases, the defense performance improves.
At the same noise budget, the inference accuracy of the attack model is not very stable, but some
points can be found where the inference accuracy is lower than before pruning.

Electronics 2024, 13, 1230 14 of 18

5.2.2. The Second SP-ASPP

We evaluate the second SP-ASPP from three aspects: defense model accuracy, model
size, and attack inference accuracy, corresponding to Definitions 1–3 in the previous section,
respectively.

The accuracy of the defense model. For Location, the accuracy of the defense model
before pruning is 0.8575. When speed up is set to 20, 40, and 60, the maximum accuracy
of the defense model is 0.8575, and the minimum accuracy is 0.8525. It can be observed
that the accuracy of the defense model does not vary much. This result is shown in
Figure 5a. In Definition 1, when m = 0.005, the result satisfies this definition. For Texas100,
the accuracy of the defense model before pruning is 0.736. When speed up is set to 20, 40,
and 60, the maximum accuracy of the defense model is 0.7355, and the minimum accuracy
is 0.7353. It can be observed that the accuracy of the defense model does not vary much.
This result is shown in Figure 5b. In Definition 1, when m = 0.0007, the result satisfies this
definition. For CH-MNIST, the accuracy of the defense model before pruning is 0.7075.
When speed up is set to 50, 100, 150, and 200, the maximum accuracy of the defense model
is 0.7075, and the minimum accuracy is 0.7025. It can be observed that the accuracy of the
defense model does not vary much. This result is shown in Figure 5c. In Definition 1, when
m = 0.005, the result satisfies this definition.

� �� �� ��
��������

����

����

����

��	�

��
�
��
��
��
��
��
��
��
��
��

(a) Location

� �� �� ��
��������

����

����

����

����

�

��
	

��
�
��
�
��

��
��

��
��

(b) Texas100

� �� ��� ��� ���

������

���

���

���

���

	
��
��
��
��
��
�
��
��

��
��

�
��

(c) CH-MNIST
Figure 5. The variationof the defense model’s accuracy with speed up for Location, Texas100,
and CH-MNIST.

The number of parameters. The variation in the parameter size of the defense model
with speed up is shown in Figure 6. For Location, the parameter size of the model before
compression is 0.0492 Mb. When speed up is set to 20, 40, and 60, the minimum parameter
size is 0.0008 Mb, which continuously decreases. The minimum parameter size is reached
when the speed up is 60. When r = 0.01626 in Definition 2, the result satisfies this
definition. For Texas100, before compression, the parameter size of the model is 0.0671 Mb.
When speed up is set to 20, 40, and 60, the minimum parameter size is 0.0010 Mb, which
continuously decreases. The minimum parameter size is reached when the speed up is
60. When r = 0.01490 in Definition 2, the result satisfies this definition. For CH-MNIST,
before compression, the parameter size of the model is 0.0435 Mb. When speed up is set
to 50, 100, 150, and 200, the minimum parameter size is 0.0002 Mb, which continuously
decreases. The minimum parameter size is reached when the speed up is 200. When
r = 0.0046 in Definition 2, the result satisfies this definition. It is expected that increasing
the speed up will further reduce the model parameters. In addition to the parameter size
of the defense model, another indicator is FLOPs. Since the defense model uses a fully
connected network, the parameter size and FLOPs of the defense model are equal, so they
are not shown separately.

The inference accuracy of the attack model. The inference accuracy results of the
attack model are shown in Figure 7. For the three datasets, Location, Texas100, and CH-
MNIST, the defense effect of the defense model has remained essentially unchanged before
and after pruning. For Location, the defense effect of the defense model slightly deteriorates
at speed-up = 20, and other values can be selected for speed up during pruning. For the CH-
MNIST, the defense effect of the defense model deteriorates at speed up = 200, and other

Electronics 2024, 13, 1230 15 of 18

values can also be selected for speed up during pruning. Obviously, the inference accuracy
of the attack model satisfies Definition 3. We found that the upper limit of compression
by speed up is related to the model’s own parameter size and the input and output
dimensions of the model. The larger the model’s parameter size and the smaller the input
and output dimensions of the model, the greater the potential for model pruning. Therefore,
in practical applications, it is necessary to develop an appropriate speed up based on the
actual situation, which can satisfy local adversarial sample privacy protection while not
reducing the defense effect. So far, we have also demonstrated the feasibility of the second
structural pruning-based adversarial sample privacy protection.

� �� ��
�
��������

�����

�����

����

���	�

�
��

�
��

��
��

��
��

���
�

��

(a) Location

� �� �� ��
��������

�����

�����

����	

�����

�
�
�
��
��
��
��

��
���

��

(b) Texas100

� 	� ��� �	� ���
��������

�����

����	

�����

����	

�
�
�
��
��
��
��

��
���

��

(c) CH-MNIST
Figure 6. For Location, Texas100, and CH-MNIS, the parameter number of the defense model varies
with the change in speed up.

��� ��� ��� ��� ��	 ���
�����������

���

���

��

��
��
��
��
��
��
��
��
�
��
���

���
��
��

��
��

��������
�������������
�������������
�������������

(a) Location

��� ��� ��� ��� ��	 ���
�����������

���

���

��

��
��
��
��
��
��
��
��
�
��
���

���
��
��

��
��

��������
�������������
�������������
�������������

(b) Texas100

��� ��� ��� ��� ��	 ���
������������

���

���

���

���

��	

��
��

��
��

��
�

��
�

��
��

��
��

��
��

��
��

�������
���������
���
���������
����
���������
����
���������
����

(c) CH-MNIST
Figure 7. For Location, Texas100, and CH-MNIST, the inference accuracy of the attack model varies
with the noise budget and speed up.

In order to present the effectiveness of our approach more clearly, we showcase the
results in the table below. In Table 1, we compare our first SP-ASPP with [2] and our second
SP-ASPP with [3]. We will conduct separate comparisons for the four datasets and different
speed-up ratios. In the ‘Methods’ column of Table 1, the value in parentheses represents the
magnitude of speed-up. The inference accuracy of the attack model varies under different
noise budgets. Therefore, we take the average of the attack model’s inference accuracy
under different noise budgets to determine the final inference accuracy of the attack model.
For Att, the considered noise magnitude budgets include 1.5, 2.0, 3.0, 4.0, and 5.0. For other
datasets, the considered noise magnitude budgets are 0.1, 0.3, 0.5, 0.7, and 1.0.

It can be observed that as the model pruning parameter speed up increases, the accu-
racy of the defense model remains relatively stable, the model parameter size decreases
significantly, and there is a slight increase in the inference accuracy of the attack model.
The change in defense model accuracy and the change in attack model inference accuracy
are both minimal, indicating that the defense model’s effectiveness is relatively stable.
This represents the SP-ASPPs proposed in this paper, which indeed significantly reduce
model parameters while ensuring a certain level of defense effectiveness, demonstrating
the effectiveness of the approach presented in this paper.

Electronics 2024, 13, 1230 16 of 18

Table 1. The table displays the defense model accuracy, model parameter size, and inference accuracy
of the attack models for different methods. In the ‘Methods’ column, the value in parentheses
represents the magnitude of speed-up. The same attack model is applied to the same dataset.
The inference accuracy of the attack model is the average value of inference accuracy under different
noise magnitude budgets.

Datasets Methods Accuracy Parameter Size (Mb) Inference Accuracy

Att

AttriGuard [2] 0.4549 401.0400 0.3531

1st-SP-ASPP (50) 0.4586 7.0100 0.2863

1st-SP-ASPP (100) 0.4555 3.0000 0.2967

1st-SP-ASPP (150) 0.4506 2.0100 0.2937

1st-SP-ASPP (200) 0.4433 0.9900 0.3112

Location

MemGuard [3] 0.8575 0.0492 0.5946

2nd-SP-ASPP (20) 0.8575 0.0024 0.6147

2nd-SP-ASPP (40) 0.8575 0.0012 0.5951

2nd-SP-ASPP (60) 0.8525 0.0008 0.5949

Texas100

MemGuard [3] 0.7360 0.0671 0.5715

2nd-SP-ASPP (20) 0.7355 0.0033 0.5677

2nd-SP-ASPP (40) 0.7353 0.0016 0.5673

2nd-SP-ASPP (60) 0.7350 0.0010 0.5663

CH-MNIST

MemGuard [3] 0.7075 0.0435 0.5435

2nd-SP-ASPP (50) 0.7050 0.0008 0.5442

2nd-SP-ASPP (100) 0.7025 0.0004 0.5429

2nd-SP-ASPP (150) 0.7075 0.0003 0.5495

2nd-SP-ASPP (200) 0.7075 0.0002 0.6449

Through the above experiments, we found that using model pruning in adversarial
sample privacy protections can significantly reduce the number of model parameters while
ensuring a certain level of defense effectiveness. These findings indicate that structural
pruning-based adversarial sample privacy protections have a certain degree of feasibility.

6. Conclusions

Previous adversarial sample privacy protections have mostly been centralized or have
not considered the issue of hardware device limitations when conducting privacy protec-
tion, especially on the user’s local device. This work attempts to reduce the requirements
of adversarial sample privacy protections on devices, making the privacy protection more
locally friendly. Advanced model structure pruning techniques are used to prune and
train the defense model structure, which is then distributed to users. Users complete the
privacy protection process on the pruned model to obtain the noisy data. Experiments on
real datasets show that our SP-ASPPs are efficient. Through the solution of this article,
the practical use of LASPP is promoted. In fact, the schemes in [2,3] are not secure because
the defense schemes of adversarial samples [31–33] continue to be proposed, requiring
more robust privacy protections. However, we are confident that robust models can still be
pruned, and this is also a future direction for research.

Author Contributions: The model and methodology of this paper were proposed by G.X. and Q.P.
The experiments were designed and conducted by G.X. and G.H.; H.H. was responsible for the
graphical work of the paper. The writing of the paper was completed by G.X., G.H. and Q.P.; H.H.
reviewed the paper. G.X. and G.H. made revisions to the paper. All authors have read and agreed to
the published version of the manuscript.

Funding: This work is supported by the National Key Research and Development Program of China
under Grant 2022YFB3-102700; the National Natural Science Foundation of China under Grants

Electronics 2024, 13, 1230 17 of 18

62132013, 62102295, 62276198, and 61902292; and the Key Research and Development Programs of
Shaanxi under Grant 2021ZDLGY06-03.

Data Availability Statement: Data are contained within the article.

Acknowledgments: Thanks to the development teams behind PyTorch and other toolkits for provid-
ing convenient experimental tools. Thanks to Featurize for offering a convenient and efficient cloud
service, and thanks to the anonymous reviewers for their meticulous review.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks.

arXiv 2013, arXiv:1312.6199.
2. Jia, J.; Gong, N.Z. {AttriGuard}: A practical defense against attribute inference attacks via adversarial machine learning.

In Proceedings of the 27th USENIX Security Symposium (USENIX Security 18), Baltimore, MD, USA, 15–17 August 2018;
pp. 513–529.

3. Jia, J.; Salem, A.; Backes, M.; Zhang, Y.; Gong, N.Z. Memguard: Defending against black-box membership inference attacks via
adversarial examples. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, London,
UK, 11–15 November 2019; pp. 259–274.

4. Shao, R.; Shi, Z.; Yi, J.; Chen, P.Y.; Hsieh, C.J. Robust text captchas using adversarial examples. In Proceedings of the 2022 IEEE
International Conference on Big Data (Big Data), IEEE, Osaka, Japan, 17–20 December 2022; pp. 1495–1504.

5. Papernot, N.; McDaniel, P.; Jha, S.; Fredrikson, M.; Celik, Z.B.; Swami, A. The limitations of deep learning in adversarial settings.
In Proceedings of the 2016 IEEE European Symposium on Security and Privacy (EuroS&P), IEEE, Saarbrücken, Germany, 21–24
March 2016; pp. 372–387.

6. Shokri, R.; Stronati, M.; Song, C.; Shmatikov, V. Membership inference attacks against machine learning models. In Proceedings
of the 2017 IEEE Symposium on Security and Privacy (SP), IEEE, San Jose, CA, USA, 22–24 May 2017; pp. 3–18.

7. Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards deep learning models resistant to adversarial attacks. arXiv
2017, arXiv:1706.06083.

8. Dwork, C. Differential privacy. In Proceedings of the International Colloquium on Automata, Languages, and Programming; Springer:
Cham, Switzeland, 2006; pp. 1–12.

9. Shokri, R.; Theodorakopoulos, G.; Troncoso, C.; Hubaux, J.P.; Le Boudec, J.Y. Protecting location privacy: Optimal strategy against
localization attacks. In Proceedings of the 2012 ACM Conference on Computer and Communications Security, Raleigh, NC, USA,
16–18 October 2012; pp. 617–627.

10. Salamatian, S.; Zhang, A.; du Pin Calmon, F.; Bhamidipati, S.; Fawaz, N.; Kveton, B.; Oliveira, P.; Taft, N. Managing your private
and public data: Bringing down inference attacks against your privacy. IEEE J. Sel. Top. Signal Process. 2015, 9, 1240–1255.
[CrossRef]

11. Xie, G.; Pei, Q. Towards Attack to MemGuard with Nonlocal-Means Method. Secur. Commun. Netw. 2022, 2022, 6272737[CrossRef]
12. Wang, T.; Blocki, J.; Li, N.; Jha, S. Locally differentially private protocols for frequency estimation. In Proceedings of the 26th

USENIX Security Symposium (USENIX Security 17), Vancouver, BC, Canada, 16–18 August 2017; pp. 729–745.
13. Ding, X.; Ding, G.; Guo, Y.; Han, J. Centripetal sgd for pruning very deep convolutional networks with complicated structure. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019;
pp. 4943–4953.

14. You, Z.; Yan, K.; Ye, J.; Ma, M.; Wang, P. Gate decorator: Global filter pruning method for accelerating deep convolutional neural
networks. Adv. Neural Inf. Process. Syst. 2019, 32. [CrossRef]

15. Fang, G.; Ma, X.; Song, M.; Mi, M.B.; Wang, X. Depgraph: Towards any structural pruning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 16091–16101.

16. Shen, M.; Molchanov, P.; Yin, H.; Alvarez, J.M. When to prune? a policy towards early structural pruning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 12247–12256.

17. Gao, S.; Zhang, Z.; Zhang, Y.; Huang, F.; Huang, H. Structural Alignment for Network Pruning through Partial Regularization.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–3 October 2023; pp. 17402–17412.

18. Shen, M.; Yin, H.; Molchanov, P.; Mao, L.; Liu, J.; Alvarez, J.M. Structural pruning via latency-saliency knapsack. Adv. Neural Inf.
Process. Syst. 2022, 35, 12894–12908.

19. Fang, G.; Ma, X.; Wang, X. Structural Pruning for Diffusion Models. arXiv 2023, arXiv:2305.10924.
20. Hou, Y.; Ma, Z.; Liu, C.; Wang, Z.; Loy, C.C. Network pruning via resource reallocation. Pattern Recognit. 2024, 145, 109886.

[CrossRef]
21. Ma, X.; Fang, G.; Wang, X. LLM-Pruner: On the Structural Pruning of Large Language Models. arXiv 2023, arXiv:2305.11627.
22. Dong, X.; Chen, S.; Pan, S. Learning to prune deep neural networks via layer-wise optimal brain surgeon. Adv. Neural Inf. Process.

Syst. 2017, 30. [CrossRef]
23. Guo, Y.; Yao, A.; Chen, Y. Dynamic network surgery for efficient dnns. Adv. Neural Inf. Process. Syst. 2016, 29. [CrossRef]

http://doi.org/10.1109/JSTSP.2015.2442227
http://dx.doi.org/10.1155/2022/6272737
http://dx.doi.org/10.48550/arXiv.1909.08174
http://dx.doi.org/10.1016/j.patcog.2023.109886
http://dx.doi.org/10.48550/arXiv.1705.07565
http://dx.doi.org/10.48550/arXiv.1608.04493

Electronics 2024, 13, 1230 18 of 18

24. Park, S.; Lee, J.; Mo, S.; Shin, J. Lookahead: A far-sighted alternative of magnitude-based pruning. arXiv 2020, arXiv:2002.04809.
25. Luo, J.H.; Wu, J. Neural network pruning with residual-connections and limited-data. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1458–1467.
26. Yao, L.; Pi, R.; Xu, H.; Zhang, W.; Li, Z.; Zhang, T. Joint-detnas: Upgrade your detector with nas, pruning and dynamic distillation.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021;
pp. 10175–10184.

27. Li, T.; Lin, L. Anonymousnet: Natural face de-identification with measurable privacy. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–17 June 2019.

28. Salman, H.; Khaddaj, A.; Leclerc, G.; Ilyas, A.; Madry, A. Raising the cost of malicious ai-powered image editing. arXiv 2023,
arXiv:2302.06588.

29. Shan, S.; Cryan, J.; Wenger, E.; Zheng, H.; Hanocka, R.; Zhao, B.Y. Glaze: Protecting artists from style mimicry by text-to-image
models. arXiv 2023, arXiv:2302.04222.

30. Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [CrossRef]
31. Ma, X.; Li, B.; Wang, Y.; Erfani, S.M.; Wijewickrema, S.; Schoenebeck, G.; Song, D.; Houle, M.E.; Bailey, J. Characterizing

adversarial subspaces using local intrinsic dimensionality. arXiv 2018, arXiv:1801.02613.
32. Liu, Y.; Qin, Z.; Anwar, S.; Ji, P.; Kim, D.; Caldwell, S.; Gedeon, T. Invertible denoising network: A light solution for real noise

removal. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25
June 2021; pp. 13365–13374.

33. Meng, D.; Chen, H. Magnet: A two-pronged defense against adversarial examples. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, Dallas, TX, USA, 30 October–3 November 2017; pp. 135–147.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1214/aoms/1177729694

	Introduction
	Related Work
	Privacy Protection Based on Adversarial Samples
	Model Pruning

	Model Preparation
	Participating Parties
	Defender
	User
	Attacker

	Problem Definition

	The Proposed Scheme
	Model Pruning
	Dependency Graph and Grouping
	Importance Evaluation

	The First SP-ASPP
	The Second SP-ASPP

	Experiment
	Experimental Settings
	Datasets
	The First SP-ASPP
	The Second SP-ASPP

	Experimental Results
	The First SP-ASPP
	The Second SP-ASPP

	Conclusions
	References

