
Citation: Eang, C.; Ros, S.; Kang, S.;

Song, I.; Tam, P.; Math, S.; Kim, S.

Offloading Decision and Resource

Allocation in Mobile Edge Computing

for Cost and Latency Efficiencies in

Real-Time IoT. Electronics 2024, 13,

1218. https://doi.org/10.3390/

electronics13071218

Academic Editor: Bahman Javadi

Received: 15 February 2024

Revised: 17 March 2024

Accepted: 24 March 2024

Published: 26 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Offloading Decision and Resource Allocation in Mobile Edge
Computing for Cost and Latency Efficiencies in Real-Time IoT
Chanthol Eang 1,† , Seyha Ros 1,† , Seungwoo Kang 1, Inseok Song 1, Prohim Tam 1 , Sa Math 2

and Seokhoon Kim 1,3,*

1 Department of Software Convergence, Soonchunhyang University, Asan 31538, Republic of Korea;
ngchanthol1@gmail.com (C.E.); rosseyha003@gmail.com (S.R.); oooksw12@sch.ac.kr (S.K.);
sis5041@sch.ac.kr (I.S.); prohimtam@gmail.com (P.T.)

2 Department of Telecommunication and Electronic Engineering, Royal University of Phnom Penh,
Phnom Penh 12156, Cambodia; math.sa@rupp.edu.kh

3 Department of Computer Software Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
* Correspondence: seokhoon@sch.ac.kr
† These authors contributed equally to this work.

Abstract: Internet of Things (IoT) devices can integrate with applications requiring intensive contex-
tual data processing, intelligent vehicle control, healthcare remote sensing, VR, data mining, traffic
management, and interactive applications. However, there are computationally intensive tasks that
need to be completed quickly within the time constraints of IoT devices. To address this challenge,
researchers have proposed computation offloading, where computing tasks are sent to edge servers
instead of being executed locally on user devices. This approach involves using edge servers located
near users in cellular network base stations, and also known as Mobile Edge Computing (MEC).
The goal is to offload tasks to edge servers, optimizing both latency and energy consumption. The
main objective of this paper mentioned in the summary is to design an algorithm for time- and
energy-optimized task offloading decision-making in MEC environments. Therefore, we developed
a Lagrange Duality Resource Optimization Algorithm (LDROA) to optimize for both decision of-
floading and resource allocation for tasks, whether to locally execute or offload to an edge server.
The LDROA technique produces superior simulation outcomes in terms of task offloading, with
improved performance in computation latency and cost usage compared to conventional methods
like Random Offloading, Load Balancing, and the Greedy Latency Offloading scheme.

Keywords: offloading decision; Lagrange duality optimization; mobile edge computing; real-time
IoT; resource allocation

1. Introduction

Mobile Edge Computing (MEC) is a computing methodology that can work on the
cloud’s resource in terms of providing application and content closer to users at the edge net-
work within the Radio Access Network (RAN) [1]. Some applications, such as Augmented
Reality (AR), real-time gaming, Virtual reality (VR), and remote sensing, can immediately
process data for data offloading and downloading by user devices [2,3]. Nowadays, we
are moving towards technologies of smart healthcare, such as Internet-of-Medical-Things
(IoMTs) or Sensor Nodes (SNs). Those technologies need SNs and edge computing to enable
an efficient healthcare system, which requires real-time health monitoring using medical
care applications on wearable gadgets or cellphones. Sensors that are equipped on the IoMT
devices generate enormous amounts of data, and those data are transported to the edge
server or cloud computing server, where intensive data processing is conducted. Finally, the
health information is sent back to end users (e.g., doctors, nurses, and patients) for further
disease analysis [4]. To overcome the high-latency issue, the edge computing paradigm
has been used, where in the edge environment extends the cloud environment and caters

Electronics 2024, 13, 1218. https://doi.org/10.3390/electronics13071218 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13071218
https://doi.org/10.3390/electronics13071218
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0000-4434-951X
https://orcid.org/0000-0001-5587-9970
https://orcid.org/0000-0002-3842-7689
https://doi.org/10.3390/electronics13071218
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13071218?type=check_update&version=3

Electronics 2024, 13, 1218 2 of 23

to IoMT applications at the edge network [5,6]. Edge computing is equipped with limited
capacity of computation resources and batteries based on its physical size, and it can be de-
ployed across the edge of the networks [7]. To ensure reliable SN performance for real-time
health monitoring and long battery lifetime, an AI-enabled energy management technique
is required to reduce the overall energy consumption of SNs and improve their battery life-
time [8]. Currently, the solutions being considered to handle the battery lifetime of SNs are
to offload the computation-intensive tasks to a higher-level infrastructure, known as edge
computing. However, task offloading has become a research trend in many prior works,
focusing on when and where to offload the computation-intensive workload of SNs to the
edge network or cloud [9]. MEC servers can be deployed with Roadside Units (RSUs) for
Internet of Vehicles (IoV), where computing resources are available for tasks offloaded from
user devices [10–13]. These applications also require significant computation resources
and must adhere to strict time constraints [14,15]. The computing tasks or data gathered
by user devices have a limited upper-bound delay, and exceeding this delay can lead to
task failures. Existing studies in the field of computation offloading primarily focus on
offloading decisions, determining which tasks should be executed locally or offloaded to the
edge server [16–19]. Researchers consider various attributes of tasks, such as computational
intensity, data dependency, deadline constraints, and sensitivity to network latency. These
characteristics influence the decision-making process regarding whether a task is suitable
for offloading and where it should be offloaded. Different optimization objectives may
guide offloading decisions, such as minimizing latency, conserving energy, maximizing
resource utilization, or improving Quality of Service (QoS). Researchers explore various
trade-offs between these objectives and develop algorithms that balance conflicting goals
effectively. Existing studies in the field of computation offloading aim to develop intelligent
decision-making mechanisms that optimize the allocation of computational tasks across
distributed computing resources, thereby improving system performance, efficiency, and
user experience. Due to this challenge, we also aim to improve the performance of user
devices to be effectively utilized in edge computing systems by introducing the resource
optimization method via Lagrangian duality optimization and integrating it with the newly
developed offloading decision by assigning priority to saving computing power on each
user device as well as considering the time constraints of IoT applications utilized in
our model.

Research Problem and Contribution

The energy required for processing IoT applications on user devices is limited by the
capacity of batteries, which are constrained by their life cycle. Offloading tasks is an en-
hanced technology that helps mitigate the limited energy problem for user devices. While
edge computing allows tasks to be offloaded to edge servers instead of edge clouds, the
rapid expansion of computation-intensive tasks (such as IoMTs, AR, VR, and autonomous
driving) can lead to resource congestion on MEC servers and lack of autonomy manage-
ment, significantly impacting task execution latency and privacy preserving data [20–22].
Thus, smart offloading decision and resource optimization methods are required to be
utilized to improve the performance of computation offloading [23–25].

In our research, we focus on offloading decisions and resource optimizing to minimize
energy consumption and task computation latency, as well as the computation cost in 5G
networks. We use the Lagrange algorithm to adjust the optimal resources for each task to
execute on MEC servers. The main contributions of this work are described below.

• The proposed Lagrange Duality Resource Optimization Algorithm (LDROA) has a
unique workflow because the algorithm can make intelligent offloading decisions
and optimize resources for tasks on edge servers, thereby reducing the total cost and
total latency. This method guarantees that the collective resources of the MEC servers
adequately fulfills the task demands and time limitations, all the while conserving
energy on the user devices. This method can achieve superior performance by reducing
energy consumption in user devices and achieving optimal latency for IoT applications.

Electronics 2024, 13, 1218 3 of 23

• The joint resource allocation and offloading decision can minimize the total computing
overhead of tasks, including completion time, according to time constraints of IoT
applications. The proposed approach aims to provide benefits for user device energy
consumption, which can increase battery lifetime without the need for frequent charg-
ing. LDROA can solve the problem well by providing smart offloading decision and
optimal resource allocation for tasks offloaded to MEC.

• Our optimization technique enables the conversion of a constrained optimization
problem into an unconstrained one by introducing Lagrange multipliers to form a
dual problem, which allows for the optimization of the minimization to lower bound
for energy, latency, and cost. The simulation setup is executed for multiple congestion
conditions with optimal performance in terms of total latency and costs.

• The algorithm demonstrates superior performance compared to existing methods, such
as Random Offloading, Load Balancing, and Greedy Latency scheme, particularly
in terms of reducing total latency and achieving cost savings. It pursues a dual
optimization strategy, aiming to simultaneously address both latency reduction and
energy consumption efficiency. By considering these two crucial aspects, the algorithm
ensures not only improved system responsiveness, but also enhanced energy efficiency
across the network.

The remainder of this paper is structured as follows. Section 2 presents the related work
concerning offloading decision and resource allocation. Section 3 presents the proposed
methodology, which covers system architecture and system model. The proposed solution
flowchart and algorithm are also included in Section 3. Section 4 presents the simulation
settings, parameters, and the existing schemes. Section 5 explains the experimentation of
the proposed LDROA algorithm, simulation setting, and its result. Finally, a conclusion of
our work contributions and future work are presented in Section 6.

2. Related Works

MEC allows for devices to offload tasks to a nearby edge without transmitting to
or from a cloud, which can decrease the utilization of resource, bandwidth in the back-
haul, and computing power from user devices [26]. MEC optimizes resource allocation,
minimizes latency, and enhances the overall efficiency of the network ecosystem. This
approach not only streamlines data processing but also mitigates the potential bottlenecks
associated with centralized cloud computing, resulting in a more responsive and agile
network infrastructure. With the continuous advancement of cloud and edge computing
models, computation offloading has been embraced as a method to boost the computing
capacity of user devices [27]. Resource allocation involves the scheduling of resources
to determine the most effective pairing of available resources while meeting all of the
users’ requirements. Resources are assigned based on factors such as the number of re-
quests in the system, the type of request, its priority, and the acceptable delay for each
request [28]. Resource allocation is a critical aspect of network management, encompassing
the strategic scheduling and allocation of resources to ensure optimal utilization while
satisfying the diverse requirements of users. This process involves intelligently pairing
available resources, such as computing power, memory, storage, and network bandwidth,
with the tasks or services requested by users. By carefully orchestrating these allocations,
resource allocation mechanisms aim to maximize efficiency, minimize latency, and en-
hance the overall performance of the system. It must consider various factors, including
the characteristics of tasks or services, the capabilities of available resources, Quality of
Service (QoS) requirements, user preferences, and system constraints. Balancing these
considerations is essential to achieve a harmonious allocation that meets the diverse needs
of users while maintaining the stability and reliability of the network. In recent years,
numerous studies have investigated the utilization of edge offloading for applications
that require minimal delay. In [29], the proposed cloudlet framework, which includes
the device, cloudlet, and cloud layers, created a three-layer approach to task offloading.
High-computing tasks are offloaded to the cloudlet and cloud layers, while low-computing

Electronics 2024, 13, 1218 4 of 23

and high-communication cost tasks are completed on the device layer. By doing so, the
framework avoids transmitting large amounts of data to the cloud, resulting in a reduction
in processing delay. This reduction in data transmission not only minimizes processing
delays but also alleviates network congestion, conserves bandwidth, and enhances overall
system responsiveness. Additionally, by leveraging edge computing resources for local data
processing and analysis, the framework facilitates faster decision-making and real-time
responsiveness, particularly in latency-sensitive applications. In [30], the Energy-Efficient
Dynamic Offloading Algorithm (EEDOA) was proposed to optimize energy consumption,
which can be implemented in real time to make task offloading decisions with polynomial
time complexity. Theoretical analysis has been conducted to demonstrate that the EEDOA
can approximate the minimum transmission energy consumption while also bounding the
queue length. In [31], the proposed approach aims to jointly minimize the system energy
consumption and maximize the number of offloaded tasks. For solving this problem, the
authors combined the Ant Colony Optimization (ACO) algorithm with load balancing
and proposed a Load Balancing ACO (LBA) algorithm. Numerical results show that the
proposed algorithm outperforms the traditional algorithms such as greedy algorithm and
distance first algorithm.

In [32], the authors introduced a new approach for deciding task offloading in MEC
using deep reinforcement learning. The decision-making process for task offloading is
represented as a Markov Decision Process (MDP). The primary goal is to minimize the
combined impact of offloading delay and power usage. This goal is divided into rewards
for each time slot. Next, in [33], the author proposed an algorithm based on Deep Deter-
ministic Policy Gradient (DDPG) combined with replay memory strategy. This approach
aims to achieve a flexible offloading decision plan and effective coordination of wireless
resources between the backhaul and fronthaul. On the other hand, the joint computation of-
floading and resource allocation-based MEC computing systems are utilization schemes to
handle the multiple task computing paradigms. In [34], a NOMA-based MEC system was
considered for facilitation in terms of multiple computing tasks from user devices. Heuris-
tic algorithms have been proposed to solve the problem, where the aims to trouble the
computation allocation for NOMA-based MEC servers and time allocation are optimized
by bisection search allocation. With that, in [35], since massive devices in IoT typically
have a limitation resource, the authors proposed a novel NOMA scheme, optimal to handle
the low-complexity sub-option to the total offloading throughput maximum. However, a
NOMA was proposed that combines the merits of Time-Division Multiple Access (TDMA)
and traditional approach NOMA. Therefore, based on the proposed NOMA scheme, the
problem of maximizing the total offloading throughput by optimizing the device schedul-
ing, the time allocation, and the computation resource allocation was considered. Hence,
MEC resource allocation could be considered to be time allocation, and channel allocation
for minimizing the overall delay of all tasks was investigated. In the context of cooperative
task offloading resources, the author of [36] proposed the UAV-enabled MEC system to
serve as MEC service for handling multiple UEs. The computation and communication
resource responsibility to minimize the weighted sum energy consumption of UEs and
UAV was investigated. The proposed approaches aim to provide optimization of UAV
trajectory as well as the computation and communication resources based on the Successive
Convex Approximation (SCA) method optimized via the Largangian Dual methods. In [37],
the authors proposed a UAV assisted with a Fog-IoT network framework that ensures net-
work delay-sensitive tasks and energy consumption for disaster management. Therefore,
they proposed to optimally adjust the 3D placement of the UAV-FNs in terms of delay
constraint and energy saving to prolong the network lifetime through witlessly transferring
power. In [38], the authors proposed an ensemble of semi-parametric models based on
the kernel-based Probabilistic Neural Network (PNN) for resource optimization of IoT fog
networks. The paper aims to provide the fog computing benefits in facilitating real-time
IoT application [39] with the goal to optimize response times in mission-critical tasks.

Electronics 2024, 13, 1218 5 of 23

3. Proposed System Model
3.1. System Architecture

Task offloading comes with a communication cost that needs to be considered for
efficient processing. The key challenge is to minimize energy and latency consumption
during the communication and computation process. Precise energy, latency, and cost
estimation models are important for making informed decisions about task offloading,
considering the energy cost of communication according to the time constraints of IoT
applications. Similarly, accurate latency estimation models help in determining the appro-
priate offloading strategy, considering energy, latency, and costs. The goal is to transfer
tasks to the edge server if it consumes less energy and the total latency is less than the time
constraints of IoT applications. As long as the total latency exceeds the time constraints,
our algorithms will choose to execute tasks locally if they can process tasks within the
time constraints without considering user device energy consumption. To achieve this, an
energy model, latency, and cost model are developed to enable user devices to calculate
the energy, latency, and computation cost consumption accurately during task offloading.
This approach aims to design an energy-aware and latency-aware offloading strategy. Our
proposed network system scenario in Figure 1 represents multi-user devices and multi-
edge servers for assisting user devices from overheating task computing. Computational
systems have finite resources such as computing power, memory, and bandwidth that need
to be shared among multiple tasks or devices. This means that efficient resource allocation
and management are crucial to meeting the requirements of the system. In the context
of our work, we mentioned that the IoT application is a mission-critical delay-sensitive
signaling application. This type of application involves signaling for critical tasks like
Mission-Critical Push-to-Talk signaling (MC-PTT) or MC video signaling, where time is a
critical factor, and delays need to be minimized. The proposed approach integrates MEC
into the 5G network, which can enhance the performance of the network by optimizing
resources for each task.

Electronics 2024, 13, x FOR PEER REVIEW 5 of 24

Network (PNN) for resource optimization of IoT fog networks. The paper aims to provide

the fog computing benefits in facilitating real-time IoT application [39] with the goal to

optimize response times in mission-critical tasks.

3. Proposed System Model

3.1. System Architecture

Task offloading comes with a communication cost that needs to be considered for

efficient processing. The key challenge is to minimize energy and latency consumption

during the communication and computation process. Precise energy, latency, and cost es-

timation models are important for making informed decisions about task offloading, con-

sidering the energy cost of communication according to the time constraints of IoT appli-

cations. Similarly, accurate latency estimation models help in determining the appropriate

offloading strategy, considering energy, latency, and costs. The goal is to transfer tasks to

the edge server if it consumes less energy and the total latency is less than the time con-

straints of IoT applications. As long as the total latency exceeds the time constraints, our

algorithms will choose to execute tasks locally if they can process tasks within the time

constraints without considering user device energy consumption. To achieve this, an en-

ergy model, latency, and cost model are developed to enable user devices to calculate the

energy, latency, and computation cost consumption accurately during task offloading.

This approach aims to design an energy-aware and latency-aware offloading strategy. Our

proposed network system scenario in Figure 1 represents multi-user devices and multi-

edge servers for assisting user devices from overheating task computing. Computational

systems have finite resources such as computing power, memory, and bandwidth that

need to be shared among multiple tasks or devices. This means that efficient resource al-

location and management are crucial to meeting the requirements of the system. In the

context of our work, we mentioned that the IoT application is a mission-critical delay-

sensitive signaling application. This type of application involves signaling for critical tasks

like Mission-Critical Push-to-Talk signaling (MC-PTT) or MC video signaling, where time

is a critical factor, and delays need to be minimized. The proposed approach integrates

MEC into the 5G network, which can enhance the performance of the network by opti-

mizing resources for each task.

Figure 1. Network system scenario.

IoT Cloud Server

Edge server Edge server Edge server

Tasks offloading Tasks offloading

Local Capacity

SBS SBS SBS

...

Figure 1. Network system scenario.

3.2. Communication Model

We consider a radio network system to be an edge server consisting of a set N = {1, 2, . . . n},
where N refers to the number of user devices. Next, we set J = {1, 2, . . . j}, where J refers
to Radio Remote Heads (RRHs), and M = {1, 2, . . . m} refers to the number of MEC servers

Electronics 2024, 13, 1218 6 of 23

used in our network scenarios. In our network scenario, all the RRHs are interconnected
through a fast gigabit switch to a common processing center comprising a set of Baseband
Units (BBUs) denoted as K = {1, 2, . . . k}. We assume that each BBU can serve one or more
RRHs, and the RRHs can cooperate with each other for downlink transmissions and uplink
transmissions to the user device. The channel gain between UE n and RRH j is denoted
as gnj. The system bandwidth allocated from RRH j to UE n is denoted as wnj. The fixed
transmission power of user device n for offloading task i to RRH j is denoted as ptr

n . The
noise power is denoted as n0. Next, intercell interference is a type of interference that occurs
in cellular networks when multiple cells (i.e., base stations) use the same frequency band to
communicate with their respective user devices. The signals transmitted by neighboring
cells can interfere with each other and cause degradation of the received signal quality,
leading to errors in data transmission. In our work, we denote inter-cell interference as
Losnj. The transmission rate of computational task i from user device n to base station j is
expressed as follows:

Rnj = Wnjlog2

(
1 +

ptr
n gnj

n0 + Losnj

)
(1)

tloc =
Ci

V loc
i

(2)

where tloc is the local completion time for user devices n for accomplishing task i in
milliseconds (ms). V loc

i is the computing capacity of user devices n in Megahertz (MHz).
The computing capacity of an IoT device can vary greatly depending on the specific device
and its purpose. IoT devices can range from simple sensors that collect data and transmit it
to a central server for processing to more complex devices that have on-board processing
capacity. In our work, we use simple sensors on IoT devices which have small computing
capacity for implementations. Ci is the total number of computational capacities required
to complete computational task i measured in task CPU cycles. In addition, we can obtain
the local energy consumption for user devices to accomplish task i as follows:

eloc = αCi

(
V loc

i

)2
(3)

where α denotes a coefficient associated with the chip architecture [40]. Next, eloc is the local
energy consumption for user devices n to accomplish task i. In the context of computing
and user devices, energy consumption is typically measured in units of watt seconds (Ws).
One watt second is equal to the energy consumed by a device that consumes one watt of
power for one second. To convert energy consumption from watt seconds to Joules (j), the
formula is as follows: energy (j) = power (W) × time (s). Therefore, energy consumption is
a standard unit of energy measurement.

Also, the computation cost for offloading task i to the edge server refers to the process
of initializing latency and energy consumed for offloading task i from user devices to the
edge server. The cost formula can be denoted as

costloc = tloc + eloc (4)

3.3. Task Offloading Model

Task offloading on the edge servers refers to the process of transferring computational
tasks from the user device to more powerful servers located at the edge of the network.
The transmission time of task i from user device is given in (5), where Di is the data size
of computation task i to be distributed to the edge server for computation and to f f is the
offloading time of task i from mobile device to the edge server.

to f f =
Di
Rnj

(5)

Electronics 2024, 13, 1218 7 of 23

Energy offloading to the edge server means the energy for offloading computing tasks
from a user device to an edge server, where eo f f is the energy for offloading task from task-i
to the edge server and ptr

n is the fixed transmission power of mobile device n for offloading
task i to the edge server. Computation cost for offloading task i to the edge server can be
expressed as (6), where costo f f is the cost of energy and latency for offloading task i.

3.4. Computation Offloading Model at the Edge Server

The computation time consumption of task i on the edge server can be expressed as
(7), where tedge is the computation time consumption of task i in the edge server, Ci is the
required resource for accomplished task i, and Vr

i is the computation resource provided
by the MEC server to accomplish task i. Vr

i is measured in Gigahertz (GHz). According
to [41], it is generally thought that the download data rate is relatively higher and the size
of the computational result is typically smaller than input data, so the downlink delay and
energy utilization of this stage are ignored.

costo f f = to f f + eo f f (6)

tedge =
Ci
Vr

i
(7)

Energy computation consumption at the edge server can be expressed as (8), where
eedge denotes the energy amount for compute task i at the edge server, Pr

j = zr(Vr
i
)kr

is the
computation power consumption [42,43] with effective switched capacitance zr ≥ 0 and
positive constant kr ≥ 1).

eedge =
Pr

j Ci

Vr
i

(8)

The computation cost for computing task i at the edge server can be denoted as (9)
and the total computation cost for offloading task i at edge server as (10), where costo f f _total

is the total cost for offloading the task from the user device to the edge server without
considering energy consumption at the edge server due to the fact that the edge server
always connects to grid power.

costedge = tedge + eedge (9)

costo f f _total = costo f f + t
edge

(10)

3.5. Offloading Problem Formulation and Analysis

Our proposed IoT system scenario is mission-critical delay-sensitive signaling for
which the time constraint is 60 ms based on 3rd Generation Partnership Project (3GPP) QCI
Release 17 3GPP TS 23.203 V17.1.0 (2021-06) list [44].

We let x = {xi|i ∈ I} denote the offloading-decision matrix. To ensure that the task is
only offloaded to the MEC server or locally executed, the following constraints must be sat-
isfied: xi = 0 or xi = 1, where if xi = 0, the task will be locally executed, and if xi = 1, the task
will be executed at the MEC server. Additionally, we denote No f f = {n ϵ N, m ϵ M|xi = 1}
as the set of user devices that offload their tasks to the MEC server. Next, we denote the
computational-resource matrix for the MEC as the set of user devices that offload their
tasks to the MEC server. Finally, we denote the computational-resource matrix for the MEC
as V = {Vr

m|m ϵ M, n ϵ N}, where Vr
m > 0 is the resource allocation of the edge server to

computational task i offloaded from user device m ϵ M. Normally, the amount of computing
resources at the edge server is limited; therefore, the following constraint must be satisfied:
∑nϵNo f f

Vr
m ≤Vmax

m , ∀nϵN, where Vmax
m denotes the maximum computing capability of edge

servers. Moreover, Vr
m = 0 if n does not belong to No f f , which means that the edge server

does not adjust any resources to the mobile node.

Electronics 2024, 13, 1218 8 of 23

3.6. Offloading Decision Sub Problem

In our analysis, we specifically focus on cost offloading without accounting for the en-
ergy consumed at the edge, in contrast to the cost incurred by local execution. This compar-
ison is guided by the conditions outlined in Equation (11). Subsequently, we formulate the
new offloading decision problem, as articulated in Equation (12). Equations (13) and (14)
outline the essential conditions that must be satisfied for a computation task to undergo
offloading. These conditions serve as pivotal criteria guiding the decision-making pro-
cess regarding whether a task should be offloaded to the edge or executed locally. This
condition stipulates that the latency incurred by offloading the task to the edge must not
exceed a predefined threshold. By imposing such a constraint, we ensure that offloading
tasks to the edge remains viable only if it results in latency improvements compared to
local execution. This consideration is particularly crucial for latency-sensitive applications
where responsiveness is paramount. Furthermore, it introduces another critical condition
related to computational resource availability at the edge. This condition dictates that
the edge server must possess adequate computational resources to execute the offloaded
task effectively. By assessing the computational capabilities of the edge server against
the computational requirements of the task, we ascertain whether offloading is feasible
from a resource perspective. This condition plays a pivotal role in preventing resource
overloading at the edge and ensuring the efficient utilization of available computational
resources. Together, they establish a robust framework for evaluating the suitability of
offloading computation tasks to the edge. By considering factors such as network latency
and computational resource availability, we aim to make informed offloading decisions
that optimize both performance and resource utilization in edge computing environments.

min ∑
i ϵ I

(
(1 − xi)

(
Ci

V loc
i

+ αCi

(
V loc

i

)2
)
+ xi

((
Di
Rnj

)
+
(

to f f ∗ ptr
i

)))
(11)

min ∑
i ϵ I

((
costo f f − costloc

)
xi

)
+min ∑

i ϵ I
costloc (12)

costo f f _total < costloc (13)

to f f + tedge < tmax (14)

In order for tasks to be offloaded effectively, several critical conditions must be met.
First, as outlined in the equations, the cost associated with offloading computation to the
edge server must be lower than the cost of local computing. This consideration is funda-
mental in ensuring cost efficiency and justifying the decision to leverage edge resources
for computation. By conducting a cost–benefit analysis, we can determine the optimal
allocation strategy that minimizes expenses while maximizing performance.

3.7. Lagrange Duality Resource Optimization Algorithm (LDROA)

The LDROA transforms optimization problems with constraints into unconstrained
ones by introducing Lagrange multipliers which enforce the constraints and adjust the
objective function to find the best solutions. In the context of MEC, this algorithm dynami-
cally distributes resources for task execution while ensuring that QoS standards, resource
availability, and limitations are met. It guarantees efficient task execution even in the face
of system changes by adapting resource allocation accordingly. In our research, the LDROA
plays a pivotal role in dynamically allocating resources for offloaded tasks, responding to
fluctuations in available resources or changes in QoS requirements to optimize resource
utilization and task execution. This involves formulating an objective function aimed at
minimizing task execution time, integrating constraints, and introducing Lagrange multipli-
ers to fine-tune resource allocation. Through iterative solving of primal and dual problems,
the algorithm facilitates the identification of the most optimal resource allocation while
adhering to the specified constraints. The solution for resource adjustment of our work

Electronics 2024, 13, 1218 9 of 23

via the Lagrange Duality algorithm is presented in (15) following the constraints from (16)
and (17). We can form the Lagrangian function by introducing a Lagrange multiplier and
modifying the objective function with it as expressed in (18).

f (x) = min ∑
i∈Io f f

(
Ci
Vr

i

)
(15)

s.t. Vr
i > 0 and ∑

n∈N
(Vr

i) ≤ Vr
m (16)

g(x) = Vr
i − Vr

m (17)

L(x, λ) = f (x) + λ(g(x) (18)

where L is the Lagrangian optimization problem symbol, f (x) is the objective function to
be minimized, g(x) is the constraint function (in this case, (x) = Vr

i − Vr
m), and λ is the

Lagrange multiplier; therefore, after replacing it into the Lagrangian, we obtain (19) and
(20). By taking the first derivative of L(x, λ) with respect to Vr

i , we obtain

f (x) = min ∑
i ϵ Io f f

(
Ci
Vr

i

)
(19)

min L(x, λ) = ∑
i ϵ Io f f

(
Ci
Vr

i

)
+ λ

 ∑
i∈Io f f

Vr
i − Vr

m

 (20)

where Vr
i is the minimum resource for task i, ∑ iϵIo f f are the total numbers of offloading

tasks, and Vr
m is the total available resource of the edge server.

In our work, we propose a solution for dynamically adjusting resources using the
Lagrange Duality algorithm, as specified in Equation (15), which is formulated based on
the constraints provided in Equations (16) and (17). These constraints play a crucial role
in defining the boundaries within which resource adjustments can be made effectively.
To formalize this solution, we introduce the Lagrange multiplier into the Lagrangian
function, as depicted in Equation (18). The Lagrangian function serves as a comprehensive
framework for incorporating both the objective function and the constraints into a unified
optimization problem. By integrating the Lagrange multiplier into the objective function,
we effectively modify the optimization process to account for the constraints imposed by
the system. The Lagrange multiplier acts as a scaling factor that influences the trade-off
between optimizing the objective function and satisfying the constraints. The introduction
enables us to transform the constrained optimization problem into an unconstrained one,
facilitating the application of optimization techniques to find the optimal solution. We
can introduce Lagrange multipliers, which are additional variables used to enforce the
constraints. The Lagrange multipliers are used to adjust the objective function and find
the optimal resource allocation for the task. The Lagrange Duality algorithm involves
iteratively solving two optimization problems: the primal problem and the dual problem.
The primal problem involves minimizing the objective function subject to constraints,
while the dual problem involves maximizing the Lagrangian function, which is a modified
version of the objective function that incorporates the Lagrange multipliers. By solving
these two problems iteratively, we can find the optimal resource allocation that minimizes
the execution time of the task subject to the constraints. The Lagrange Duality algorithm
allows for dynamic adjustment of the resource allocation in response to changes in the
system and ensures that the task is executed efficiently and effectively while meeting the
QoS requirements. The derived Functions (21)–(24) are just the process of mathematical
formulas to calculate the minimum resource for task i assigned by the edge server. We
derivate Equation (21) first with respect to λ so that we can obtain the maximum value
of λ. The value of λ, which is the Lagrange multiplier, is ranked between zero and one
for the purpose of optimization. So, based on Equation (22), if we can find the maximum

Electronics 2024, 13, 1218 10 of 23

value of λ, then we can find the minimum value of required resource (Vr
i) for task i, which

is revealed in the mathematical formula in Equation (24).

∂yL(v, λ)

∂Vr
i

= λ − Ci(
Vr

i
)2

(21)

(V r
r
)2

λ = Ci → Vr
i =

√
Ci
λ

(22)

minL(x, λ) = ∑
i∈Io f f

Ci
Vr

i
+ λ

 ∑
i∈Io f f

Vr
i − Vr

m

 (23)

Vr
i =

√
Ci
λ

→Vr
i =

Vr
i

∑ i ∈ Io f f
(24)

3.8. Proposed Solution and Algorithm Design

The algorithms estimate the total latency and cost from the local model, and also
the total latency and cost from the offloading model. In the offloading model, first, the
process starts by initializing all the parameters needed for resource allocation, such as the
available computational resources, the tasks that need to be performed, and the constraints
on the allocation [45]. Second, is the resource allocation problem. This step is implemented
to solve the resource allocation problem. It involves assigning tasks to the available
computational resources at the edge server in a way that optimizes total latency and meets
with the requirement of IoT time constraints. Third is the offloading decisions. Once the
resource allocation problem is solved, the next step is to extract the offloading decisions
from the solution, which is the local model or the offloading model. Finally, after the
decision is selected, the optimal solution can be obtained in terms of energy and latency
saving. Figure 2 shows more details of the flowchart of the algorithm in the proposed
approach of LDROA. First, the process starts by initializing all the parameters needed for
resource allocation, such as the available computational resources, the tasks that need to
be performed, and the constraints on the allocation. The next step is to solve the resource
allocation problem, which involves assigning tasks to the available computational resources
in a way that optimizes some objective function, such as minimizing the total time or energy
required to perform the tasks. Once the resource allocation problem is solved, the next
step is to extract the offloading decisions from the solution. This involves determining
which tasks should be offloaded to edge and which tasks should be performed locally on
the device. In some cases, the resource allocation problem may be too complex to solve
directly. In these cases, Lagrange Duality can be used to simplify the problem and find
an approximate solution. This involves introducing Lagrange multipliers to convert the
constraints of the problem into the objective function, which can then be optimized using
standard methods. After the resource allocation problem is solved, the computational
resources may need to be adjusted to ensure that the tasks are performed optimally. This
involves iteratively adjusting the resources and evaluating their performance until the
optimal resource allocation is reached. Once the optimal resource allocation is determined,
the tasks can be mapped to the allocated resources, and the computation can be performed.
If the adjusted resources do not converge to the minimum, the process will need to be
repeated until the optimal solution is reached.

Algorithm 1 shows the flow of our proposed approach. In the described context, the
algorithm focuses on predicting the total cost of local task computation and offloading it to
the edge server, taking into account the time constraints of the IoT application.

Electronics 2024, 13, 1218 11 of 23

Electronics 2024, 13, x FOR PEER REVIEW 12 of 24

maintaining the integrity of the application. The algorithm accounts for the dynamic na-

ture of edge computing environments, where resource availability and network condi-

tions may vary over time. By adapting to these changes and adjusting resource allocation

accordingly, the algorithm optimizes the overall cost effectiveness of task offloading while

maintaining reliability and performance. The requirements for the algorithm include the

resources available, task size, and time constraints. To calculate the total cost, the algo-

rithm considers both the energy and time required for task computation. For local task

computation, the amount of energy and time needed to compute the task depends on the

available resources of the user devices. If the devices have higher computational capacity

or more resources, the local task computation will be faster. If the cost of computation is

lower when offloading to the MEC system compared to performing the task locally on the

user device and the total execution time at the MEC system is within the time constraints,

the user device will offload the task to the MEC system. However, if the total latency at

the edge exceeds the time constraints but the total execution time locally on the user device

is shorter than the time constraints, our algorithm will prioritize executing the task locally.

According to Algorithm 1, 𝐼 is the total number of computational tasks and 𝑖 defines the

iterations. The outputs are 𝑥, 𝑙, 𝑒, and 𝑐 where 𝑥 is the offloading decision, 𝑙 is the to-

tal latency, 𝑒 is the total energy, and, 𝑐 is the computation cost. In the simulation, we set

the algorithms to iterate 60 times, and the algorithms can converge while the number of

40 iterations is reached. The algorithm detail explanation is already included in the pro-

posed flowchart.

Figure 2. Flowchart of the algorithm.

Input: Task
(Size, Required Resources, Time Constraints)

Local Model Process

Offloading Process

• Get Ran Resource
• Get Task Size

MEC Server Selection

Resource Adjustment via
Lagrange

Estimate Task
Performance of MEC

Reconfigure Resource

Is Optimal?

Allocation Resource for
Task

Out: Delay,
Energy, Cost

(MEC)

If cost local > cost edge & (time offloading +
time edge) < time max

Estimate Task
Performance of local

If cost local < cost edge &
 Time local < time Max

Out: Delay,
Energy, Cost

(Local)

Start

End

Output:
Optimal Delay,

Energy, Cost

No

Yes No

Yes

Yes

No

Start/ End Process Arrows Input/Output Decision

Figure 2. Flowchart of the algorithm.

The aim of the algorithm is the prediction of the total cost, which encompasses various
factors such as computation expenses, data transmission costs, and resource utilization
fees. By accurately estimating these costs, the algorithm can make informed decisions
regarding task offloading, ensuring that the chosen strategy aligns with the overarching
objectives of minimizing expenses while meeting performance requirements. Importantly,
the algorithm considers the unique time constraints inherent in IoT applications, where
timely data processing and response are paramount. By incorporating these constraints
into the decision-making process, the algorithm ensures that offloaded tasks are executed
within the stipulated time limits, thereby guaranteeing the timely delivery of services and
maintaining the integrity of the application. The algorithm accounts for the dynamic nature
of edge computing environments, where resource availability and network conditions may
vary over time. By adapting to these changes and adjusting resource allocation accordingly,
the algorithm optimizes the overall cost effectiveness of task offloading while maintaining
reliability and performance. The requirements for the algorithm include the resources
available, task size, and time constraints. To calculate the total cost, the algorithm considers
both the energy and time required for task computation. For local task computation, the
amount of energy and time needed to compute the task depends on the available resources
of the user devices. If the devices have higher computational capacity or more resources,
the local task computation will be faster. If the cost of computation is lower when offloading
to the MEC system compared to performing the task locally on the user device and the
total execution time at the MEC system is within the time constraints, the user device will
offload the task to the MEC system. However, if the total latency at the edge exceeds the
time constraints but the total execution time locally on the user device is shorter than the

Electronics 2024, 13, 1218 12 of 23

time constraints, our algorithm will prioritize executing the task locally. According to
Algorithm 1, I is the total number of computational tasks and i defines the iterations. The
outputs are x, l, e, and c where x is the offloading decision, l is the total latency, e is the total
energy, and , c is the computation cost. In the simulation, we set the algorithms to iterate 60
times, and the algorithms can converge while the number of 40 iterations is reached. The
algorithm detail explanation is already included in the proposed flowchart.

Algorithm 1: Local and edge server computation time, energy, and cost.

Electronics 2024, 13, x FOR PEER REVIEW 11 of 24

using standard methods. After the resource allocation problem is solved, the computa-

tional resources may need to be adjusted to ensure that the tasks are performed optimally.

This involves iteratively adjusting the resources and evaluating their performance until

the optimal resource allocation is reached. Once the optimal resource allocation is deter-

mined, the tasks can be mapped to the allocated resources, and the computation can be

performed. If the adjusted resources do not converge to the minimum, the process will

need to be repeated until the optimal solution is reached.

Algorithm 1 shows the flow of our proposed approach. In the described context, the

algorithm focuses on predicting the total cost of local task computation and offloading it

to the edge server, taking into account the time constraints of the IoT application.

The aim of the algorithm is the prediction of the total cost, which encompasses vari-

ous factors such as computation expenses, data transmission costs, and resource utiliza-

tion fees. By accurately estimating these costs, the algorithm can make informed decisions

regarding task offloading, ensuring that the chosen strategy aligns with the overarching

objectives of minimizing expenses while meeting performance requirements. Importantly,

the algorithm considers the unique time constraints inherent in IoT applications, where

timely data processing and response are paramount. By incorporating these constraints

into the decision-making process, the algorithm ensures that offloaded tasks are executed

within the stipulated time limits, thereby guaranteeing the timely delivery of services and

maintaining the integrity of the application. The algorithm accounts for the dynamic

1: Required ����� = {��, ��, ����, ∀� ∈ �}, {��, ��, ∀� ∈ � ��� ∀� ∈ �}

2: Initialize �� �� = 0, ∀� ∈ �

 ���� = �

3: Output: {����, ����, �������}

4: �� �� = 1, ∀� ∈ �

 ���� = �

 ��
� adjustment for ����� via LDROA

5: While ��
� ��� �������� do

6: ��� (��������� = 1; ��������� ≤ 60; ��������� + +)

7: �� �������� > ������� , ∀� ∈ ����

8: i ← arg ���
� ∈ ����

(��(������� − ��������))

9: ���� ← ���� − {i}

10: Update � by setting �� ← 0

11:
Update ��

� (available resource of MEC) according to resource

allocation

12: ���� �� �������� < �������, ∀� ∈ ���� , or ���� = 0 (empty)

13: ��� ��

14: ���

15: ����� (���� + ����� > ����) do

16: i ← arg ���
� ∈ ����

(��(������� − ��������))

17: ���� ← ���� − {i}

18: Update � by setting �� ← 0

19:
Update ��

� (available resource of MEC) according to resource

allocation ��
�

20: ���

21: �������� < �������, ∀� ∈ ���� �� ���� =0

22: ���

23: Output optimal solution {�, �, �, �}

The algorithmic flow of a proposed approach focuses on predicting the total cost of
local task computation and offloading it to an edge server within the constraints of an IoT
application. The algorithm considers various factors, including available resources, task
size, and time constraints. It calculates the total cost by considering both the energy and
time required for task computation. The algorithm provides a systematic way to decide
whether to perform computation locally or offload it to an edge server based on resource
availability, task size, and time constraints, optimizing for energy and time efficiency to
achieve cost effectiveness in IoT applications. In summary, Algorithm 1 encapsulates a
systematic approach to task offloading in IoT applications, emphasizing the prediction of
total costs and the fulfillment of time constraints. Through its comprehensive framework,
the algorithm facilitates efficient resource management and decision making, ultimately
enhancing the scalability, reliability, and cost efficiency of edge computing systems in
IoT environments.

Electronics 2024, 13, 1218 13 of 23

4. Experimentation and Result Evaluations
4.1. Simulation Setting and Parameters

For our simulation, we modeled a heterogeneous network that is represented by
20 user devices and composed of five small base stations and one main base station, which
represents multi-user and multi-MEC, and all small base stations are connected to the main
base station. The power gain (gnj) is set to 100 milliwatts (mw). Next, the noise power (n0),
which refers to the amount of random electrical energy that interferes with the transmitted
signal during wireless communication in a RAN, is set to −100 dBL. Additionally, according
to [41], we consider that there is no inner-cell interference in wireless fronthaul. The system
bandwidth (Wnj) is set to 10 Megahertz (MHz). The size of the input tasks (Di) is randomly
distributed within the range of 1.5 KB to 2 KB. The computing resources of the MEC
server (Ci) are set to 1 GHz, 1.5 GHz, 2 GHz, 2.5 GHz, and 3 GHz, respectively. The
available computing resources of the user devices (V loc

i) are randomly assigned from 10 to
100 MHz [14]. The number of the required CPU cycles per bit is Ci = 20 cycles. The time
constraint (Tmax) of mission-critical delay-sensitive signaling (e.g., MC-PTT signaling, MC
Video signaling) IoT applications is set to less than 60 ms based on 3GPP TS Release V17.1.0
(2021-06). The set of transmission powers (ptr

n) for each UE is set to 200 mw. This means
that the UE is capable of transmitting signals at power levels within this range, which can
be used for wireless communication with other devices or networks. We set the number
of iterations (i) to 60, and our algorithm is able to obtain the optimal result after it reaches
40 iterations. The performance metric that is used is total latency in milliseconds (ms), total
cost that includes both energy and latency.

4.2. Proposed and Reference Schemes

To comprehensively assess the efficacy of our proposed approach, we undertake a
rigorous comparative analysis against a set of reference schemes in our study. This compar-
ative evaluation provides valuable insights into the relative performance and advantages
of our proposed idea in contrast to existing methods commonly employed in edge com-
puting environments. The reference schemes considered in our evaluation encompass a
diverse range of offloading strategies, each with its unique characteristics and optimization
goals. First, the Random Offloading scheme serves as a baseline approach, where tasks are
offloaded to edge servers randomly without considering any optimization criteria. This
simplistic strategy provides a benchmark for assessing the performance improvements
achieved by more sophisticated offloading techniques. Second, the Load Balancing scheme
aims to evenly distribute computational tasks among available edge servers to minimize
resource contention and maximize resource utilization. This approach prioritizes load
balancing across the network, thereby enhancing system scalability and responsiveness.
Third, the Greedy Latency Offloading scheme focuses on minimizing latency by offloading
tasks to the nearest edge server with the lowest latency. This strategy prioritizes latency
optimization, ensuring rapid response times and improved user experience, particularly
in latency-sensitive applications. By comparing our proposed idea against these reference
schemes, we can evaluate its performance across various dimensions, including latency
reduction, cost efficiency, resource utilization, and scalability. Through extensive experi-
mentation and analysis, we aim to demonstrate the superiority of our proposed approach
in optimizing task offloading decisions and enhancing the overall effectiveness of edge
computing systems. Furthermore, the comparative evaluation provides valuable insights
into the strengths and limitations of different offloading strategies, thereby informing future
research directions and advancements in the field of edge computing. By systematically
evaluating and benchmarking our proposed idea against established reference schemes,
we contribute to the ongoing discourse on optimizing resource allocation and improving
the performance of edge computing environments. Based on [33], the Random Resource
Offloading scheme tasks are randomly offloaded to available resources such as edge servers
without considering factors such as resource availability, network conditions, or energy con-
sumption. Indeed, the utilization of simplistic or Random Offloading approaches can lead

Electronics 2024, 13, 1218 14 of 23

to several undesirable outcomes within edge computing environments. One notable conse-
quence is inefficient resource utilization, where computational tasks may not be allocated
optimally across available resources. As a result, certain edge servers may be underutilized
while others are overwhelmed, leading to uneven resource distribution and suboptimal
performance. This approach may result in inefficient resource utilization, longer latencies,
and greater energy consumption. Overall, the use of Random Offloading strategies poses
significant challenges in terms of resource management, latency optimization, and energy
efficiency within edge computing environments.

The Load Balancing resource offloading scheme is a technique used to optimize the
usage of resources on edge servers. The goal of this scheme is to distribute the workload
evenly across multiple servers or nodes in the system to prevent overloading and ensure
equal resource allocation for each task. A load balancer evaluates the available resources
on the system equally and decides which node or server is best suited to handle the task.
Implementing Load Balancing mechanisms adds complexity to the system architecture,
introducing overhead in terms of computational and management resources. Addition-
ally, reliance on centralized controllers or algorithms can create a single point of failure,
undermining system reliability and fault tolerance. Moreover, Load Balancing may in-
troduce network overhead, impacting latency and consuming bandwidth, particularly in
distributed environments. Despite the goal of evenly distributing the workload, variations
in task characteristics and resource capabilities may result in unequal resource utilization,
affecting system performance. Furthermore, traditional Load Balancing approaches may
struggle to adapt to dynamic changes in workload and resource availability, leading to
suboptimal task allocation.

In the Greedy Latency offloading scheme, the offloading decision is made based on
the estimated latency of executing the task locally on the user device or offloading the
task to the edge server. The offloading decision is greedy in the sense that it always
chooses the option with the lowest estimated latency without concerning too much about
energy or cost consumption. One weakness of the Greedy Latency offloading scheme
is that it does not consider the available resources on the edge server or the network
conditions. The offloading decision is solely based on minimizing latency, and it may
result in overloading some edge servers or congested networks. To summarize, the Greedy
Latency offloading scheme, while effective in minimizing latency, may also present several
drawbacks. Primarily, its locally optimal choices at each step without considering the
available resource at edge server can lead to suboptimal resource utilization and cost
efficiency. Tasks may be offloaded based solely on immediate latency, potentially resulting
in resource imbalances among edge servers and inefficient utilization. Additionally, the
scheme’s reliance on network latency as the primary criterion for task allocation may
make it sensitive to variable network conditions, risking network congestion and degraded
performance. Moreover, Greedy Latency schemes may overlook energy consumption
considerations, potentially leading to increased energy usage and operational costs. Overall,
while effective in improving responsiveness, the Greedy Latency offloading scheme must
be employed judiciously considering its potential drawbacks in resource management,
network congestion, and computation cost.

Finally, the proposed LDROA algorithm can be used to consider on/offloading de-
cisions and find the minimum execution time for a given task at edge node, subject to
various constraints such as resource availability resource limits and the requirements of
the IoT time constraint. By using Lagrange, the proposed approach can provide an ef-
fective way of adjusting the available resources for each task. This can result in a more
optimal resource allocation scheme, leading to reduced energy consumption, lower latency
costs, and decreased computation costs. For example, if a task requires a large amount of
computing power but has a low-latency requirement, the Lagrange method can adjust the
resource allocation to favor computing power over latency. The joint offloading decisions
and resource allocation by Lagrange, which is called the LDROA, can provide a more
effective way of minimizing both computation time and computation cost in the model.

Electronics 2024, 13, 1218 15 of 23

The main purpose of our algorithms is to save energy on user devices and optimize resource
allocation for offloading tasks to edge servers. This dual objective aims to enhance both
the battery life of user devices and the overall latency for tasks executed at edge servers.
That is why we consider the computation cost for comparison in our algorithm. First,
LDROA outperforms Load Balancing because the goal of Load Balancing is to distribute
the workload evenly across multiple servers or nodes in the system to prevent congestion
and ensure equal resource allocation for each task. In this scheme, the workload is analyzed
to determine the number of resources required to complete the task. The load balancer then
evaluates the resources available in the system and decides which node or server is best
suited to handle the task. For example, in our work, some tasks need to be offloaded to
the same edge server, which provides the resources for the tasks to be executed equally by
not considering local execution on the user device at all. Therefore, it is not as effective as
our proposed approach. Load Balancing can save energy on user devices, but it can take
much time to execute the task, leading to higher computation costs as well as computation
latency. So, our proposed algorithm can make intelligent offloading decisions and optimize
resources for tasks on edge servers, thereby reducing the total cost and total latency. This
approach ensures that the total available MEC server resources meet the task requirements
and time constraints while saving energy on user devices.

Second, the proposed LDROA can be superior to the method of Random Offloading,
because in the random resource offloading scheme that is mentioned in references [32,33],
tasks are assigned to available resources such as edge servers without considering factors
such as resource availability, network conditions, or power consumption. This approach can
result in inefficient resource utilization, longer latencies, and higher power consumption
because tasks may be assigned to resources that are not optimized for their execution.
This approach can result in the complex task being offloaded to the MEC server with
congestion or with a very little number of available resources for each task. This leads to
high congestion and increased execution time as well as computation costs. However, our
algorithm can dynamically adjust with the minimum required resource for each task so
that the remaining resource of the edge server can be well utilized for the next coming task.
Our algorithms not only elastically adjust the resource to minimize the cost and latency, but
also proactively estimating the total communication and computation cost of the tasks on
the edge server and computation cost on the user device and make the optimal decision of
whether the task should be uploaded or just computed locally by considering the maximum
time constraint of the IoT application utilized in this work. According to this process of
algorithm work, that is why we clarify that our algorithms are good.

Third, the proposed LDROA can be superior to the method of Greedy Latency offload-
ing because the Greedy Latency offloading mentioned in [31,32] makes decisions based on
the estimated latency of executing the task locally on the user device or offloading the task
to the edge server. The offloading decision is greedy in the sense that it always chooses
the option with the lowest estimated latency without worrying too much about energy
or cost. If the latency of executing the task locally is lower than the latency of offloading
the task to the edge server, the task will be executed locally on the user device, even if
the power or cost is higher on the edge server. If the estimated latency of offloading the
task to the edge server is lower than executing the task locally, the task is offloaded to
the edge server for execution without regard for compute cost or energy. A weakness of
the Greedy Latency offloading scheme is that it does not take into account the available
resources on the edge server or network conditions. The offloading decision is based solely
on minimizing latency, and it may result in overloading some edge servers or congesting
networks. This means that all tasks appear to be offloaded to the edge server with the
highest computing capacity rather than considering its available resources. In contrast,
our proposed algorithms can dynamically adapt to each task with the minimum required
resource, so that the remaining resource of the edge server can be well utilized for the next
coming task.

Electronics 2024, 13, 1218 16 of 23

5. Simulation Result and Discussion
5.1. Simulation Based on User Device Computing Capacity

The computing capacities of the user device within 10, 20, 30, 40, 50, 60, 70, 80, 90,
and 100 MHz are taken for the experiment. For the performance metric used in the result,
we consider only the total latency in seconds and the total cost for explanation. However,
for easy understanding, the result of total latency is converted to millisecond mapping
to meet the time constraints of IoT applications. In total cost, the value comes from total
latency in seconds and total energy in j. That is why there is a big range between latency
and cost value.

In Figure 3 on the left side, we compare the performance of total latency on average in
terms of the user device computing capacity. In numerical results, the proposed approach
incorporates a blend of local computing and offloading to an edge server, yielding the
following total latency values in milliseconds for each level of computing capacity of the
user devices: 32.42, 17.22, 12.15, 9.62, 8.10, 7.09, 6.36, 5.82, 5.40, and 5.06. These findings
demonstrate that as the computing capacity of the user device increases, the total latency
decreases, indicating the effectiveness of the proposed approach in latency reduction. In
comparison to the proposed approach, the conventional scheme comprises three methods:
Greedy Latency, Load Balancing, and Random Offloading. Greedy Latency has a total
latency in ms of 35.14, 25.54, 22.34, 20.74, 19.78, 19.14, 18.68, 18.34, 18.07, and 17.86 according
to the computing capacity of the user device of 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 MHz,
respectively. Load Balancing can obtain a total latency of 35.54, 26.74, 23.81, 22.34, 21.46,
20.88, 20.46, 20.14, 19.90, and 19.70 according to the computing capacity of the user device
of 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 MHz, respectively. Finally, Random Offloading
is less efficient than other approaches, with a total latency of 36.46, 28.46, 25.79, 24.46,
23.66, 23.13, 22.75, 22.46, 22.24, and 22.06 according to the computing capacity of the user
device of 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 MHz, respectively. If we compare the
performance of total latency on average in terms of the user device computing capacity,
when the computing capacity of the user device increases from 10 MHz to 100 MHz, the
total latency of our proposed approach is 97.46% better than that of Greedy Latency, 111.51%
better than that of Load Balancing, and 130.28% better than that of Random Offloading.
Overall, the proposed approach outperforms all three conventional schemes in terms of
latency reduction, and as the computing capacity of the user device increases, the proposed
approach’s latency reduction becomes even better.

Electronics 2024, 13, x FOR PEER REVIEW 17 of 24

user device computing capacity ranging from 10, 20, 30, 40, 50, 60, 70, 80, 90, to 100 MHz,

respectively. The Lagrange scheme’s total cost is based on user device computing capaci-

ties ranging from 10 MHz to 100 MHz, with the total cost decreasing from 0.0328 to 0.0085

as the device’s computing capacity increases. The Greedy Latency scheme can also pro-

vide a low cost following the proposed approach, with total costs of 0.0386, 0.0290, 0.0259,

0.0245, 0.0237, 0.0233, 0.0230, 0.0230, 0.0231, and 0.0232 based on user device computing

capacities ranging from 10 MHz to 100 MHz, respectively. The Greedy Latency scheme’s

total cost also decreases as the device computing capacity increases, ranging from 0.0386

to 0.0232. The Load Balancing scheme results in an average total cost per device of 0.0395,

0.0307, 0.0279, 0.0265, 0.0258, 0.0254, 0.0252, 0.0252, 0.0252, and 0.0254 based on device

computing capacity ranking from 10 MHz to 100 MHz, respectively. Finally, Random

Scheme can obtain a total cost of 0.0420, 0.0341, 0.0315, 0.0303, 0.0296, 0.0292, 0.0291,

0.0290, 0.0291, and 0.0292 based on device computing capacities ranging from 10 MHz to

100 MHz, respectively. Random Access Scheme’s total cost decreases slightly as the device

computing capacity increases, ranging from 0.0420 to 0.0292. If we compare the perfor-

mance of total cost on average in terms of the user device computing capacity, when the

computing capacity of the user device increases from 10 MHz to 100 MHz, the total cost

of our proposed approach is 105.84% better than that of Greedy Latency, 121.44% better

than that of Load Balancing, and 150.48% better than that of Random Offloading. Overall,

the proposed approach is shown to be the most energy-efficient approach for offloading

and executing tasks on user devices, with lower total costs than the other three schemes.

Figure 3. Total latency and cost based on different UE capacities.

5.2. Simulation Based on Different Numbers of Tasks

In Figure 4 on the left side, we compare the performance of total latency on average

in terms of different number of tasks. The number of tasks being offloaded to an edge

server can affect the performance of latency, energy, and computation costs. Offloading a

large number of tasks to an edge server can increase the overall latency of the system, as

the edge server has to process all the tasks it receives. This can result in increased waiting

times for users, which can negatively impact user experience. Offloading a large number

of tasks to an edge server can also increase the energy consumption of the system as well

as the computation cost of the system. This can result in increased power consumption

and reduced battery life, which can be particularly important for user devices. The figure

shows the total latency in ms obtained by each approach. The proposed Lagrange ap-

proach achieves a total latency of 6.40, 12.80, 24.45, 38.40, 51.20, and 64.00 ms according to

the task numbers of 20, 40, 80, 120, 160, and 200, respectively. These results demonstrate

that as the number of tasks increases, the proposed algorithm still performs well in reduc-

ing latency. In contrast, the conventional approaches show different results: Greedy La-

tency has total latencies of 35.14, 39.56, 77.96, 118.67, 158.23, and 197.79 ms according to

Figure 3. Total latency and cost based on different UE capacities.

In Figure 3 on the right side, we compare the performance of total cost on average
in terms of the user device computing capacity. The proposed approach results in the
lowest cost compared to other schemes. The Lagrange scheme can compute the total cost
of 0.0328, 0.0177, 0.0128, 0.0105, 0.0093, 0.0086, 0.0083, 0.0082, 0.0083, and 0.0085 based on

Electronics 2024, 13, 1218 17 of 23

user device computing capacity ranging from 10, 20, 30, 40, 50, 60, 70, 80, 90, to 100 MHz,
respectively. The Lagrange scheme’s total cost is based on user device computing capacities
ranging from 10 MHz to 100 MHz, with the total cost decreasing from 0.0328 to 0.0085 as
the device’s computing capacity increases. The Greedy Latency scheme can also provide a
low cost following the proposed approach, with total costs of 0.0386, 0.0290, 0.0259, 0.0245,
0.0237, 0.0233, 0.0230, 0.0230, 0.0231, and 0.0232 based on user device computing capacities
ranging from 10 MHz to 100 MHz, respectively. The Greedy Latency scheme’s total cost
also decreases as the device computing capacity increases, ranging from 0.0386 to 0.0232.
The Load Balancing scheme results in an average total cost per device of 0.0395, 0.0307,
0.0279, 0.0265, 0.0258, 0.0254, 0.0252, 0.0252, 0.0252, and 0.0254 based on device computing
capacity ranking from 10 MHz to 100 MHz, respectively. Finally, Random Scheme can
obtain a total cost of 0.0420, 0.0341, 0.0315, 0.0303, 0.0296, 0.0292, 0.0291, 0.0290, 0.0291, and
0.0292 based on device computing capacities ranging from 10 MHz to 100 MHz, respectively.
Random Access Scheme’s total cost decreases slightly as the device computing capacity
increases, ranging from 0.0420 to 0.0292. If we compare the performance of total cost on
average in terms of the user device computing capacity, when the computing capacity of
the user device increases from 10 MHz to 100 MHz, the total cost of our proposed approach
is 105.84% better than that of Greedy Latency, 121.44% better than that of Load Balancing,
and 150.48% better than that of Random Offloading. Overall, the proposed approach is
shown to be the most energy-efficient approach for offloading and executing tasks on user
devices, with lower total costs than the other three schemes.

5.2. Simulation Based on Different Numbers of Tasks

In Figure 4 on the left side, we compare the performance of total latency on average
in terms of different number of tasks. The number of tasks being offloaded to an edge
server can affect the performance of latency, energy, and computation costs. Offloading a
large number of tasks to an edge server can increase the overall latency of the system, as
the edge server has to process all the tasks it receives. This can result in increased waiting
times for users, which can negatively impact user experience. Offloading a large number
of tasks to an edge server can also increase the energy consumption of the system as well
as the computation cost of the system. This can result in increased power consumption
and reduced battery life, which can be particularly important for user devices. The figure
shows the total latency in ms obtained by each approach. The proposed Lagrange approach
achieves a total latency of 6.40, 12.80, 24.45, 38.40, 51.20, and 64.00 ms according to the task
numbers of 20, 40, 80, 120, 160, and 200, respectively. These results demonstrate that as the
number of tasks increases, the proposed algorithm still performs well in reducing latency.
In contrast, the conventional approaches show different results: Greedy Latency has total
latencies of 35.14, 39.56, 77.96, 118.67, 158.23, and 197.79 ms according to the task numbers
of 20, 40, 80, 120, 160, and 200, respectively. Load Balancing can obtain total latencies of
35.54, 42.93, 84.70, 128.77, 171.70, and 214.62 ms according to the task numbers of 20, 40,
80, 120, 160, and 200, respectively. Finally, Random Offloading has a total latency of 23.66,
47.32, 93.48, 141.95, 189.26, and 236.58 ms according to the task numbers of 20, 40, 80, 120,
160, and 200, respectively, which is less efficient than the other approaches. If we compare
the performance of total latency on average in terms of different numbers of tasks, when
the task number increases from 20 to 200, the total latency of our proposed approach is
218.05% better than that of Greedy Latency, 243.86% better than that of Load Balancing, and
271.23% better than that of Random Offloading. Overall, the results show that the proposed
Lagrange approach still outperforms conventional approaches in terms of reducing latency,
especially as the number of tasks increases.

Electronics 2024, 13, 1218 18 of 23

Electronics 2024, 13, x FOR PEER REVIEW 18 of 24

the task numbers of 20, 40, 80, 120, 160, and 200, respectively. Load Balancing can obtain

total latencies of 35.54, 42.93, 84.70, 128.77, 171.70, and 214.62 ms according to the task

numbers of 20, 40, 80, 120, 160, and 200, respectively. Finally, Random Offloading has a

total latency of 23.66, 47.32, 93.48, 141.95, 189.26, and 236.58 ms according to the task num-

bers of 20, 40, 80, 120, 160, and 200, respectively, which is less efficient than the other ap-

proaches. If we compare the performance of total latency on average in terms of different

numbers of tasks, when the task number increases from 20 to 200, the total latency of our

proposed approach is 218.05% better than that of Greedy Latency, 243.86% better than that

of Load Balancing, and 271.23% better than that of Random Offloading. Overall, the re-

sults show that the proposed Lagrange approach still outperforms conventional ap-

proaches in terms of reducing latency, especially as the number of tasks increases.

In Figure 4 on the right side, we compare the performance of total cost on average in

terms of different numbers of tasks. The proposed Lagrange approach achieves total costs

of 0.0072, 0.0144, 0.0255, 0.0432, 0.0576, and 0.0720 according to the task numbers of 20, 40,

80, 120, 160, and 200, respectively. These results indicate that the proposed algorithm ef-

fectively reduces computation costs even as the number of tasks increases. On the other

hand, the conventional approaches yield different outcomes: Greedy Latency has total

costs of 0.0386, 0.0474, 0.0934, 0.1421, 0.1894, and 0.2368 according to the task numbers of

20, 40, 80, 120, 160, and 200, respectively, while Load Balancing can obtain a total cost of

0.0395, 0.0516, 0.1020, 0.1534, 0.2066, and 0.2582. Lastly, Random Offloading yields a total

cost of 0.0296, 0.0592, 0.1171, 0.1776, 0.2368, and 0.2959 as the number of tasks ranges from

20 to 200, respectively. If we compare the performance of total cost on average in terms of

different numbers of tasks, when the task number increases from 20 to 200, the total cost

of our proposed approach is 240.02% better than that of Greedy Latency, 268.94% better

than that of Load Balancing, and 316.64% better than that of Random Offloading. Overall,

these findings suggest that the proposed Lagrange approach outperforms conventional

methods in terms of reducing costs, particularly as the number of tasks increases.

Figure 4. Total latency and cost based on number of tasks.

5.3. Simulation Based on Different Numbers of MEC Servers

The number of MEC servers can have a significant impact on offloading latency costs

and energy consumption in the edge node. Generally, adding more MEC servers to the

system can reduce the offloading latency cost, as tasks can be distributed across multiple

servers and processed in parallel, leading to faster processing times. However, adding

more servers can also increase energy consumption, as each server requires power to op-

erate. The optimal number of MEC servers for a given MEC system depends on various

factors, including the workload characteristics, the performance requirements, and the

energy constraints. For instance, if the workload is highly parallelizable and energy con-

sumption is a key concern, adding more servers can lead to better performance and energy

Figure 4. Total latency and cost based on number of tasks.

In Figure 4 on the right side, we compare the performance of total cost on average in
terms of different numbers of tasks. The proposed Lagrange approach achieves total costs
of 0.0072, 0.0144, 0.0255, 0.0432, 0.0576, and 0.0720 according to the task numbers of 20,
40, 80, 120, 160, and 200, respectively. These results indicate that the proposed algorithm
effectively reduces computation costs even as the number of tasks increases. On the other
hand, the conventional approaches yield different outcomes: Greedy Latency has total
costs of 0.0386, 0.0474, 0.0934, 0.1421, 0.1894, and 0.2368 according to the task numbers of
20, 40, 80, 120, 160, and 200, respectively, while Load Balancing can obtain a total cost of
0.0395, 0.0516, 0.1020, 0.1534, 0.2066, and 0.2582. Lastly, Random Offloading yields a total
cost of 0.0296, 0.0592, 0.1171, 0.1776, 0.2368, and 0.2959 as the number of tasks ranges from
20 to 200, respectively. If we compare the performance of total cost on average in terms of
different numbers of tasks, when the task number increases from 20 to 200, the total cost of
our proposed approach is 240.02% better than that of Greedy Latency, 268.94% better than
that of Load Balancing, and 316.64% better than that of Random Offloading. Overall, these
findings suggest that the proposed Lagrange approach outperforms conventional methods
in terms of reducing costs, particularly as the number of tasks increases.

5.3. Simulation Based on Different Numbers of MEC Servers

The number of MEC servers can have a significant impact on offloading latency costs
and energy consumption in the edge node. Generally, adding more MEC servers to the
system can reduce the offloading latency cost, as tasks can be distributed across multiple
servers and processed in parallel, leading to faster processing times. However, adding more
servers can also increase energy consumption, as each server requires power to operate.
The optimal number of MEC servers for a given MEC system depends on various factors,
including the workload characteristics, the performance requirements, and the energy
constraints. For instance, if the workload is highly parallelizable and energy consumption
is a key concern, adding more servers can lead to better performance and energy efficiency.
On the other hand, if the workload is less parallelizable and energy consumption is not a
limiting factor, a smaller number of servers may suffice.

In Figure 5 on the left side, we compare the performance of total latency on average in
terms of different numbers of MEC Servers. The given information presents the results of a
comparison between the proposed scheme and three conventional offloading approaches:
Greedy Latency, Load Balancing, and Random Offloading based on different numbers of
MEC servers, including 2, 4, 6, 8, and 10. The proposed scheme achieves total latencies in
ms of 62.88, 60.60, 58.49, 56.41, and 54.28 according to the MEC numbers of 2, 4, 6, 8, and
10, respectively. These results indicate that the proposed scheme performs well in reducing
latency as the number of MEC servers increases. In comparison to the proposed scheme,
the Greedy Latency approach achieves total latencies of 62.87, 61.60, 59.20, 57.89, and
56.67 according to the MEC numbers of 2, 4, 6, 8, and 10, respectively. Similarly, the Load

Electronics 2024, 13, 1218 19 of 23

Balancing approach achieves total latencies of 62.92, 61.58, 60.39, 59.16, and 57.91 according
to the MEC numbers of 2, 4, 6, 8, and 10, respectively. The Random Offloading approach
obtains total latencies of 63.06, 62.06, 61.00, 59.87, and 58.67 according to the MEC numbers
of 2, 4, 6, 8, and 10, respectively. If we compare the performance of total latency on average
in terms of different numbers of edge servers, when the number of edge servers increases
from 2 to 10, the total latency of our proposed approach is 1.90% better than that of Greedy
Latency, 3.18% better than that of Load Balancing, and 4.10% better than that of Random
Offloading. Overall, the results show that the proposed scheme and the conventional
approaches demonstrate varying levels of performance in reducing latency based on
the number of MEC servers. However, the proposed scheme outperforms conventional
approaches in reducing latency, particularly as the number of MEC servers increases.

Electronics 2024, 13, x FOR PEER REVIEW 19 of 24

efficiency. On the other hand, if the workload is less parallelizable and energy consump-

tion is not a limiting factor, a smaller number of servers may suffice.

In Figure 5 on the left side, we compare the performance of total latency on average

in terms of different numbers of MEC Servers. The given information presents the results

of a comparison between the proposed scheme and three conventional offloading ap-

proaches: Greedy Latency, Load Balancing, and Random Offloading based on different

numbers of MEC servers, including 2, 4, 6, 8, and 10. The proposed scheme achieves total

latencies in ms of 62.88, 60.60, 58.49, 56.41, and 54.28 according to the MEC numbers of 2,

4, 6, 8, and 10, respectively. These results indicate that the proposed scheme performs well

in reducing latency as the number of MEC servers increases. In comparison to the pro-

posed scheme, the Greedy Latency approach achieves total latencies of 62.87, 61.60, 59.20,

57.89, and 56.67 according to the MEC numbers of 2, 4, 6, 8, and 10, respectively. Similarly,

the Load Balancing approach achieves total latencies of 62.92, 61.58, 60.39, 59.16, and 57.91

according to the MEC numbers of 2, 4, 6, 8, and 10, respectively. The Random Offloading

approach obtains total latencies of 63.06, 62.06, 61.00, 59.87, and 58.67 according to the

MEC numbers of 2, 4, 6, 8, and 10, respectively. If we compare the performance of total

latency on average in terms of different numbers of edge servers, when the number of

edge servers increases from 2 to 10, the total latency of our proposed approach is 1.90%

better than that of Greedy Latency, 3.18% better than that of Load Balancing, and 4.10%

better than that of Random Offloading. Overall, the results show that the proposed scheme

and the conventional approaches demonstrate varying levels of performance in reducing

latency based on the number of MEC servers. However, the proposed scheme outper-

forms conventional approaches in reducing latency, particularly as the number of MEC

servers increases.

Figure 5. Total latency and cost based on different numbers of MEC servers.

In Figure 5 on the right side, we compare the performance of total cost on average in

terms of different MEC servers. As the number of MEC servers varies from 2 to 10, the

proposed Lagrange method achieves lower total costs of 0.0633, 0.0618, 0.0605, 0.0592, and

0.0578. These results indicate that the proposed algorithm is effective in reducing compu-

tation costs even when the number of tasks increases. In contrast, conventional ap-

proaches have different results. Greedy Latency yields total costs of 0.0633, 0.0624, 0.0610,

0.0606, and 0.0598, while Load Balancing results in a total cost of 0.0633, 0.0625, 0.0617,

0.0609, and 0.0603. Lastly, Random Offloading produces a total cost of 0.0635, 0.0629,

0.0622, 0.0614, and 0.0606 according to the MEC numbers of 2, 4, 6, 8, and 10, respectively.

If we compare the performance of the total cost on average in terms of different numbers

of edge servers, when the number of edge servers increases from 2 to 10, the total cost of

our proposed approach is 1.49% better than that of Greedy Latency, 2.02% better than that

of Load Balancing, and 2.64% better than that of Random Offloading. These findings

Figure 5. Total latency and cost based on different numbers of MEC servers.

In Figure 5 on the right side, we compare the performance of total cost on average
in terms of different MEC servers. As the number of MEC servers varies from 2 to 10,
the proposed Lagrange method achieves lower total costs of 0.0633, 0.0618, 0.0605, 0.0592,
and 0.0578. These results indicate that the proposed algorithm is effective in reducing
computation costs even when the number of tasks increases. In contrast, conventional
approaches have different results. Greedy Latency yields total costs of 0.0633, 0.0624, 0.0610,
0.0606, and 0.0598, while Load Balancing results in a total cost of 0.0633, 0.0625, 0.0617,
0.0609, and 0.0603. Lastly, Random Offloading produces a total cost of 0.0635, 0.0629, 0.0622,
0.0614, and 0.0606 according to the MEC numbers of 2, 4, 6, 8, and 10, respectively. If
we compare the performance of the total cost on average in terms of different numbers
of edge servers, when the number of edge servers increases from 2 to 10, the total cost
of our proposed approach is 1.49% better than that of Greedy Latency, 2.02% better than
that of Load Balancing, and 2.64% better than that of Random Offloading. These findings
indicate that the proposed Lagrange approach is slightly superior to conventional methods
in reducing costs, particularly as the number of MEC servers increases.

5.4. Simulation Based on Congestion Condition

Congestion in mobile edge computing occurs when the network or resources in the
infrastructure are overloaded with a high volume of data or requests. This overload leads
to delays, increased latency, and degraded performance for applications and services.
Congestion can result from factors like high user demand, limited network bandwidth,
inadequate processing capacity, or improper resource allocation. Effective management
of congestion is essential to maintain the efficient and reliable operation of mobile edge
computing systems. By implementing strategies like Load Balancing, resource provisioning,
and traffic prioritization, congestion can be alleviated, and the overall performance of
mobile edge computing can be improved. However, our proposed approach based on
Lagrange can perform better in congestion conditions.

Electronics 2024, 13, 1218 20 of 23

In Figure 6 on the left side, we compare the performance of total latency on average
in terms of different congestion conditions. The figure shows the total latency in seconds
obtained by each approach. The proposed Lagrange approach achieves total latencies
between 0.02 and 0.06 s under the no-congestion condition. Next, in low-congestion
conditions, it can achieve a total latency between 2.56 and 3.20 s. In moderate congestion,
the total latency is 32.00 s, and finally it is 64.00 s in high-congestion conditions. These
results demonstrate that even in conditions of high congestion, the proposed algorithm
still performs well in reducing latency. In contrast, the conventional approaches show
different results: Greedy Latency achieves total latencies between 0.08 and 0.20 s under the
no-congestion condition. Next, in low-congestion conditions, it can obtain a total latency
between 7.91 and 9.89 s. In moderate congestion, the total latency is 98.89 s, and finally it is
197.79 s in high-congestion conditions. Load Balancing can obtain total latencies between
0.08 and 0.21 s under the no-congestion condition. Next, in low-congestion conditions, it
can obtain a total latency between 8.58 and 10.73 s. In moderate congestion, the total latency
is 107.31 s, and it is 214.62 s in high-congestion conditions. Finally, Random Offloading
has a total latency between 0.09 and 0.24 s for the no-congestion condition. Next, in low-
congestion conditions, it can obtain a total latency between 9.46 and 11.83 s. In moderate
congestion, the total latency is 118.29 s, and finally it is 236.58 s in the high-congestion
condition. If we compare the performance of the total latency on average in terms of all
congestion conditions, the total latency of our proposed approach is 209.07% better than
that of Greedy Latency, 235.36% better than that of Load Balancing, and 269.69% better
than that of Random Offloading scheme.

Electronics 2024, 13, x FOR PEER REVIEW 21 of 24

0.2989 for the no-congestion condition. Next, in low-congestion conditions, it can obtain

total cost between 11.8376 and 14.7970. In moderate congestion, the total cost is 147.0000,

and finally it is 295.94 in high-congestion conditions. If we compare the performance of

the total cost on average in terms of all congestion conditions, the total cost of our pro-

posed approach is 228.90% better than that od Greedy Latency, 258.63% better than that

of Load Balancing, and 310.19% better than that of Random Offloading. Overall, the re-

sults show that the proposed Lagrange approach outperforms the conventional ap-

proaches very well in reducing energy, latency, and computation costs, especially in high-

congestion conditions.

Figure 6. Total latency and cost based on congestion conditions.

6. Conclusions and Future Works

In our work, we use the LDROA to jointly provide smart offloading decisions and

optimize resources for each task being offloaded at an edge server. This approach ensures

that the total available resource of the MEC server is not lesser than the that of the adjusted

resource for each task and that the available resource is greater than zero, thus finding the

minimum resource provided by the MEC server for computing the task. The execution

task must meet the time constraint of mission-critical delay-sensitive signaling, for which

the time constraint is 60 ms, while saving energy on user devices. We can see that the

performance of our algorithms is much better than that of the models showcased in other

existing work, such as Random Offloading, Load Balancing, and Greedy Latency schemes,

in terms of total latency and total cost, which means that the proposed method can both

save energy in user devices and obtain optimal total latency for IoT applications. The

LDROA can make intelligent offloading decisions and optimize resources for tasks on

edge servers. This approach ensures that the total available MEC server resources meet

the task requirements and time constraints while saving energy on user devices. Our

method achieves superior performance by reducing energy consumption in user devices

and achieving optimal latency for IoT applications.

In our future work, we will extend our simulation based on the two main conditions

of different system bandwidths and the transmission power of user devices. We will con-

duct simulations to evaluate the performance of Lagrange Duality optimization based on

the system bandwidth provided by the base station for each user device. We will vary the

transmitting power of user devices, the bandwidth capacities, and the congestion condi-

tion to analyze how these factors affect the system’s overall performance. By extending

the simulation to cover different scenarios, we can gain more insights into how the system

performs under various conditions and identify potential problems that may affect system

performance.

Figure 6. Total latency and cost based on congestion conditions.

In Figure 6 on the right side, we compare the performance of total cost on average in
terms of different congestion conditions. This figure presents a comparison of total cost
between the proposed Lagrange approach and three conventional task offloading schemes
in congestion conditions such as no congestion, low congestion, moderate congestion,
and high congestion. The figure shows the total cost obtained by each approach. The
proposed Lagrange approach achieves a total cost between 0.0255 and 0.0720 under no-
congestion conditions. Next, in low-congestion conditions, it can achieve a total cost
between 2.8800 and 3.6000. In moderate congestion, the cost is 36.0000, and finally it is
72.0000 in high-congestion conditions. These results demonstrate that even in conditions
of high congestion, the proposed algorithm still performs well in reducing computation
costs. In contrast, the conventional approaches show different results: Greedy Latency
achieves a total cost between 0.0934 and 0.02368 under the no-congestion condition. Next,
in low-congestion conditions, it can obtain a total cost between 9.4721 and 11.8401. In

Electronics 2024, 13, 1218 21 of 23

moderate congestion, the total cost is 118.4000, and finally it is 236.8000 in high-congestion
conditions. Load Balancing can obtain total costs between 0.1020 and 0.2582 under the
no-congestion condition. Next, in low-congestion conditions, it can obtain a total cost of
between 10.3284 and 12.9104. In moderate congestion, the total cost is 129.1050, and it is
258.21 in high-congestion conditions. Finally, Random Offloading has a total cost between
0.1171 and 0.2989 for the no-congestion condition. Next, in low-congestion conditions,
it can obtain total cost between 11.8376 and 14.7970. In moderate congestion, the total
cost is 147.0000, and finally it is 295.94 in high-congestion conditions. If we compare the
performance of the total cost on average in terms of all congestion conditions, the total cost
of our proposed approach is 228.90% better than that od Greedy Latency, 258.63% better
than that of Load Balancing, and 310.19% better than that of Random Offloading. Overall,
the results show that the proposed Lagrange approach outperforms the conventional
approaches very well in reducing energy, latency, and computation costs, especially in
high-congestion conditions.

6. Conclusions and Future Works

In our work, we use the LDROA to jointly provide smart offloading decisions and
optimize resources for each task being offloaded at an edge server. This approach ensures
that the total available resource of the MEC server is not lesser than the that of the adjusted
resource for each task and that the available resource is greater than zero, thus finding the
minimum resource provided by the MEC server for computing the task. The execution
task must meet the time constraint of mission-critical delay-sensitive signaling, for which
the time constraint is 60 ms, while saving energy on user devices. We can see that the
performance of our algorithms is much better than that of the models showcased in other
existing work, such as Random Offloading, Load Balancing, and Greedy Latency schemes,
in terms of total latency and total cost, which means that the proposed method can both
save energy in user devices and obtain optimal total latency for IoT applications. The
LDROA can make intelligent offloading decisions and optimize resources for tasks on
edge servers. This approach ensures that the total available MEC server resources meet
the task requirements and time constraints while saving energy on user devices. Our
method achieves superior performance by reducing energy consumption in user devices
and achieving optimal latency for IoT applications.

In our future work, we will extend our simulation based on the two main conditions of
different system bandwidths and the transmission power of user devices. We will conduct
simulations to evaluate the performance of Lagrange Duality optimization based on the
system bandwidth provided by the base station for each user device. We will vary the
transmitting power of user devices, the bandwidth capacities, and the congestion condi-
tion to analyze how these factors affect the system’s overall performance. By extending
the simulation to cover different scenarios, we can gain more insights into how the sys-
tem performs under various conditions and identify potential problems that may affect
system performance.

Author Contributions: Conceptualization, C.E. and S.K. (Seokhoon Kim); methodology, C.E. and S.R.;
software, S.K. (Seungwoo Kang), I.S. and P.T.; validation, S.R., S.K. (Seungwoo Kang), I.S. and P.T.;
formal analysis, C.E. and S.R.; investigation, S.K. (Seokhoon Kim); resources, S.K. (Seokhoon Kim);
data curation, S.R., I.S., P.T. and S.M.; writing—original draft preparation, C.E. and S.R.; writing—review
and editing, S.R. and S.K. (Seokhoon Kim); visualization, S.R., S.K. (Seungwoo Kang) and S.M.;
supervision, S.K. (Seokhoon Kim); project administration, S.K. (Seokhoon Kim); funding acquisition,
S.K. (Seokhoon Kim). All authors have read and agreed to the published version of the manuscript.

Electronics 2024, 13, 1218 22 of 23

Funding: This work was supported by Institute of Information and Communications Technology
Planning and Evaluation (IITP) grant funded by the Korean government (MSIT) (No. RS-2022-
00167197, Development of Intelligent 5G/6G Infrastructure Technology for The Smart City), in part
by the National Research Foundation of Korea (NRF), Ministry of Education, through Basic Science
Research Program under Grant NRF-2020R1I1A3066543, in part by BK21 FOUR (Fostering Out-
standing Universities for Research) under Grant 5199990914048, and in part by the Soonchunhyang
University Research Fund.

Data Availability Statement: Derived data supporting the findings of this study are available from
the corresponding author on request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Brown, G. Mobile Edge Computing Use Cases and Deployment Options; Juniper White Paper; Heavy Reading: New York, NY,

USA, 2016.
2. Dolezal, J.; Becvar, Z.; Zeman, T. Performance evaluation of computation offloading from mobile device to the edge of mobile

network. In Proceedings of the 2016 IEEE Conference on Standards for Communications and Networking (CSCN), Berlin,
Germany, 31 October–2 November 2016.

3. Kekki, S.; Featherstone, W.; Fang, Y.; Kuure, P.; Li, A.; Ranjan, A.; Purkayastha, D.; Jiangping, F.; Frydman, D.; Verin, G.; et al.
MEC in 5g Networks; ETSI White Paper; ETSI: Valbonne, France, 2018.

4. Yadav, R.; Zhang, W.; Elgendy, I.A.; Dong, G.; Shafiq, M.; Laghari, A.A.; Prakash, S. Smart Healthcare: RL-Based Task Offloading
Scheme for Edge-Enable Sensor Networks. IEEE Sens. J. 2021, 21, 24910–24918. [CrossRef]

5. Tam, P.; Math, S.; Kim, S. Adaptive partial task offloading and virtual resource placement in SDN/NFV-based network soft-
warization. Comput. Syst. Sci. Eng. 2023, 45, 2141–2154. [CrossRef]

6. Shahzadi, S.; Iqbal, M.; Dagiuklas, T.; Qayyum, Z.U. Multi-access edge computing: Open issues, challenges and future perspec-
tives. J. Cloud Comput. 2022, 6, 30. [CrossRef]

7. Chen, Y.; Zhao, F.; Lu, Y.; Chen, X. Dynamic Task Offloading for Mobile Edge Computing with Hybrid Energy Supply. Tsinghua
Sci. Technol. 2023, 28, 421–432. [CrossRef]

8. Medhat, A.M.; Taleb, T.; Elmangoush, A.; Carella, G.A.; Covaci, S.; Magedanz, T. Service Function Chaining in Next Generation
Networks: State of the Art and Research Challenges. IEEE Commun. Mag. 2017, 55, 216–223. [CrossRef]

9. Ren, Y.; Guo, A.; Song, C. Multi-Slice Joint Task Offloading and Resource Allocation Scheme for Massive MIMO Enabled Network.
KSII Trans. Internet Inf. Syst. 2023, 17, 794–815.

10. Zhang, K.; Mao, Y.; Leng, S.; He, Y.; Zhang, Y. Mobile-Edge Computing for Vehicular Networks: A Promising Network Paradigm
with Predictive Off-Loading. IEEE Veh. Technol. Mag. 2017, 12, 36–44. [CrossRef]

11. Song, I.; Tam, P.; Kang, S.; Ros, S.; Kim, S. DRL-Based Backbone SDN Control Methods in UAV-Assisted Networks for Computa-
tional Resource Efficiency. Electronics 2023, 12, 2984. [CrossRef]

12. Hazarika, B.; Singh, K.; Biswas, S.; Li, C.-P. DRL-Based Resource Allocation for Computation Offloading in IoV Networks. IEEE
Trans. Ind. Inform. 2022, 18, 8027–8038. [CrossRef]

13. Sha, Y.; Hu, J.; Hao, S.; Wang, D. Joint Relay Selection and Resource Allocation for Delay-Sensitive Traffic in Multi-Hop Relay
Networks. KSII Trans. Internet Inf. Syst. 2022, 16, 3008–3028.

14. Tong, L.; Li, Y.; Gao, W. A hierarchical edge cloud architecture for mobile computing. In Proceedings of the IEEE INFOCOM
2016—The 35th Annual IEEE International Conference on Computer Communications, San Francisco, CA, USA, 10–14 April 2016.

15. Fatemi Moghaddam, F.; Rohani, M.B.; Ahmadi, M.; Khodadadi, T.; Madadipouya, K. Cloud computing: Vision, architecture and
Characteristics. In Proceedings of the 2015 IEEE 6th Control and System Graduate Research Colloquium (ICSGRC), Shah Alam,
Malaysia, 10–11 August 2015.

16. Chen, L.; Tang, H.; Zhao, Y.; You, W.; Wang, K. A Privacy-preserving and Energy-efficient Offloading Algorithm based on
Lyapunov Optimization. KSII Trans. Internet Inf. Syst. 2022, 16, 2490–2506.

17. Pham, Q.-V.; Fang, F.; Ha, V.N.; Piran, M.J.; Le, M.; Le, L.B.; Hwang, W.-J.; Ding, Z. A Survey of Multi-Access Edge Computing in
5G and Beyond: Fundamentals, Technology Integration, and State-of-the-Art. IEEE Access 2020, 8, 116974–117017. [CrossRef]

18. Wang, Y.; Wan, X.; Du, X.; Chen, X.; Lu, Z. A Resource Allocation Strategy for Edge Services Based on Intelligent Prediction. In
Proceedings of the 2021 IEEE 6th International Conference on Smart Cloud (SmartCloud), Virtual, 6–8 November 2021.

19. Ros, S.; Eang, C.; Tam, P.; Kim, S. ML/SDN-Based MEC Resource Management for QoS Assurances. In Advances in ComputerScience
and Ubiquitous Computing; Springer: Singapore, 2023; Volume 1028, pp. 591–597.

20. Tam, P.; Corrado, R.; Eang, C.; Kim, S. Applicability of Deep Reinforcement Learning for Efficient Federated Learning in Massive
IoT Communications. Appl. Sci. 2023, 13, 3083. [CrossRef]

21. Huynh, L.N.T.; Pham, Q.-V.; Pham, X.-Q.; Nguyen, T.D.T.; Hossain, M.D.; Huh, E.-N. Efficient Computation Offloading in
Multi-Tier Multi-Access Edge Computing Systems: A Particle Swarm Optimization Approach. Appl. Sci. 2020, 10, 203. [CrossRef]

22. Ros, S.; Tam, P.; Kim, S. Modified Deep Reinforcement Learning Agent for Dynamic Resource Placement in IoT Network Slicing.
J. Internet Comput. Serv. 2022, 23, 17–23.

https://doi.org/10.1109/JSEN.2021.3096245
https://doi.org/10.32604/csse.2023.030984
https://doi.org/10.1186/s13677-017-0097-9
https://doi.org/10.26599/TST.2021.9010050
https://doi.org/10.1109/MCOM.2016.1600219RP
https://doi.org/10.1109/MVT.2017.2668838
https://doi.org/10.3390/electronics12132984
https://doi.org/10.1109/TII.2022.3168292
https://doi.org/10.1109/ACCESS.2020.3001277
https://doi.org/10.3390/app13053083
https://doi.org/10.3390/app10010203

Electronics 2024, 13, 1218 23 of 23

23. Guo, H.; Liu, J.; Qin, H. Collaborative Mobile Edge Computation Offloading for IoT over Fiber-Wireless Networks. IEEE Netw.
2018, 32, 66–71. [CrossRef]

24. Chen, C.; Zeng, Y.; Li, H.; Liu, Y.; Wan, S. A Multi-hop Task Offloading Decision Model in MEC-enabled Internet of Vehicles. IEEE
Internet Things J. 2022, 10, 3215–3230. [CrossRef]

25. Ryu, J.-W.; Pham, Q.-V.; Luan, H.N.T.; Hwang, W.-J.; Kim, J.-D.; Lee, J.-T. Multi-Access Edge Computing Empowered Heteroge-
neous Networks: A Novel Architecture and Potential Works. Symmetry 2019, 11, 842. [CrossRef]

26. Ren, J.; Mahfujul, K.M.; Lyu, F.; Yue, S.; Zhang, Y. Joint Channel Allocation and Resource Management for Stochastic Computation
Offloading in MEC. IEEE Trans. Veh. Technol. 2021, 69, 8900–8913. [CrossRef]

27. Tam, P.; Math, S.; Nam, C.; Kim, S. Adaptive Resource Optimized Edge Federated Learning in Real-Time Image Sensing
Classifications. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10929–10940. [CrossRef]

28. Li, J.; Lv, T. Deep Neural Network Based Computational Resource Allocation for Mobile Edge Computing. In Proceedings of the
2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 9–13 December 2018.

29. Naouri, Y.A.; Wu, H.; Nouri, N.A.; Dhelim, S.; Ning, H. A Novel Framework for Mobile-Edge Computing by Optimizing Task
Offloading. IEEE Internet Things J. 2021, 8, 13065–13076. [CrossRef]

30. Chen, Y.; Zhang, N.; Zhang, Y.; Chen, X.; Wu, W.; Shen, X. Energy Efficient Dynamic Offloading in Mobile Edge Computing for
Internet of Things. IEEE Trans. Cloud Comput. 2021, 9, 1050–1060. [CrossRef]

31. Wang, Z.; Li, P.; Shen, S.; Yang, K. Task Offloading Scheduling in Mobile Edge Computing Networks. Procedia Comput. Sci. 2021,
184, 322–329. [CrossRef]

32. Zhang, H.; Wu, W.; Wang, C.; Li, M.; Yang, R. Deep Reinforcement Learning-Based Offloading Decision Optimization in Mobile
Edge Computing. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh,
Morocco, 15–18 April 2019.

33. Lakew, D.S.; Tuong, V.D.; Dao, N.-N.; Cho, S. Adaptive Partial Offloading and Resource Harmonization in Wireless Edge
Computing-Assisted IoE Networks. IEEE Trans. Netw. Sci. Eng. 2022, 9, 3028–3044. [CrossRef]

34. Wan, Z.; Xu, D.; Xu, D.; Ahmad, İ. Joint Computation Offloading and Resource Allocation for NOMA-Based Multi-Access Mobile
Edge Computing Systems. Comput. Netw. 2021, 196, 108256. [CrossRef]

35. Xu, D.; Xu, D. Cooperative Task Offloading and Resource Allocation for UAV-Enabled Mobile Edge Computing Systems. Comput.
Netw. 2023, 223, 109574. [CrossRef]

36. Xu, D. Device Scheduling and Computation Offloading in Mobile Edge Computing Networks: A Novel NOMA Scheme. IEEE
Trans. Veh. Technol. 2024, 1–6. [CrossRef]

37. Abkenar, F.S.; Iranmanesh, S.; Bouguettaya, A.; Raad, R.; Jamalipour, A. ENERGENT: An Energy-Efficient UAV-Assisted Fog-IoT
Framework for Disaster Management. J. Commun. Netw. 2022, 24, 698–709. [CrossRef]

38. Abkenar, F.S.; Ramezani, P.; Iranmanesh, S.; Murali, S.; Chulerttiyawong, D.; Wan, X.; Jamalipour, A.; Raad, R. A Survey on
Mobility of Edge Computing Networks in IoT: State-of-The-Art, Architectures, and Challenges. IEEE Commun. Surv. Tutor. 2022,
24, 2329–2365. [CrossRef]

39. Jan, T.; Iranmanesh, S.; Sajeev, A.S.M. Ensemble of Semi-Parametric Models for IoT Fog Modeling. In Proceedings of the 2019
IEEE Symposium Series on Computational Intelligence (SSCI), Xiamen, China, 6–9 December 2019.

40. Pham, Q.-V.; Leanh, T.; Tran, N.H.; Park, B.J.; Hong, C.S. Decentralized Computation Offloading and Resource Allocation for
Mobile-Edge Computing: A Matching Game Approach. IEEE Access 2018, 6, 75868–75885. [CrossRef]

41. Zhang, K.; Mao, Y.; Leng, S.; Zhao, Q.; Li, L.; Peng, X.; Pan, L.; Maharjan, S.; Zhang, Y. Energy-Efficient Offloading for Mobile
Edge Computing in 5G Heterogeneous Networks. IEEE Access 2016, 4, 5896–5907. [CrossRef]

42. Wang, K.; Yang, K. Power-Minimization Computing Resource Allocation in Mobile Cloud-Radio Access Network. In Proceedings
of the 2016 IEEE International Conference on Computer and Information Technology (CIT), Nadi, Fiji, 8–10 December 2016.

43. Tang, J.; Tay, W.P.; Wen, Y. Dynamic Request Redirection and Elastic Service Scaling in Cloud-Centric Media Networks. IEEE
Trans. Multimed. 2014, 16, 1434–1445. [CrossRef]

44. 3GPP TS 23.203, v. 17.1.0; Technical Specification Group Services and System Aspects. Policy and Charging Control Architecture;
ETSI: Valbonne, France, 2021.

45. Fan, X.; Cui, T.; Cao, C.; Chen, Q.; Kwak, K.S. Minimum-Cost Offloading for Collaborative Task Execution of MEC-Assisted
Platooning. Sensors 2019, 19, 847. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/MNET.2018.1700139
https://doi.org/10.1109/JIOT.2022.3143529
https://doi.org/10.3390/sym11070842
https://doi.org/10.1109/TVT.2020.2997685
https://doi.org/10.1109/JSTARS.2021.3120724
https://doi.org/10.1109/JIOT.2021.3064225
https://doi.org/10.1109/TCC.2019.2898657
https://doi.org/10.1016/j.procs.2021.03.041
https://doi.org/10.1109/TNSE.2022.3153172
https://doi.org/10.1016/j.comnet.2021.108256
https://doi.org/10.1016/j.comnet.2023.109574
https://doi.org/10.1109/TVT.2024.3352262
https://doi.org/10.23919/JCN.2022.000050
https://doi.org/10.1109/COMST.2022.3211462
https://doi.org/10.1109/ACCESS.2018.2882800
https://doi.org/10.1109/ACCESS.2016.2597169
https://doi.org/10.1109/TMM.2014.2308726
https://doi.org/10.3390/s19040847
https://www.ncbi.nlm.nih.gov/pubmed/30781710

	Introduction
	Related Works
	Proposed System Model
	System Architecture
	Communication Model
	Task Offloading Model
	Computation Offloading Model at the Edge Server
	Offloading Problem Formulation and Analysis
	Offloading Decision Sub Problem
	Lagrange Duality Resource Optimization Algorithm (LDROA)
	Proposed Solution and Algorithm Design

	Experimentation and Result Evaluations
	Simulation Setting and Parameters
	Proposed and Reference Schemes

	Simulation Result and Discussion
	Simulation Based on User Device Computing Capacity
	Simulation Based on Different Numbers of Tasks
	Simulation Based on Different Numbers of MEC Servers
	Simulation Based on Congestion Condition

	Conclusions and Future Works
	References

