
Citation: Abdullah, A.; Brady, A.;

Heinig, D.; Krause, P.; Goy, M.; Döge,

K.-P.; Tünnermann, A. Implementing a

Hybrid Method for Shack–Hartmann

Wavefront Spots Labeling on FPGA.

Electronics 2024, 13, 1221. https://

doi.org/10.3390/electronics13071221

Academic Editor: Longqing Cong

Received: 6 February 2024

Revised: 18 March 2024

Accepted: 25 March 2024

Published: 26 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Implementing a Hybrid Method for Shack–Hartmann Wavefront
Spots Labeling on FPGA
Ammar Abdullah 1,*, Aoife Brady 1, Daniel Heinig 1, Peter Krause 1, Matthias Goy 1, Klaus-Peter Döge 2

and Andreas Tünnermann 1,3

1 Fraunhofer Institute for Applied Optics and Precision Engineering IOF, 07745 Jena, Germany;
aoife.brady@iof.fraunhofer.de (A.B.); daniel.heinig@iof.fraunhofer.de (D.H.);
peter.krause@iof.fraunhofer.de (P.K.); matthias.goy@iof.fraunhofer.de (M.G.);
andreas.tuennermann@iof.fraunhofer.de (A.T.)

2 Department of Electrical Engineering and Information Technology, Ernst-Abbe-Hochschule,
07745 Jena, Germany; klaus-peter.doege@eah-jena.de

3 Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-University, 07745 Jena, Germany
* Correspondence: ammar.abdullah@iof.fraunhofer.de

Abstract: This paper presents a real-time implementation of a hybrid connected component labeling
method for processing the Shack–Hartmann wavefront sensor’s images for an adaptive optics (AO)
system. The output image of a wavefront sensor is an image of spots. During the sensor’s operation,
it can happen that highly distorted wavefronts (WF) may cause the spots to shift outside of their
sub-aperture, which may lead to the reduction of the AO system performance. This article explains
the benefits of high-performance computing and parallel processing of a field programmable gate
array (FPGA). The objective is to calculate the centroids of these spots. A hybrid labeling method
was investigated to fulfill this purpose. First, this method was implemented using a forward and
backward scan with a respective mask for each scan. Additionally, a relabeling process is applied after
labeling each line, and it is carried out in both directions. After labeling, several processing units were
implemented in parallel to calculate centroids. Each unit is responsible for calculating the centroid
of one label. The system runs in real time with a latency of one frame, which means the output
image is a fusion of a current frame and the centroids of the previous frame. Forward and backward
labeling requires a large amount of memory, which is the reason for limiting the investigation to
forward labeling only. The forward labeling was successfully implemented, and the centroids were
detected under minimum spot distortion conditions. This forward labeling implementation also runs
in real time with significant latency reduction to calculate the centroids, which leads to minimizing
the overall AO system latency, enabling faster computation and correction in addition to reducing
the memory usage to 1% when compared to the forward and backward labeling usage of 81% as an
advantage for the hardware implementation.

Keywords: Shack–Hartmann wavefront sensor (SHWFS); adaptive optics (AO); connected components
labeling (CCL); field programmable gate array (FPGA)

1. Introduction

The aim of adaptive optics is to reduce wavefront distortions due to, e.g., turbulence.
This is accomplished by measuring the incoming wavefront with a wavefront sensor and
correcting it with a wavefront corrector such as a deformable mirror, lens, or spatial light
modulator. Adaptive optics is used in wide fields such as astronomy, microscopy, or laser
material processing. To build an adaptive optics system, three main components are usually
required: a wavefront corrector, a wavefront sensor, and a controller. A wavefront sensor
sends the incoming data to the controller. The controller makes use of the received infor-
mation in order to compensate for the distortion by controlling a wavefront corrector [1,2].
Several wavefront measurement techniques have been proposed during recent decades,

Electronics 2024, 13, 1221. https://doi.org/10.3390/electronics13071221 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13071221
https://doi.org/10.3390/electronics13071221
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13071221
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13071221?type=check_update&version=2

Electronics 2024, 13, 1221 2 of 19

such as the Shack–Hartmann wavefront sensor, curvature wavefront sensor, pyramid
wavefront sensor, and holographic wavefront sensor, and each one has its advantages
and disadvantages, with each being suitable for special usage. The most commonly used
presently is the Shack–Hartmann Wavefront Sensor (SHWFS), which is one of the standards
for atmospheric AO systems due to its accuracy, reliability, high resolution, and robustness.
It also has the benefit of high availability since it is based on existing technologies like
cameras and micro-lens arrays. This collectively makes it a very straightforward approach
since the wavefront (WF) is measured and corrected. Theoretically, the holographic wave-
front sensor, for example, is faster than the SHWFS, and it has different functionality than
SHWFS, but it is still a subject of research with problems related to inter-modal crosstalk
and strong aberrations [3]. The holographic sensing method would allow direct measure-
ments of wavefront modes with the readout speed of photodiodes, which could be up
to the MHz range [4]. The Shack–Hartmann sensor can capture data in real time, which
makes it suitable for real-time systems [5]. This method has been used for the successful
demonstration of adaptive optics correction of atmospheric turbulence in breadboard and
free-space experiments, e.g., classical laser [6–8] and quantum communications [9,10]. In
ref. [11], a Connected Components Labeling method (CCL) was used to detect the position
of the spots, and the calculation of the centroid was carried out after the spot detection.
The authors in ref. [12] presented a stream-based center of gravity method for centroids
estimation but still leads to some centroid detection uncertainty in high wavefront dis-
tortions. Other researchers tried to increase the wavefront sensing speed using a GPU or
CPU [13–15]. Others have used the artificial neural network and machine-learning-based
method [16,17], and they achieved good results for wavefront sensing and system speed.
To determine the centroids of the spots, we consider the spots as objects in the image, and
those objects have to be detected. There are many methods for object detection [18], and
in this article, we chose the connected component labeling. It basically scans the image
and decides which pixels are connected to form an object. There are different methods
within the CCL itself to determine whether the pixels are connected or not. The first of
these methods is the one-pass method, which was previously implemented by Bailey [19]
and Klaiber [20]. State-of-the-art implementations allow parallel processing up to 32 pixels
per clock cycle with a clock cycle rate over 100 MHz on a Virtex 6 FPGA [20].

The second method is the two-pass method, which is first mentioned by Rosenfeld
and Pfaltz [21]. Modern two-pass labeling methods are described by Lacassagne and
Zavidovique [22]. One implementation of a two-pass CCL algorithm for video processing
on FPGA was presented in an article from Jablonski and Gorgon [23] where a 8192 × 8192
pixel-sized image is labeled in under 5 s, with an implementation running at 100 MHz. It
uses stream-based processing with a small local window in the first pass and a merge table
lookup in the second pass, giving one frame latency. Several high-speed parallel algorithms
exist for connected components labeling [24]. While such algorithms give considerable
speed improvement over the classic algorithm, they still require a large number of logic
elements.

The third method is the multi-pass method. An FPGA implementation was published
in 1999 by Crookes and Benkrid [25]. Another FPGA implementation in ref. [26] uses very
simple processing but requires multiple passes through the image to be completely labeled,
and this leads to increasing the complexity of the region shapes. The intermediate image
between passes has to be stored in a frame buffer, making such an algorithm unsuited for
real-time processing.

In this work, a hybrid method using both two-pass and multi-pass methods is pro-
posed. The hybrid method can be applied for two image scans only, a forward and a
backward image scan, which can reduce the overall complexity and memory usage. In each
image scan, the two-pass method can be applied on each line instead of the entire image
to reduce the equivalence table size, which can lead to less memory usage. The paper is
structured as follows: the first section reviews the image-processing operations that are
necessary to use for this application as shown in Figure 1. The second section explains

Electronics 2024, 13, 1221 3 of 19

the hybrid labeling method. The hardware implementation, simulation, implementation
results, and discussion are in sections four, five, and six. The last section is devoted to
the closure.

Reading image

Gray-scale and threshold

Morphological operations

Connected components labeling

Centroids calculation

FPGA

WF sensor

Controller

WF corrector

WF acquisition

WF reconstruction

Spots detection

Figure 1. An AO (Adaptive Optic) system diagram and the FPGA image-processing stack.

2. Image Processing
2.1. Threshold

The first step in the image processing is to apply a threshold filter. This filter is applied
to the grayscale image, and the output is a binary image. First, we detect the threshold
value, and we apply this value to the image. All pixels above this value will take a value
of one, and all the pixels below this value will take a value of zero. The success of the
threshold depends on the selected threshold value. One of the well-known algorithms
is Otsu’s method [27], which automatically finds the optimal threshold intensity. The
algorithm returns a single intensity threshold that separates pixels into two classes (the
background and the foreground). The algorithm exhaustively searches for the threshold
that minimizes the within-class variance, defined as a weighted sum of variances of the two
classes. Weights ωb and ω f are the probabilities of the two classes separated by a threshold
t, σb and σf are variances of these two classes. It searches for the threshold intensity by
separating the image into two classes: foreground and background. After calculating the
different probabilities of the threshold values using Equation (1), the within-class variance
could be calculated using an equation for each threshold value t. The threshold value then
could be chosen, which gives the maximum value of the within-class variance:

σ2
W = ωbσ2

b + ω f σ2
f (1)

where:

ωb =
k

∑
i=1

P(i) , ω f =
L

∑
i=k+1

P(i) (2)

and we can define the two class means as follows:

µb =
k

∑
i=1

iP(i)
ωb

, µ f =
L

∑
i=k+1

iP(i)
ω f

(3)

The two class variances can be computed as follows:

σ2
b =

k

∑
i=1

(i − µb)
2 iP(i)

ωb
(4)

σ2
f =

L

∑
i=k+1

(i − µ f)
2 iP(i)

ω f
(5)

We can calculate what is called the total variance from the previous equations as:

Electronics 2024, 13, 1221 4 of 19

σ2
T = σ2

B + σ2
W (6)

with
σ2

B = ωb[µb − µ]2 + ω f [µ f − µ]2 (7)

and
µ = ωbµb + ω f µ f (8)

Minimizing the within-class variance σW is equivalent to maximizing the between-
class variance σB. The desired threshold corresponds to the minimum σB [27,28].

2.2. Morphological Filters

Morphological filters are a wide range of image-processing operations that process
images on the basis of their shapes. For better object detection, a low-noise image is
preferred. To reduce the noise in the image and to make the objects clearer, we chose to
use dilation and erosion, which are two fundamental morphological operations. These
operations usually use a structuring element for probing and reducing or expanding the
shapes contained in the input image, which can be divided into two parts: foreground
pixels and background pixels. Our aim here is to focus on the foreground pixels since they
are considered to be our objects. Figure 2 shows an example of an image before and after
applying these two filters.

Figure 2. Decreasing the object’s area by applying erosion on P1 and increasing object’s area by
applying dilation on P2.

Erosion is typically used to decrease the boundaries of the foreground pixels in the
image. It applies an AND operation between the current pixels and the structure element
(mask); thus, the area of the object will be reduced after this filter is applied. So, it can be
used to remove the noise from the image. Dilation is used to increase the boundaries of the
region in the image. It applies an OR operation on the image, so the area of the foreground
pixels grows, and if there are holes in this area, they become smaller. The four neighbors of
the pixel P1(x,y) are zeros, so it will be considered noise when applying Erosion. The pixel
P2(x,y) has four neighbors with a value of one, so it will take the value of the neighbors
after applying the dilation [28,29].

2.3. Connected Component Labeling Algorithms

The connected component labeling algorithm is one of the most common algorithms
in image processing to detect the objects in the image. The input of this algorithm is a
binary image, and the output is a labeled image. All the pixels that take the same label will
be considered to be one object. It separates the objects in the image from the background
and tries to give every connected object a labeled value. Connected components labeling
serves a specific purpose in binary image-processing, focusing on identifying and labeling
connected regions. In contrast, other methods [30–33] are more versatile and are often
applied to grayscale or color images for various image segmentation and labeling tasks.
In the following, common labeling methods within the CCL method are presented. We
consider the input to be a binary image, which is determined after grayscaling, thresholding,

Electronics 2024, 13, 1221 5 of 19

and morphological filters. The output is a labeled image, and every label represents
one object.

For the single-pass method, the image is first scanned once in a forward direction with
a forward mask. During the scanning pass, the label of the central point of the mask is set
to the smallest label of the points of the mask connected with the center point. During the
scanning, a new label is created if no point of the mask is connected to a center point. This
algorithm has one problem, which occurs when one of the objects has a U-shape, as shown
in Figure 3. When applying the 4-connected neighborhood and when the mask reaches the
position L1 (or L2), it is seen that the algorithm has labeled one connected object with three
labels, 1, 2, and 3, which means that they have been considered to be three objects, because,
during the checking level, there were no pixels connected to the pixel of the object on which
the mask is applied. The two-pass method can be the solution to this problem. Since we
are dealing with simple objects (spots), this method seems to be a good solution [34,35].

an equivalence table. After the f rst pass, a look up table (LUT) is created assigning f nal labels to temporary
labels. This process is referred to as equivalence resolving. In the second pass, the labels of the label mask are
updated using the LUT. The critical point of two passmethods is the resolving of the equivalences. With a lot

1

1

1

1

1

1 1 1

2

2

2

2

2 2 2

3

3

4 4

MergeTable
M1 (1,2)
M2 (2,3)

Look Up Table
1 1
2 1
3 1
4 4

1

1

1

1

1

1 1 1

1

1

1

1

1 1 1

1

1

4 4

Figure8. upper-left: binary image, upper-right: result after f rst pass, wherethetwo conf ict casesM1undM2aremarked,
bottom-left: merge table after the f rst run and look-up table after merge table resolving, bottom right: label mask after
second pass.

of conf icts, the classical methods arenot able to label an image in a reasonable time. Modern two pass labeling
methods, as described in an article fromLacassagneand Zavidovique,1 utilize union-f nd data structures, which
allow even the resolution of very big equivalence tables in fractions of a second. One implementation of a two
pass CCL-algorithm for video processing on an FPGA was presented in an article from Jablonski and Gorgon.6

To reach the required performance and due to the restricted memory bandwidth, the equivalence table has to
be stored in the block ramof the FPGA. Due to the restricted size of the block ram, themaximumnumber of
conf icts and the labels haveto be limited. A f rst analysiswith a prototypemodel of a two passCCL-algorithm
basedonunion f nd datastructureswascarriedout. Assumingthat onememory accessper clock cycleispossible,
a 8192∗8192pixel sized image is labeled in under 5 seconds, with an implementation running at 100MHz. The
run-time is dependent on the image content, but far more stable compared to multipass labeling.

3.3 One pass methods
Onepass labelingmethods as implemented by Bailey et al7 2008, or subsequent implementations as in Klaiber,8

arespecially designed for hardwaresolutions. Onepassmethodsdirectly extract propertiesof connected compo-
nents as framebox coordinates or center of gravity, without generatinga label mask. Onepassmethods use the
fact that, when only a few objectshaveto be labeled, theobject information can bebuf ered in theblock ramof
the FPGA. The greatest advantage is that pixel streamprocessing is possible because, in-time conf ict solution
is feasible and no label mask has to be stored. In particular very high performance can be reached, since the
processing of several pixels at once is possible. State of the art implementations allow parallel processing up to
32 pixels per clock cyclewith a clock cycle rate over 100MHz on a Virtex 6 FPGA.8

3.4 Other methods
Other CCL methods are based on region-growing or contour-tracing techniques. These kinds of methods label
complete objects one after another and hence, have a very dynamic program f ow. Therefore, they are not

Proc. of SPIE Vol. 9646 964603-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/02/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx

L1

L2

(a) (b)

(c)

Figure 3. Labeling conflict: the image shows the labeling result for a single-pass scan, with a pattern
as seen at the red square in the top left, over two objects with pixel numbering related to the detected
objects. However, objects 1, 2, and 3 should have been detected as one object. The false labeling was
due to the U-shape conflict originating in L1 and L2.

Another method is the two-pass method, which requires two scanning passes and
an intermediate step for conflict resolution. The forward scan is identical to the forward
scan of the one-pass labeling. The center point of the mask obtains the lowest label of
the pixels in the mask connected with it. If no pixel is connected with the center point, a
new label is assigned. A conflict occurs if two or more pixels in the scanning mask that
are connected with the center point have different labels. This conflict is recorded in an
equivalence table. After the first pass, a lookup table (LUT) is created, and final labels are
assigned to temporary labels. This process is referred to as equivalence resolving.

In the second pass, the labels of the label mask are updated using the LUT. The critical
point of the pass methods is resolving the equivalences. With many conflicts, the classical
methods are not able to label an image within a reasonable time frame. To reach the
required performance and due to the restricted memory bandwidth, the equivalence table
has to be limited. Another solution is using the multi-pass method.

In the multi-pass method, the image is first scanned in a forward direction with a
forward mask and, after that, in a backward direction with a backward mask. The forward

Electronics 2024, 13, 1221 6 of 19

scan is equal to the forward scan of the one-pass labeling. Forward and backward scanning
is repeated until no changes occur anymore. Then, the labeling is complete. Since multi-
pass labeling is purely Windows-based, it is very well suited for an FPGA implementation.
However, this method is not suitable for labeling large images with complex structures. It
seems that combining two methods can solve the problem that one method presents and
make use of the advantages of both.

3. Hybrid Labeling Method

In this work, a hybrid method using both two-pass and multi-pass methods is pro-
posed. The method can be applied for two image scans only, a forward and a backward
image scan, which can reduce the overall complexity and memory usage. In each image
scan, the two-pass method can be applied on each line instead of the entire image to reduce
the equivalence table size.

3.1. Forward Scan

For a better understanding of the forward scan, pixel groups can be mathematically
defined as:

N f (x, y) = {P(x − 1, y − 1), P(x, y − 1), P(x + 1, y − 1), P(x − 1, y)} (9)

which is the pixel’s neighbors group N f (x, y) for the forward mask as shown in Figure 4.

𝑃(𝑥 − 1,𝑦 − 1)

𝑃(𝑥 − 1,𝑦)

𝑃(𝑥 ,𝑦 − 1)

𝑃(𝑥 , y)

𝑃(𝑥 + 1,𝑦 − 1)

Figure 4. Shape of included pixels around the target pixel P(x,y) of the forward mask.

Neighbor groups where each pixel has the same value

A f (x, y) = {P(m, n) | P(m, n) ∈ N f (x, y), P(m, n) = P(x, y)} (10)

Pixel’s neighbors label value AL f (x, y)

AL f (x, y) = {L(m, n) | P(m, n) ∈ A f (x, y)} (11)

Label_min which represent the minimum value of the labels AL f (x, y)

Label_min(x, y) = min(AL f (x, y)) (12)

Label_max which is the maximum value of the labels AL f (x, y)

Label_max(x, y) = max(AL f (x, y)) (13)

Pixel’s neighbor equivalence label

ALE f (x, y) = (Label_min(x, y), Label_max(x, y)) (14)

Equivalence table group

EQ_TABLE f =
⋃

1≤x,y≤N
ALE f (x, y) (15)

In the forward scan, the image is scanned in a forward direction with a forward mask.
Every single line is scanned two times. The first pass is for labeling the line pixels according
to the neighbor’s value, and the second pass is for relabeling these pixels according to the

Electronics 2024, 13, 1221 7 of 19

equivalent table’s values. The current pixel is given a label value according to the flowchart
in Figure 5.

Figure 5. Pixel’s labeling flowchart.

3.2. Backward Scan

For the backward scan, it is actually the same group’s definitions, but the pixel’s
neighbors group is different as in Figure 6. Since the scanning is in the opposite direction,
the pixel’s neighbors group can be defined as:

Nb(x, y) = {P(x − 1, y + 1), P(x, y + 1), P(x + 1, y + 1), P(x − 1, y)} (16)

𝑃(𝑥 − 1,𝑦)

𝑃(𝑥 + 1,𝑦 − 1) 𝑃(𝑥 ,𝑦 − 1)

𝑃(𝑥 , y)

𝑃(𝑥 − 1,𝑦 − 1)

Figure 6. Shape of included pixels around target pixel P(x,y) of the backward mask.

The image is scanned in a backward direction with a backward mask. The purpose
of the backward scan is to avoid the problem with the U shapes in the image. This scan
also has two passes for every line; the first pass will label the pixels according to the pixel’s
neighbors label value, and the second pass will relabel the pixels according to the value in
the stored equivalent table.

The input of this scan are labels between 2 and 128, and during this pass, a label value
will be given to every pixel according to the flowchart in Figure 5. Also, as previously
mentioned in the second pass, the input is the labels from the previous pass, which are
numbers between 2 and 128. During this pass, the pixel’s values are relabeled according to
values stored in the equivalent table. So Label(x, y) will take Labe_min(x, y) value. Then,
move to the second pixel until l all the objects in the image are labeled [35,36]. Due to the
restricted size of the memory, the maximum number of conflicts and the labels have to be
limited. For this reason, the number of labels was limited to 128.

Electronics 2024, 13, 1221 8 of 19

3.3. Centroid Calculation

Considering a digital image I(x, y) of size M×N, do the 2D-Moments are defined as:

mij =
M−1

∑
x=0

N−1

∑
y=0

xiyj I(x, y) (17)

The corresponding centroids are defined as:

x =
m10

m00
; y =

m01

m00
(18)

where m10 and m01 are the first moments. The centroid’s coordinates can be written as
(Cx,Cy) for simplicity:

Cx =
1
n

n

∑
i=1

xi; Cy =
1
n

n

∑
i=1

yi (19)

and n here is the area of the object, which is represented by the number of pixels that belong
to the object, xi and yi are the coordinates of pixels that belong to the object [28,37].

After CCL, the ordering of the spots to their corresponding lenslets is required. Dif-
ferent methods have been presented for centroid ordering, like straight line centroid
ordering [38] and spiral method for sorting spots [39]. Based on the ordered spots, the
slopes and actuator values for an AO system can be calculated using the well-established
methods described in refs. [5,40].

4. Hardware Implementation

This method was implemented on Zybo z20 FPGA board of type xc7z020clg40 from
Digilent Pullman USA manufacturer to test and validate the architecture. A resolution
of 800 × 600 (Super Video Graphics Array SVGA) is used in this system, and the output
of the system is read using the UART (Universal Asynchronous Receiver-Transmitter)
communication port. Figure 7 shows the general system architecture, where every process
is an input for the next one. After reading the image, it should be transferred into a
grayscale image and then to a binary image after applying the threshold. After that, the
noises are removed, and the holes are filled out using morphological operations. The
result is then fed to the unit to determine the connected objects in the image, and then the
centroids of the objects can be calculated, and the result can be displayed on the monitor
using HDMI protocol.

HDMI timing
generator

Image memory

Grayscaling &
thresholding

Generic spatial
filter

Connected component
labeling Centroids

generating

RGB to TMDS

RGB Multiplexer

Data output

Figure 7. Image-processing structure in the FPGA.

Electronics 2024, 13, 1221 9 of 19

4.1. Image Memory

The image memory is a ROM (Read Only Memory) that contains the image of spots.
The original image is of size 800 × 600. To reduce the total size of the system memories,
images of size 512 × 512 are used instead. It starts by cropping the original image around
the center to a size of 512 × 512 since all the spots are located around the image center and
are included in that region of interest.

4.2. Grayscaling and Threshold Unit

The input of this unit is RGB data, which is represented as 24 bits. The most significant
bit (MSB) 8-bits are dedicated to red color, the least significant bit (LSB) 8-bits are dedicated
to blue color, and the middle 8-bits are dedicated to green color. The output of this unit
is a binary image. After reading the RGB image, each pixel of the image is converted to
grayscale using the following equation:

I = (0.299 × R) + (0.587 × G) + (0.114 × B) (20)

where R, G and B are values of red, green, and blue channels. The coefficients in Equation (19)
are floating-point numbers, and doing the mathematical operations with floating points
can slow down the process because it can take several clock cycles to calculate. To avoid
the usage of floating-point numbers, all the coefficients in Equation (19) are multiplied
by 255 and then divided by 28 − 1. This division is equivalent to a right shift by 8 bits.
Equation (19) can be written as follows:

I ≈ ((76 × R) + (149 × G) + (29 × B))/(28 − 1) (21)

Using this equation, the result can be obtained in one clock cycle. After that, the
grayscale image is converted to a binary image using a threshold, which can be described
as follows:

binary_image =

{
1, if I > T
0, else

The threshold is determined after testing some samples of spot images and is set to
a value of 129. Then, the threshold can be calculated dynamically after generating the
histogram of the grayscale image according to the Otsu method [29]. The output of this
unit is an input for the generic spatial filter unit.

4.3. Generic Spatial Filter Unit

This unit applies image erosion and dilation operators in order to remove noise, in
addition to the isolation of individual elements and joining of disparate elements. The
output of this unit is f ilter_out signal , which contains binary pixels. As a sliding window
of size N × N is scanned over the image, the sum of pixels within this window is calculated
and compared to a threshold value M. If the sum is superior to M, the window is considered
to be fully white; otherwise, it is considered to be fully black. The f ilter_in signal is applied
to a shift register of size 512. At the beginning of each new line in the image, the parallel
output of the shift register is fed to the line1 register, which in return is fed to the line2
register and so on until the lineN register. Therefore, the line1, line2, . . . , lineN registers
contain the last N lines of the scanned image. A sum unit reads these lines within a sliding
window of size N, and a comparator compares the sum result to a threshold M to determine
the value of the binary output f ilter_out. The size of the sliding window is 4 × 4, and the
threshold is set to 5. For this reason, the previous 4 lines are registered in an array of size 4
× 512. The current sliding window moves with the current input pixel, but it is applied on
the previous 4 lines (Figure 8a,b). The filter output is a function of the total sum of input
binary pixels in the sliding window, which can be described as follows:

Electronics 2024, 13, 1221 10 of 19

f ilter_out =

{
1, if sum of binary input pixels > M
0, else

The output pixel of the filter is generated with a delay of 4 lines and 2 pixels relative
to the input pixel.

(a) (b)

Figure 8. Applying the spatial filter in a 4 × 4 mask. In (a), the mask considered the pixel as an
object’s pixel, while as a noise in (b) because the number of pixels in the mask is less than 5.

4.4. Connected Components Labeling Unit

This unit applies a forward and backward-connected components labeling algorithm
in order to associate each connected spot with a unique label. The image is first scanned in
a forward direction with a forward mask and then in a backward direction with a backward
mask, as shown in Figure 9.

Figure 9. CCL with the forward scan (blue arrow), where the scan starts from the top left to the
bottom right and the backward mask from the bottom right to the top left (red arrow).

During each scanning pass, the algorithm makes two passes over each line. The first
pass merges, and the second pass relabels. In the first line pass, a new label is created if
no point of the mask is connected with the center point; otherwise, the label of the central
point of the mask is set to the smallest label of the points of the mask connected with the
center point. In this pass, temporary labels are assigned, and equivalences are recorded. In
the second line pass, temporary labels are replaced with the smallest label of its equivalence
class. The relabel signal, which works with 120 MHz clock frequency, is active during the
second pass, which comes directly after the first pass and after a new line.

Electronics 2024, 13, 1221 11 of 19

The architecture of this unit is the first processing element (PE1) that handles the
forward labeling, and a second processing element (PE2) handles the backward labeling.
RAM image 1 and RAM image 2 are two random access memories (RAM) used in a flip-flop
manner. When writing the result of PE1 in one of the two memories, PE2 is reading the
previous result from the other memory. PE1 result is always written in a forward direction,
and PE2 is reading the previous result in a backward direction. as shown in Figure 10.

PE1 PE2
1

0

RAM image 1

RAM image 2

Figure 10. Connected component labeling unit. The image is held by two RAMs and a multiplexer to
decide which RAM should be read when the other is full.

To read and write in a backward direction, the following address signal is generated
as follows:

BIAddr = (218 − 1)− imageAddr (22)

where (218 − 1) corresponds to the last cell address in a memory of size 512 × 512.
PE1 and PE2 have the same architecture, which consists of line memory (RAM line),

memory for the equivalent table (RAM equivalent), and memory for the line in the reversed
image (RAM line 1). The line 1 memory is filled by the minimum labeling values L_min
during the first pass (merge) and is read in the second pass (relabel) to find the equivalence
classes. The RAM equivalent stores the equivalent classes. During the merge pass, each
L_min is saved at the address of L_max, constructing a relation between L_min and L_max,
which are connected to the same central point. In the second pass, the labels are updated
using the values that have been stored in the RAM equivalent to generate new labeling
values. Also, the reading and writing addresses are generated in these units.

Once the foreground pixel is detected and the neighbors pixels are zeros, then the
current pixel takes a new label value (here L_min = L_max = new_value), and the mask
continues to the next pixel and so on. When the mask values are not empty, then the values
that are already stored in L_min and L_max are compared, and the smallest value L_min is
attributed to the L_max (which is 2 here). The first pass is clocked by pixel_clk = 40 MHz
(800 × 600 resolution). In this pass, the L_min and L_max labels are generated for each
current pixel (mask central point). The first pass is applied to each line of 512 pixels in size.
The second pass is applied on the same line, but processing must end before a new line
comes. For this reason, the second pass proceeds at a higher frequency, which is clocked by
relabel_clk = 3 × 40 MHz = 120 MHz, and this guarantees that the second pass finishes
before the arrival of a new line.

4.5. Generate Centroid Unit

This unit generates x and y coordinates of the spot center labeled i, where each
connected spot has a unique label. X and Y coordinates are calculated using Equation (19),
and they are updated at the end of each frame. In this system, 100 units are used to generate
a centroid, and each unit has a unique parameter i, which corresponds to a given label i.
Therefore, each unit works separately to generate its own centroids. Another extra unit is
the draw cursor unit, which is responsible for drawing a cursor around the centroids. Since
the purpose of this unit is to draw a cursor surrounding the center of every labeled object, it
has to be applied for every spot in the image. Another unit is responsible for generating the
timing signals for the HDMI protocol, and an extra one is responsible for the UART protocol.

Electronics 2024, 13, 1221 12 of 19

The last unit is RGB2TMDS, which generates four TMDS (Transition-minimized Differential
Signaling) differential pairs, which are the inputs of a standard HDMI connector.

The first pair corresponds to the TMDS clock, which is the pixel clock (40 MHz). The
other three pairs transmit the red, green, and blue pixels. HDMI requires that we scramble
the data and add 2 bits per color lane, so we have 10 bits instead of 8 per color, and the link
ends up transporting 30 bits per pixel. The scrambling and extra bits are needed by the
HDMI receiver to properly synchronize to and acquire each lane [41,42]. Ten-bit values
have to be sent for every pixel clock period. Therefore, we need a serial clock of period
40 MHz × 5 = 200 MHz working on the rising and falling edge. This clock is generated by
the timing clocks generator unit. The encoding method is 8 b/10 b encoding. A two-stage
process converts an input of 8-bit into a 10-bit code with particular desirable properties.
In the first stage, the first bit is un-transformed, and each subsequent bit is either XOR
or XNOR transformed against the previous bit. The encoder chooses between XOR and
XNOR by determining which will result in the fewest transitions. The ninth bit encodes the
operation that was used. In the second stage, the first eight bits are optionally inverted to
even out the balance of ones and zeros and, therefore, the sustained average DC level; the
tenth bit encodes whether this inversion took place.

5. Simulation

To implement a particular application, one needs to define an algorithm model and an
architecture model on which the algorithm will be implemented. The algorithm model is
the reference model that needs to be validated after description and simulation in a software
design environment. Then, the architecture model can be described and simulated in a
hardware design environment. The architecture model simulation results can be compared
to the reference model simulation results in order to verify the transition from algorithm to
architecture. MATLAB R2014a version was used to describe and simulate the connected
component labeling algorithm. VIVADO 2020.2 version was used to describe and simulate
the architecture model. After reading the image in MATLAB, we were able to detect the
threshold value after applying the Otsu method [29] of 0.5059, which corresponds to a
129 grayscale value.

After determining the threshold value, the binary image is also read in MATLAB to
apply forward and backward labeling. Two MATLAB functions are defined to store the
results of both the forward and backward scan in a labeling matrix. A simulation was made
in MATLAB to emulate the hardware version of the scanning procedure with the purpose
of testing the main labeling functions. This was achieved by representing the PE1 and PE2
as MATLAB functions and two matrices as RAM image 1 and RAM image 2 to store the
results of the labeling. The flowchart of the labeling in the forward direction is shown in
Figure 11.

The forward labeling procedure will check the pixel’s value and will give the right
label to the pixel according to neighbors labels. The result will be stored in the equivalence
table.

The backward labeling inputs are labels read from the matrix. It checks each pixel´s
label, assigns the proper label according to neighbor labels, and then stores the results in
the equivalence table. The pixels are relabeled on the basis of the equivalent table values
after reading each line.

Figure 12a shows the simulation result after applying the forward labeling, and
Figure 12b shows the result of applying the forward labeling followed by a backward
labeling. Figure 12a shows that one object is in different colors, which means that the same
object has been labeled twice. The backward labeling solves this problem as shown in
Figure 12b. This algorithm took 0.652 s labeling time to finish.

Electronics 2024, 13, 1221 13 of 19

Start

Binary Image

if (i,j)=1

if (the Label of four neighbors)=0
NoYes

if(just one neigbor)!=0
YesNo

I(i,j)=neighbor_Label
if(the label of rest neighbors)!=0

I(i,j)=New_Label

Label_min = min (neighbors_Label)

Store in equinalent table

I(i,j)=Label_min

No Yes

YesNo

Figure 11. Forward labeling flowchart.

20 40 60 80 100 120

10

20

30

40

50

60

70
20 40 60 80 100 120

10

20

30

40

50

60

70

(a) (b)

Figure 12. Forward labeling where the letter “E” has been detected as three objects with the letter “S”
as two objects as in (a). Using forward and backward labeling, the letters have been detected as one
object each in (b).

6. Implementation Results and Discussion

Figure 13 illustrates the system timing diagram. During the frame reading, the frame
is converted to a grayscale image and then to a binary image after applying a threshold. A
spatial filter is then applied using a sliding window of size 4 × 4, which requires saving
the last 4 lines, and therefore, a delay of 4 lines is introduced in this phase.

The output of the filter is subject to the forward labeling scan, and the result is written
in a memory, which is scanned in the next frame to apply backward labeling. Therefore,
a latency of one frame is required since the backward scan cannot start until the forward
scan is finished.

Electronics 2024, 13, 1221 14 of 19

Figure 13. System timing diagram with a 4-line time delay and one frame delay for backward scan.

The output of the backward labeling is applied to the next unit, which generates
centroids. Each unit calculates the x and y coordinates of a given connected spot. Later in
the next frame, cursors are drawn around the centroids using draw cursor units. A latency
of one frame is required to generate centroids, and a latency of two frames is required
to draw cursors. Figure 14a shows the result of the forward labeling after applying the
selected threshold, which was fixed to 129, and Figure 14b shows the result of the backward
labeling after applying the spatial filter which looks like an inverted image due to the
backward scan.

(a) (b)

Figure 14. Forward labeling (a) and backward labeling (b) of the processed image and (b) is inverted
due to the backward scan where the last processed pixel from (a) is the first processing pixel for (b).

The architecture is generically described in VHDL and Verilog by defining some
parameters that allow us to implement changes easily without committing errors. The
defined parameters are:

• NB_SPOTS: The maximum number of detected spots. This parameter is used to
generate centroid and cursor units several times equal to NB_SPOTS.

• LABEL_WIDTH: The number of bits considered to present the labels. Therefore, the
number of labels is between 2 and 2NB_SPOTS −1 This parameter is used to define the
labeling memories, such as the equivalence table. The case here is LABEL_WIDTH = 7,
which means that the number of labels is between 2 and 128.

• AREA_WIDTH: The number of bits considered to present the area of a spot. The
parameter is used in the centroid unit to define adder widths. AREA_WIDTH = 8,
which means that a spot can contain 256 pixels.

The system is implemented on an FPGA of type xc7z020clg400 (Zybo board). The
system works in real time with a latency of 2 frames, and the centroids are generated on the
fly without any delay. Table 1 and Figure 15 shows the resources utilization for NB_SPOTS
= 50 and NB_SPOTS = 100. The system consumes a great number of block RAM (BRAM),
lookup tables (LUTs), and flip-flops (FF).

Electronics 2024, 13, 1221 15 of 19

Table 1. Resources Utilization.

FPGA Zybo LUT FF BRAM

NB_SPOTS = 100 41,908 8925 114
NB_SPOTS = 50 22,806 6034 114

Resources utilisation for NB_SPOTS=50 Resources utilisation for NB_SPOTS=100

Figure 15. Resources utilization decreased when dealing with 50 spots and 100 spots; LUT are lookup
tables, FF is the flip flop, and BRAM is the block RAM.

The memory is essentially consumed for buffering purposes between the PE1 unit
(forward labeling) and the PE2 unit (backward labeling). The number of LUTs is related to
NB_SPOTS, in other words, to the centroid unit, which is repeated NB_SPOTS times. The
centroid unit contains two large dividers used for calculating centroid coordinates.

The number of LUTs can be reduced by saving ∑n
i=1 xi and ∑n

i=1 yi for each label in
3 memories and re-using one centroid unit for calculating all centroids coordinates. In
return, this solution requires additional memories and can introduce a delay in centroids
calculation.

Another weakness in this architecture can be noticed in the use of a second clock in the
relabeling process of each line. A second faster clock has been used to re-read the line for
relabeling reasons before the arrival of a new line. Using 2 line-memories allows relabeling
to be done on a previous line using the same clock.

The memory usage can be reduced by only using forward labeling, which means frame
buffering is not necessary. However, this solution requires that each spot has a circular
shape with no missing parts, which in turn requires input images with good conditions and
a good threshold value. Table 2 and Figure 16 show the resource utilization for 100 spots
(NB_SPOTS = 100) with a noticeable reduction in memory blocks. Figure 17 shows the final
result (left) and FPGA utilization when only using forward labeling.

Table 2. Resources utilization of forward labeling only.

FPGA Zybo LUT FF BRAM

NB_SPOTS = 100 48,909 9261 1

Figure 16. Forward labeling timing diagram and new centroids are generated for each new frame.

Electronics 2024, 13, 1221 16 of 19

Forward Labeling Result Resource Utilization for NB_SPOTS=100

Figure 17. Forward labeling result, the figure on the left shows the cursor surrounded by the spots
centroids while the figure on the right shows the FPGA utilization.

The required time for executing the complete series of steps in the experimental imple-
mentation is listed in Table 3. An image of size 512 × 512 is processed by the implemented
architecture (forward labeling) at the clock of 40 MHz. The case here is that the centroid
calculations are done in parallel, which requires more LUTs but no additional delays. The
timing diagram for the implementation (forward labeling) is also shown in Figure 18 that
the centroids calculation of the detected objects (black rectangles, for example) is parallel
with the CCL.

By implementing the hybrid method, one can ensure better accuracy for spot detection
by adding one frame latency for the image reading and simultaneous centroid calculation.
When the turbulence is not so strong, the forward labeling could be enough by calculating
the centroids while reading the image. When turbulence conditions are strong (i.e., when
the Fried Parameter value is smaller than the lenslet size of SHWFS), the centroids may
split [12]. In this particular case, forward and backward labeling may be needed. As an
advantage, the method was implemented in a way that is easily configured for different
FPGAs.

Table 3. Required executing time.

Sequence Cycles clk (MHz)

read image 512 × 512 = 262,144 40
CCL 262,144 40

x and y for centroid of label i 512 40
division of centroid of label i 1 40

read image

CCL

for area 1
division 1

for area 2
division 2

for area NB_SPOTS division NB_SPOTS

Time in [ms]

1 2 3 4 5 6 7 8 9 ...

Figure 18. Implementation timing diagram where all the centroids are on the fly calculated after
detecting the spot.

Electronics 2024, 13, 1221 17 of 19

7. Conclusions

In this paper, we have implemented a real-time spot-detection system for the Shack–
Hartmann Wavefront Sensor on FPGA using a hybrid connected components labeling
architecture. Hybrid labeling combines forward and backward image labeling methods
with a two-pass method for line relabeling.

The proposed architecture runs in real time, and the calculation of spot centroids is
made on the fly. The centroids calculation in our method has been done in one clock cycle.
After the object detection while scanning the image, the centroid calculation unit will be
triggered in parallel and run with a 40 MHz FPGA clock signal, which means that after
the object is detected, it takes only 25 ns to calculate its centroid. Other methods, like in
ref. [43], run with a faster FPGA clock signal (100 MHz) and still take more than one clock
cycle to calculate the centroids. In contrast, this architecture consumed a great number of
memory blocks and LUTs. The number of LUTs is related to the maximum number of spots
that could be detected.

For the backward-forward labeling, a latency of one frame is required, consuming
81% of memory blocks. The memory consumption can be reduced to 1% when only using
forward labeling. This method is new because of the combination of two methods to
overcome the weakness of each one, the pixels conflict of the single-pass method, and the
memory usage of the two-pass method. On the other hand, the speed of the single-pass
method and the accuracy of object detection of the two-pass method should be used. Its
advantage is that when the objects are complicated and with sharp edges connected, it
will be more effective to use this method for object detection, and it will add a delay of
one frame as a disadvantage, but still, the calculation of the centroid is on the fly and
more robust when dealing with large spots displacement. The AO system provides real-
time data processing and parallel computing, which improves the overall measurement
speed by providing extra time to apply the correction. Future prospects will implement
the architecture on a bigger FPGA development kit so that memory usage will not be a
problem. Two extra units will be added as well. One is the data acquisition unit, which is
connected directly to the sensor, and the other is an automatic image threshold unit.

Author Contributions: Formal analysis, K.-P.D.; funding acquisition, A.T.; investigation, A.A.,
A.B. and K.-P.D.; methodology, A.A.; resources, A.A., A.B., D.H., P.K. and M.G.; software, A.A.;
supervision, A.B. and K.-P.D.; validation, A.A.; visualization, A.B.; writing—original draft, A.A.;
writing—review & editing, A.A., A.B., D.H., P.K., M.G., K.-P.D. and A.T. All authors have read and
agreed to the published version of the manuscript.

Funding: Bundesministerium für Wirtschaft und Klimaschutz.

Data Availability Statement: All data supporting this publication classified as confidential and
stored according to Fraunhofer IOF Handling Research Material and Data Procedure.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Tokunaga, A.T.; Jedicke, R. Chapter 39—New Generation Ground-Based Optical/Infrared Telescopes. In Encyclopedia of the Solar

System, 2nd ed.; McFadden, L.A., Weissman, P.R., Johnson, T.V., Eds.; Academic Press: San Diego, CA, USA, 2007; pp. 719–734.
[CrossRef]

2. Rigaut, F.; Van Dam, M. Simulating astronomical adaptive optics systems using yao. In Proceedings of the 3rd O4ELT Conference
Adaptive Optics for Extremely Large Telescopes, Florence, Italy, 26–31 May 2013.

3. Liu, M.; Dong, B. Efficient wavefront sensorless adaptive optics based on large dynamic crosstalk-free holographic modal
wavefront sensing. Opt. Express 2022, 30, 9088–9102. [CrossRef] [PubMed]

4. Zepp, A.; Gladysz, S.; Stein, K.; Osten, W. Simulation-based design optimization of the holographic wavefront sensor in
closed-loop adaptive optics. Light Adv. Manuf. 2022, 3, 384–399. [CrossRef]

5. Mauch, S.; Reger, J.; Reinlein, C.; Appelfelder, M.; Goy, M.; Beckert, E.; Tünnermann, A. FPGA-accelerated adaptive optics
wavefront control. In Proceedings of the MEMS Adaptive Optics VIII, San Francisco, CA, USA, 1–6 February 2014; Volume 8978,
p. 897802.

http://doi.org/10.1016/B978-012088589-3/50043-8
http://dx.doi.org/10.1364/OE.453176
http://www.ncbi.nlm.nih.gov/pubmed/35299345
http://dx.doi.org/10.37188/lam.2022.027

Electronics 2024, 13, 1221 18 of 19

6. Leonhard, N.; Berlich, R.; Minardi, S.; Barth, A.; Mauch, S.; Mocci, J.; Goy, M.; Appelfelder, M.; Beckert, E.; Reinlein, C. Real-
time adaptive optics testbed to investigate point-ahead angle in pre-compensation of Earth-to-GEO optical communication.
Opt. Express 2016, 24, 13157–13172. [CrossRef] [PubMed]

7. Brady, A.; Berlich, R.; Leonhard, N.; Kopf, T.; Böttner, P.; Eberhardt, R.; Reinlein, C. Experimental validation of phase-only
pre-compensation over 494 m free-space propagation. Opt. Lett. 2017, 42, 2679–2682. [CrossRef] [PubMed]

8. Brady, A.; Rössler, C.; Leonhard, N.; Gier, M.; Böttner, P.; Eberhardt, R.; Tünnermann, A.; Reinlein, C. Validation of pre-
compensation under point-ahead-angle in a 1 km free-space propagation experiment. Opt. Express 2019, 27, 17840–17850.
[CrossRef]

9. Goy, M.; Berlich, R.; Kržič, A.; Rieländer, D.; Kopf, T.; Sharma, S.; Steinlechner, F.O. High performance optical free-space links for
quantum communications. In Proceedings of the International Conference on Space Optics—ICSO, Online, 30 March–2 April 2021;
Volume 11852, pp. 213–221.

10. Kržič, A.; Sharma, S.; Spiess, C.; Chandrashekara, U.; Töpfer, S.; Sauer, G.; del Campo, L.; Kopf, T.; Petscharnig, S.; Grafenauer,
T.; et al. Metropolitan free-space quantum networks. arXiv 2022, arXiv:2205.12862.

11. Mauch, S.; Barth, A.; Reger, J.; Reinlein, C.; Appelfelder, M.; Beckert, E. FPGA-accelerated adaptive optics wavefront control part II.
In Proceedings of the Laser Resonators, Microresonators, and Beam Control XVII, San Francisco, CA, USA, 7–12 February 2015;
Volume 9343, p. 93430Y.

12. Kong, F.; Cegarra Polo, M.; Lambert, A. FPGA Implementation of Shack–Hartmann Wavefront Sensing Using Stream-Based
Center of Gravity Method for Centroid Estimation. Electronics 2023, 12, 1714. [CrossRef]

13. Mocci, J.; Busato, F.; Bombieri, N.; Bonora, S.; Muradore, R. Efficient implementation of the Shack–Hartmann centroid extraction
for edge computing. JOSA A 2020, 37, 1548–1556. [CrossRef] [PubMed]

14. Mompeán, J.; Aragón, J.L.; Prieto, P.M.; Artal, P. GPU-based processing of Hartmann–Shack images for accurate and high-speed
ocular wavefront sensing. Future Gener. Comput. Syst. 2019, 91, 177–190. [CrossRef]

15. Mocci, J.; Quintavalla, M.; Trestino, C.; Bonora, S.; Muradore, R. A multiplatform CPU-based architecture for cost-effective
adaptive optics systems. IEEE Trans. Ind. Inform. 2018, 14, 4431–4439. [CrossRef]

16. Li, Z.; Li, X. Centroid computation for Shack-Hartmann wavefront sensor in extreme situations based on artificial neural networks.
Opt. Express 2018, 26, 31675–31692. [CrossRef]

17. Hu, L.; Hu, S.; Gong, W.; Si, K. Learning-based Shack-Hartmann wavefront sensor for high-order aberration detection. Opt. Express
2019, 27, 33504–33517. [CrossRef]

18. Bovik, A.C. Handbook of Image and Video Processing; Academic Press: Cambridge, MA, USA, 2010.
19. Johnston, C.T.; Bailey, D.G. FPGA implementation of a single pass connected components algorithm. In Proceedings of the 4th

IEEE International Symposium on Electronic Design, Test and Applications (delta 2008), Hong Kong, China, 23–25 January 2008;
IEEE: Piscataway, NJ, USA, 2008; pp. 228–231.

20. Manohar, M.; Ramapriyan, H.K. Connected component labeling of binary images on a mesh connected massively parallel
processor. Comput. Vis. Graph. Image Process. 1989, 45, 133–149. [CrossRef]

21. Rosenfeld, A.; Pfaltz, J.L. Sequential operations in digital picture processing. J. ACM 1966, 13, 471–494. [CrossRef]
22. Lacassagne, L.; Zavidovique, B. Light speed labeling: Efficient connected component labeling on RISC architectures. J. Real-Time

Image Process. 2011, 6, 117–135. [CrossRef]
23. Jablonski, M.; Gorgon, M. Handel-C implementation of classical component labelling algorithm. In Proceedings of the

Euromicro Symposium on Digital System Design, Rennes, France, 31 August–3 September 2004; IEEE: Piscataway, NJ, USA, 2004;
pp. 387–393.

24. Alnuweiri, H.M.; Prasanna, V.K. Parallel architectures and algorithms for image component labeling. IEEE Comput. Archit. Lett.
1992, 14, 1014–1034.

25. Crookes, D.; Benkrid, K. FPGA implementation of image component labeling. In Proceedings of the Reconfigurable Technology:
FPGAs for Computing and Applications, International Society for Optics and Photonics, Boston, MA, USA, 19–22 September 1999;
Volume 3844, pp. 17–23.

26. Crookes, K.; Benkrid, A. An FPGA-Based Image Connected Component Labeller. In Proceedings of the 2003 International
Conference on Field Programmable Logic and Applications, Lisbon, Portugal, 1–3 September 2003; Volume 2778, pp. 1012–1015.

27. Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man, Cybern. 1979, 9, 62–66. [CrossRef]
28. Woods, R.; González, R. Algoritmos de Procesamiento de Imagen Satelitales con Transformada Hough. Rev. Vis. Electron. 2009,

5, 26–41.
29. Birchfield, S.T. Pixel-Based Image Processing Chapter 2. 2011. Available online: https://cecas.clemson.edu/~stb/ece847

/internal/cvbook/ch02_pixproc.pdf (accessed on 15 January 2024).
30. Vincent, L.; Soille, P. Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Trans. Pattern

Anal. Mach. Intell. 1991, 13, 583–598. [CrossRef]
31. Comaniciu, D.; Meer, P. Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2002,

24, 603–619. [CrossRef]
32. Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel

methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [CrossRef]

http://dx.doi.org/10.1364/OE.24.013157
http://www.ncbi.nlm.nih.gov/pubmed/27410333
http://dx.doi.org/10.1364/OL.42.002679
http://www.ncbi.nlm.nih.gov/pubmed/28708142
http://dx.doi.org/10.1364/OE.27.017840
http://dx.doi.org/10.3390/electronics12071714
http://dx.doi.org/10.1364/JOSAA.401376
http://www.ncbi.nlm.nih.gov/pubmed/33104604
http://dx.doi.org/10.1016/j.future.2018.09.010
http://dx.doi.org/10.1109/TII.2018.2799874
http://dx.doi.org/10.1364/OE.26.031675
http://dx.doi.org/10.1364/OE.27.033504
http://dx.doi.org/10.1016/0734-189X(89)90129-1
http://dx.doi.org/10.1145/321356.321357
http://dx.doi.org/10.1007/s11554-009-0134-0
http://dx.doi.org/10.1109/TSMC.1979.4310076
https://cecas.clemson.edu/~stb/ece847/internal/cvbook/ch02_pixproc.pdf
https://cecas.clemson.edu/~stb/ece847/internal/cvbook/ch02_pixproc.pdf
http://dx.doi.org/10.1109/34.87344
http://dx.doi.org/10.1109/34.1000236
http://dx.doi.org/10.1109/TPAMI.2012.120

Electronics 2024, 13, 1221 19 of 19

33. Rother, C.; Kolmogorov, V.; Blake, A. “GrabCut” interactive foreground extraction using iterated graph cuts. ACM Trans. Graph.
2004, 23, 309–314. [CrossRef]

34. AbuBaker, A.; Qahwaji, R.; Ipson, S.; Saleh, M. One scan connected component labeling technique. In Proceedings of the 2007
IEEE International Conference on Signal Processing and Communications, Dubai, United Arab Emirates, 24–27 November 2007;
IEEE: Piscataway, NJ, USA, 2007; pp. 1283–1286.

35. Schwenk, K.; Huber, F. Connected Component Labeling algorithm for very complex and high-resolution images on an FPGA
platform. In Proceedings of the High-Performance Computing in Remote Sensing V and International Society for Optics and
Photonics, Toulouse, France, 21–24 September 2015; Volume 9646, p. 964603.

36. Wu, K.; Otoo, E.; Suzuki, K. Optimizing two-pass connected-component labeling algorithms. Pattern Anal. Appl. 2009, 12, 117–135.
[CrossRef]

37. Döge, K.P. Videodetektion im Straßenverkehr: Signalmodelle und Analyseverfahren; Walter de Gruyter: Berlin, Germany, 2013.
38. Mauch, S.; Reger, J. Real-time spot detection and ordering for a Shack–Hartmann wavefront sensor with a low-cost FPGA.

IEEE Trans. Instrum. Meas. 2014, 63, 2379–2386. [CrossRef]
39. Mauch, S.; Reger, J. Real-time implementation of the spiral algorithm for Shack-Hartmann wavefront sensor pattern sorting on

an FPGA. Measurement 2016, 92, 63–69. [CrossRef]
40. Tyson, R.K.; Frazier, B.W. Principles of Adaptive Optics; CRC Press: Boca Raton, FL, USA, 2022.
41. Du, X.; Zhang, H.; Feng, J.; Xie, Q. A method of converting cameralink into hdmi based on fpga. In Proceedings of the 6th

International Conference on Optical, Photonic Engineering (icOPEN 2018) and International Society for Optics and Photonics,
Shanghai, China, 8–11 May 2018; Volume 10827, p. 1082716.

42. Manufacturer, H. HDMI (High-Definition Multimedia Interface). Available online: https://www.immagic.com/eLibrary/
ARCHIVES/GENERAL/WIKIPEDI/W120621H.pdf (accessed on 20 September 2023).

43. Thier, M.; Paris, R.; Thurner, T.; Schitter, G. Low-latency Shack–Hartmann wavefront sensor based on an industrial smart camera.
IEEE Trans. Instrum. Meas. 2012, 62, 1241–1249. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/1015706.1015720
http://dx.doi.org/10.1007/s10044-008-0109-y
http://dx.doi.org/10.1109/TIM.2014.2310616
http://dx.doi.org/10.1016/j.measurement.2016.06.004
https://www.immagic.com/eLibrary/ ARCHIVES/GENERAL/WIKIPEDI/W120621H.pdf
https://www.immagic.com/eLibrary/ ARCHIVES/GENERAL/WIKIPEDI/W120621H.pdf
http://dx.doi.org/10.1109/TIM.2012.2223333

	Introduction
	Image Processing
	Threshold
	Morphological Filters
	Connected Component Labeling Algorithms

	Hybrid Labeling Method
	Forward Scan
	Backward Scan
	Centroid Calculation

	Hardware Implementation
	Image Memory
	Grayscaling and Threshold Unit
	Generic Spatial Filter Unit
	Connected Components Labeling Unit
	Generate Centroid Unit

	Simulation
	Implementation Results and Discussion
	Conclusions
	References

