
Citation: Wu, J.; Du, H.; Chen, J.; Ren,

W. Solving Confirmation Time in

Sharded Blockchain with PFQN.

Electronics 2024, 13, 1220.

https://doi.org/10.3390/

electronics13071220

Academic Editor: Davide Patti

Received: 23 February 2024

Revised: 19 March 2024

Accepted: 22 March 2024

Published: 26 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Solving Confirmation Time in Sharded Blockchain with PFQN
Junting Wu 1,2, Haotian Du 3, Jin Chen 1,2 and Wei Ren 1,2,*

1 College of Computer and Information Science, Southwest University, Chongqing 400715, China
2 College of Software, Southwest University, Chongqing 400715, China
3 College of Economics and Management, Southwest University, Chongqing 400715, China
* Correspondence: oicq@swu.edu.cn

Abstract: Sharding shows great potential for extending the efficiency of blockchains. The current
challenge facing sharded blockchain technology lies in addressing the extended transaction confirma-
tion times caused by isolated states between shards and unbalanced transaction allocation strategies.
These factors contribute to an increase in cross-shard transactions and disproportionate shard work-
loads, ultimately resulting in indefinite confirmation delays for cross-shard transactions. A critical
priority for sharded blockchain systems is to conduct a comprehensive qualitative analysis to better
understand and mitigate the prolonged transaction confirmation times. We introduce a product-form
queue network (PFQN) model to address the transaction confirmation time problem in sharded
blockchains and incorporate a new confirmation queue to more accurately simulate the actual transac-
tion confirmation process in the blockchain. In addition, we provide a detailed quantitative analysis of
the relationship between the network load and consensus efficiency in sharded blockchains, offering a
meaningful perspective for achieving robustness and efficiency in sharded blockchains. This research
not only contributes to addressing the scalability issues in sharded blockchains but also offers a new
perspective for future research directions.

Keywords: blockchain sharding; transaction confirmation time; cross-shard transactions; product-form
queue network

1. Introduction
1.1. Research Background

Sharding is a promising approach for improving blockchain scalability by divid-
ing the network into smaller partitions, each processing a subset of transactions (TXs),
thereby enhancing transaction throughput. Sharded blockchains are constructed from
three paradigms: network sharding, transaction sharding, and state sharding [1]. Net-
work sharding forms the basis of other paradigms, creating partitions that handle distinct
TX sets according to the transaction sharding policy. State sharding aims to distribute
the blockchain’s states evenly across all shards. They therefore split the work related to
the network, computation, and storage across the blockchain systems. Currently, state
sharding remains mostly theoretical. Representative sharding solutions include Elastico [2],
Omniledger [3], RapidChain [4], and Monoxide [5], based on either Unspent Transaction
Output (UTXO) or account/balance transaction models.

As a state replication machine, a blockchain requires cross-shard transactions to unify
parts of the state across different state shards. Therefore, sharding technology has been
introduced as a method for cross-shard transactions. A cross-shard transaction refers to a
transaction (TX) involving accounts or UTXOs on multiple shards. Because cross-shard
transactions require verification of the correctness of the shard state being sent, they are
more complex and time-consuming than single-shard transactions. A study by Rapidchain
pointed out that, as the number of shards increases, almost all TXs become cross-shard [4].
Therefore, reducing the number and delay of cross-shard transactions is key to improving
the scalability of shard blockchains [6,7].

Electronics 2024, 13, 1220. https://doi.org/10.3390/electronics13071220 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13071220
https://doi.org/10.3390/electronics13071220
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13071220
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13071220?type=check_update&version=1

Electronics 2024, 13, 1220 2 of 21

Transaction confirmation is mainly completed by consensus within shards and cross-
shard consensus between shards. In sharded blockchains, transactions are first submitted
to the relevant shard. Each shard has its independent verification process and input, so
the transaction confirmation time varies depending on the shard’s consensus mechanism.
This paper discusses consensus mechanisms similar to Monoxide (Proof of Work, i.e., PoW,
relay for cross-shard transaction).

1.2. Related Works

Compared to the extensive research on sharded blockchains, the literature exploring
the application of queueing theory in analyzing blockchain characteristics is relatively
limited. Still, some inspiring lines of research can be found in the literature.

In terms of applying queueing theory to blockchains, ref. [8] took significant steps
forward. They used the GI/M/1 queue model with batch-service for single-chain system
analysis. This work helped point out what is important in how blockchain systems perform,
such as the average number of transactions and the duration of confirmation times. Then,
ref. [9] integrates machine learning with queueing theory to enhance the understanding
of confirmation times for transactions in single-chain systems. This research introduces a
novel machine learning methodology for sorting transactions and applies queueing theory
to assess delays.

In the context of PoW, ref. [10] established a model for sharded blockchains using
product-form network queue (PFQN) and derived the maximum throughput of the sharded
blockchain. Refs. [11,12] used an M/GB/1 queue model with batch service to analyze
the transaction confirmation time in the Bitcoin system. Table 1 below is a summary of
related work.

Table 1. Summary of Application Research of Queuing Theory in Blockchain Model Analysis.

Reference Methodology Focus Area Key Findings Contributions to the Field

[8] GI/M/1 queue with
batch-service

Transaction confirmation in
Single-chain systems

Developed a queueing theory
model for blockchain systems,

identifying average
transaction numbers and

confirmation times

Introduced an analytical
approach for blockchain

queueing systems

[9]

M/G/1 for delay
characterization, machine

learning for
transaction classification

Transaction confirmation in
Single-chain systems

Proposed a machine learning
framework for transaction
classification and queueing

theory for delays

Enhanced understanding of
blockchain delays and

transaction
confirmation dynamics

[10] PFQN Sharded
blockchain efficiency

Established a model for
sharded blockchain and

derived maximum throughput

Introduced a new model for
analyzing sharded

blockchain performance

[11,12] M/G/1 queue with
batch service

Transaction confirmation
time in Bitcoin

Analyzed transaction
confirmation time in Bitcoin

using queue theory

Applied queue theory to
understand Bitcoin’s
transaction dynamics

1.3. Motivation and Challenge

Brokerchain [13] found that, in Monoxide, 80,000 TXs are unevenly distributed across
shards, with most TXs being cross-shard as the number of shards increases. This can cause
infinite TX confirmation delays when the recipient account of a cross-shard TX is congested,
which violates the principle of timeliness as defined in [14], where it is expected that a cor-
rect process will eventually write a valid transaction to its ledger. Another motivation stems
from [10], who did not discuss the confirmation delay of a sharded blockchain. Moreover,
because the cross-shard technique is introduced to sharded blockchains, meaning hetero-
geneity between shards and traditional blockchains, the theory in [11,12] is not applicable to
sharded blockchains. This constitutes one of the motivations for our study, that these stud-
ies still lack a qualitative analysis of the confirmation time model for sharded blockchains.
Addressing this issue by quantitatively characterizing the transaction-confirmation process
is crucial for the scalability of sharded blockchains, a predominant direction in blockchain
development. In this paper, we present the following contributions:

Electronics 2024, 13, 1220 3 of 21

1. We decouple the input of the sharded blockchain through the product-form queue
network (PFQN) and solve the transactions at different stages to obtain the average ex-
pected value of the transaction confirmation time applicable to the sharded blockchain;

2. We additionally consider the transaction confirmation process on the main chain, and
add a new confirmation queue F after applying the PFQN model, making the model
more in line with the actual transaction confirmation situation in the blockchain;

3. We utilize the PFQN model to assess the impact of quantum-resistant technologies on
sharded blockchain transaction times, enhancing security against quantum threats.

We provide a brief explanation of why we choose to use the PFQN model and give
an overview of how the PFQN model operates in Section 2. Subsequently, in Section 3,
we introduce the PFQN model in detail and extend it to derive the transaction-processing
confirmation time in the system. Following that, we simulate the blockchain environment
and analyze the impact of various parameters on the transaction confirmation time.

2. Materials and Methods
2.1. Why PFQN?

The PFQN model is particularly suited for analyzing sharded blockchain systems for sev-
eral reasons, which relate directly to the characteristics and demands of sharded environments:

Product-form steady-state distribution: This characteristic means that the steady-state
probabilities of the network can be factored into a product of simpler functions, each
corresponding to a component of the network. In the context of sharded blockchains, this
property is highly beneficial because it simplifies the analysis of complex systems. Sharded
blockchains, by nature, are decentralized systems split into multiple shards (sub-networks),
each processing its own set of transactions independently. The product-form characteristic
allows for the analysis of each shard as an individual entity while still understanding its
part in the greater system’s dynamics.

Quasi-reversibility: Quasi-reversibility means that the queues within the network
maintain a certain independence in terms of arrivals and departures. In sharded blockchain
systems, this mirrors the operational independence of shards: each shard processes trans-
actions independently but contributes to the overall system’s throughput and latency.
Quasi-reversibility makes it easier to predict overall system performance based on individ-
ual shard behaviors.

Scalability and decomposition: PFQN allows for the scalable analysis of networks,
which aligns with the scalable nature of sharded blockchains. As blockchain systems grow
and add more shards, the complexity increases. The PFQN model supports this scalability
by enabling a modular approach to system analysis—each shard can be modeled separately
but within the same framework, aiding in understanding the overall impact of scalability
on the system performance.

Throughput and latency analysis: One of the key performance metrics for sharded
blockchains is throughput (the number of transactions processed per time unit) and latency
(the time taken for a transaction to be confirmed). The PFQN model is particularly adept at
analyzing these metrics due to its focus on network queues and service processes. By apply-
ing the PFQN model to sharded blockchains, researchers can derive maximum throughput
and expected latency, providing valuable insights into system efficiency and performance.

The PFQN model addresses the complexities of interacting shards more effectively
than the GI/M/1 or M/G/1 models, which focus on simpler, single-chain systems. The
PFQN model’s effectiveness for sharded blockchains, shown in studies like [10], stems from
its ability to model and analyze multiple shards, providing insights into throughput and
inter-shard dynamics beyond single-queue analysis.

2.2. Blockchain Setting

In this work, we adopt settings similar to those used in [7], treating the Nakamoto
consensus family as the intra-shard consensus mechanism, with cross-shard transactions
employing the relay method.

Electronics 2024, 13, 1220 4 of 21

In shard-based transaction methods like relay, the source shard verifies the input
account’s balance before the TX is relayed to the output shard. Relay checks cross-shard
transaction accounts in blocks against transaction amounts. The cross-shard verification is
termed the Availability Certificate (AC) (from Definition 32 in [15]). In our PFQN model,
AC will also be referred to as a cross-queue signal in the following text.

2.3. Model Assumption

Our PFQN model is composed of a series of nonlinear QNs, with each QN queue
consisting of a network queue and a consensus queue, as depicted in Figure 1. To ensure
the model’s accuracy and practicality, it is founded on a series of detailed assumptions that
concern key aspects such as the arrival process and service mechanisms.

Electronics 2024, 13, x FOR PEER REVIEW 4 of 22

throughput and expected latency, providing valuable insights into system efficiency and
performance.

The PFQN model addresses the complexities of interacting shards more effectively
than the GI/M/1 or M/G/1 models, which focus on simpler, single-chain systems. The
PFQN model’s effectiveness for sharded blockchains, shown in studies like [10], stems
from its ability to model and analyze multiple shards, providing insights into throughput
and inter-shard dynamics beyond single-queue analysis.

2.2. Blockchain Setting
In this work, we adopt settings similar to those used in [7], treating the Nakamoto

consensus family as the intra-shard consensus mechanism, with cross-shard transactions
employing the relay method.

In shard-based transaction methods like relay, the source shard verifies the input ac-
count’s balance before the TX is relayed to the output shard. Relay checks cross-shard
transaction accounts in blocks against transaction amounts. The cross-shard verification
is termed the Availability Certificate (AC) (from Definition 32 in [15]). In our PFQN model,
AC will also be referred to as a cross-queue signal in the following text.

2.3. Model Assumption
Our PFQN model is composed of a series of nonlinear QNs, with each QN queue

consisting of a network queue and a consensus queue, as depicted in Figure 1. To ensure
the model’s accuracy and practicality, it is founded on a series of detailed assumptions
that concern key aspects such as the arrival process and service mechanisms.

Figure 1. Queue network (QN) structure in PFQN. Figure 1. Queue network (QN) structure in PFQN.

In our model, we assume that the sizes of intra-shard transactions and ACs are
independent of the number of their destination shard fields. This assumption might even
be quite close to reality. In many instances, the bulk of a TX’s size is occupied by the private
signature of its sender, e.g., Bitcoin before the BIP1412 update [16]. It is reasonable to say
that each transaction produces the same size for the shard.

We assume that the arrival of transactions to the network queue follows an indepen-
dent Poisson process. In many existing projects, transactions are allocated to shards based
on the sender address [7,17]. As a result, transactions generated by accounts are uniformly
distributed across each shard. Given this, we assume that the rate at which transactions
arrive at each shard is equal.

Electronics 2024, 13, 1220 5 of 21

With transaction propagation and transaction arrival processes addressed, we can now
begin to consider the processing capacity of the network queue. For network queues, due to
their interaction with a shared medium in distributed systems, they are viewed as processor-
sharing (PS) queues. This approach captures parallel information verification, thus leading
to the classification of QNs as M/GB/1/PS queues. Similar assumptions have been adopted
in previous work [10], where, under this assumption, by employing symmetric service
rules (such as processor sharing in network queues), the quasi-reversibility (QR) property
of queues is maintained even with non-exponential service time distributions. Processor
sharing is a method of servicing multiple customers simultaneously by evenly distributing
the service capacity to all current jobs. This principle helps maintain QR by ensuring that
the service mechanism remains unbiased and symmetrical, allowing for the independence
between arrivals, services, and departures required by QR, despite deviations from the
exponential service time assumption.

After a transaction is processed by the network queue, each transaction routed by the
network queue will leave the network queue and join the miner’s mempool (consensus
queue) after verification. Considering the exponential service distribution characteristic of
PoW mining, as highlighted in previous studies [8,18,19], consensus queues are modeled
as M/M/1/FCFS. This modeling approach takes into account the stochastic nature of
mining and transaction processing within blockchain networks, where the service time
for transactions (i.e., the time taken to mine a block and validate transactions) follows an
exponential distribution.

The PFQN model’s structure is set as open, where customers can leave the QN after
receiving service and move to another QN, according to predefined routing rules. This
structural assumption allows us to observe and analyze the dynamics of customer flow
and the overall performance of the network.

2.4. Model and Derivation
2.4.1. PFQN Model

This discussion succinctly reviews how a transaction is confirmed in a sharded
blockchain. A user-signed transaction is sent to a queue in a particular shard network, and
the transaction is allocated to a specific shard based on certain rules (such as the hash value
of the transaction). Once assigned to the corresponding shard, it enters the transaction
pool maintained by the nodes of that shard, waiting to be selected for packaging into a
block. Miners or validators in the shard select transactions from the pool and package them
into a new block. This process occurs simultaneously across the network’s various shards.
Within each shard, a consensus mechanism is used to verify and confirm the new block.
If a transaction involves cross-shard operations, it is first confirmed in the source shard.
Subsequently, the transaction is relayed to other shards, and upon receiving the transaction
information, the target shard verifies, executes, and confirms it.

In our nonlinear queueing networks, there are three distinct types of entities: regular
customers, negative signals, and positive signals corresponding to customers.

There are five types of entity flows within the PFQN model, represented by c, c+k , s,
s+i , and c−i .

The customer ‘s’ represents a block component, and we refer to s here as a mini
block, which contains only one transaction. A mini-block can represent a confirmed
transaction and AC. We consider a mini-block instead of the block because mini-blocks can
simplify the process of the coordinator extracting transactions from the block to generate a
corresponding AC. The customer ‘c’ represents a transaction type customer, which in the
context of blockchains, is a regular user-signed transaction.

To simulate batch service in the blockchain, we introduce c−i and s+i . If a c−i arrives
at an empty queue, it will disappear. However, if a c−i arrives at a queue with n cus-
tomers, it will cause the customer at position l to leave with probability θ(l, n) such that
∑l=n

l=1 θ(l, n) = 1. A higher-positioned c will fill the vacancy, triggering another c−i at the

Electronics 2024, 13, 1220 6 of 21

output of the queue.s+i will trigger s+i−1 at the output of the queue while adding an s to
the queue.

c+k stands for cross-queue signal, and k in c+k is the phase of the current signal. Stages
are introduced to represent the number of shards yet to be visited by the signal. By replacing
the concept of target sets in signals with stages, the probabilistic routing method models
the process of cross-shard transaction transfer.

In Section 2, we have already made preliminary assumptions about the consensus
queue P and the network queue N, which explain the distribution followed by the arrival
and service processes of entities.

However, we still need to further explain the representation of arrival rates and
the interactions between entities across queues. It is important to note that the arrival
mechanism of entities in queue J is the same as that in its network queue N. Therefore, to
simplify the discussion, we will no longer differentiate between the entity arrival processes
in these two types of queues. In subsequent discussions, descriptions of entity arrivals may
be used interchangeably, aiming to refer to this common arrival mechanism.

To facilitate the distinction between user-initiated transactions and relay’s transaction
arrival rate, we use the symbol λJc to represent the arrival rate of new customers in queue
J. Here, λ is a subset of α, specifically denoting the rate at which new user-generated
transactions arrive at queue J, i.e., λJ. The arrival rates for queue J are represented by
α+

Jci
,α+

Jsi
, and α−

Jci
, respectively.

After leaving a queue, each entity can change its type through network routing. For
example, an entity u departing from queue J can become a v-type entity heading for queue J′

with probability rJu,J’
v
. The only requirement for routing probabilities is that ∑v ∑u rJu,J’

v
= 1.

Next, we will use two simple examples to explain how a regular customer (a user-
signed transaction) and a cross-queue signal (a cross-shard transaction) are processed and
transmitted within the PFQN. For the regular signal, we consider the propagation process
of a signal within a single queue. For cross-queue signals, we will explore how a signal
propagates through multiple queue systems, including the behavior of signals as they
transfer between different queues. By describing the transfer process of signals in a single
queue, we obtain an accurate description of the arrival rate of transactions to a queue
in PFQN.

The way a regular customer operates in a queue can represent the confirmation process
of a transaction within a shard. Customer c is first created by the client and propagated
through the network to the shard’s network queue N. Then, it enters N at rate λNc. N
distributes c to the nodes in the shard at a service rate µNc. Miners who have received c
will add c to their transaction memory pool, representing c entering the shard’s consensus
queue P. The service rate µNc represents the service rate of the transaction in the network.
Since µNc is large in reality, the service time can be negligible. Therefore, we simply see c
entering queue P at rate λPc.

When c reaches the end of P, as illustrated in Figure 1, the transaction first arrives
at queue N and then reaches queue P at an extremely fast service rate. At this point, c
is converted into signal s+b , represented by rPc,N+

sb
. The signal then triggers a new s in N,

transforming at the end of N to c−i . Here, i is equal to b-1 (0 ≤ i < b), where b represents
the size of a block, that is, the number of transactions a block can contain. When c−i
arrives at P, it will then cause the disappearance of the other c. Eventually, this process will
remove b transactions from the node’s mempool P, corresponding to a batch processing in
the blockchain.

To satisfy quasi-reversibility, queues that receive positive signals must emit additional
positive signals when empty. Therefore, we require network queues to emit positive
signals whenever they do not contain block components. Following the approach in [10]
to maintain the QR property, we adopt a probabilistic method to decide whether to retain
the departing positive signals or route them out of the network. By multiplying by the
reciprocal of a service rate, we adjust the emission rate of positive signals as the queue
transitions between different occupancy states, especially when the queue is empty. This

Electronics 2024, 13, 1220 7 of 21

adjustment compensates for the current load rate by emitting positive signals that maintain
the QR property.

To ensure QR, αN+
si

must be multiplied by ρ−1
Ns to adjust the rate of αP−

ci
. However, to

ensure that multiplying αN+
si

by ρ−1
Ns does not deviate from the original scenario, we need

to set rN+
si

,P−
ci−1

= ρNs and rN+
s1

,0 = 1 − ρNs. In terms of service processes, µN represents the

service rate of all entities in N. The utilization rate of queue N is represented as ρNs =
αNs
µN

,
which can be a combination of multiple category utilization rates. The total number of
negative signals generated remains constant, so the queue is not affected by this setting.

We can derive the flow equations of the queueing network. Due to the symmetric
architecture, we only need the equation of a shard, including the consensus queue and its
related network queue. For i = 1, . . . , b − 1, the flow equation of the consensus queue is:

αPc = ρNcµNc (1)

αP−
ci
= ρ−1

NsαN+
si+1

rN+
si+1

,P−
ci
= αN+

si+1
(2)

The cross-queue signals mainly include the generation and transfer stages. When the
positive signal s+i arrives at N, the newly generated s is converted into a k-stage cross-queue
signal c+k at a certain rate, routing it to other queues besides itself. Once c+k arrives and is
processed, it continues to be routed as c+k−1 to other queues, excluding itself, until k equals
0. We consider shards j and j′ as examples, where J′ ̸= J, J′, J ∈ M, M = {1, 2, . . ., M} is the set
of all queues representing shards. For k = 0, 1, . . ., U, and for all stages k > U, αJ+ck

= 0, U is

the maximum stage that the signal can reach. Given that the newly generated signal has the
potential to impact a maximum of either M-1 or dmax (indicating the maximum destination
that a signal can reach in one stage) shards, it follows that U = min(M-1, dmax)—1. We can
obtain the overall arrival rate of cross-shard signals at shard J in stage k:

α+
Jck

= λδ[k] + ∑
J’∈M,J’ ̸=J

(
Rk

J’,J + ρ−1
J’c

α+
J’ck+1

rJ’c+k+1,J+ck

)
(3)

The three terms in α+
Jck

represent the arrival rate of c+k in shard J, each term being one
of the sources of c+k : the first term is the client-generated c arriving at shard J at rate λδ[k]
by P transforming into c+k . δ [.] is the Dirac function defined on the discrete domain. The
second term is the signal c+k generated by completing the block component service in the
other shards J′. The third term is the signal c+k routed from shard J′ to shard J with rate
α+

J’ck+1
rJ’c+k+1,J+ck

. ρ−1
J’c

is multiplied to prevent the additional departure rate.

The discussion will now focus more closely on the second and third items. During the
generation stage, we need to consider the probability that a block component contains a
cross-shard signal, as well as the probability of a cross-shard signal being at a certain stage.
We need to differentiate between AC and TX in block component ‘s’ to identify which com-
ponents can be transformed into cross-queue signals. For this, we use sd, d = 1, . . . , dmax
to represent the ACs with d destinations. We define:

Rk
J’J = ρJ’sµJ’srJ’s,J+ck

= ρJ’sµJ’s

dmax

∑
d=k+1

Pro(s = sd)rJ’s,J+cd
(4)

as the rate at which the network queue of shard J′ generates block s at rate ρJ’sµJ’s and
transforms it into c+k to be routed to shard J at rate rJ’s,J+ck

. The term rJ’s,J+cd
represents the

probability of routing to other shards and ∑dmax
d=k+1 Pro(s = sd) represents the probability

that a block component contains a cross-queue signal of a certain stage. We know that all
customers in a network queue are comprised of both “customers” that are newly issued
by clients and “signals” routed from other shards. Hence, the probability that a block

Electronics 2024, 13, 1220 8 of 21

component generates a signal can be derived as the ratio of the rate of newly issued TXs
(i.e., λD[d]) to the rate of all other customers in the network queue, i.e., ∑U

k=0 α
+
Jck

. Thus:

Pr(s = sd) =
λD[d]

∑U
k=0 α+

Jck

To obtain the routing probabilities rJ’s,J+cd
, the first step is to find the number of distinct

shards other than the source shard that a multi-destination TX points to. The number of
sets with i (i ≤ d) distinct shards other than the originating shard in the destination fields
of sd is

N(|M|, d, i) =
(|M|−1)!

(|M|−i − 1)!

{
d + 1
i + 1

}
where {

d + 1
i + 1

}
=

1
(i + 1)!∑

i+1
p=0 (−1)p

(
i + 1

p

)
(i + 1 − p)d+1

is the second kind of Stirling number, which is the number of ways to partition a set of
d+1 objects into i+1 non-empty subsets. Therefore, routing probability rJ’s,J+cd

is obtained by

dividing N(M, d, i) by Md possible destination sets for sd.
Owing to the population dynamics within the target shards, aside from the source

shard, where the newly emerged signal may be directed, this necessitates the division
of ρNsµNs by |M|−1 . Given the symmetrical and identical nature of the queues within
M, ρJ’sµJ’s = ρJsµJs, it is true that ρJ’sµJ’s can be simplistically represented as ρJsµJs. By
incorporating these equations into Equation (4), we derive:

Rk
N =

ρNsµNs
|M|−1

λ

∑U
k=0 α+

Nck

dmax

∑
d=k+1

{
d + 1
k + 2

}
D[d]

∏k+1
z=1 (|M|−z)

|M|d
, k = 0, 1, ..., U (5)

During the transfer stage, consider c+i and α+
Jci

as the multi-stage positive signals and
their respective arrival rates, where i represents the stage. When a c+i enters the network
queue, it not only adds a class c customer to the queue but also the newly triggered signal
is routed as c+i−1. If the stage of the signal is 1, then the signal is routed as a regular class c
customer. Due to uniformly distributed routing probabilities, it can be routed to any of the
other M − 1 shards with equal probability.

ρ−1
J’c

α+
J’ck+1

rJ’c+k+1,c+k
= ρ−1

J’c
α+

J’ck+1

(
ρJ’c

M − 1

)
=

α+
J’ck+1

M − 1
, (6)

Due to the symmetric structure and flow of each shard, each shard equally hosts the
same rate of multi-destination TXs as the others. Hence, both rates in the summation of
Equation (3) are independent of their originating queues. Therefore, we can simply replace
the subscript J′ with J in α+

Jck+1
and rewrite it as α+

Nck+1
, then, we replace Equation (3) with

Equation (5) and obtain:

α+
Nck

= λδ[k] + (M − 1)Rk
N + α+

Nck+1
(7)

Electronics 2024, 13, 1220 9 of 21

where RNk is the rate at which the transactions are processed. Starting to solve (7) from
k = U down to k = 0, we can obtain the total input rate of combined-flow customers to a
network queue as λall

λall = ΣU
k=0α

+
Nck

=
ρP(1−ρb

P)
1−ρP

∗
µP

1+
U
∑

k=0
(k+1)∑dmax

d=k+1

{
d + 1
k + 2

}
D[d]

∏k+1
z=1 (M−z)

Md
(8)

2.4.2. Derivation of Transaction Confirmation Delay

Using the PFQN model, we decouple the input model of the sharded blockchain, and
we sum entities c in different stages to obtain the average expected value of transactions
applicable to the sharded blockchain. However, obtaining a description of a queue’s
transaction flow is not sufficient to determine the transaction confirmation time for a queue.
By utilizing the formula described in [12] for the confirmation time of transactions in a
single queue and combining it with the decoupled transaction entities, we have derived
the expected confirmation time required for a cross-shard transaction.

We defined the block generation time E(S) as the time interval between consecutive
block-confirmation time points. We also regard a block generation time as a service time.
Let Si denote the ith block generation time. Similar to numerous studies [11,12,20,21], we
consider the block generation time of PoW to follow an exponential distribution. Therefore,
we define the block generation time S as adhering to the exponential distribution, described
by the following formulation:

G(x) = 1 − efx,

It is assumed that the sequence {Si} consists of independent and identically distributed
(i.i.d.) random variables, each characterized by the distribution function G(x). Let g(x)
denote the probability density function of G(x). The mean block generation time E[S] is
given by

E[S] =
∫ ∞

0
xg(x)dx.

E[S] =
1
f

, E
[
S2
]
=

2
f2

Let ζ(x) denote the hazard rate of S, which is given by ζ(x) = g(x)
1−G(x) .

T denotes the transaction confirmation time, i.e., the time interval between when the user
issues a transaction and when a block containing the transaction is generated ([15] Definition 26).
Let Num(t) denote the number of entities c in P at time t, and X(t) denote the elapsed service time
at t. We attain Pn(x, t) = d

dxPr{Num(t) = n, X(t) ≤ x}, Pn(x) = lim
t→∞

Pn(x, t). Given Little’s

theorem, we know that the long-term average number of customers (E(N), or the expected
transaction volume) is equal to the long-term effective arrival rate (λ, or the speed at which
transactions arrive at the system) times the average waiting time of customers in the system
(E(T), or the transaction confirmation delay). The average transaction confirmation time can be
given by E[T] = E[N]

λ .
We next introduce the entity concept into an important formula ([12] Theorem 1) to

find the entity confirmation time.

E[T]e =
1

2λ2(b − λE[S])
∗ (9)

Electronics 2024, 13, 1220 10 of 21

(
b
∑

k=1
βk

[
b(b − 1) + {(b + 1)b − k(k − 1)}λE[S] + (b − k)λ2E

[
S2
]]

−λ
{

b(b − 1)− λ2E
[
S2
]}

)

βk =
∫ ∞

0 Pk(x)ζ(x)dx

βk represents the probability that P has k-1 entities during the entire system runtime.
This reveals the entities’ confirmation time when ΣU

k=0α
+
Nck

E[S] ≤ b, meaning that the
system is stable. In a system comprising M queues, each conforming to a quasi-reversible
M/M/1 queue model, the composite arrival process at an individual queue retains the
characteristics of a Poisson process. This holds under the condition that each customer,
upon service completion, has a probability r of being routed to any other queue in the
system, with each of these queues having an equal probability of 1

N−1 of receiving the
customer. Recall that an entity with k stage arrives at P according to a uniform Poisson
process with rate α+

Nck
across all queues. Therefore, we apply this theorem to a synthetic

flow queue P, with ΣU
k=0α

+
Nck

satisfying Poisson distribution.
However, applying (7) directly to (9) will only give the expected time E[T]e for a c+k to

be processed. Recall that our goal is to get the expected time for a TX, so this does not meet
our expectations. Knowing that E[T]e is the average expected time for c to complete the
service in queue P or the average expected time for c+k to accept the service and transform
into c+k−1, we can obtain the expected service time for a transaction to accept service in the
QN queue:

E[T]process = ΣU
k=0α

+
Nck

kE[T]e (10)

(10) reveals that new arrivals are multiplied by their numbers in the target fields. Since
it needs to be executed sequentially k times in different shards, according to the definition
of an eventual sharded blockchain in ([15] Definition 29), a transaction or block does not
confirm instantly, and several blocks at the end of a blockchain must be added to obtain
stable states. Therefore, E[T]process cannot represent the expected delay in transaction
confirmation, because the PFQN model was designed according to PoW consensus within
the shard and the cross-shard consensus relay method, so it should meet the definition
of an eventual sharded blockchain. Although the PFQN model is very applicable to an
eventual sharded blockchain, the model still needs to introduce a new queue to simulate
the confirmation time of transactions in the shard’s main chain.

We additionally considered the stabilizing process of transactions on the main chain
by adding a new confirmation queue F at the end of queue N which is more consistent
with the actual situation of transactions being confirmed on the blockchain. F is an M/M/1
queue, i.e., both arrival and service processes follow a Poisson distribution, as shown in
Figure 2. The arrival rate λF of queue F includes two entities, s+0 and s+1 from queue N. It is
obvious that λFs = µN+

s1
. The confirmation queue F processes block component s with a

service rate µF. The average processing and waiting time of the block component, which is
also the confirmation time of the transaction on the main chain, can be obtained through the
waiting time formula TF = 1

(µF–λF)
. Substituting λF = µN+

s1
= α+

Jc1
= λ+ ΣU

k=1(M − 1)Rk
J ,

we get

TF =
1

µF − λ− ΣU
k=1(M − 1)Rk

J
(11)

Using (10) and (11), the time from a transaction being issued to being fully confirmed,
E[T], can be calculated as

E[T] = E[T]process + TF = ΣU
k=0α

+
Nck

kE[T]e +
1

µF − λ− ΣU
k=1(M − 1)Rk

J

Electronics 2024, 13, 1220 11 of 21

Electronics 2024, 13, x FOR PEER REVIEW 11 of 22

Figure 2. Queue network structure with confirmation queue.

Using (10) and (11), the time from a transaction being issued to being fully confirmed,
E[T], can be calculated as E[T] = E[T]୮୰୭ୡୣୱୱ + T୊ = Σ୩ୀ଴୙ α୒ୡౡା kE[T]ୣ + 1μ୊ − λ − Σ୩ୀଵ୙ (M − 1)R୎୩

3. Results
We simulate the sharded blockchain as a PFQN queue. When pairs are in the station-

ary state, we analyze the impact of different variables on shard λ. To analyze λ, we need
to first obtain the initial values of different parameters, D(d), as the distribution law of the
transaction set Txsୢ. We give the following definition: D(d) = [Φଵ, … ,Φୢ, … ,Φୢ୫ୟ୶], 1 ൏ d ൏ dmax Φୢ = TxsୢTxs

Because of the need to carry out ∑ kΦ୩୩ୢୀଵ piecewise selection, it is equivalent to car-
rying out ∑ kΦ୩୩ୢୀଵ i.i.d. random experiments, and the number of times each piecewise is
selected is subject to binomial distribution Bin ቀ∑ kΦ୩୩ୢୀଵ , ଵ୑ቁ. According to the central
limit theorem, the binomial distribution can be approximated by a normal distribution
when the number of trials is large enough. In the Bitcoin and Ethereum marketplaces, we
know that the number of transactions is large enough, so we assume that D(d) is normally
distributed. The expectation of and variance in the binomial distribution gives us D(d)

Figure 2. Queue network structure with confirmation queue.

3. Results

We simulate the sharded blockchain as a PFQN queue. When pairs are in the stationary
state, we analyze the impact of different variables on shard λ. To analyze λ, we need to
first obtain the initial values of different parameters, D(d), as the distribution law of the
transaction set Txsd. We give the following definition:

D(d) = [Φ1, . . . , Φd, . . . , Φdmax], 1 < d < dmax
Φd = Txsd

Txs

Because of the need to carry out ∑d
k=1 kΦk piecewise selection, it is equivalent to

carrying out ∑d
k=1 kΦk i.i.d. random experiments, and the number of times each piecewise

is selected is subject to binomial distribution Bin
(

∑d
k=1 kΦk, 1

M

)
. According to the central

limit theorem, the binomial distribution can be approximated by a normal distribution
when the number of trials is large enough. In the Bitcoin and Ethereum marketplaces, we
know that the number of transactions is large enough, so we assume that D(d) is normally
distributed. The expectation of and variance in the binomial distribution gives us D(d)

obeying N (TXNUM
M ,

√(
TXNUM(M−1)

M2

)
). Here, we assume that dmax is a constant, and in

practical UTXO scenarios, each transaction usually involves a finite number of inputs and
outputs. For example, a standard Bitcoin transaction typically contains 2.26 UTXOs with a
small difference, possibly around 1. Ref. [22] draws this conclusion of basic facts of the ana-
lyzed UTXO set. We set the number of shards as five, the utilization rate ρp as 0.995, block
b as containing five transactions each time, and the maximum degree of the transaction
dmax as two.

Electronics 2024, 13, 1220 12 of 21

The following is the simulation of the sharded blockchain under the theory of the
PFQN confirmation model.

Figure 3 shows the effects of utilization rate (ρp) and transaction degree (dmax) on
arrival rate (λ). Figure 3a reveals an exponential increase in λ with ρp, highlighting capacity
near-saturation effects. Figure 3b depicts a decline in λ with increased dmax, stabilizing
beyond a certain complexity level, indicating an initial efficiency drop that plateaus.

Electronics 2024, 13, x FOR PEER REVIEW 12 of 22

obeying N (୘ଡ଼ొ౑౉୑ , ටቀ୘ଡ଼ొ౑౉(୑ିଵ)୑మ ቁ). Here, we assume that dmax is a constant, and in prac-

tical UTXO scenarios, each transaction usually involves a finite number of inputs and out-
puts. For example, a standard Bitcoin transaction typically contains 2.26 UTXOs with a
small difference, possibly around 1. Ref. [22] draws this conclusion of basic facts of the
analyzed UTXO set. We set the number of shards as five, the utilization rate ρp as 0.995,
block b as containing five transactions each time, and the maximum degree of the trans-
action dmax as two.

The following is the simulation of the sharded blockchain under the theory of the
PFQN confirmation model.

Figure 3 shows the effects of utilization rate (ρp) and transaction degree (dmax) on
arrival rate (λ). Figure 3a reveals an exponential increase in λ with ρp, highlighting capac-
ity near-saturation effects. Figure 3b depicts a decline in λ with increased dmax, stabiliz-
ing beyond a certain complexity level, indicating an initial efficiency drop that plateaus.

Figure 4 examines the impacts of shard count (M) and block size (b) on λ. Figure 4a
illustrates a significant decrease in λ with higher M, plateauing after reaching a certain
number of shards, suggesting initial efficiency gains that level off. Figure 4b demonstrates
a consistent increase in λ with larger b, indicating linear scalability with block size.

Figure 5 presents a surface plot of λ and expected service time E(S) against expected
confirmation time E(T), showing a steep increase in E(T) with higher λ, especially at low
E(S). This illustrates the critical balance between transaction processing capabilities and
load management for maintaining reasonable confirmation times in sharded blockchains.

(a) (b)

Figure 3. (a) Impact of ρp on arrival rate λ; (b) impact of transaction degree dmax on arrival rate λ.

(a) (b)

Figure 3. (a) Impact of ρp on arrival rate λ; (b) impact of transaction degree dmax on arrival rate λ.

Figure 4 examines the impacts of shard count (M) and block size (b) on λ. Figure 4a
illustrates a significant decrease in λ with higher M, plateauing after reaching a certain
number of shards, suggesting initial efficiency gains that level off. Figure 4b demonstrates
a consistent increase in λ with larger b, indicating linear scalability with block size.

Electronics 2024, 13, x FOR PEER REVIEW 12 of 22

obeying N (୘ଡ଼ొ౑౉୑ , ටቀ୘ଡ଼ొ౑౉(୑ିଵ)୑మ ቁ). Here, we assume that dmax is a constant, and in prac-

tical UTXO scenarios, each transaction usually involves a finite number of inputs and out-
puts. For example, a standard Bitcoin transaction typically contains 2.26 UTXOs with a
small difference, possibly around 1. Ref. [22] draws this conclusion of basic facts of the
analyzed UTXO set. We set the number of shards as five, the utilization rate ρp as 0.995,
block b as containing five transactions each time, and the maximum degree of the trans-
action dmax as two.

The following is the simulation of the sharded blockchain under the theory of the
PFQN confirmation model.

Figure 3 shows the effects of utilization rate (ρp) and transaction degree (dmax) on
arrival rate (λ). Figure 3a reveals an exponential increase in λ with ρp, highlighting capac-
ity near-saturation effects. Figure 3b depicts a decline in λ with increased dmax, stabiliz-
ing beyond a certain complexity level, indicating an initial efficiency drop that plateaus.

Figure 4 examines the impacts of shard count (M) and block size (b) on λ. Figure 4a
illustrates a significant decrease in λ with higher M, plateauing after reaching a certain
number of shards, suggesting initial efficiency gains that level off. Figure 4b demonstrates
a consistent increase in λ with larger b, indicating linear scalability with block size.

Figure 5 presents a surface plot of λ and expected service time E(S) against expected
confirmation time E(T), showing a steep increase in E(T) with higher λ, especially at low
E(S). This illustrates the critical balance between transaction processing capabilities and
load management for maintaining reasonable confirmation times in sharded blockchains.

(a) (b)

Figure 3. (a) Impact of ρp on arrival rate λ; (b) impact of transaction degree dmax on arrival rate λ.

(a) (b)

Figure 4. (a) impact of number of shards M on arrival rate λ; (b) impact of block size b on arrival rate λ.

Figure 5 presents a surface plot of λ and expected service time E(S) against expected
confirmation time E(T), showing a steep increase in E(T) with higher λ, especially at low
E(S). This illustrates the critical balance between transaction processing capabilities and
load management for maintaining reasonable confirmation times in sharded blockchains.

Electronics 2024, 13, 1220 13 of 21

Electronics 2024, 13, x FOR PEER REVIEW 13 of 22

Figure 4. (a) impact of number of shards M on arrival rate λ; (b) impact of block size b on arrival
rate λ.

Figure 5. Effect of λ and E(S) on E(T).

In our simulate experiment, we utilize BlockEmulator [23] to simulate the real trans-
action confirmation latency in sharded blockchain systems. This decision is based on
BlockEmulator’s sophisticated ability to replicate the complex operations and network
conditions of sharded blockchains accurately. Its detailed emulation of transaction pro-
cessing, consensus mechanisms, and inter-shard communication provides a realistic en-
vironment in which to measure and analyze TX confirmation latency. Additionally, its
capability to mimic real-world network scenarios, including packet transmission and
bandwidth constraints, ensures that our latency measurements reflect practical block-
chain conditions. This makes BlockEmulator an essential tool for our research, offering
valuable insights into optimizing the transaction efficiency and scalability in sharded
blockchain architectures.

In our study, we ensure that each shard queue remains stable, meaning that, for λall,
the expected service time E[S] is less than the arrival rate λ. Figure 6 illustrates the trans-
action latency in a simulated sharded blockchain environment under real transaction con-
ditions, with 100,000 Ethereum transactions injected at a constant rate. The simulations
were performed with different numbers of shards, specifically 2, 4, 50, and 100, while
maintaining the number of nodes within each shard at four. The figure compares the
transaction delays within the sharded blockchain with the expected delays across differ-
ent numbers of shards.

Figure 6. Theoretical model of PFQN and simulated data of block emulator.

Figure 5. Effect of λ and E(S) on E(T).

In our simulate experiment, we utilize BlockEmulator [23] to simulate the real trans-
action confirmation latency in sharded blockchain systems. This decision is based on
BlockEmulator’s sophisticated ability to replicate the complex operations and network con-
ditions of sharded blockchains accurately. Its detailed emulation of transaction processing,
consensus mechanisms, and inter-shard communication provides a realistic environment
in which to measure and analyze TX confirmation latency. Additionally, its capability
to mimic real-world network scenarios, including packet transmission and bandwidth
constraints, ensures that our latency measurements reflect practical blockchain conditions.
This makes BlockEmulator an essential tool for our research, offering valuable insights into
optimizing the transaction efficiency and scalability in sharded blockchain architectures.

In our study, we ensure that each shard queue remains stable, meaning that, for λall, the
expected service time E[S] is less than the arrival rate λ. Figure 6 illustrates the transaction
latency in a simulated sharded blockchain environment under real transaction conditions,
with 100,000 Ethereum transactions injected at a constant rate. The simulations were
performed with different numbers of shards, specifically 2, 4, 50, and 100, while maintaining
the number of nodes within each shard at four. The figure compares the transaction delays
within the sharded blockchain with the expected delays across different numbers of shards.

Electronics 2024, 13, x FOR PEER REVIEW 13 of 22

Figure 4. (a) impact of number of shards M on arrival rate λ; (b) impact of block size b on arrival
rate λ.

Figure 5. Effect of λ and E(S) on E(T).

In our simulate experiment, we utilize BlockEmulator [23] to simulate the real trans-
action confirmation latency in sharded blockchain systems. This decision is based on
BlockEmulator’s sophisticated ability to replicate the complex operations and network
conditions of sharded blockchains accurately. Its detailed emulation of transaction pro-
cessing, consensus mechanisms, and inter-shard communication provides a realistic en-
vironment in which to measure and analyze TX confirmation latency. Additionally, its
capability to mimic real-world network scenarios, including packet transmission and
bandwidth constraints, ensures that our latency measurements reflect practical block-
chain conditions. This makes BlockEmulator an essential tool for our research, offering
valuable insights into optimizing the transaction efficiency and scalability in sharded
blockchain architectures.

In our study, we ensure that each shard queue remains stable, meaning that, for λall,
the expected service time E[S] is less than the arrival rate λ. Figure 6 illustrates the trans-
action latency in a simulated sharded blockchain environment under real transaction con-
ditions, with 100,000 Ethereum transactions injected at a constant rate. The simulations
were performed with different numbers of shards, specifically 2, 4, 50, and 100, while
maintaining the number of nodes within each shard at four. The figure compares the
transaction delays within the sharded blockchain with the expected delays across differ-
ent numbers of shards.

Figure 6. Theoretical model of PFQN and simulated data of block emulator. Figure 6. Theoretical model of PFQN and simulated data of block emulator.

Figure 6 illustrates how E(T) varies with shard size, with both simulation results and a
theoretical model displayed. As shard size increases, E(T) follows a rising trend, indicating
longer confirmation times with larger shards.

Electronics 2024, 13, 1220 14 of 21

4. Discussion
4.1. PFQN and Sharded Blockchain Simulation

In the exploration of sharded blockchain systems, our study identifies critical param-
eters influencing the system throughput λ and overall performance. Notably, Figure 3a
elucidates the positive relationship between the participation rate ρp and system through-
put λ, signifying that enhanced participation in the blockchain network correlates with
increased throughput.

Conversely, Figure 3b presents a contrasting scenario where an increase in the number
of shards involved in a transaction inversely affects the system throughput. This decline is
attributable to the augmented coordination costs inherent in managing multiple shards.

Further complications arise as delineated in Figure 4a, where augmenting the number
of resources or shards correspondingly diminishes the λ attainable by a single shard. This
decrement underscores the dilutive effect of resource distribution across an expanded set
of shards, implying the importance of resource allocation efficiency. Conversely, Figure 4b
illustrates a logarithmic increase in the system throughput λ as the transaction size (b)
processed per consensus round is amplified. This suggests that, while larger transactions
impose more significant processing demands, their integration into consensus rounds
significantly boosts throughput.

Our investigation extends to the system performance metrics, E(T) and E(S), as de-
picted in Figure 5. An increase in the system performance index λ exhibits a concomitant
rise in E(T), indicating a positive correlation between the system throughput and the ex-
pected time for transaction processing or consensus attainment. This positive association
may stem from the enhanced complexities or delays engendered by elevated transaction
rates or consensus challenges as throughput escalates.

Similarly, the correlation between E(S) and transaction confirmation time illuminates
the impact of block production timelines on the transaction latency. An elongation in block
generation duration necessitates that transactions endure extended confirmation periods,
awaiting the endorsement of succeeding blocks. Therefore, optimizing both the λ and E(S)
emerges as paramount in facilitating rapid transaction confirmation.

Nevertheless, Figure 6 unveils discrepancies potentially ascribable to the transaction
allocation process within the sharded architecture. The deviations observed could emanate
from the challenges inherent in replicating an idealized uniform arrival flow and constant
service rate within a dynamic, real-world environment. In summation, our findings ad-
vocate for a balanced approach to sharded blockchain design, where the imperative to
optimize the throughput and security is counterbalanced by the necessities of efficient
resource utilization and strategic transaction-size management.

4.2. Security Analysis

In our research, we focus on the transaction latency of sharded blockchains, in particu-
lar simulating the transaction confirmation process through the PFQN model. The PFQN
model, as a tool for analyzing the transaction confirmation process, could theoretically
be used to evaluate scenarios that contain quantum resistance mechanisms. Assuming
that quantum-resistant digital signature and encryption algorithms are implemented in a
sharded blockchain, we can use the PFQN model to simulate and quantify the potential
impact of these quantum-resistant measures on transaction confirmation times.

4.2.1. Prior Research on Quantum-Safe Blockchain

With the advancement of quantum computing, there are increasing challenges to the
security of blockchain technology, particularly the vulnerability of traditional blockchains
to quantum algorithms. Consequently, we have integrated various research findings into
model modules to study the transaction confirmation time of the PFQN model in the
context of quantum computing.

Existing studies [24] have ensured security through three main aspects: data, trans-
mission, and verification. Specifically, qBitcoin utilizes quantum transmission technology,

Electronics 2024, 13, 1220 15 of 21

employing quantum teleportation for currency transmission. This ensures that once the
currency is sent, the sender cannot retain the original currency data, effectively preventing
double-spending issues. Furthermore, qBitcoin employs quantum digital signatures to
verify transactions, requiring other participants to validate the signatures, thus maintaining
compatibility with the principles of peer-to-peer (P2P) cash systems. In terms of data
transmission, qBitcoin uses the Quantum Key Distribution (QKD) protocol to share private
keys with the receiver.

Regarding data transmission and verification, ref. [25] utilized quantum one-way
functions based on the Quantum State Computational Distinguishability (QSCD) problem
to design quantum asymmetric encryption algorithms, ensuring the security of the ver-
ification process. This method effectively prevents eavesdropping, forgery, denial, and
interception attacks. Additionally, witness nodes selected through the DPoSB (Delegated
Proof of Stake based on node behavior and Borda count) mechanism are responsible for
verifying transaction signatures. Ref. [26] also analyzed two lattice-based post-quantum
encryption schemes.

4.2.2. Attack Models and Assumptions

Assuming that an adversary possesses a super quantum computer with over
1000 error-corrected qubits and low decoherence times, it could feasibly compute 1012 true
random numbers per second using Grover and Shor algorithms, surpassing the current
classical methods.

In the context of quantum computers, the security of blockchains is under a double
threat [27,28]. On the one hand, the acceleration of Grover’s algorithm [29] regarding the
search problem may cause some operations in the blockchain network to occur faster than
expected. On the other hand, Shor’s algorithm [30] threatens potential damage to the
traditional encryption method, which may lead to the security of the private key no longer
being guaranteed. We demonstrate security in the malicious attacker model in Table 2,
according to the Shor and Grover algorithms.

Table 2. Attack Scheme.

Attack Type Affected Blockchain Component Attack Purpose Means of Attack

Block Replacement Attack Blockchain Historical Records To replace the existing blockchain
rewrite historical records.

Using Grover’s algorithm to
calculate nonces

Signature Forgery Attack Transaction and
Message Signatures

To tamper with or
forge transactions

Using Shor’s algorithm to break
public key encryption systems

First, we discuss the utilization of the Grover algorithm for executing a single block
replacement attack within Bitcoin. As mentioned, for Bitcoin, the Grover algorithm reduces
the number of attempts required to find a valid block from 264 to about 232.

In such an attack scenario, we assume there is a quantum computer capable of exe-
cuting one trillion (1012) attempts per second. Theoretically, this machine could complete
232 attempts per second. Therefore, under ideal conditions, it could find a Bitcoin block in
0.0043 s. If this quantum computer is used to execute a block replacement attack, it could
replace six blocks in 0.0258 s. Once the length of the attacker’s private chain exceeds the
official chain, the network’s nodes will accept this private chain according to the principle of
the longest chain, resulting in the original blockchain being overwritten. This would allow
attackers to rewrite transaction history, potentially leading to double-spending attacks.

For an ongoing transaction ‘c’, if it is included in the block replaced by the attackers,
this transaction might disappear from the blockchain because the attackers may not include
it in their reconstructed blockchain. This means a transaction might never be confirmed
due to the attack. Meanwhile, since the attacked shard transaction becomes invalid, all
transactions involving this cross-shard might fail to be completed.

Existing strategies to counter this attack involve adjusting the difficulty level to
make it hard for quantum computers to compute, introducing problems due to com-

Electronics 2024, 13, 1220 16 of 21

putational power imbalance. Another strategy is to adopt a reputation model, introducing
a penalty mechanism which promptly replaces block producers when a block replacement
attack occurs, punishing malicious nodes. Regardless, the solutions include improve-
ments to the consensus mechanism and adjustments to the difficulty, modifying the block
generation mechanism.

For the signature forgery attack, we focus on the verification of the protocol, rather
than the whole protocol covering transmission, data processing, and verification. The
reason for this is that the transport and data processing steps are heavily dependent on
the specific protocol code and data format, and their complexity is beyond the scope of
this article. On the contrary, the verification link covers the integrated application of
cryptographic algorithms and is the core of blockchain security under a signature forgery
attack. In this study, the encryption algorithms adopted in the verification phase will be
explored in detail, and in particular, their computational complexity against signature
forgery attacks will be evaluated as a basis for measuring their security metrics. With this
focus, we provide a methodology for assessing the overall security of a system without
delving into the specific details of the protocol.

We discuss, in this section, the following two post-quantum encryption algorithms
integrated into the PFQN model.

We first measure the security performance of the blockchain by the computational
complexity of the encryption algorithm and reflect it in the expected transaction time. We
use the National Institute of Standards and Technology (NIST) security levels to measure
how hard an encryption algorithm is to break. The NIST is rigorously working to analyze,
test, and validate post-quantum algorithms and is expected to release a draft standard by
2023. We can see the encryption difficulty corresponding to different NIST levels in Table 3.

Table 3. NIST level.

NIST Level Encryption Standard

1 AES 128
2 SHA3-256
3 AES192
4 SHA3-384
5 AES256

We then refer to the NIST level of post-quantum encryption algorithms in [31,32] as
shown in Table 4.

Table 4. Cryptographic algorithm and corresponding difficulty.

Algorithm Category Cryptographic
Algorithm

Private Key Length
(bytes)

Public Key Length
(bytes) NIST Level Approximate Probability

of Compromise

Post-quantum
encryption algorithm

CYSTAL-Dilithium3 1952 4000 3 2−192

FALCON 1793 2305 5 2−256

Classic RSA 3072 3072 1 2−128

ECDSA 256 512 1 2−128

Theorem A2 (proof provided in the Appendix A) is proposed for the analysis of the
security lower bound. In the theorem, the parameter h relates to the safety parameter
of the encryption algorithm, representing the probability that the encryption algorithm
can be successfully attacked through signature forgery. |Pi| represents the total length
of transactions processed by the ith shard, with the expected confirmation time denoted
as E[T], recalling that U denotes the maximum number of shards a single transaction
can involve.

Then, we map the security coefficient h to the computational complexity of the encryp-
tion algorithm and analyze the security of the PFQN model under the same configuration.
We define security as the expected number of rounds a shard blockchain system can

Electronics 2024, 13, 1220 17 of 21

safely process transactions before the first occurrence of a security vulnerability or unsafe
transaction caused by quantum computational capabilities, in the face of attacks based on
Shor’s algorithm.

In the context of quantum computing, to ensure the PFQN model maintains the same
security standards as Bitcoin, ε, representing the likelihood of a transaction’s successful
execution with cryptographic protection, is set to 2−128. Furthermore, h is defined as the
requisite number of computations a quantum computer must perform on the encryption
algorithm. This adjustment aligns with the security parameters necessary for safeguarding
transactions within sharded blockchain systems against the computational capabilities
of quantum computing. Then, we can use Theorem A2 to calculate the expected upper
bound of the total number of secure transactions for the PFQN model integrated with the
encryption algorithm under the NIST framework for shard blockchains. Finally, assuming
that the service rate µp of the consensus queue P is linearly related to the performance of
the encryption algorithm [32] (see Table 5), from Formula (8), it is known that λall is also
linearly related to µp. We can calculate the expected total time for all transactions in the
shard blockchain under the guarantee of security.

Table 5. Security bounds and performance of cryptographic algorithms.

Signatures/s Verifications/s Max Safe Transactions Expected Encryption
Time per Transaction

CYSTAL-Dilithium3 6506.33 17,561.33 ≈ 221

U 0.000154
FALCON 1446.52 9782.67 ≈ 285

U 0.000691

In the context of quantum attacks, these expected upper bounds signify the maximum
number of transactions that can theoretically be executed safely. Taking into account the
time for each transaction, we can infer that, within these security limits, a system using the
CRYSTAL-Dilithium3 algorithm could process a large number of transactions and blocks
very rapidly. However, due to its lower upper limit, if it is to be used in a shard blockchain,
stronger security parameters must be employed to enhance the algorithm’s resistance to
quantum attacks, thereby increasing the upper limit of secure transactions. This approach
may sacrifice some performance, as stronger security parameters typically result in larger
signature sizes and longer processing times. Conversely, the FALCON algorithm has a
longer processing time for individual transactions, and its optimization goals should focus
on improving algorithm performance. Recall that, from Figure 5, as µ decreases, E(S) causes
E(T) to increase exponentially.

5. Conclusions

In this paper, we introduce the PFQN model to solve confirmation latency in sharded
blockchains. Our analysis highlights the interplay between the network load, consensus
efficiency, and security in sharded blockchains, providing insights for enhancing their
robustness and efficiency. This work not only addresses scalability but also paves the way
for future research, with plans to test our model in various scenarios.

Author Contributions: J.W.: Conceptualization, Methodology, Prototype Development, and
Writing—Original Draft Preparation. W.R.: Methodology, Writing—Review and Editing, and Super-
vision. H.D.: Methodology, Writing—Review and Editing, and Supervision. J.C.: Writing—Review
and Editing. All authors have read and agreed to the published version of the manuscript.

Funding: This paper is funded in part by the National Natural Science Foundation of China (62032019,
61732019, 61672435), and the Capacity Development Grant of Southwest University (SWU116007).

Data Availability Statement: Most data is contained within the article. All the data are available on
request due to restrictions, e.g., privacy or ethics.

Electronics 2024, 13, 1220 18 of 21

Acknowledgments: The authors are grateful to the RISE Laboratory at Southwest University for their
support and contributions to this work.

Conflicts of Interest: The authors declare no conflicts of interest.

Nomenclature

Parameter Description
M Set of queues
λ Customer input rate per shard
d Total number of destination fields in a TX
D[d] The probability distribution for ‘d’
b Maximum number of TXs allowed in a block
c Regular customer
c+k K stages cross-shard signal
s Block components
αJe The arrival rate of customer type e to queue J
α+

Jsi
The arrival rate of positive signal s+i to queue J

α+
Jci

The arrival rate of cross-shard positive signal c+i to queue J
U Maximum stage achievable for signal c+i
Rk

J’J
The service completion rate for a receipt in network queue J′ leading to a stage
k signal c+k for network queue J

µJe Service rate for customer type e in a standard queue J
ρJe The utilization factor incurred by customer type e on a typical queue J

Appendix A

Before we begin our proof, we need to introduce the definition of blockchain security
by referring to previous research [15,33]. In order to prevent readers from confusing the
related concepts in the PFQN model, it is necessary here to prove security with a new set
of symbols.

Beginning with the identification of key parameters in the security definition: µ

represents the ratio of honest blocks in the shard chain, and k is identified as the safety
coefficient in the state machine replication protocol.

Definition A1 (A Secure Sharding Blockchain). Let (A, Z) be an adversary and environment
pair w.r.t. a sharding consensus protocol Π. Tinitial denotes the time for a sharding blockchain proto-
col to start up, including the production of genesis blocks and initial committees. Tliveness denotes
the transaction confirmation delay parameter, i.e., the time required to commit a transaction. We
say Π is secure w.r.t. (A, Z) with parameters Tinitial , Tliveness if the following properties hold with
an overwhelming probability:

Definition A2 (Consistency). Consistency includes the following two properties:

Common prefix inside a shard: For any two honest nodes i, j ∈ shardS where S ∈ [1, M],
node i outputs LOGi to Z at time t, and node j outputs LOGj to Z at time t’, it holds that
either LOGi ≤ LOGj or LOGj ≤ LOGi.

No conflict between shards: For any two honest nodes i ∈ shards, j ∈ shards’ where
s, s’ ∈ [1, m] and s ̸= s’, node i outputs LOGi to Z at time t, and node j outputs LOGj to Z
at time t’. For any transaction tx1 ∈ LOGi and tx2 ∈ LOGj where tx1 ̸= tx2, it holds that
tx1 and tx2 do not conflict with each other, i.e., there is no input that belongs to tx1 and
tx2 simultaneously.

¬
((

tx1 ∈ LOGi ∧ tx2 /∈ LOGj
)
∨
(
tx1 /∈ LOGi ∧ tx2 ∈ LOGj

))

Electronics 2024, 13, 1220 19 of 21

Definition A3 (Liveness). For any honest node from any shard, if it receives a transaction TX at
timet0 ≥ Tinitial from Z , then at timet0 + Tliveness, TX must be accepted or rejected.

Definition A4 (Persistence). Parameterized by k ∈ N(“depth” parameter), if in a certain round
an honest party reports a shard that contains a transaction TX in a block at least k blocks away from
the end of the shard’s ledger (such transaction will be called “stable”), then whenever TX is reported
by any honest party it will be in the same position in the shard’s ledger.

Assumption A1. In the following discussion, the consensus protocol in each shard has been proved
to be secure, i.e., it meets the definition of A Secure Sharding Blockchain (see Appendix A for a
detailed definition).

Assumption A2. We assume that each shard in the blockchain network maintains a majority of
honest nodes, i.e., a proportion for each shard.

For the basic assumptions of the security analysis, we propose:

Lemma A1. Without cross-shard TX, every shard can achieve security.

Proof of Lemma A1. Based on Assumptions A1 and A2, each shard has honest majority
of nodes. The security aspects of Persistence, Liveness, and Consistency depend on the
parameters µ, network condition, and k, which has been satisfied by Assumption A1. Even
if Qi is large, it will not affect the network condition. The safety coefficient k is met due to
µ = 1 − a ([4] Theorem 1) and by the consensus algorithm within the shard. Based on our
assumption that invalid relay transactions will not affect other shards, each shard can run
independently, thus ensuring its security. □

Theorem A1. Even in the worst case, as long as PiU < 1
h is satisfied, persistency and liveness can

be guaranteed with a very high probability.

Proof of Theorem A1. Persistency depends on two factors: the probability that stable
transactions become invalid and the probability that confirmed cross-shard transactions
are revoked. These two factors only depend on the common prefix property of the shard
consensus mechanism. Based on Definition A2, the blockchain protocol has been proof
atomic for cross-shard TX that invalidating relay TX will not affect other shards, thus
satisfying the common prefix property. It is assumed that the common prefix is satisfied
with a probability of 1 − p (overwhelmingly in the “depth” security parameter k). The
p value is a very small probability value under a normal operating blockchain protocol.
We know that there may be less than U shards involved in a transaction. Therefore, the
probability that a single cross-shard transaction is valid is bigger than (1 − p)U. Here, we
assume that U is a constant, and in practical scenarios, each transaction typically involves
a limited number of inputs and outputs, or UTXOs. Consequently, we can regard U as a
constant. In the worst case, all transactions in Pi are cross-shard transactions, which follow
the binomial distribution B

(∣∣∣Pi

∣∣∣, (1 − p)U
)

; we can get the probability that all transactions

in Pi(t) are valid: Prob(x =|Pi|)= (1 − p)|Pi|U. To find 1 − Prob(x = Pi) < ε, consider its
Taylor expansion:

(
1 − x)n = 1 − nx + n(n−1)

2 x2 − . . .

(1 − p)PiU ≈ 1 − PiUp +
PiU(PiU − 1)

2
p2

Then the probability that the transaction is invalidated is:

1 − Prob(x = Pi) ≈ PiUp − PiU(PiU − 1)
2

p2 +
PiU(PiU − 1)(PiU − 2)

6
p3

Electronics 2024, 13, 1220 20 of 21

Consider the following inequality:

PiUp − PiU(PiU − 1)
2

p2 +
PiU(PiU − 1)(PiU − 2)

6
p3 < ϵ

where p satisfies the condition 0 < p < hϵ, c is a known positive constant, and hϵ is the
probability of error that the blockchain protocol can tolerate. Our goal is to determine an
upper bound on n such that the above inequality holds for all p and ϵ values that satisfy
the given conditions.

By substituting p = hϵ and simplifying, we get:

PiUhϵ− PiU(PiU − 1)
2

(hϵ)2 +
PiU(PiU − 1)(PiU − 2)

6
(hϵ)3 < ϵ

Moreover, ϵ is a positive number that can take any value close to zero. we can conclude
the upper bound: PiU < 1

h .
Therefore, to ensure that the above inequality holds for all p and ϵ values that meet

the conditions, PiU must be less than 1
Uh . From the above corollary, we can know that

persistency is satisfied. Similarly, liveness is satisfied within each shard. Moreover, this
means that cross-shard transactions also satisfy liveness. Specifically, as long as the chain
quality and chain growth are ensured within each shard, both active and relay transactions
will eventually be included in the shard transaction ledger. □

Theorem A2. As long as the cross-shard protocol of the verified sharded blockchain protocol satisfies
atomicity and PiU < 1

h , f or ∀i ∈ M, then the blockchain protocol satisfies consistency

Proof of Theorem A2. It is known that, if the cross-shard protocol satisfies atomicity, then
the adversary cannot validate two conflicting transactions across different shards. When
PiU < 1

h , the liveness and persistence of all shards can be guaranteed by Theorem A1, and
a cross-shard transaction is “stable” with probability 1 − pU when all associated shards are
accepted. Therefore, the adversary cannot revert the chain of a shard and double-spend an
input of the cross-shard transaction because consistency holds with high probability, given
persistence holds with high probability. □

References
1. Zheng, P.; Xu, Q.; Zheng, Z.; Zhou, Z.; Yan, Y.; Zhang, H. Meepo: Sharded Consortium Blockchain. In Proceedings of the 2021

IEEE 37th International Conference on Data Engineering (ICDE), Chania, Greece, 19–22 April 2021; pp. 1847–1852. [CrossRef]
2. Luu, L.; Narayanan, V.; Zheng, C.; Baweja, K.; Gilbert, S.; Saxena, P. A Secure Sharding Protocol For Open Blockchains. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS ′16), Vienna, Austria,
24–28 October 2016; ACM: New York, NY, USA, 2016; pp. 17–30. [CrossRef]

3. Kokoris-Kogias, E.; Jovanovic, P.; Gasser, L.; Gailly, N.; Syta, E.; Ford, B. OmniLedger: A Secure, Scale-Out, Decentralized
Ledger via Sharding. In Proceedings of the 2018 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA,
20–24 May 2018; pp. 583–598.

4. Zamani, M.; Movahedi, M.; Raykova, M. RapidChain: Scaling Blockchain via Full Sharding. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security (CCS ′18), Toronto, ON, Canada, 15–19 October 2018; ACM:
New York, NY, USA, 2018; pp. 931–948. [CrossRef]

5. Wang, J.; Wang, H. Monoxide: Scale out blockchains with asynchronous consensus zones. In Proceedings of the 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 19), Boston, MA, USA, 26–28 February 2019; pp. 95–112.

6. Okanami, N.; Nakamura, R.; Nishide, T. Load balancing for sharded blockchains. In Financial Cryptography and Data Security;
Springer International Publishing: Cham, Switzerland, 2020; pp. 512–524. [CrossRef]

7. Zhang, Y.; Pan, S.; Yu, J. TxAllo: Dynamic Transaction Allocation in Sharded Blockchain Systems. arXiv 2022, arXiv:2212.11584. [CrossRef]
8. Li, Q.L.; Ma, J.Y.; Chang, Y.X. Blockchain queue theory. In Computational Data and Social Networks: 7th International Conference, CSoNet

2018, Shanghai, China, 18–20 December 2018, Proceedings 7; Springer International Publishing: Cham, Switzerland, 2018; pp. 25–40.
9. Ricci, S.; Ferreira, E.; Menasche, D.S.; Ziviani, A.; Souza, J.E.; Vieira, A.B. Learning blockchain delays: A queueing theory approach.

ACM SIGMETRICS Perform. Eval. Rev. 2019, 46, 122–125. [CrossRef]
10. Soltani, P.; Ashtiani, F. Technical Report: Analytical Modeling and Throughput Computation of Blockchain Sharding. arXiv 2022,

arXiv:2210.04599.

https://doi.org/10.1109/ICDE51399.2021.00165
https://doi.org/10.1145/2976749.2978389
https://doi.org/10.1145/3243734.3243853
https://doi.org/10.1007/978-3-030-54455-3_36
https://doi.org/10.48550/arXiv.2212.11584
https://doi.org/10.1145/3308897.3308952

Electronics 2024, 13, 1220 21 of 21

11. Kawase, Y.; Kasahara, S. Transaction-Confirmation Time for Bitcoin: A Queueing Analytical Approach to Blockchain Mechanism.
In Queueing Theory and Network Applications; QTNA 2017, Lecture Notes in Computer Science; Yue, W., Li, Q.L., Jin, S., Ma, Z.,
Eds.; Springer: Cham, Switzerland, 2017; Volume 10591. [CrossRef]

12. Kasahara, S.; Kawahara, J. Effect of Bitcoin fee on transaction-confirmation process. arXiv 2016, arXiv:1604.00103. [CrossRef]
13. Huang, H.; Peng, X.; Zhan, J.; Zhang, S.; Lin, Y.; Zheng, Z.; Guo, S. BrokerChain: A cross-shard blockchain protocol for

account/balance-based state sharding. In Proceedings of the IEEE INFOCOM, London, UK, 2–5 May 2022.
14. Bano, S.; Sonnino, A.; Al-Bassam, M.; Azouvi, S.; McCorry, P.; Meiklejohn, S.; Danezis, G. SoK: Consensus in the age of blockchains.

In Proceedings of the 1st ACM Conference on Advances in Financial Technologies, Zurich, Switzerland, 21–23 October 2019;
ACM: New York, NY, USA, 2019; pp. 183–198.

15. Liu, Y.; Liu, J.; Salles, M.A.V.; Zhang, Z.; Li, T.; Hu, B.; Henglein, F.; Lu, R. Building blocks of sharding blockchain systems:
Concepts, approaches, and open problems. Comput. Sci. Rev. 2022, 46, 100513. [CrossRef]

16. Segregated Witness (Consensus Layer). 2022. Available online: https://github.com/bitcoin/bips/blob/master/bip-0141
.mediawiki (accessed on 30 August 2023).

17. QuarkChain Development Team. Address, Shard Key, Chain Id, Shard Id. In QuarkChain Pyquarkchain Documentation; GitHub:
San Francisco, CA, USA, 2024; Available online: https://github.com/QuarkChain/pyquarkchain/wiki/Address,-Shard-Key,
-Chain-Id,-Shard-Id (accessed on 23 January 2024).

18. Kawase, Y.; Kasahara, S. A batch-service queueing system with general input and its application to analysis of mining process for
bitcoin blockchain. In Proceedings of the IEEE International Conference on Internet of Things (iThings), IEEE Green Computing
and Communications (GreenCom), IEEE Cyber, Physical and Social Computing (CPSCom), IEEE Smart Data (SmartData), Halifax,
NS, Canada, 30 July–3 August 2018; pp. 1440–1447.

19. Shi, L.; Wang, T.; Li, J.; Zhang, S.; Guo, S. Pooling is not Favorable: Decentralize Mining Power of PoW Blockchain Using
Age-of-Work. IEEE Trans. Cloud Comput. 2023, 11, 2756–2769. [CrossRef]

20. Narayanan, A.; Bonneau, J.; Felten, E. Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction; Princeton University
Press: Princeton, NJ, USA, 2016.

21. Elrond, A. Highly Scalable Public Blockchain via Adaptive State Sharding and Secure Proof of Stake. Whitepaper. 2019. Available online:
https://www.chainwhy.com/upload/default/20190705/75d146eec7c85680f34461a0fe8a621b.pdf (accessed on 30 January 2024).

22. Delgado-Segura, S.; Pérez-Solà, C.; Navarro-Arribas, G.; Herrera-Joancomartí, J. Analysis of the Bitcoin UTXO Set. In Financial
Cryptography and Data Security; FC 2018, Lecture Notes in Computer Science; Zohar, A., Eyal, I., Teague, V., Clark, J., Bracciali, A.,
Pintore, F., Sala, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; Volume 10958. [CrossRef]

23. Huang, H.; Ye, G.; Chen, Q.; Yin, Z.; Luo, X.; Lin, J.; Li, T.; Yang, Q.; Zheng, Z. BlockEmulator: An Emulator Enabling to Test
Blockchain Sharding Protocols. arXiv 2023, arXiv:2311.03612.

24. Ikeda, K. qBitcoin: A Peer-to-Peer Quantum Cash System. In Intelligent Computing; Advances in Intelligent Systems and
Computing; Arai, K., Kapoor, S., Bhatia, R., Eds.; Springer: Cham, Switzerland, 2019; Volume 858.

25. Wang, W.; Yu, Y.; Du, L. Quantum blockchain based on asymmetric quantum encryption and a stake vote consensus algorithm.
Sci. Rep. 2022, 12, 8606. [CrossRef] [PubMed]

26. Thanalakshmi, P.; Rishikhesh, A.; Marion Marceline, J.; Joshi, G.P.; Cho, W. A Quantum-Resistant Blockchain System: A
Comparative Analysis. Mathematics 2023, 11, 3947. [CrossRef]

27. Quantum Blockchain. Quantum Cryptography vs Post-Quantum Cryptography. FedTech Magazine. 4 March 2020. Available
online: https://fedtechmagazine.com/article/2020/03/what-difference-between-quantum-cryptography-and-post-quantum-
cryptography-perfcon (accessed on 23 January 2024).

28. Ikeda, K. Security and Privacy of Blockchain and Quantum Computation. In Advances in Computers; Raj, P., Deka, G.C., Eds.;
Elsevier: Amsterdam, The Netherlands, 2018; Volume 111, pp. 199–228. ISSN 0065-2458. ISBN 9780128138526.

29. Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM
Symposium on Theory of Computing, STOC’96, Philadelphia PA, USA, 22–24 May 1996; pp. 212–219.

30. Shor, P.W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 1999,
41, 303–332. [CrossRef]

31. Post-Quantum Cryptography Standardization. (n.d.). Security (Evaluation Criteria). Available online: https://csrc.nist.
gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-
(evaluation-criteria) (accessed on 19 March 2024).

32. Kumar, M. Post-quantum cryptography Algorithm’s standardization and performance analysis. Array 2022, 15, 100242. [CrossRef]
33. Avarikioti, Z.; Desjardins, A.; Kokoris-Kogias, L.; Wattenhofer, R. Divide & Scale: Formalization and Roadmap to Robust Sharding.

In Structural Information and Communication Complexity: 30th International Colloquium, SIROCCO 2023, Proceedings; Springer: Alcalá
de Henares, Spain, 2023; pp. 199–245. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/978-3-319-68520-5_5
https://doi.org/10.3934/jimo.2018047
https://doi.org/10.1016/j.cosrev.2022.100513
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/QuarkChain/pyquarkchain/wiki/Address,-Shard-Key,-Chain-Id,-Shard-Id
https://github.com/QuarkChain/pyquarkchain/wiki/Address,-Shard-Key,-Chain-Id,-Shard-Id
https://doi.org/10.1109/TCC.2022.3226496
https://www.chainwhy.com/upload/default/20190705/75d146eec7c85680f34461a0fe8a621b.pdf
https://doi.org/10.1007/978-3-662-58820-8_6
https://doi.org/10.1038/s41598-022-12412-0
https://www.ncbi.nlm.nih.gov/pubmed/35597785
https://doi.org/10.3390/math11183947
https://fedtechmagazine.com/article/2020/03/what-difference-between-quantum-cryptography-and-post-quantum-cryptography-perfcon
https://fedtechmagazine.com/article/2020/03/what-difference-between-quantum-cryptography-and-post-quantum-cryptography-perfcon
https://doi.org/10.1137/S0036144598347011
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://doi.org/10.1016/j.array.2022.100242
https://doi.org/10.1007/978-3-031-32733-9_10

	Introduction
	Research Background
	Related Works
	Motivation and Challenge

	Materials and Methods
	Why PFQN?
	Blockchain Setting
	Model Assumption
	Model and Derivation
	PFQN Model
	Derivation of Transaction Confirmation Delay

	Results
	Discussion
	PFQN and Sharded Blockchain Simulation
	Security Analysis
	Prior Research on Quantum-Safe Blockchain
	Attack Models and Assumptions

	Conclusions
	Appendix A
	References

