
Citation: Cheng, X.; Wang, Y.; Ding,

W.; Lou, H.; Li, P. Leveraging

Bit-Serial Architectures for

Hardware-Oriented Deep Learning

Accelerators with Column-Buffering

Dataflow. Electronics 2024, 13, 1217.

https://doi.org/10.3390/

electronics13071217

Academic Editor: Valeri Mladenov

Received: 28 February 2024

Revised: 20 March 2024

Accepted: 25 March 2024

Published: 26 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Leveraging Bit-Serial Architectures for Hardware-Oriented Deep
Learning Accelerators with Column-Buffering Dataflow
Xiaoshu Cheng 1 , Yiwen Wang 1,* , Weiran Ding 1, Hongfei Lou 1 and Ping Li 1,2

1 School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of
China, Chengdu 611731, China; chengxs@std.uestc.edu.cn (X.C.); wrding@std.uestc.edu.cn (W.D.);
louhongfei@std.uestc.edu.cn (H.L.); pli@uestc.edu.cn (P.L.)

2 State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and
Technology of China, Chengdu 611731, China

* Correspondence: yiwen@uestc.edu.cn

Abstract: Bit-serial neural network accelerators address the growing need for compact and energy-
efficient deep learning tools. Traditional neural network accelerators, while effective, often grapple
with issues of size, power consumption, and versatility in handling a variety of computational tasks.
To counter these challenges, this paper introduces an approach that hinges on the integration of
bit-serial processing with advanced dataflow techniques and architectural optimizations. Central to
this approach is a column-buffering (CB) dataflow, which significantly reduces access and movement
requirements for the input feature map (IFM), thereby enhancing efficiency. Moreover, a simplified
quantization process effectively eliminates biases, streamlining the overall computation process.
Furthermore, this paper presents a meticulously designed LeNet-5 accelerator leveraging a convo-
lutional layer processing element array (CL PEA) architecture incorporating an improved bit-serial
multiply–accumulate unit (MAC). Empirically, our work demonstrates superior performance in
terms of frequency, chip area, and power consumption compared to current state-of-the-art ASIC
designs. Specifically, our design utilizes fewer hardware resources to implement a complete accelera-
tor, achieving a high performance of 7.87 GOPS on a Xilinx Kintex-7 FPGA with a brief processing
time of 284.13 µs. The results affirm that our design is exceptionally suited for applications requiring
compact, low-power, and real-time solutions.

Keywords: accelerator; bit-serial; column-buffering dataflow; convolutional neural network; quantization

1. Introduction

Deep learning technology has achieved groundbreaking advancements in several
artificial intelligence subfields, including natural language understanding, computer vision,
and reinforcement learning. Convolutional neural networks (CNNs) have emerged as
pivotal tools for managing a wide range of complex tasks within these areas. They are
instrumental in applications such as image recognition, natural language processing, vision
systems in autonomous vehicles, and the analysis of medical imagery. CNNs excel at
processing massive quantities of high-dimensional data with remarkable precision and
efficiency. However, these sophisticated models often require significant computational
storage and energy; this is manageable in data centers or on high-performance comput-
ing platforms, but it becomes a substantial hurdle for resource-limited edge devices like
smartphones, embedded systems, and wearable technology. This challenge has spurred
increased interest in the development of neural network hardware accelerators, particularly
those that utilize bit-serial computation techniques. These accelerators are designed to
optimize performance and efficiency, making advanced neural network applications more
accessible on a wider range of devices.

Bit-serial computation is a distinctive arithmetic approach that processes each bit of
a number sequentially, one at a time. This method starkly contrasts with the traditional

Electronics 2024, 13, 1217. https://doi.org/10.3390/electronics13071217 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13071217
https://doi.org/10.3390/electronics13071217
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-5941-5954
https://orcid.org/0000-0002-5174-2720
https://doi.org/10.3390/electronics13071217
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13071217?type=check_update&version=1


Electronics 2024, 13, 1217 2 of 23

bit-parallel technique in which multiple bits are processed together within the same clock
cycle. In bit-serial computation, numbers are broken down into individual bits, each
handled over multiple clock cycles. This approach is a strategic balance between time and
space considerations. The primary advantage of bit-serial computation lies in its significant
reduction of hardware resource requirements. By processing a single bit at a time, it
reduces the size of the necessary storage and arithmetic logic units, making it ideal for
scenarios with limited hardware resources or in which cost efficiency is crucial. Moreover,
the reduced complexity of computational circuitry inherent in processing one bit at a time
leads to lower power consumption. This is particularly advantageous for battery-powered
mobile and embedded devices, where power efficiency is a key concern. Despite these
benefits, bit-serial computation faces certain limitations and challenges. One of the main
issues is the potential increase in computational delays due to the bit-by-bit processing
method. Additionally, while the bit-serial method can decrease the width of data, it may
impact the precision of computations. Therefore, finding a suitable quantization strategy is
essential to ensure that any reduction in computational accuracy remains within acceptable
boundaries while simultaneously minimizing data width.

Bit-serial CNN hardware accelerators consist of a processing element array (PEA),
memory, and control units. In this setup, each bit-serial processing element (PE) within the
array is tasked with computing a convolution kernel. These PEs are equipped with several
multiply–accumulate units (MACs) which are interconnected in a specific form. The system
processes input feature maps (IFMs) and weights in a bit-serial manner, channeling them
through the MACs and PEs. By adopting the bit-serial method, data width is minimized,
facilitating the use of fixed-point rather than floating-point arithmetic, which in turn
simplifies the hardware complexity.

Bit-serial neural network accelerators provide an effective solution for applications
in deep learning that demand a compact size and low power consumption. The key
contributions of this paper include the following:

• A streamlined quantization formula and the introduction of a preprocessing method
for quantization which allows for the removal of bias data;

• The development of a column-buffering (CB) dataflow designed to reduce the need to
access and move the IFM;

• The design of a convolutional layer processing element array (CL PEA) unit ar-
chitecture. This architecture leverages an enhanced bit-serial MAC and is based
on the proposed CB dataflow, culminating in the construction of a whole neural
network accelerator.

The structure of the remaining sections of the paper is as follows: Section 2 introduces
related works. Section 3 provides essential background knowledge, including an overview
of CNN structures, the timing of bit-serial computation, and simplified quantization meth-
ods. Section 4 details the operational process of the proposed CB dataflow. Section 5,
adopting a top-down approach, discusses the overall architecture of the neural network
accelerator, encompassing the structure and function of the PEA, PE, and MAC compo-
nents. Section 6 focuses on the implementation, assessment, and prototype validation of
the accelerator. Finally, Section 7 concludes the entire paper.

2. Related Works

To address the challenges of high computational complexity and substantial area and
power consumption, ESSA [1] has implemented a suite of innovative strategies. These
include a ring streaming dataflow which optimizes data movement; a data reuse strategy
to minimize the need for new data inputs; bit reduction to decrease computational load by
reducing data precision; loop tiling, a programming technique for boosting computational
efficiency; and converting non-unit stride to unit stride to streamline the data processing
workflow. Together, these optimizations significantly enhance computational performance
and energy efficiency. The UNPU [2] stands out as the first application-specific integrated
circuit (ASIC) DNN accelerator capable of supporting fully variable weight precision



Electronics 2024, 13, 1217 3 of 23

ranging from 1 to 16 bits. This versatility allows the UNPU to fine-tune energy consumption
while maintaining accuracy, striking an ideal balance between the two. Stripes [3], on the
other hand, tailors computation time to the precision level of the bit-serial computing
unit. It capitalizes on the unique properties of bit-serial computing units and the natural
parallelism in DNNs to improve performance and energy efficiency, all while preserving
accuracy. This is achieved by dynamically adjusting the computation time in response
to the required precision level. Previously, weight pixels were serially input into gate
circuits, and IFM pixels were fed in parallel. Although effective, there was still potential
for improvement. Our approach differs by serially feeding both IFM pixels and weight
pixels into the gate circuits. This method further reduces the hardware footprint and energy
consumption without compromising accuracy and maintains a high operational frequency.

Neural network accelerators typically adopt one of two architectures for their convo-
lution arrays: temporal [4] or spatial [5,6]. These are represented by a tree structure and
a PEA, respectively [7]. In bit-serial computing, effectively reusing data can considerably
decrease the number of memory accesses, thereby reducing power consumption. For
instance, in a PEA architecture, each computational unit is operation is controlled by the
dataflow. Identifying an efficient dataflow is crucial for defining the spatial structure of the
PEs and the overall PEA. There are four common dataflows [8]: no local reuse (NLR) [4,9],
input stationary (IS) [10], output stationary (OS) [11,12], and weight stationary (WS) [6,13].
The NLR dataflow, typically implemented in a tree structure, does not reuse data, leading
to higher hardware costs. In contrast, the other three dataflows are mainly used in PEAs.
The IS dataflow reuses the same activations multiple times but overlooks significant output
parallelism, resulting in increased total data access. The OS dataflow aims to minimize
the energy used in reading and writing partial sums, yet it involves a substantial amount
of external data access [14]. The WS dataflow, on the other hand, minimizes the energy
cost of reading weights due to its low data access and delivers average computational
performance. The WS dataflow benefits from a multilevel memory hierarchy that enhances
energy efficiency by reducing data access. To address the challenge of maximizing data
reuse, we propose a CB dataflow inspired by the WS dataflow alongside an optimized
PE structure.

To achieve performance gains and support a broad spectrum of applications, neural
network accelerator systems often employ a hybrid approach, combining general-purpose
processors with specialized accelerator logic. The general-purpose processor is tasked
with executing operations that are inefficient for reconfigurable logic, such as handling
data-dependent controls and memory access tasks. Traditional neural network accelerator
systems can be broadly segmented into five types of coupling relationships with the
general-purpose processor, as illustrated in Figure 1.

Electronics 2024, 13, x FOR PEER REVIEW 3 of 24 
 

 

workflow. Together, these optimizations significantly enhance computational perfor-
mance and energy efficiency. The UNPU [2] stands out as the first application-specific 
integrated circuit (ASIC) DNN accelerator capable of supporting fully variable weight 
precision ranging from 1 to 16 bits. This versatility allows the UNPU to fine-tune energy 
consumption while maintaining accuracy, striking an ideal balance between the two. 
Stripes [3], on the other hand, tailors computation time to the precision level of the bit-
serial computing unit. It capitalizes on the unique properties of bit-serial computing units 
and the natural parallelism in DNNs to improve performance and energy efficiency, all 
while preserving accuracy. This is achieved by dynamically adjusting the computation 
time in response to the required precision level. Previously, weight pixels were serially 
input into gate circuits, and IFM pixels were fed in parallel. Although effective, there was 
still potential for improvement. Our approach differs by serially feeding both IFM pixels 
and weight pixels into the gate circuits. This method further reduces the hardware foot-
print and energy consumption without compromising accuracy and maintains a high op-
erational frequency. 

Neural network accelerators typically adopt one of two architectures for their convo-
lution arrays: temporal [4] or spatial [5,6]. These are represented by a tree structure and a 
PEA, respectively [7]. In bit-serial computing, effectively reusing data can considerably 
decrease the number of memory accesses, thereby reducing power consumption. For in-
stance, in a PEA architecture, each computational unit is operation is controlled by the 
dataflow. Identifying an efficient dataflow is crucial for defining the spatial structure of 
the PEs and the overall PEA. There are four common dataflows [8]: no local reuse (NLR) 
[4,9], input stationary (IS) [10], output stationary (OS) [11,12], and weight stationary (WS) 
[6,13]. The NLR dataflow, typically implemented in a tree structure, does not reuse data, 
leading to higher hardware costs. In contrast, the other three dataflows are mainly used 
in PEAs. The IS dataflow reuses the same activations multiple times but overlooks signif-
icant output parallelism, resulting in increased total data access. The OS dataflow aims to 
minimize the energy used in reading and writing partial sums, yet it involves a substantial 
amount of external data access [14]. The WS dataflow, on the other hand, minimizes the 
energy cost of reading weights due to its low data access and delivers average computa-
tional performance. The WS dataflow benefits from a multilevel memory hierarchy that 
enhances energy efficiency by reducing data access. To address the challenge of maxim-
izing data reuse, we propose a CB dataflow inspired by the WS dataflow alongside an 
optimized PE structure. 

To achieve performance gains and support a broad spectrum of applications, neural 
network accelerator systems often employ a hybrid approach, combining general-purpose 
processors with specialized accelerator logic. The general-purpose processor is tasked 
with executing operations that are inefficient for reconfigurable logic, such as handling 
data-dependent controls and memory access tasks. Traditional neural network accelerator 
systems can be broadly segmented into five types of coupling relationships with the gen-
eral-purpose processor, as illustrated in Figure 1. 

2. Coprocessor

Cache

I/O 
system

4.
Processing 
unit in I/O

1. Functional 
unit

Processor 5.
Standalone 
processing 

unit

3. Attached 
processing 

unit

 
Figure 1. Five coupling relationships among neural network accelerators and processors. Figure 1. Five coupling relationships among neural network accelerators and processors.

The first type of coupling [15] integrates the accelerator as a functional unit within the
main processor, establishing a close integration. In this setup, the main processor regards
the hardware accelerator as an internal module, delegating specific instructions to the
accelerator for execution. The second coupling style [16,17], in which the hardware accel-
erator serves as an extension to the main processor, features an independent coprocessor



Electronics 2024, 13, 1217 4 of 23

dedicated to particular computational tasks. This arrangement helps offload tasks from the
main processor. In the third coupling variant [18–23], the system incorporates an auxiliary
processing unit which is essentially a dedicated processor with its own instruction set. This
additional unit, which is directly linked to the main processor’s cache, enables swifter
data access. The accelerator’s independent instruction set and programming space allow
it to specialize in certain tasks, consequently freeing up resources in the main processor.
The fourth coupling approach [24] positions the accelerator within the input/output (I/O)
channel, integrating it into the I/O system. This configuration allows the accelerator to
manage I/O-related tasks, while the main processor treats it as a part of the storage access
system. Being embedded in the I/O system, the accelerator can quickly respond to external
signals and data, enhancing the efficiency and speed of data processing.

The fifth and final coupling relationship [25–30] is characterized by a separate, inde-
pendent hardware architecture external to the I/O system. This distinct hardware setup
provides increased modularity and flexibility. With data circulating through dedicated
hardware, processing tasks can proceed autonomously without needing intervention from
the main processor, thus boosting the overall system efficiency. Additionally, this config-
uration alleviates the burden on the main processor, allowing it to concentrate on other
computational tasks. Owing to its flexibility, our neural network accelerator architecture
adopts this fifth coupling model.

3. Preliminaries
3.1. CNN Basics

CNNs are a specialized type of deep learning algorithm predominantly utilized for
processing grid-structured data, like images. CNNs adeptly and efficiently extract high-
level features from raw data by employing a blend of convolutional layers (CLs), pooling
layers, and fully connected layers (FCLs). This unique structure makes CNNs highly
effective in a range of visual tasks, including image classification, object detection, and
image generation. A significant advantage of CNNs over traditional fully connected
networks is their ability to drastically reduce the number of parameters in the model.
This reduction is achieved through local connections and weight sharing, substantially
lowering the likelihood of overfitting. A notable example of an early CNN is LeNet-5,
developed by Yann LeCun in 1998 [31]. This pioneering model demonstrated remarkable
success in recognizing handwritten digits and played a pivotal role in shaping the design of
subsequent CNNs. As illustrated in Figure 2a, the architecture of LeNet-5 mainly comprises
two CLs, two pooling layers, and three FCLs. Figure 2b shows a detailed view of a CL, and
Figure 2c provides a schematic representation of an FCL.

The CL is a fundamental component of CNNs. Its key role is to extract features that are
locally relevant from input data. Unlike FCLs, convolutional operations are characterized
by parameter sharing and local connections. This design enables the network to learn the
local structures of high-dimensional data, such as images, more efficiently. Within a CL,
the input matrix or tensor I interacts with the convolutional kernel or filter K through
convolution operations to generate an output matrix or tensor O. In a 2-D context, this
convolutional operation is defined as in (1).

Oi,j = ReLU

(
b +

a−1

∑
m=0

b−1

∑
n=0

Ii×s+m,j×s+n × Km,n

)
(1)

where i and j represent the indices of elements in the output feature map (OFM) matrix O,
while m and n denote the indices of elements in the convolution kernel K. The dimensions
of the convolution kernel are represented by a and b. The term I refers to the IFM matrix.
The stride, denoted as s, dictates the movement interval of the convolution kernel over the
input matrix, with larger strides leading to smaller output dimensions. The bias term b is
added to the convolutional output. After the addition of bias, models typically proceed



Electronics 2024, 13, 1217 5 of 23

to further processing with a nonlinear activation function like the Rectified Linear Unit
(ReLU) function.

Electronics 2024, 13, x FOR PEER REVIEW 4 of 24 
 

 

The first type of coupling [15] integrates the accelerator as a functional unit within 
the main processor, establishing a close integration. In this setup, the main processor re-
gards the hardware accelerator as an internal module, delegating specific instructions to 
the accelerator for execution. The second coupling style [16,17], in which the hardware 
accelerator serves as an extension to the main processor, features an independent copro-
cessor dedicated to particular computational tasks. This arrangement helps offload tasks 
from the main processor. In the third coupling variant [18–23], the system incorporates an 
auxiliary processing unit which is essentially a dedicated processor with its own instruc-
tion set. This additional unit, which is directly linked to the main processor’s cache, ena-
bles swifter data access. The accelerator’s independent instruction set and programming 
space allow it to specialize in certain tasks, consequently freeing up resources in the main 
processor. The fourth coupling approach [24] positions the accelerator within the in-
put/output (I/O) channel, integrating it into the I/O system. This configuration allows the 
accelerator to manage I/O-related tasks, while the main processor treats it as a part of the 
storage access system. Being embedded in the I/O system, the accelerator can quickly re-
spond to external signals and data, enhancing the efficiency and speed of data processing. 

The fifth and final coupling relationship [25–30] is characterized by a separate, inde-
pendent hardware architecture external to the I/O system. This distinct hardware setup 
provides increased modularity and flexibility. With data circulating through dedicated 
hardware, processing tasks can proceed autonomously without needing intervention 
from the main processor, thus boosting the overall system efficiency. Additionally, this 
configuration alleviates the burden on the main processor, allowing it to concentrate on 
other computational tasks. Owing to its flexibility, our neural network accelerator archi-
tecture adopts this fifth coupling model. 

3. Preliminaries 
3.1. CNN Basics 

CNNs are a specialized type of deep learning algorithm predominantly utilized for 
processing grid-structured data, like images. CNNs adeptly and efficiently extract high-
level features from raw data by employing a blend of convolutional layers (CLs), pooling 
layers, and fully connected layers (FCLs). This unique structure makes CNNs highly ef-
fective in a range of visual tasks, including image classification, object detection, and im-
age generation. A significant advantage of CNNs over traditional fully connected net-
works is their ability to drastically reduce the number of parameters in the model. This 
reduction is achieved through local connections and weight sharing, substantially lower-
ing the likelihood of overfitting. A notable example of an early CNN is LeNet-5, developed 
by Yann LeCun in 1998 [31]. This pioneering model demonstrated remarkable success in 
recognizing handwritten digits and played a pivotal role in shaping the design of subse-
quent CNNs. As illustrated in Figure 2a, the architecture of LeNet-5 mainly comprises two 
CLs, two pooling layers, and three FCLs. Figure 2b shows a detailed view of a CL, and 
Figure 2c provides a schematic representation of an FCL. 

…

…

…

INPUT
32×32×1

28×28×6 14×14×6 10×10×16 5×5×16 120 84 OUTPUT
10

Convolution + ReLU

Max Pooling

Fully Connected + ReLU

Softmax

(a)  

Electronics 2024, 13, x FOR PEER REVIEW 5 of 24 
 

 

(b) (c)

(4,3)

(3,3)

(5,3)

(3,4)

(4,4)

(5,4)

(3,2)

(4,2)

(5,2)

(4,3)

(3,3)

(5,3)

(3,4)

(4,4)

(5,4)

(3,2)

(4,2)

(5,2)

Output feature 
maps (OFMs)

(4,3)

(3,3)

(5,3)

(3,4)

(4,4)

(5,4)

(3,2)

(4,2)

(5,2)

a b c

e

h

f

i
d

g

a b c

e

h

f

i
d

g

a b c

e

h

f

i
d

g

M Kernels

(3,2)

H

R

K

a b c

e

h

f

i
d

g

a b c

e

h

f

i
d

g

a b c

e

h

f

i
d

g

(3,2)

K M

1

Input feature 
maps (IFMs)

n

n

m

m
× =

Input

Weights

Output

 
Figure 2. A CNN. (a) LeNet-5 network architecture. (b) Convolutional layer. (c) Fully connected 
layer. 

The CL is a fundamental component of CNNs. Its key role is to extract features that 
are locally relevant from input data. Unlike FCLs, convolutional operations are character-
ized by parameter sharing and local connections. This design enables the network to learn 
the local structures of high-dimensional data, such as images, more efficiently. Within a 
CL, the input matrix or tensor I interacts with the convolutional kernel or filter K through 
convolution operations to generate an output matrix or tensor O. In a 2-D context, this 
convolutional operation is defined as in (1). 

− −

× + × +
= =

 
= + × 

 
 

1 1

, , ,
0 0

ReLU
a b

i j i s m j s n m n
m n

O b I K  (1)

where i and j represent the indices of elements in the output feature map (OFM) matrix 
O, while m and n denote the indices of elements in the convolution kernel K. The dimen-
sions of the convolution kernel are represented by a and b. The term I refers to the IFM 
matrix. The stride, denoted as s, dictates the movement interval of the convolution kernel 
over the input matrix, with larger strides leading to smaller output dimensions. The bias 
term b is added to the convolutional output. After the addition of bias, models typically 
proceed to further processing with a nonlinear activation function like the Rectified Linear 
Unit (ReLU) function. 

Pooling layers are integral parts of CNNs, primarily serving to reduce the size of 
feature maps and to cut down on the model’s computational demands. In these layers, a 
defined window size traverses the IFM or matrix I, generating a single output value for 
each window which collectively form the OFM O. The most prevalent types of pooling 
operations are max pooling and average pooling. Specifically, LeNet-5 employs max pool-
ing. In max pooling, the output for each window is the maximum value found within it, 
as in (2). 

× + −× + −

= × = ×
=

11

, ,max max
j s ki s k

i j m nm i s n j s
Ο I  (2)

where i and j denote the indices of elements in the OFM O, while k represents the size of 
the pooling window. I refers to the IFM. Typically devoid of learnable parameters unless 
a learnable pooling method is used, pooling layers contribute to a reduction in the total 
parameter count of the network. This reduction is crucial for mitigating the risk of over-
fitting in the model. 

The FCL, also known as a dense layer, is a staple in various types of neural networks, 
including traditional artificial neural networks, CNNs, and other deep learning architec-
tures. Its main role is to execute nonlinear transformations and decision-making tasks. In 
an FCL, every output neuron is interconnected with all neurons in the input layer. From 

Figure 2. A CNN. (a) LeNet-5 network architecture. (b) Convolutional layer. (c) Fully connected layer.

Pooling layers are integral parts of CNNs, primarily serving to reduce the size of
feature maps and to cut down on the model’s computational demands. In these layers, a
defined window size traverses the IFM or matrix I, generating a single output value for
each window which collectively form the OFM O. The most prevalent types of pooling
operations are max pooling and average pooling. Specifically, LeNet-5 employs max
pooling. In max pooling, the output for each window is the maximum value found within
it, as in (2).

Oi,j =
i×s+k−1

max
m=i×s

j×s+k−1
max
n=j×s

Im,n (2)

where i and j denote the indices of elements in the OFM O, while k represents the size
of the pooling window. I refers to the IFM. Typically devoid of learnable parameters
unless a learnable pooling method is used, pooling layers contribute to a reduction in the
total parameter count of the network. This reduction is crucial for mitigating the risk of
overfitting in the model.

The FCL, also known as a dense layer, is a staple in various types of neural networks,
including traditional artificial neural networks, CNNs, and other deep learning architec-
tures. Its main role is to execute nonlinear transformations and decision-making tasks. In
an FCL, every output neuron is interconnected with all neurons in the input layer. From a
mathematical standpoint, the operations of an FCL are represented by matrix multiplication
followed by the addition of a bias term, as in (3).

O = ReLU(IW + b) (3)

where I denotes the input vector or matrix, W is the weight matrix, b represents the bias
vector, and O is the output vector or matrix. The weight matrix W and the bias vector b
are the learnable parameters of the layer. If the input layer consists of n neurons and the



Electronics 2024, 13, 1217 6 of 23

output layer comprises m neurons, the weight matrix W of the FCL will contain n × m
parameters, while the bias vector b will have m parameters. Typically, the output from a
fully connected layer undergoes a nonlinear transformation through an activation function
like the ReLU function.

3.2. Bit-Serial Computing Basics

In representing fixed-point binary signed data, two’s complement is used to define
two distinct data types: single precision and double precision [32]. To represent binary
numbers with varying dynamic ranges and levels of precision, different quantities of data
lines are employed. With a data bit count P of 4, the specific structures and timing for these
two data types are illustrated in Figure 3. The decimal point is positioned between the
most significant bit (MSB) and the second-most-significant bit, with the least significant
bit (LSB) being transmitted initially. Single-precision data are composed of a sign bit and
P − 1 fractional bits, while double-precision data include a sign bit and 2P − 1 fractional
bits. The role of bit-serial operators extends beyond calculating output bits; they are also
tasked with generating control bits for output data. These control signals, associated with
each data bit, are termed head bits.

Electronics 2024, 13, x FOR PEER REVIEW 6 of 24 
 

 

a mathematical standpoint, the operations of an FCL are represented by matrix multipli-
cation followed by the addition of a bias term, as in (3). 

( )= +ReLUO IW b  (3)

where I denotes the input vector or matrix, W is the weight matrix, b represents the bias 
vector, and O is the output vector or matrix. The weight matrix W and the bias vector b 
are the learnable parameters of the layer. If the input layer consists of n neurons and the 
output layer comprises m neurons, the weight matrix W of the FCL will contain n × m 
parameters, while the bias vector b will have m parameters. Typically, the output from a 
fully connected layer undergoes a nonlinear transformation through an activation func-
tion like the ReLU function. 

3.2. Bit-Serial Computing Basics 
In representing fixed-point binary signed data, two’s complement is used to define 

two distinct data types: single precision and double precision [32]. To represent binary 
numbers with varying dynamic ranges and levels of precision, different quantities of data 
lines are employed. With a data bit count P of 4, the specific structures and timing for 
these two data types are illustrated in Figure 3. The decimal point is positioned between 
the most significant bit (MSB) and the second-most-significant bit, with the least signifi-
cant bit (LSB) being transmitted initially. Single-precision data are composed of a sign bit 
and P − 1 fractional bits, while double-precision data include a sign bit and 2P − 1 fractional 
bits. The role of bit-serial operators extends beyond calculating output bits; they are also 
tasked with generating control bits for output data. These control signals, associated with 
each data bit, are termed head bits. 

high bit - x0 x1 x2 x3

1 0 0 0 1

- x0 x1 x2 x3

- - - - -

1 0 0 0 1

x4 x5 x6 x7

- - - -

0 0 0 1

Decimal point 
position

head bit

high bit

head bit

low bit

time
(a)

(b)

time

 
Figure 3. Composition and timing of (a) single-precision data and (b) double-precision data. 

The bit-serial multiplier processes one bit from one of the operands in each cycle, 
keeping the other operand fixed, and generates a partial product for that specific bit. This 
procedure is carried out for each bit in the operand, leading to the final product being the 
sum of all these partial products. Similarly, the bit-serial adder operates on a bit-by-bit 
basis. The MAC operation incorporates both multiplication and accumulation. A bit-serial 
MAC would integrate the functions of a bit-serial multiplier and a bit-serial adder. During 
each cycle, the multiplier creates a partial product, which is then passed to the accumula-
tor to update the overall sum. This cycle repeats for each bit in the operands. Considering 
the significant decreases in area and power, we refer to Isshiki’s work on bit-serial multi-
pliers and adders [32]. 

Figure 3. Composition and timing of (a) single-precision data and (b) double-precision data.

The bit-serial multiplier processes one bit from one of the operands in each cycle,
keeping the other operand fixed, and generates a partial product for that specific bit. This
procedure is carried out for each bit in the operand, leading to the final product being the
sum of all these partial products. Similarly, the bit-serial adder operates on a bit-by-bit
basis. The MAC operation incorporates both multiplication and accumulation. A bit-serial
MAC would integrate the functions of a bit-serial multiplier and a bit-serial adder. During
each cycle, the multiplier creates a partial product, which is then passed to the accumulator
to update the overall sum. This cycle repeats for each bit in the operands. Considering the
significant decreases in area and power, we refer to Isshiki’s work on bit-serial multipliers
and adders [32].

3.3. Quantization

After successfully training the LeNet-5 model, we acquired the trained model parame-
ters, namely weights and biases, and noted a training accuracy of 99.45%. Subsequently,
we fed the test dataset into this trained model, following the Test1 step shown in Figure 4a,
which yielded an inference accuracy of 98.95%. Test1 employed the PyTorch framework
to carry out forward inference using FP32 parameters—weights (W) and biases (B)—that
were trained in the Training stage. The next phase involved the quantization of the trained
model. Quantization is the process of performing computations and storing tensors at a
lower bit width than floating-point precision. It entails operating on tensors at a lower



Electronics 2024, 13, 1217 7 of 23

precision rather than full precision. This approach enables more compact model repre-
sentation and the utilization of high-performance vectorized operations across numerous
hardware platforms.

Electronics 2024, 13, x FOR PEER REVIEW 7 of 24 
 

 

3.3. Quantization 
After successfully training the LeNet-5 model, we acquired the trained model param-

eters, namely weights and biases, and noted a training accuracy of 99.45%. Subsequently, 
we fed the test dataset into this trained model, following the Test1 step shown in Figure 
4a, which yielded an inference accuracy of 98.95%. Test1 employed the PyTorch frame-
work to carry out forward inference using FP32 parameters—weights (W) and biases (B)—
that were trained in the Training stage. The next phase involved the quantization of the 
trained model. Quantization is the process of performing computations and storing ten-
sors at a lower bit width than floating-point precision. It entails operating on tensors at a 
lower precision rather than full precision. This approach enables more compact model 
representation and the utilization of high-performance vectorized operations across nu-
merous hardware platforms. 

QUANTIZATION

Test1
(FP32)

Training
(FP32)

W, B A, W, B w/o biasTest2
(INT8)

Test3
(INT8)

(a)

Weight
(FP32)

Weight
(INT8)

CONV
/FC

IFM
(INT8)

IFM
(FP32)

OFM
(INT32)

OFM
(INT8)tensor

round(biasFP32)=0

InnerFM
(FP32) Add

Bias
(FP32)

OFM
(FP32)

OFM
(INT8)tensor

Test2

Test3

(c)

(b)

 
Figure 4. Quantization. (a) Training, testing, and quantization. (b) Bias distribution histogram of 
three CNN models. (c) Quantization and simplified inference process after quantization. 

For LeNet-5’s model quantization, we employed PyTorch’s quantization interface 
[33]. PyTorch’s support for signed 8-bit integer (INT8) quantization, in contrast to stand-
ard 32-bit floating-point (FP32) models, allows for reductions in model size and memory 
bandwidth requirements by a factor of four. Hardware support for INT8 computations 
typically offers a speed advantage two to four times greater than FP32 computations. 
PyTorch provides several methods for quantizing deep learning models. Generally, mod-
els are trained in FP32 and then converted to INT8. PyTorch supports three main quanti-
zation modes: Dynamic Quantization, Post-Training Static Quantization (PTSQ), and 
Quantization-Aware Training. Given that our strategy involved statically quantizing both 
the activations and weights of the trained LeNet-5 model without the need to simulate 
quantization during training and using training data to concurrently learn quantization 
parameters, we opted for PTSQ as our quantization strategy. This strategy primarily uti-
lizes symmetric quantization techniques. 

Quantization results in converting each convolutional and fully connected layer into 
INT8 format for IFMs, OFMs, and weights while leaving biases unquantized. These pa-
rameters are then utilized as inputs for inference in the quantized model, as depicted in 
the Test2 step in Figure 4a. Test2 conducts forward inference by batch-inputting IFMs and 

Figure 4. Quantization. (a) Training, testing, and quantization. (b) Bias distribution histogram of
three CNN models. (c) Quantization and simplified inference process after quantization.

For LeNet-5’s model quantization, we employed PyTorch’s quantization interface [33].
PyTorch’s support for signed 8-bit integer (INT8) quantization, in contrast to standard 32-bit
floating-point (FP32) models, allows for reductions in model size and memory bandwidth
requirements by a factor of four. Hardware support for INT8 computations typically offers
a speed advantage two to four times greater than FP32 computations. PyTorch provides
several methods for quantizing deep learning models. Generally, models are trained in FP32
and then converted to INT8. PyTorch supports three main quantization modes: Dynamic
Quantization, Post-Training Static Quantization (PTSQ), and Quantization-Aware Training.
Given that our strategy involved statically quantizing both the activations and weights of
the trained LeNet-5 model without the need to simulate quantization during training and
using training data to concurrently learn quantization parameters, we opted for PTSQ as our
quantization strategy. This strategy primarily utilizes symmetric quantization techniques.

Quantization results in converting each convolutional and fully connected layer into
INT8 format for IFMs, OFMs, and weights while leaving biases unquantized. These
parameters are then utilized as inputs for inference in the quantized model, as depicted in
the Test2 step in Figure 4a. Test2 conducts forward inference by batch-inputting IFMs and
manually executing a sequence of operations—convolution, activation, pooling, or fully
connected operations—layer by layer. This process uses data from INT8 parameters that
have been quantized in the PyTorch Quantization stage: IFMs (A), weights (W), and biases
(B). To maintain inference accuracy following the INT8 convolution, biases are retained in an
FP32 format and are combined with the inner feature maps. This combination produces an
FP32 OFM which is subsequently transformed back into an INT8 OFM through symmetric
quantization marked as subscript q. Recognizing the challenges of implementing the Test2
step with hardware, the formula for symmetric quantization has been streamlined as in (4).



Electronics 2024, 13, 1217 8 of 23

OFMint8 = dataq

=
[
(IFMint8 ∗ Wint8) f p32 + bias f p32

]
q

= clip
{

round
[

data
datamax

·
(
2p−1 − 1

)]}
= clip

[
IFMint8∗Wint8+round(bias f p32)
IFM′

int8∗W ′
int8+round

(
bias′f p32

) · 127

]
≈ clip

(
IFMint8∗Wint8
IFM′

int8∗W ′
int8

· 127
)

= (IFMint8 ∗ Wint8)q

(4)

Upon examining the exported biases, as depicted in Figure 4b, it becomes apparent
that all the biases round to zero, suggesting the redundancy of the bias term. As a result, in
the Test3 step, it is sufficient to convolve or multiply the INT8 IFM and weights and then
directly convert the result into an INT8 OFM via symmetric quantization. This OFM can
then serve as the input for subsequent convolutional or fully connected layers, facilitating
continuous inference. The distinction between Test3 and Test2 lies in the omission of the
bias term, enhancing the process’s simplicity and efficiency.

Overall, Test1 exhibits relatively lower complexity by leveraging the well-established
PyTorch framework for its computations. This stage, while it utilizes FP32 parameters,
provides higher accuracy but may fall short of the efficiency in computation and storage
offered by INT8 parameters. In contrast, Test2 involves a higher degree of complexity due
to the necessity of manually managing each layer, such as convolution and fully connected
processes. Employing INT8 parameters, Test2 achieves greater efficiency in both computa-
tion and storage, albeit at the potential cost of reduced accuracy. In terms of complexity,
Test3 is similar to Test2, yet the removal of bias terms lightens the computational burden.

The process of this simplification is outlined in Figure 4c. Using LeNet-5, AlexNet,
and VGG-16 as case studies, Table 1 presents the accuracies achieved during various
stages of training, testing, and quantization. After training on the MNIST dataset, all
three CNN models reached notable levels of training and inference accuracy. Notably, the
inference accuracies between Test2 and Test3 were almost indistinguishable, attesting to
the efficacy of our streamlined quantization approach. Based on these findings, we will
develop accelerators utilizing 8-bit bit-serial MACs for the applications.

Table 1. Accuracies of training, testing, and quantization.

Stages LeNet-5 AlexNet VGG-16

Training 99.45% 99.63% 99.78%
Test1 98.95% 99.56% 99.39%

Quantization 98.94% 99.53% 99.42%
Test2 98.97% 98.95% 99.33%
Test3 98.97% 98.95% 99.35%

4. Column-Buffering Dataflow

To enhance data transfer and better accommodate the unique aspects of bit-serial
processing, we have introduced a CB dataflow architecture. Unlike conventional dataflow
architectures in which data are typically moved between processing units in a preset
pattern, an approach that is not always ideal for serial data transmission, the CB dataflow
is purpose-built for bit-serial data transfer. This focus on serial transmission aims to boost
efficiency and minimize computational complexity.

The CB dataflow is an evolution of the WS dataflow in which weight parameters
remain static during computations, reducing unnecessary data movements and storage
overheads. The CB dataflow takes this a step further by maximizing the reuse of IFMs. It in-
volves storing a column of data in the IFM’s column buffer and sequentially using this data
for all corresponding weight updates or activation function calculations. This methodology
is particularly apt for bit-serial hardware accelerators in deep learning applications.



Electronics 2024, 13, 1217 9 of 23

By minimizing data transfers and reusing IFMs, the CB dataflow not only cuts down
on the frequency of data transmission but also significantly reduces the likelihood of
cache misses. The reuse of IFM columns enables the CB dataflow to find an improved
equilibrium between computational efficiency and storage demands. This balance is
especially important in bit-serial architectures, which are inherently more sensitive to the
nuances of data transfer and storage costs.

In Figure 5a, consider a scenario with a one-dimensional (1-D) IFM. A 1-D convolution
kernel, five units long, moves across the IFM with a stride of one unit. According to (1),
the resulting 1-D OFM consists of segments such as S1, S2, S3, and so on. The 1-D PE
is constructed from a chain of MACs, each extending the length of K. The convolution
operation in this setup is effectively executed within a 1-D PE by employing the CB dataflow.
Algorithm 1 describes this progress.

Algorithm 1 One-dimensional column-buffering dataflow.

Input: The size of the kernel K. The size of the IFM L. The size of the OFM C. The sequence of the
partial IFM i. The sequence of the partial OFM n. The ith partial IFM Ci.

Output: The ith partial OFM.
Initiate: i = n = 1, Sn = 0
1: for i = 1, 2, 3, . . ., L do
2: MACj = Ci, j∈[1, min(i, K)]
3: Sn = Sn + Ci ×Wi−n+1, n∈[max(1, i − k + 1), i]
4: if i − n + 1 = K then
5: output Si
6: end if
7: end for

In a two-dimensional (2-D) PE, the CB dataflow scenario is essentially an expansion of
the 1-D case. For the IFM, data are arranged in columns extending across K rows, with the
weights fixed in sequence within the PE. This arrangement converts the partial sum S into
an accumulated sum of the products of each IFM data column C with their corresponding
weights. As shown in Figure 5b, the specific steps are as follows:

1. The first column of IFM data, C1, enters the first column of MACs, marked as C(1,1).
It multiplies with the weights of the first column, and the results are summed to form
the first intermediate result, S1;

2. The second column of IFM data, C2, enters both the first and second columns of MACs,
marked as C(2,1) and C(2,2). After multiplication with the first and second column
weights and subsequent summation, the second intermediate result, S2, is obtained.
S2 is then added to the previously accumulated intermediate result, S1;

3. Continuing with this pattern, the third and fourth columns of data are processed,
yielding intermediate results from S1 to S4;

4. The fifth column of IFM data, C5, is processed by the MACs from the first to the fifth
columns. Post multiplication with the corresponding column weights and summation,
the intermediate results from S1 to S5 are derived. As S1 has now been accumulated
five times, it completes the first part of the OFM sum and is outputted from the PE;

5. For the sixth column of IFM data, C6, a similar process occurs across the first to fifth
column MACs, marked as C(6,1) to C(6,5), resulting in intermediate results from S2 to
S6. Subsequently, S2, following S1, is also outputted from the PE.



Electronics 2024, 13, 1217 10 of 23Electronics 2024, 13, x FOR PEER REVIEW 10 of 24 
 

 

C1 C2 C3 C4 C5 C6 …

S1=C1·a+C2·b+C3·c+C4·d+C5·e
S2=C2·a+C3·b+C4·c+C5·d+C6·e ……

C1

IFM

Kernel (K=5)

time

PE
S1=C1·a

C2 C2
S2=C2·a S1=S1+C2·b

C3 C3 C3
S3=C3·a

C4 C4 C4 C4
S4=C4·a S3=S3+C4·b

C5 C5 C5 C5 C5
S5=C5·a

C6 C6 C6 C6 C6
S6=C6·a S5=S5+C6·b

S2=S2+C3·b

S4=S4+C5·b

S1=S1+C3·c

S1=S1+C5·e

S2=S2+C6·e

S2=S2+C4·c

S4=S4+C6·c

S3=S3+C5·c

S1=S1+C4·d

S3=S3+C6·d

S2=S2+C5·d
S1

S2

OFM

·a ·b ·c ·d ·e

·a ·b ·c ·d ·e

·a ·b ·c ·d

·a ·b ·c

·a ·b

·a

a b c d e

MAC1 MAC2 MAC3 MAC4 MAC5

(a)  

3,1
2,1
1,1

4,1
5,1

0,0
0,0
0,0

0,0
0,0

0,0
0,0
0,0

0,0
0,0

0,0
0,0
0,0

0,0
0,0

0,0
0,0
0,0

0,0
0,0

C(1,1)

S1=C(1,1)

3,2
2,2
1,2

4,2
5,2

3,2
2,2
1,2

4,2
5,2

0,0
0,0
0,0

0,0
0,0

0,0
0,0
0,0

0,0
0,0

0,0
0,0
0,0

0,0
0,0

C(2,1)

S2=C(2,1)

C(2,2)

S1=S1+C(2,2)

+
+
+
+

+
+
+
+

+
+
+
+

= = =

+ + + + + + + +

3,3
2,3
1,3

4,3
5,3

0,0
0,0
0,0

0,0
0,0

0,0
0,0
0,0

0,0
0,0

C(3,1)

+
+
+
+

=

+ + + +
S3=C(3,1) S2=S2+C(3,2) S1=S1+C(3,3)

3,3
2,3
1,3

4,3
5,3

C(3,2)

+
+
+
+

=

3,3
2,3
1,3

4,3
5,3

C(3,3)

+
+
+
+

=

3,4
2,4
1,4

4,4
5,4

0,0
0,0
0,0

0,0
0,0

C(4,1)

+
+
+
+

=

+ + + +
S4=C(4,1) S3=S3+C(4,2) S2=S2+C(4,3)S1=S1+C(4,4)

3,4
2,4
1,4

4,4
5,4

C(4,2)

+
+
+
+

=

3,4
2,4
1,4

4,4
5,4

C(4,3)

+
+
+
+

=

3,4
2,4
1,4

4,4
5,4

C(4,4)

+
+
+
+

=

3,5
2,5
1,5

4,5
5,5

C(5,1)

+
+
+
+

=

+ + + +

3,6
2,6
1,6

4,6
5,6

C(6,1)

+
+
+
+

=

+ + + +

3,5
2,5
1,5

4,5
5,5

C(5,2)

+
+
+
+

=

3,5
2,5
1,5

4,5
5,5

C(5,3)

+
+
+
+

=

3,5
2,5
1,5

4,5
5,5

C(5,4)

+
+
+
+

=

3,5
2,5
1,5

4,5
5,5

C(5,5)

+
+
+
+

=

3,6
2,6
1,6

4,6
5,6

C(6,2)

+
+
+
+

=

3,6
2,6
1,6

4,6
5,6

C(6,3)

+
+
+
+

=

3,6
2,6
1,6

4,6
5,6

C(6,4)

+
+
+
+

=

3,6
2,6
1,6

4,6
5,6

C(6,5)

+
+
+
+

=

S5=C(5,1) S4=S4+C(5,2) S1=S1+C(5,5)S3=S3+C(5,3) S2=S2+C(5,4) S6=C(6,1) S5=S5+C(6,2) S2=S2+C(6,5)S4=S4+C(6,3) S3=S3+C(6,4)

S1 S2

·a

·f

·k

·p

·u

·a

·f

·k

·p

·u

·b

·g

·l

·q

·v

·c

·h

·m

·r

·w

·d

·i

·n

·s

·x

·e

·j

·o

·t

·y

·a

·f

·k

·p

·u

·b

·g

·l

·q

·v

·c

·h

·m

·r

·w

·d

·i

·n

·s

·x

·e

·j

·o

·t

·y

·a

·f

·k

·p

·u

·b

·g

·l

·q

·v

·c

·h

·m

·r

·w

·d

·i

·n

·s

·x

·a

·f

·k

·p

·u

·b

·g

·l

·q

·v

·c

·h

·m

·r

·w

·a

·f

·k

·p

·u

·b

·g

·l

·q

·v

(b)
 

Figure 5. CB dataflow. (a) Processing sequence of 1-D convolution. The size of the kernel K = 5. (b) 
Processing sequence of 2-D convolution. The size of the kernel K × K = 5 × 5. 

Figure 5. CB dataflow. (a) Processing sequence of 1-D convolution. The size of the kernel K = 5.
(b) Processing sequence of 2-D convolution. The size of the kernel K × K = 5 × 5.



Electronics 2024, 13, 1217 11 of 23

5. System Architecture
5.1. Overview

To boost the computational speed and efficiency of neural networks, hardware accel-
eration has been implemented. The architecture features specialized modules for weight
and data storage, ensuring rapid access to and processing of data, which further improves
efficiency. The proposed bit-serial CNN accelerator’s system architecture, illustrated in
Figure 6, is centered around two key PEA computation modules: one for convolutional
layers, named the CL PEA, and another for fully connected layers, called the FCL PEA. The
CL PEA consists of six PEs which include one-hundred fifty MACs and six adder trees,
while the FCL PEA is made up of twenty-five MACs and an adder tree.

Electronics 2024, 13, x FOR PEER REVIEW 12 of 24 
 

 

RAM

DATA_BUF

CL PEA
(150 MACs)

RAM

POOL

WEIGHT_RAM

TOP_CON

B
US

DATA

Weight

Con_flag

C
on

_f
la

g

A
dd

re
ss

DATA

DATA

DATA

DATA

DATA

Co
n_

fla
g

C
on

_f
la

g

A
dd

re
ss

C
on

_f
la

g

A
dd

re
ss

DATAFCL PEA
(25 MACs)

DATA_BUF

Weight

RAMDATA

WEIGHT_RAM
Weight

Weight

DATA

DATA

1

8

1

1 11
1 12

1 131

8

8

8

1

8
8 8

8

30 30

8

DATA
_BUF

RAMDATADATA DATA
_BUF

DATA

88 25 25

 
Figure 6. System architecture of LeNet-5 accelerator. The red dashed line represents the data flow 
of the convolutional layers, while the blue dashed line represents the data flow of the fully con-
nected layers. 

Upon system startup, the TOP_CON unit takes the lead in initializing and configur-
ing all modules. Data are then loaded into the RAM and WEIGHT_RAM via the BUS. 
During neural network forward propagation, data and weights are routed to the CL PEA 
for computation. In this process, each PE unit handles data in parallel, executing multiply–
accumulate operations. The computed intermediate results are first temporarily stored in 
DATA_BUF. They then undergo quantization and ReLU function processing before being 
stored back in the RAM. The processed data are later read out and subjected to pooling 
operations in the POOL module, as illustrated by the red dashed line in Figure 6, which 
traces the data movement pathway for the first CL. Finally, the data, after being processed 
by the second pooling layer, are internally transferred to the RAM designated for the FCL 
using the DATA line. Then, the FCL PEA processes the data matrix. The output of the last 
FCL is then conveyed out of the system through the BUS, following the path shown by 
the blue dashed line in Figure 6. This line maps out the data movement trajectory post-
second CL and through the three layers of the FCL. 

5.2. Design of the PEA 
The architecture of the PEA is shown in Figure 7a, comprising six PEs. Each PE con-

sists of MACs for multiplication and a TREE structure for summing the multiplication 
outputs. The input IFM data are segmented into columns of K × 1 and updated in a zigzag 
pattern across columns, beginning with the first one. This processing, which involves sev-
eral MACs, is elaborated in Section 4, which focuses on the CB dataflow. At the base of 
each PE, there are multiple TREE structures. These are designed to consolidate data from 
the MACs and relay the combined output to the subsequent processing phase. In our work, 
as the multipliers operate in a serial fashion, data throughout the PE are transferred seri-
ally. This approach effectively reduces the data width and simplifies the interface 

Figure 6. System architecture of LeNet-5 accelerator. The red dashed line represents the data flow of the
convolutional layers, while the blue dashed line represents the data flow of the fully connected layers.

Other critical components include three random access memories (RAMs) housing
IFMs, OFMs, and weights, along with their corresponding buffers, a pooling module, and a
top-level control unit. The BUS facilitates data transfer between the system and external
storage units. The TOP_CON unit controls the flow of data and addresses. The Con_flag, a
control flag with a bit width of only 1 bit, indicates the start or end of both external and
internal data transfers. Multiple address lines in the Address component locate data within
RAMs, with the bit width of the addresses depending on the amount of data stored in the
RAM—the more data stored, the wider the corresponding Address. DATA is the primary
data transmission line, and DATA_BUF serves as a buffering unit. Data flows from the
BUS into the RAM, buffers through DATA_BUF, and is then directed to either the CL PEA,
FCL PEA, or the POOL module. Before entering DATA_BUF, DATA is in a parallel format
with a bit width of 8 bits. However, due to parallel-to-serial conversion circuits within
DATA_BUF, DATA can be converted to either 30 or 25 serial data streams for simultaneous
input, according to the requirements of the CL PEA or FCL PEA. The diagram includes



Electronics 2024, 13, 1217 12 of 23

six RAMs for storing data, with WEIGHT_RAM specifically designated for weight data.
RAMs store data either in parallel or after undergoing a serial-to-parallel conversion. After
passing through the internal DATA_BUF and transitioning from 8 bits to 1 bit, the Weight
line transfers weight data from WEIGHT_RAM to the CL PEA or FCL PEA. Lastly, the
POOL module conducts pooling operations, a standard practice in CNNs that effectively
compresses data size.

Upon system startup, the TOP_CON unit takes the lead in initializing and configuring
all modules. Data are then loaded into the RAM and WEIGHT_RAM via the BUS. During
neural network forward propagation, data and weights are routed to the CL PEA for
computation. In this process, each PE unit handles data in parallel, executing multiply–
accumulate operations. The computed intermediate results are first temporarily stored in
DATA_BUF. They then undergo quantization and ReLU function processing before being
stored back in the RAM. The processed data are later read out and subjected to pooling
operations in the POOL module, as illustrated by the red dashed line in Figure 6, which
traces the data movement pathway for the first CL. Finally, the data, after being processed
by the second pooling layer, are internally transferred to the RAM designated for the FCL
using the DATA line. Then, the FCL PEA processes the data matrix. The output of the last
FCL is then conveyed out of the system through the BUS, following the path shown by the
blue dashed line in Figure 6. This line maps out the data movement trajectory post-second
CL and through the three layers of the FCL.

5.2. Design of the PEA

The architecture of the PEA is shown in Figure 7a, comprising six PEs. Each PE consists
of MACs for multiplication and a TREE structure for summing the multiplication outputs.
The input IFM data are segmented into columns of K × 1 and updated in a zigzag pattern
across columns, beginning with the first one. This processing, which involves several
MACs, is elaborated in Section 4, which focuses on the CB dataflow. At the base of each
PE, there are multiple TREE structures. These are designed to consolidate data from the
MACs and relay the combined output to the subsequent processing phase. In our work, as
the multipliers operate in a serial fashion, data throughout the PE are transferred serially.
This approach effectively reduces the data width and simplifies the interface connections, a
concept further expounded in Section 5.3. The adder tree adopts a structure of pairwise
addition, with its registers (REGs) serving as cascading interfaces.

In the computation of CLs, if we input five pixels from the IFM simultaneously, it
takes five clock cycles. With a parallel multiplier architecture, an 8-bit data computation
in such a setup requires only one clock cycle. This scenario results in the data input time
being significantly longer than the data computation time, with a notable difference of four
clock cycles. This observation leads us to explore ways to align the data computation time
more closely with the data input time or at least reduce this time discrepancy.

Using a serial multiplier architecture, the computation of 8-bit data takes eight clock
cycles, which means the computation time now exceeds the data input time. However,
this change reduces the gap between computation and input times to three clock cycles,
achieving better synchronization between the two. If we could further extend the data input
time, the disparity between the computation time and data input time could be decreased
even more. With these considerations in mind, particularly for the LeNet-5 model, we have
a specific dataflow format for each CL, as shown in Figure 8.

The first CL features six convolution kernels, each measuring 5 × 5. When inputting
only five pixels from the IFM at a time, the process takes five clock cycles, fewer than the
eight cycles required for computation. Processing with six different convolution kernels
simultaneously still results in a duration of five clock cycles, which does not effectively
extend the data input time. To address this, we shifted our focus from processing across
the depth of the convolution kernels to a vertical approach, simultaneously convolving
multiple rows of the same convolution kernel. When using six identical convolution kernels
at once to expedite processing in the same layer, we need to input ten IFM pixels. This



Electronics 2024, 13, 1217 13 of 23

approach allows the bit-serial computation speed to outpace the data reading speed. In
comparison to parallel computation, both structures primarily contend with the challenge
of slow data reading speeds rather than an inherent slow computation speed in serial
configurations. Under these conditions, the unique benefits of the serial structure—its
compact size and lower power consumption—come to the forefront. For the first CL, which
convolves six identical kernels simultaneously, each kernel processes different data but
shares the same weights. The PE requires 150 MACs to complete six convolution rounds.
Therefore, the PEA for the first layer comprises six PE layers, with each PE layer equipped
with six adder trees.

Electronics 2024, 13, x FOR PEER REVIEW 13 of 24 
 

 

connections, a concept further expounded in Section 5.3. The adder tree adopts a structure 
of pairwise addition, with its registers (REGs) serving as cascading interfaces. 

MAC

MAC

MAC

MAC

MAC

REG

ADD

ADD

ADD

ADD

DELAY

ADD REG

PE 
#6

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

TREE TREE TREE TREE TREE

IFM

PE 
#1

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

TREE TREE TREE TREE TREE

IFM

Bit-serial
Output

(a)

(b)  
Figure 7. PEA. (a) Structure of CL PEA. (b) Structure of adder tree. 

In the computation of CLs, if we input five pixels from the IFM simultaneously, it 
takes five clock cycles. With a parallel multiplier architecture, an 8-bit data computation 
in such a setup requires only one clock cycle. This scenario results in the data input time 
being significantly longer than the data computation time, with a notable difference of 
four clock cycles. This observation leads us to explore ways to align the data computation 
time more closely with the data input time or at least reduce this time discrepancy. 

Using a serial multiplier architecture, the computation of 8-bit data takes eight clock 
cycles, which means the computation time now exceeds the data input time. However, 
this change reduces the gap between computation and input times to three clock cycles, 
achieving better synchronization between the two. If we could further extend the data 
input time, the disparity between the computation time and data input time could be de-
creased even more. With these considerations in mind, particularly for the LeNet-5 model, 
we have a specific dataflow format for each CL, as shown in Figure 8. 

Figure 7. PEA. (a) Structure of CL PEA. (b) Structure of adder tree.



Electronics 2024, 13, 1217 14 of 23Electronics 2024, 13, x FOR PEER REVIEW 14 of 24 
 

 

1,1 0,0 0,0 0,0 0,0 1,2 1,2 0,0 0,0 0,0 1,3 1,3 1,3 0,0 0,0
2,1 0,0 0,0 0,0 0,0 2,2 2,2 0,0 0,0 0,0 2,3 2,3 2,3 0,0 0,0
3,1 0,0 0,0 0,0 0,0 3,2 3,2 0,0 0,0 0,0 3,3 3,3 3,3 0,0 0,0
4,1 0,0 0,0 0,0 0,0 4,2 4,2 0,0 0,0 0,0 4,3 4,3 4,3 0,0 0,0
5,1 0,0 0,0 0,0 0,0 5,2 5,2 0,0 0,0 0,0 5,3 5,3 5,3 0,0 0,0
6,1 0,0 0,0 0,0 0,0 6,2 6,2 0,0 0,0 0,0 6,3 6,3 6,3 0,0 0,0
7,1 0,0 0,0 0,0 0,0 7,2 7,2 0,0 0,0 0,0 7,3 7,3 7,3 0,0 0,0
8,1 0,0 0,0 0,0 0,0 8,2 8,2 0,0 0,0 0,0 8,3 8,3 8,3 0,0 0,0
9,1 0,0 0,0 0,0 0,0 9,2 9,2 0,0 0,0 0,0 9,3 9,3 9,3 0,0 0,0
10,1 0,0 0,0 0,0 0,0 10,2 10,2 0,0 0,0 0,0 10,3 10,3 10,3 0,0 0,0

S1=C(1,1) S2 S1=S1+C(2,2) S2 S1=S1+C(3,3)

1,4 1,4 1,4 1,4 0,0 1,5 1,5 1,5 1,5 1,5 1,6 1,6 1,6 1,6 1,6
2,4 2,4 2,4 2,4 0,0 2,5 2,5 2,5 2,5 2,5 2,6 2,6 2,6 2,6 2,6
3,4 3,4 3,4 3,4 0,0 3,5 3,5 3,5 3,5 3,5 3,6 3,6 3,6 3,6 3,6
4,4 4,4 4,4 4,4 0,0 4,5 4,5 4,5 4,5 4,5 4,6 4,6 4,6 4,6 4,6
5,4 5,4 5,4 5,4 0,0 5,5 5,5 5,5 5,5 5,5 5,6 5,6 5,6 5,6 5,6
6,4 6,4 6,4 6,4 0,0 6,5 6,5 6,5 6,5 6,5 6,6 6,6 6,6 6,6 6,6
7,4 7,4 7,4 7,4 0,0 7,5 7,5 7,5 7,5 7,5 7,6 7,6 7,6 7,6 7,6
8,4 8,4 8,4 8,4 0,0 8,5 8,5 8,5 8,5 8,5 8,6 8,6 8,6 8,6 8,6
9,4 9,4 9,4 9,4 0,0 9,5 9,5 9,5 9,5 9,5 9,6 9,6 9,6 9,6 9,6
10,4 10,4 10,4 10,4 0,0 10,5 10,5 10,5 10,5 10,5 10,6 10,6 10,6 10,6 10,6

S2 S1=S1+C(4,4) S2 S1=S1+C(5,5) S2

(a)  

1,1,1 0,0,1 0,0,1 0,0,1 0,0,1
2,1,1 0,0,1 0,0,1 0,0,1 0,0,1
3,1,1 0,0,1 0,0,1 0,0,1 0,0,1
4,1,1 0,0,1 0,0,1 0,0,1 0,0,1
5,1,1 0,0,1 0,0,1 0,0,1 0,0,1

1,1,2 0,0,2 0,0,2 0,0,2 0,0,2
2,1,2 0,0,2 0,0,2 0,0,2 0,0,2
3,1,2 0,0,2 0,0,2 0,0,2 0,0,2
4,1,2 0,0,2 0,0,2 0,0,2 0,0,2
5,1,2 0,0,2 0,0,2 0,0,2 0,0,2

1,1,3 0,0,3 0,0,3 0,0,3 0,0,3
2,1,3 0,0,3 0,0,3 0,0,3 0,0,3
3,1,3 0,0,3 0,0,3 0,0,3 0,0,3
4,1,3 0,0,3 0,0,3 0,0,3 0,0,3
5,1,3 0,0,3 0,0,3 0,0,3 0,0,3

1,1,4 0,0,4 0,0,4 0,0,4 0,0,4
2,1,4 0,0,4 0,0,4 0,0,4 0,0,4
3,1,4 0,0,4 0,0,4 0,0,4 0,0,4
4,1,4 0,0,4 0,0,4 0,0,4 0,0,4
5,1,4 0,0,4 0,0,4 0,0,4 0,0,4

1,1,5 0,0,5 0,0,5 0,0,5 0,0,5
2,1,5 0,0,5 0,0,5 0,0,5 0,0,5
3,1,5 0,0,5 0,0,5 0,0,5 0,0,5
4,1,5 0,0,5 0,0,5 0,0,5 0,0,5
5,1,5 0,0,5 0,0,5 0,0,5 0,0,5

1,1,6 0,0,6 0,0,6 0,0,6 0,0,6
2,1,6 0,0,6 0,0,6 0,0,6 0,0,6
3,1,6 0,0,6 0,0,6 0,0,6 0,0,6
4,1,6 0,0,6 0,0,6 0,0,6 0,0,6
5,1,6 0,0,6 0,0,6 0,0,6 0,0,6

1,2,1 1,2,1 0,0,1 0,0,1 0,0,1
2,2,1 2,2,1 0,0,1 0,0,1 0,0,1
3,2,1 3,2,1 0,0,1 0,0,1 0,0,1
4,2,1 4,2,1 0,0,1 0,0,1 0,0,1
5,2,1 5,2,1 0,0,1 0,0,1 0,0,1

1,2,2 1,2,2 0,0,2 0,0,2 0,0,2
2,2,2 2,2,2 0,0,2 0,0,2 0,0,2
3,2,2 3,2,2 0,0,2 0,0,2 0,0,2
4,2,2 4,2,2 0,0,2 0,0,2 0,0,2
5,2,2 5,2,2 0,0,2 0,0,2 0,0,2

1,2,3 1,2,3 0,0,3 0,0,3 0,0,3
2,2,3 2,2,3 0,0,3 0,0,3 0,0,3
3,2,3 3,2,3 0,0,3 0,0,3 0,0,3
4,2,3 4,2,3 0,0,3 0,0,3 0,0,3
5,2,3 5,2,3 0,0,3 0,0,3 0,0,3

1,2,4 1,2,4 0,0,4 0,0,4 0,0,4
2,2,4 2,2,4 0,0,4 0,0,4 0,0,4
3,2,4 3,2,4 0,0,4 0,0,4 0,0,4
4,2,4 4,2,4 0,0,4 0,0,4 0,0,4
5,2,4 5,2,4 0,0,4 0,0,4 0,0,4

1,2,5 1,2,5 0,0,5 0,0,5 0,0,5
2,2,5 2,2,5 0,0,5 0,0,5 0,0,5
3,2,5 3,2,5 0,0,5 0,0,5 0,0,5
4,2,5 4,2,5 0,0,5 0,0,5 0,0,5
5,2,5 5,2,5 0,0,5 0,0,5 0,0,5

1,2,6 1,2,6 0,0,6 0,0,6 0,0,6
2,2,6 2,2,6 0,0,6 0,0,6 0,0,6
3,2,6 3,2,6 0,0,6 0,0,6 0,0,6
4,2,6 4,2,6 0,0,6 0,0,6 0,0,6
5,2,6 5,2,6 0,0,6 0,0,6 0,0,6

1,5,1 1,5,1 1,5,1 1,5,1 1,5,1
2,5,1 2,5,1 2,5,1 2,5,1 2,5,1
3,5,1 3,5,1 3,5,1 3,5,1 3,5,1
4,5,1 4,5,1 4,5,1 4,5,1 4,5,1
5,5,1 5,5,1 5,5,1 5,5,1 5,5,1

1,5,2 1,5,2 1,5,2 1,5,2 1,5,2
2,5,2 2,5,2 2,5,2 2,5,2 2,5,2
3,5,2 3,5,2 3,5,2 3,5,2 3,5,2
4,5,2 4,5,2 4,5,2 4,5,2 4,5,2
5,5,2 5,5,2 5,5,2 5,5,2 5,5,2

1,5,3 1,5,3 1,5,3 1,5,3 1,5,3
2,5,3 2,5,3 2,5,3 2,5,3 2,5,3
3,5,3 3,5,3 3,5,3 3,5,3 3,5,3
4,5,3 4,5,3 4,5,3 4,5,3 4,5,3
5,5,3 5,5,3 5,5,3 5,5,3 5,5,3

1,5,4 1,5,4 1,5,4 1,5,4 1,5,4
2,5,4 2,5,4 2,5,4 2,5,4 2,5,4
3,5,4 3,5,4 3,5,4 3,5,4 3,5,4
4,5,4 4,5,4 4,5,4 4,5,4 4,5,4
5,5,4 5,5,4 5,5,4 5,5,4 5,5,4

1,5,5 1,5,5 1,5,5 1,5,5 1,5,5
2,5,5 2,5,5 2,5,5 2,5,5 2,5,5
3,5,5 3,5,5 3,5,5 3,5,5 3,5,5
4,5,5 4,5,5 4,5,5 4,5,5 4,5,5
5,5,5 5,5,5 5,5,5 5,5,5 5,5,5

1,5,6 1,5,6 1,5,6 1,5,6 1,5,6
2,5,6 2,5,6 2,5,6 2,5,6 2,5,6
3,5,6 3,5,6 3,5,6 3,5,6 3,5,6
4,5,6 4,5,6 4,5,6 4,5,6 4,5,6
5,5,6 5,5,6 5,5,6 5,5,6 5,5,6

(b)  
Figure 8. Workload mapping. (a) The first CL. (b) The second CL. Different colors are just used to 
distinguish among different convolution kernels. 

The first CL features six convolution kernels, each measuring 5 × 5. When inputting 
only five pixels from the IFM at a time, the process takes five clock cycles, fewer than the 
eight cycles required for computation. Processing with six different convolution kernels 
simultaneously still results in a duration of five clock cycles, which does not effectively 
extend the data input time. To address this, we shifted our focus from processing across 
the depth of the convolution kernels to a vertical approach, simultaneously convolving 
multiple rows of the same convolution kernel. When using six identical convolution ker-
nels at once to expedite processing in the same layer, we need to input ten IFM pixels. This 
approach allows the bit-serial computation speed to outpace the data reading speed. In 
comparison to parallel computation, both structures primarily contend with the challenge 
of slow data reading speeds rather than an inherent slow computation speed in serial con-
figurations. Under these conditions, the unique benefits of the serial structure—its 

Figure 8. Workload mapping. (a) The first CL. (b) The second CL. Different colors are just used to
distinguish among different convolution kernels.

In the second CL, there are 16 convolution kernels, each with a depth of six. Each of these
kernels handles different data and operates with unique weights. Consequently, in this layer,
only one convolution kernel is active at a time, completing a total of 16 convolution cycles.
The PE configuration remains the same, requiring 150 MACs, thereby facilitating the reuse
of the MACs. The PEA for the second layer also comprises six PE layers, and each of these
layers is outfitted with six adder trees. Additionally, a larger TREE structure is employed
to aggregate the outputs from these adder trees. The data processed through this layer are
then serialized and outputted using a bit-serial output approach.

In the computations for FCLs, which essentially execute matrix multiplication similar
to 1 × 1 convolution operations, there is no data reuse. As a result, the CL PEA, optimized
for data reuse in convolutional processes, is not applicable to FCLs. This necessitates



Electronics 2024, 13, 1217 15 of 23

the use of a dedicated PEA specifically for the FCL computations. We segmented the
network into two parts: one comprising convolution and pooling and another dedicated to
fully connected operations, effectively creating a single-level pipeline. Theoretically, after
calculating the time required for both convolution and pooling, the FCLs employ 25 MACs
for their computations. With these 25 MACs in action, the total processing time for the
three FCLs is actually less than the time needed for both convolution and pooling. Hence,
the FCL PEA operates by calculating the products of 25 IFMs and their corresponding
weights, storing these intermediate data and subsequently summing up multiple sets of
intermediate data to arrive at a final result.

5.3. The Design of the MAC

Leveraging the benefits of low power usage, compact size, and high operational
frequency, we adapted the multiplier design from Isshiki [32] to reduce the count of serial–
parallel and parallel–serial conversion circuits. This adaptation involves splitting the input
head bit signals into two distinct components, h_yin and h_xin, as showcased by the red-
highlighted circuit in Figure 9. This split is designed to individually represent the head
bit signals for the input IFM and weights. By doing so, it aligns with the principles of
the WS dataflow or CB dataflow, enabling the weights to remain fixed within the circuit,
thus eliminating the need for constant memory access for inputs. Consequently, this
modification not only keeps the number of serial–parallel and parallel–serial conversion
circuits for the IFM at 30 but also efficiently maintains the serial–parallel and parallel–serial
conversion circuits for the weights at 30 rather than increasing them to 150.

Electronics 2024, 13, x FOR PEER REVIEW 16 of 24 
 

 

(d)

(a) (b) (c)

Cell[0] Cell[1] Cell[P−2] Cell[P−1]

LSB Inner Inner MSB

Y
X

head

y(1)
x(1)
h(1)

s(1)h
s(1)l

δ=2 δ=2 δ=2 δ=1

y(2)
x(2)
h(2)

s(2)h
s(2)l

y(P−2)
x(P−2)
h(P−2)

s(P−2)h
s(P−2)l

y(P−1)
x(P−1)
h(P−1)
s(P−1)h
s(P−1)l

out_h
h_out

out_l

1
0

D

D

D

D

1
0

1
0

D

D
0

yin_h

xin_h

h_yin

h_xin

p_in

yout_h

xout_h

h_yout

h_xout

sout_h

sout_l

δ=2

yreg
1
0

+

1
0

1
0 1

0

1
0

D

D

D

D

D

D

D

D

D

D

D

0

δ=2

yin_h

xin_h

h_yin

h_xin

sin_h

sin_l

yout_h

xout_h

h_yout

h_xout

sout_h

sout_l

p_in yreg

1
0

D

D D

D

+

1
0

D

D

D

0

yregp_in

yin_h

h_xout

xin_h

h_yin

h_xin

sin_h

sin_l

sout_h

sout_l

δ=1

 
Figure 9. Improved bit-serial multiplier. (a) LSB multiplier cell (Cell[0]). (b) Inner multiplier cell 
(Cell[i] (i = 1, 2,…, P − 2)). (c) MSB multiplier cell (Cell[P − 1]). (d) Overall structure. The circuits 
highlighted in red are the areas where we made modifications to the original bit-serial multiplier. 

+ D

D
1
0

D

+ D

D
1
0

D

+ D

D
1
0

0

In1_l

In2_l

In1_h

In2_h

In1_o

In2_o

h_xin_l

h_sin_h

h_sin_h_f9

out_l

out_h

out_o

 
Figure 10. Improved 24-bit-serial adder with overflow bits. 

6. Implementation and Evaluation 
To implement and assess our LeNet-5 accelerator design, we employed two ap-

proaches. On the software side, we used the MNIST dataset for training. After quantiza-
tion, we exported the IFM and weights to the hardware. For the hardware aspect, we uti-
lized Verilog for implementation and conducted simulations with Synopsys VCS and 
Verdi. These simulations allowed us to gauge the neural network’s performance when it 

Figure 9. Improved bit-serial multiplier. (a) LSB multiplier cell (Cell[0]). (b) Inner multiplier cell
(Cell[i] (i = 1, 2, . . ., P − 2)). (c) MSB multiplier cell (Cell[P − 1]). (d) Overall structure. The circuits
highlighted in red are the areas where we made modifications to the original bit-serial multiplier.

On hardware platforms, to streamline the quantization of accumulated tensors and
align with the norms of hardware quantization, it is advantageous for the quantization scale
to be a power of two instead of using dividers, which need huge hardware resources. This
strategy allows for the use of simple data right-shifting to replace complex and resource-



Electronics 2024, 13, 1217 16 of 23

intensive division operations. With the goal of minimizing the storage size for intermediate
data and conserving hardware resources, and after considering the range of data sizes
and the number of accumulations involved, we transitioned from the standard 32-bit
intermediate data size to a 24-bit format. This modification was intended to manage the
impact of data overflow effectively. The design of the corresponding adder, as depicted
in Figure 10, reflects this change. We utilized the 23rd bit, i.e., the MSB, as the sign bit,
combined with bits 14 to 8, to construct the hardware-quantized number, and discarded
the rest. This approach needs to ensure that the reconfigured data remain within the INT8
data range.

Electronics 2024, 13, x FOR PEER REVIEW 16 of 24 
 

 

(d)

(a) (b) (c)

Cell[0] Cell[1] Cell[P−2] Cell[P−1]

LSB Inner Inner MSB

Y
X

head

y(1)
x(1)
h(1)

s(1)h
s(1)l

δ=2 δ=2 δ=2 δ=1

y(2)
x(2)
h(2)

s(2)h
s(2)l

y(P−2)
x(P−2)
h(P−2)

s(P−2)h
s(P−2)l

y(P−1)
x(P−1)
h(P−1)
s(P−1)h
s(P−1)l

out_h
h_out

out_l

1
0

D

D

D

D

1
0

1
0

D

D
0

yin_h

xin_h

h_yin

h_xin

p_in

yout_h

xout_h

h_yout

h_xout

sout_h

sout_l

δ=2

yreg
1
0

+

1
0

1
0 1

0

1
0

D

D

D

D

D

D

D

D

D

D

D

0

δ=2

yin_h

xin_h

h_yin

h_xin

sin_h

sin_l

yout_h

xout_h

h_yout

h_xout

sout_h

sout_l

p_in yreg

1
0

D

D D

D

+

1
0

D

D

D

0

yregp_in

yin_h

h_xout

xin_h

h_yin

h_xin

sin_h

sin_l

sout_h

sout_l

δ=1

 
Figure 9. Improved bit-serial multiplier. (a) LSB multiplier cell (Cell[0]). (b) Inner multiplier cell 
(Cell[i] (i = 1, 2,…, P − 2)). (c) MSB multiplier cell (Cell[P − 1]). (d) Overall structure. The circuits 
highlighted in red are the areas where we made modifications to the original bit-serial multiplier. 

+ D

D
1
0

D

+ D

D
1
0

D

+ D

D
1
0

0

In1_l

In2_l

In1_h

In2_h

In1_o

In2_o

h_xin_l

h_sin_h

h_sin_h_f9

out_l

out_h

out_o

 
Figure 10. Improved 24-bit-serial adder with overflow bits. 

6. Implementation and Evaluation 
To implement and assess our LeNet-5 accelerator design, we employed two ap-

proaches. On the software side, we used the MNIST dataset for training. After quantiza-
tion, we exported the IFM and weights to the hardware. For the hardware aspect, we uti-
lized Verilog for implementation and conducted simulations with Synopsys VCS and 
Verdi. These simulations allowed us to gauge the neural network’s performance when it 

Figure 10. Improved 24-bit-serial adder with overflow bits.

6. Implementation and Evaluation

To implement and assess our LeNet-5 accelerator design, we employed two ap-
proaches. On the software side, we used the MNIST dataset for training. After quantization,
we exported the IFM and weights to the hardware. For the hardware aspect, we utilized Ver-
ilog for implementation and conducted simulations with Synopsys VCS and Verdi. These
simulations allowed us to gauge the neural network’s performance when it processed
complete images for inference. Moreover, we synthesized the design under the TSMC
40 nm process using Design Compiler. This process helped us gather vital data regarding
the design’s area, power consumption, gate count, and so on. Furthermore, we leveraged a
field-programmable gate array (FPGA) board, specifically the model XC7K325TFFG900-2,
for comprehensive functional verification of the entire accelerator. This step was crucial in
gaining parameters like FPGA capability and running time.

6.1. CNN Validation

A confusion matrix is an essential tool for assessing the performance of classification
models, particularly in tasks like image recognition. It is structured such that each row
corresponds to a true label, while each column aligns with a label predicted by the model.
An analysis of Figure 11 reveals that the diagonal numbers indicate the proportion of
correctly classified instances. In this matrix, high values along the diagonal suggest that
our model accurately classifies the MNIST handwritten digit dataset in most instances.
Values off the diagonal highlight labels for which the model becomes confused, indicating



Electronics 2024, 13, 1217 17 of 23

a mismatch between true and predicted labels. The model’s performance is inversely
proportional to these values. In the matrix, most non-diagonal values are notably low,
pointing to minimal classification errors. A closer look reveals that the number 1 is less likely
to be confused with other numbers, as indicated by the near-zero values in its row, except
for the diagonal. The number 9 has a slightly lower correct recognition rate, likely due to
its visual resemblance to the numbers 4 and 7, causing some confusion. Similar shapes
might also lead to confusion between numbers like 4 and 9 or 3 and 5. In conclusion, this
confusion matrix demonstrates the high efficacy of our LeNet-5 accelerator in the MNIST
handwritten digit recognition task. With an impressive accuracy rate of 98.24%, it shows
only some confusion, underscoring the model’s robustness in accurately classifying digits.

Electronics 2024, 13, x FOR PEER REVIEW 17 of 24 
 

 

processed complete images for inference. Moreover, we synthesized the design under the 
TSMC 40 nm process using Design Compiler. This process helped us gather vital data 
regarding the design’s area, power consumption, gate count, and so on. Furthermore, we 
leveraged a field-programmable gate array (FPGA) board, specifically the model 
XC7K325TFFG900-2, for comprehensive functional verification of the entire accelerator. 
This step was crucial in gaining parameters like FPGA capability and running time. 

6.1. CNN Validation 
A confusion matrix is an essential tool for assessing the performance of classification 

models, particularly in tasks like image recognition. It is structured such that each row 
corresponds to a true label, while each column aligns with a label predicted by the model. 
An analysis of Figure 11 reveals that the diagonal numbers indicate the proportion of cor-
rectly classified instances. In this matrix, high values along the diagonal suggest that our 
model accurately classifies the MNIST handwritten digit dataset in most instances. Values 
off the diagonal highlight labels for which the model becomes confused, indicating a mis-
match between true and predicted labels. The model’s performance is inversely propor-
tional to these values. In the matrix, most non-diagonal values are notably low, pointing 
to minimal classification errors. A closer look reveals that the number 1 is less likely to be 
confused with other numbers, as indicated by the near-zero values in its row, except for 
the diagonal. The number 9 has a slightly lower correct recognition rate, likely due to its 
visual resemblance to the numbers 4 and 7, causing some confusion. Similar shapes might 
also lead to confusion between numbers like 4 and 9 or 3 and 5. In conclusion, this confu-
sion matrix demonstrates the high efficacy of our LeNet-5 accelerator in the MNIST hand-
written digit recognition task. With an impressive accuracy rate of 98.24%, it shows only 
some confusion, underscoring the model’s robustness in accurately classifying digits. 

97.24 0 0 0 0.71 0.2 0.2 0.71 0.2 0.71

0 99.47 0 0 0 0 0.09 0.35 0.09 0

0.1 0.19 97.19 0 0.29 0 0 1.74 0.48 0

0 0 0.2 98.22 0 0.69 0 0.59 0.3 0

0 0 0 0 99.29 0 0 0.1 0.2 0.41

0.22 0 0 0.78 0 98.54 0.22 0 0.22 0

0.52 0.31 0.1 0 0.63 0.42 97.49 0 0.52 0

0 0.19 0.1 0 0 0 0 99.42 0.1 0.19

0.21 0 0.21 0.1 0 0.1 0 0.41 98.77 0.21

0 0.2 0 0 1.09 0.5 0 1.09 0.5 96.63

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
bl

e

Predicted lable

0.000

19.90

39.80

59.70

79.60

100.0

 
Figure 11. Confusion matrix obtained from our LeNet-5 accelerator. 

6.2. Synthesis Results 
In Table 2, it is evident that this project stands out among other ASIC LeNet-5 imple-

mentations, especially with its operation at a frequency of 500 MHz using TSMC 40 nm 
technology. This frequency surpasses that of most listed projects. Furthermore, the chip’s 
compact footprint, at just 0.41 mm2 with a gate count of 50,000, is notably smaller than its 
counterparts. For a fair comparison, the normalized area is given, and it is still smaller 
than others. The power consumption is impressively low at 91.84 mW, a considerable re-
duction from the third-lowest reported figure of 297 mW. However, this work’s normal-
ized power consumption value at 40 nm and a 1.0 V CMOS process is minimal in 

Figure 11. Confusion matrix obtained from our LeNet-5 accelerator.

6.2. Synthesis Results

In Table 2, it is evident that this project stands out among other ASIC LeNet-5 imple-
mentations, especially with its operation at a frequency of 500 MHz using TSMC 40 nm
technology. This frequency surpasses that of most listed projects. Furthermore, the chip’s
compact footprint, at just 0.41 mm2 with a gate count of 50,000, is notably smaller than its
counterparts. For a fair comparison, the normalized area is given, and it is still smaller than
others. The power consumption is impressively low at 91.84 mW, a considerable reduc-
tion from the third-lowest reported figure of 297 mW. However, this work’s normalized
power consumption value at 40 nm and a 1.0 V CMOS process is minimal in comparison.
The normalized hardware efficiency rate of 0.1574 MOPS/Gate is competitive within the
context of the works presented. Moreover, our project boasts the integration of 369 kB
of on-chip SRAM, which exceeds the amount found in many other studies. While the
parallel version [34] boasts a classification accuracy of 98.80%, our work, which supports
FCL and operates with just half of the data bit width, achieves a nearly equivalent accuracy
of 98.28%. This highlights our design’s capability to balance high accuracy with efficient
hardware and area utilization, particularly under the constraints of limited hardware re-
sources. Overall, our work demonstrates considerable potential for practical applications,
particularly in environments in which resources are constrained, such as mobile and edge
computing devices.



Electronics 2024, 13, 1217 18 of 23

Table 2. Comparison with other ASIC CNN implementations.

Metrics This Work [1] [2] [35] [19] [34]

Bit Type bit-serial bit-serial bit-serial parallel parallel parallel
Technology TSMC 40 nm TSMC 40 nm 65 nm 65 nm 28 nm TSMC 65 nm

Frequency (MHz) 500 333 200 200 200 500
Precision 8-bit fixed 8-bit fixed 1–16 bit 8-bit fixed 8-bit fixed 16-bit fixed

FCL support yes yes yes yes no no
Number of MACs 175 1024 3456 512 288 144

Area (mm2) 0.41 NA 16 19.36 34.72 5
Normalized Area * 0.41 NA 6.06 7.33 70.86 1.89

Gate Count 50 k 4282 k NA 2950 k NA 1300 k
Power Consumption (mW) 91.84 392 297 447 41 350

Normalized Power
Consumption ** 75.90 392 244.27 314.65 83.51 215.38

Supply Voltage (V) 0.99–1.21 1 0.63–1.1 0.67–1.2 0.575–1.1 1
Throughput (GOPS) 7.87 3060 691.2 409.6 77 152

Normalized Throughput *** 7.87 4594.59 1063.38 630.15 275 93.54
Hardware Efficiency

(MOPS/Gate) 0.1574 0.7146 NA 0.1388 NA 0.1169

Normalized
Hardware Efficiency 0.1574 1.0730 NA 0.2136 NA 0.0720

On-Chip SRAM (kB) 369 389.2 NA 348 5625 96
CNN Type LeNet-5 AlexNet AlexNet AlexNet AlexNet LeNet-5

* 40 nm normalized area: A40 nm = A/(Tech/40 nm)2. ** power consumption is normalized to 40 nm and 1.0 V
CMOS process: Power40 nm = Power × (1.0 V/V’dd)2/(Tech/40 nm), where V’dd is the average supply voltage [36].
*** 500 MHz and 40 nm normalized throughput: Tp500 M = Tp/(Freq40 nm/500 MHz), where Freq40 nm = Freq ×
(Tech/40 nm).

6.3. Prototype Verification

To validate the bit-serial LeNet-5 accelerator proposed in our research, we conducted
prototype testing using an FPGA. The resource utilization for this FPGA implementation
is detailed in Table 3. On the Xilinx Kintex-7 FPGA, we achieved a notably high operat-
ing frequency of 500 MHz. Obviously, the Digital Signal Processor (DSP) utilization is
exceptionally low at just 0.24%. This is primarily due to the control logic used in the CNN
accelerator, and in theory, the DSP count should be zero. The utilization of Slices, which
are fundamental for implementing logic functions, stands at 4.21%. This rate indicates a
moderate consumption of the FPGA’s logic resources by our design. Flip-flops (FFs) show
a utilization rate of 4.67%. This metric usually signifies the quantity of registers in use.
The Look-Up Table (LUT) utilization, crucial for executing combinational logic, is at 4.41%.
This illustrates the extent of combinational logic resource occupation. Additionally, the
block RAM (BRAM) utilization is just 4.72%. This balanced approach to resource usage
across different components suggests that our design efficiently leverages available FPGA
resources without over-reliance on any single type. This balance not only indicates a
well-optimized design but also suggests that our design is relatively simpler in complexity
when compared to other similar designs.

Table 3. Resources used in FPGA implementations.

Metrics Resources

Platform Xilinx XC7K325TFFG900-2
Technology 28 nm

Frequency (MHz) 500
DSP (Utilization) 2 (0.24%)
Slice (Utilization) 25,719 (4.21%)
FF (Utilization) 19,050 (4.67%)

LUT (Utilization) 8981 (4.41%)
BRAM (Utilization) 21 (4.72%)



Electronics 2024, 13, 1217 19 of 23

Figure 12 showcases the distribution of FPGA resources among the various compo-
nents of the bit-serial LeNet-5 accelerator. The breakdown for Slices, FFs, and LUTs is
detailed in Figure 12a–c. Notably, the CL is more computation-intensive, while the FCL
demands more storage. Consequently, the PEA for the CL occupies the most significant
portion, followed by the FCL PEA and then the serial–parallel and parallel–serial conver-
sion circuits. When it comes to BRAM utilization, the BRAM share of the CL PEA is smaller
than that of the FCL PEA, reflecting the different resource demands of these layers.

Electronics 2024, 13, x FOR PEER REVIEW 19 of 24 
 

 

This illustrates the extent of combinational logic resource occupation. Additionally, the 
block RAM (BRAM) utilization is just 4.72%. This balanced approach to resource usage 
across different components suggests that our design efficiently leverages available FPGA 
resources without over-reliance on any single type. This balance not only indicates a well-
optimized design but also suggests that our design is relatively simpler in complexity 
when compared to other similar designs. 

Table 3. Resources used in FPGA implementations. 

Metrics Resources 
Platform Xilinx XC7K325TFFG900-2 

Technology 28 nm 
Frequency (MHz) 500 
DSP (Utilization) 2 (0.24%) 
Slice (Utilization) 25,719 (4.21%) 
FF (Utilization) 19,050 (4.67%) 

LUT (Utilization) 8981 (4.41%) 
BRAM (Utilization) 21 (4.72%) 

Figure 12 showcases the distribution of FPGA resources among the various compo-
nents of the bit-serial LeNet-5 accelerator. The breakdown for Slices, FFs, and LUTs is de-
tailed in Figure 12a–c. Notably, the CL is more computation-intensive, while the FCL de-
mands more storage. Consequently, the PEA for the CL occupies the most significant por-
tion, followed by the FCL PEA and then the serial–parallel and parallel–serial conversion 
circuits. When it comes to BRAM utilization, the BRAM share of the CL PEA is smaller 
than that of the FCL PEA, reflecting the different resource demands of these layers. 

5.7%
1.3%

3.2%

15.8%

74%

 CL PEA
 FCL PEA
 Control logic
 Conversion circuits
 Others

Slice

81%

19%

 CL PEA
 FCL PEA

6.1%

1.3%

8%

20.4%

64.1%

 CL PEA
 FCL PEA
 Control logic
 Conversion circuits
 Others

5.9%

1.3%
0.7%

14%

78.1%

 CL PEA
 FCL PEA
 Control logic
 Conversion circuits
 Others

FF

LUT BRAM

(a) (b)

(c) (d)  
Figure 12. Details of the proposed FPGA implementation. Breakdowns of (a) Slices, (b) FFs, (c) 
LUTs, and (d) BRAMs. 
Figure 12. Details of the proposed FPGA implementation. Breakdowns of (a) Slices, (b) FFs, (c) LUTs,
and (d) BRAMs.

Table 4 outlines the throughput and performance metrics for each layer of LeNet-5
when implemented on an FPGA, operating at a 500 MHz frequency. The convolutional
layers CL1 and CL2 have processing times of 19.20 µs and 134.40 µs, respectively, with
CL1 exhibiting a remarkable performance of 12.49 GOPS and CL2 at 7.02 GOPS. The fully
connected layers, FCL1, FCL2, and FCL3, take 96.00 µs, 20.16 µs, and 1.68 µs, respectively,
to process, each achieving a performance of 1.00 GOPS. The pooling layers, POOL1 and
POOL2, have processing times of 9.44 µs and 3.24 µs, respectively. These layers exhibit
lower performance compared to the convolutional layers, with outputs of 0.50 GOPS
and 0.49 GOPS. The pooling layers emerge as the primary bottleneck as the CLs and
FCLs form a first-level pipeline, necessitating a wait time during computation. Overall,
with the pipeline structure, the entire LeNet-5 framework achieves an average processing
time of 166.28 µs excluding the FCLs’ time, a total computational demand of 1308.19
KOP, and an impressive average performance of 7.87 GOPS. These data indicate that the
FPGA demonstrates higher efficiency in the convolutional layers and comparatively lower
efficiency in the pooling layers.



Electronics 2024, 13, 1217 20 of 23

Table 4. Throughput and performance of each layer for Lenet-5 FPGA implementation at 500 MHz.

Layer Time (µs) Amount of
Calculation (KOP) Performance (GOPS)

CL1 19.20 239.90 12.49
CL2 134.40 943.94 7.02

CL1 and CL2 153.60 1183.84 7.71
FCL1 96.00 96.12 1.00
FCL2 20.16 20.24 1.00
FCL3 1.68 1.69 1.00

FCL1, FCL2, and
FCL3 117.84 118.05 1.00

POOL1 9.44 4.70 0.50
POOL2 3.24 1.60 0.49

POOL1 and POOL2 12.68 6.30 0.50

Total 166.28
(Except FCLs) 1308.19 7.87

Table 5 presents a comparative analysis of the LeNet-5 model’s performance across
various works. This study differentiates itself from two other studies, Refs. [37,38], by
employing a bit-serial processing approach, in contrast to their parallel methodologies. In
terms of accuracy, our study achieves an impressive 98.24%, slightly surpassing [38], but
falls marginally short of [37]’s 98.60%. Precision-wise, both our study and [37] utilize 8-bit
fixed precision computing, while [38] opts for 16-bit. Focusing on the FCL support, both
our study and [37] include it, unlike [38]. Frequency tests reveal that our FPGA operates
at a swift 500 MHz, significantly exceeding the 136 MHz of [37] and the 88.07 MHz of [38].
When it comes to resource utilization efficiency, our study shows a marked advantage
in DSP, LUT, FF and BRAM, indicating superior resource efficiency compared to [37].
Although our power consumption stands at 865 W, slightly higher than [38]’s 616 W,
we notably excel in throughput (7.87 GOPS) and energy efficiency (9.10 GOPS/W). Our
processing time is a rapid 284.13 µs, vastly outpacing the 4530 µs of [37] and 734 µs of [38].
In summary, despite a marginally higher power consumption compared to [38], our work
demonstrates outstanding performance in terms of accuracy, throughput, energy efficiency,
and processing speed.

Table 5. Comparison with other FPGA Lenet-5 implementations.

Metrics This Work [37] [38]

Bit Type bit-serial parallel parallel

Platform Xilinx
XC7K325TFFG900-2 Pynq-z2 Altera Cyclone II

2C70
Accuracy 98.24% 98.60% 98.17%
Precision 8-bit fixed 8-bit fixed 16-bit fixed

FCL support yes yes no
Frequency (MHz) 500 136 88.07

DSP 2 91 142
LUT 8981 34,643 9399
FF 19,050 18,272 NA

BRAM 21 139 22
Power (mW) 865 616 143

Throughput (GOPS) 7.87 4.46 NA
Energy Efficiency

(GOPS/W) 9.10 7.24 NA

Time (µs) 284.13 4530 734
CNN Type LeNet-5 LeNet-5 LeNet-5

Finally, we uploaded our LeNet-5 accelerator onto the FPGA. For the test data, the
quantized weights and feature map parameters were converted into binary format. These



Electronics 2024, 13, 1217 21 of 23

binary data were then compiled into COE (coefficient) files, which were integrated into the
RAMs of the accelerator. This integration was crucial as utilizing COE files for parameter
transmission is a common practice in accelerator configurations. COE files are structured
in ASCII text format, with the header specifying a radix of 2, indicating that the data
were represented in binary. Data within these files were organized in vector format, with
each vector ending in a semicolon and vectors separated by commas. During this phase,
the Vivado tool interpreted the COE file format and generated corresponding Memory
Initialization File (MIF) format files. These MIF files were then employed in behavioral-level
simulations to verify the system’s accuracy and functionality.

Our FPGA board, however, was equipped with only eight LEDs, which is insufficient
for fully representing ten labels of digits. As a workaround, we implemented a five-digit
binary encoding system. Take the number 6, for instance, which corresponds to the seventh
label. This would be represented as 00111 in our system. Considering that the LEDs are
activated at a low level and the MSB is positioned on the right, this results in the rightmost
two LEDs lighting up while the next three remain off. The leftmost three LEDs serve to
indicate the predicted number’s position. In this setup, an unlit middle LED signifies
the correct positioning of the predicted number, coded as 010. Therefore, for a correctly
predicted number 6, the final output displayed would be 01011100, as depicted in Figure 13.
This demonstration effectively validates the functional accuracy of our work.

Electronics 2024, 13, x FOR PEER REVIEW 21 of 24 
 

 

Table 5. Comparison with other FPGA Lenet-5 implementations. 

Metrics This Work [37] [38] 
Bit Type bit-serial parallel parallel 

Platform Xilinx 
XC7K325TFFG900-2 

Pynq-z2 Altera Cyclone II 
2C70 

Accuracy 98.24% 98.60% 98.17% 
Precision 8-bit fixed 8-bit fixed 16-bit fixed 

FCL support yes yes no 
Frequency (MHz) 500 136 88.07 

DSP 2 91 142 
LUT 8981 34,643 9399 
FF 19,050 18,272 NA 

BRAM 21 139 22 
Power (mW) 865 616 143 

Throughput (GOPS) 7.87 4.46 NA 
Energy Efficiency 

(GOPS/W) 9.10 7.24 NA 

Time (µs) 284.13 4530 734 
CNN Type LeNet-5 LeNet-5 LeNet-5 

Finally, we uploaded our LeNet-5 accelerator onto the FPGA. For the test data, the 
quantized weights and feature map parameters were converted into binary format. These 
binary data were then compiled into COE (coefficient) files, which were integrated into 
the RAMs of the accelerator. This integration was crucial as utilizing COE files for param-
eter transmission is a common practice in accelerator configurations. COE files are struc-
tured in ASCII text format, with the header specifying a radix of 2, indicating that the data 
were represented in binary. Data within these files were organized in vector format, with 
each vector ending in a semicolon and vectors separated by commas. During this phase, 
the Vivado tool interpreted the COE file format and generated corresponding Memory 
Initialization File (MIF) format files. These MIF files were then employed in behavioral-
level simulations to verify the system’s accuracy and functionality. 

Our FPGA board, however, was equipped with only eight LEDs, which is insufficient 
for fully representing ten labels of digits. As a workaround, we implemented a five-digit 
binary encoding system. Take the number 6, for instance, which corresponds to the sev-
enth label. This would be represented as 00111 in our system. Considering that the LEDs 
are activated at a low level and the MSB is positioned on the right, this results in the right-
most two LEDs lighting up while the next three remain off. The leftmost three LEDs serve 
to indicate the predicted number’s position. In this setup, an unlit middle LED signifies 
the correct positioning of the predicted number, coded as 010. Therefore, for a correctly 
predicted number 6, the final output displayed would be 01011100, as depicted in Figure 
13. This demonstration effectively validates the functional accuracy of our work. 

01011100

MSBLSB

 
Figure 13. LeNet-5 accelerator implementation on a Xilinx Kintex-7 FPGA. Figure 13. LeNet-5 accelerator implementation on a Xilinx Kintex-7 FPGA.

7. Conclusions

In our study, we explored a bit-serial neural network accelerator, aiming to tackle
the challenges of size, power consumption, and hardware efficiency often found in tra-
ditional neural network accelerators. Our paper presents an approach that integrates a
bit-serial MAC, advanced dataflow techniques, and architectural optimizations. At its
core is the column-buffering dataflow technique, which dramatically reduces the need
for accessing and moving intermediate feature maps, thereby boosting efficiency. More-
over, we implemented an enhanced quantization process that effectively eliminates bias,
streamlining the computation process. The paper meticulously outlines the design of a
LeNet-5 accelerator centered around a convolutional layer processing element array and
featuring an improved bit-serial multiply–accumulate unit. The experimental results are
impressive, demonstrating that our design surpasses the current state-of-the-art ASIC
designs in frequency, chip area, and power consumption. A standout feature of our design
is its ability to deliver high performance, i.e., achieve a 7.87 GOPS on a Xilinx Kintex-7
FPGA, while using fewer hardware resources and maintaining a brief processing time of
284.13 µs. These outcomes highlight the design’s suitability for applications that demand
compact and energy-efficient solutions.



Electronics 2024, 13, 1217 22 of 23

Author Contributions: Conceptualization, all authors; methodology, X.C. and Y.W.; software and
validation, X.C., W.D. and H.L.; formal analysis, X.C. and Y.W.; investigation, X.C.; resources, Y.W.
and P.L.; data curation, X.C., W.D. and H.L.; writing—original draft preparation, X.C., W.D. and H.L.;
writing—review and editing, all authors; visualization, X.C., W.D. and H.L.; supervision, Y.W. and
P.L.; project administration, X.C., W.D. and H.L.; funding acquisition, Y.W. and P.L. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data underlying the results are available as part of the article and
no additional source data are required.

Acknowledgments: This work was supported by the State Key Laboratory of Electronic Thin Films
and Integrated Devices.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Hsu, L.-C.; Chiu, C.-T.; Lin, K.-T.; Chou, H.-H.; Pu, Y.-Y. ESSA: An Energy-Aware Bit-Serial Streaming Deep Convolutional Neural

Network Accelerator. J. Syst. Archit. 2020, 111, 10183. [CrossRef]
2. Lee, J.; Kim, C.; Kang, S.; Shin, D.; Kim, S.; Yoo, H.-J. UNPU: An Energy-Efficient Deep Neural Network Accelerator with Fully

Variable Weight Bit Precision. IEEE J. Solid-State Circuits 2019, 54, 173–185. [CrossRef]
3. Judd, P.; Albericio, J.; Hetherington, T.; Aamodt, T.M.; Moshovos, A. Stripes: Bit-Serial Deep Neural Network Computing. In

Proceedings of the 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Taipei, Taiwan, 15–19
October 2016; IEEE: Taipei, Taiwan, 2016; pp. 1–12.

4. Chen, T.; Du, Z.; Sun, N. DianNao: A Small-Footprint High-Throughput Accelerator for Ubiquitous Machine-Learning. ACM
SIGARCH Comput. Archit. News 2014, 42, 269–284. [CrossRef]

5. Ma, M.; Tan, J.; Wei, X.; Yan, K. Process Variation Mitigation on Convolutional Neural Network Accelerator Architecture. In
Proceedings of the 2019 IEEE 37th International Conference on Computer Design (ICCD), Abu Dhabi, United Arab Emirates,
17–20 November 2019; pp. 47–55.

6. Lee, H.; Wu, Y.-H.; Lin, Y.-S.; Chien, S.-Y. Convolutional Neural Network Accelerator with Vector Quantization. In Proceedings of
the 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019; pp. 1–5.

7. Sze, V.; Chen, Y.-H.; Yang, T.-J.; Emer, J.S. Efficient Processing of Deep Neural Networks: A Tutorial and Survey. Proc. IEEE 2017,
105, 2295–2329. [CrossRef]

8. Chen, Y.-H.; Emer, J.; Sze, V. Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks.
ACM SIGARCH Comput. Archit. News 2016, 44, 367–379. [CrossRef]

9. Chen, Y.; Luo, T.; Liu, S.; Zhang, S.; He, L.; Wang, J.; Li, L.; Chen, T.; Xu, Z.; Sun, N.; et al. DaDianNao: A Machine-Learning
Supercomputer. In Proceedings of the 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture, Cambridge,
UK, 13–17 December 2014; IEEE: Cambridge, UK; pp. 609–622.

10. Parashar, A.; Rhu, M.; Mukkara, A.; Puglielli, A.; Venkatesan, R.; Khailany, B.; Emer, J.; Keckler, S.W.; Dally, W.J. SCNN: An
Accelerator for Compressed-Sparse Convolutional Neural Networks. ACM SIGARCH Comput. Archit. News 2017, 45, 27–40.
[CrossRef]

11. Kim, M.; Seo, J.-S. Deep Convolutional Neural Network Accelerator Featuring Conditional Computing and Low External Memory
Access. In Proceedings of the 2020 IEEE Custom Integrated Circuits Conference (CICC), Boston, MA, USA, 22–25 March 2020;
pp. 1–4.

12. Zheng, Y.; Yang, H.; Shu, Y.; Jia, Y.; Huang, Z. Optimizing Off-Chip Memory Access for Deep Neural Network Accelerator. IEEE
Trans. Circuits Syst. II Express Briefs 2022, 69, 2316–2320. [CrossRef]

13. Jia, H.; Ren, D.; Zou, X. An FPGA-Based Accelerator for Deep Neural Network with Novel Reconfigurable Architecture. IEICE
Electron. Express 2021, 18, 20210012. [CrossRef]

14. Choi, Y.; Bae, D.; Sim, J.; Choi, S.; Kim, M.; Kim, L.-S. Energy-Efficient Design of Processing Element for Convolutional Neural
Network. IEEE Trans. Circuits Syst. II Express Briefs 2017, 64, 1332–1336. [CrossRef]

15. Peemen, M.; Setio, A.A.A.; Mesman, B.; Corporaal, H. Memory-Centric Accelerator Design for Convolutional Neural Networks.
In Proceedings of the 2013 IEEE 31st International Conference on Computer Design (ICCD), Asheville, NC, USA, 6–9 October
2013; pp. 13–19.

16. Zhang, C.; Li, P.; Sun, G.; Guan, Y.; Xiao, B.; Cong, J. Optimizing FPGA-Based Accelerator Design for Deep Convolutional Neural
Networks. In Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays—FPGA ’15,
Monterey, CA, USA, 22–24 February 2015; pp. 161–170.

https://doi.org/10.1016/j.sysarc.2020.101831
https://doi.org/10.1109/JSSC.2018.2865489
https://doi.org/10.1145/2654822.2541967
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1145/3007787.3001177
https://doi.org/10.1145/3140659.3080254
https://doi.org/10.1109/TCSII.2022.3150030
https://doi.org/10.1587/elex.18.20210012
https://doi.org/10.1109/TCSII.2017.2691771


Electronics 2024, 13, 1217 23 of 23

17. Kulkarni, A.; Abtahi, T.; Shea, C.; Kulkarni, A.; Mohsenin, T. PACENet: Energy Efficient Acceleration for Convolutional Network
on Embedded Platform. In Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore,
MD, USA, 28–31 May 2017; pp. 1–4.

18. Moons, B.; Uytterhoeven, R.; Dehaene, W.; Verhelst, M. Envision: A 0.26-to-10TOPS/W Subword-Parallel Dynamic-Voltage-
Accuracy-Frequency-Scalable Convolutional Neural Network Processor in 28 nm FDSOI. In Proceedings of the 2017 IEEE
International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 5–9 February 2017; pp. 246–247.

19. Desoli, G.; Chawla, N.; Boesch, T.; Singh, S.; Guidetti, E.; De Ambroggi, F.; Majo, T.; Zambotti, P.; Ayodhyawasi, M.; Singh, H.; et al.
A 2.9TOPS/W Deep Convolutional Neural Network SoC in FD-SOI 28 nm for Intelligent Embedded Systems. In Proceedings of
the 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 5–9 February 2017; pp. 238–239.

20. Bai, L.; Zhao, Y.; Huang, X. A CNN Accelerator on FPGA Using Depthwise Separable Convolution. IEEE Trans. Circuits Syst. II
Express Briefs 2018, 65, 1415–1419. [CrossRef]

21. Jo, J.; Cha, S.; Rho, D.; Park, I.-C. DSIP: A Scalable Inference Accelerator for Convolutional Neural Networks. IEEE J. Solid-State
Circuits 2018, 53, 605–618. [CrossRef]

22. Ding, W.; Huang, Z.; Huang, Z.; Tian, L.; Wang, H.; Feng, S. Designing Efficient Accelerator of Depthwise Separable Convolutional
Neural Network on FPGA. J. Syst. Archit. 2019, 97, 278–286. [CrossRef]

23. Farahani, A.; Beithollahi, H.; Fathi, M.; Barangi, R. CNNX: A Low Cost, CNN Accelerator for Embedded System in Vision at
Edge. Arab. J. Sci. Eng. 2023, 48, 1537–1545. [CrossRef]

24. Li, H.; Fan, X.; Jiao, L.; Cao, W.; Zhou, X.; Wang, L. A High Performance FPGA-Based Accelerator for Large-Scale Convolutional
Neural Networks. In Proceedings of the 2016 26th International Conference on Field Programmable Logic and Applications
(FPL), Lausanne, Switzerland, 29 August–2 September 2016; pp. 1–9.

25. Zhou, X.; Zhang, L.; Guo, C.; Yin, X.; Zhuo, C. A Convolutional Neural Network Accelerator Architecture with Fine-Granular
Mixed Precision Configurability. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS),
Seville, Spain, 12–14 October 2020; pp. 1–5.

26. Nguyen, D.T.; Nguyen, T.N.; Kim, H.; Lee, H.-J. A High-Throughput and Power-Efficient FPGA Implementation of YOLO CNN
for Object Detection. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 27, 1861–1873. [CrossRef]

27. Lian, X.; Liu, Z.; Song, Z.; Dai, J.; Zhou, W.; Ji, X. High-Performance FPGA-Based CNN Accelerator With Block-Floating-Point
Arithmetic. IEEE Trans. VLSI Syst. 2019, 27, 1874–1885. [CrossRef]

28. Zhang, J.; Li, J. Improving the Performance of OpenCL-Based FPGA Accelerator for Convolutional Neural Network. In
Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays—FPGA ’17, Monterey, CA,
USA, 22–24 February 2017; pp. 25–34.

29. Jouppi, N.P.; Young, C.; Patil, N.; Patterson, D.; Agrawal, G.; Bajwa, R.; Bates, S.; Bhatia, S.; Boden, N.; Borchers, A.; et al.
In-Datacenter Performance Analysis of a Tensor Processing Unit. In Proceedings of the 44th Annual International Symposium on
Computer Architecture, Toronto, ON, Canada, 24–28 June 2017; pp. 1–12.

30. Qiu, J.; Song, S.; Wang, Y.; Yang, H.; Wang, J.; Yao, S.; Guo, K.; Li, B.; Zhou, E.; Yu, J.; et al. Going Deeper with Embedded
FPGA Platform for Convolutional Neural Network. In Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays—FPGA’16, Monterey, CA, USA, 21–23 February 2016; pp. 26–35.

31. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86,
2278–2324. [CrossRef]

32. Isshiki, T. High-Performance Bit-Serial Datapath Implementation for Large-Scale Con Gurable Systems. Ph.D. Thesis, University
of California, Santa Cruz, CA, USA, 1996; 187p.

33. Quantization—PyTorch 2.0 Documentation. Available online: https://pytorch.org/docs/stable/quantization.html (accessed on 2
October 2023).

34. Du, L.; Du, Y.; Li, Y.; Su, J.; Kuan, Y.-C.; Liu, C.-C.; Chang, M.-C.F. A Reconfigurable Streaming Deep Convolutional Neural
Network Accelerator for Internet of Things. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 198–208. [CrossRef]

35. Yin, S.; Ouyang, P.; Tang, S.; Tu, F.; Li, X.; Zheng, S.; Lu, T.; Gu, J.; Liu, L.; Wei, S. A High Energy Efficient Reconfigurable Hybrid
Neural Network Processor for Deep Learning Applications. IEEE J. Solid-State Circuits 2018, 53, 968–982. [CrossRef]

36. Wang, H.; Xu, W.; Zhang, Z.; You, X.; Zhang, C. An Efficient Stochastic Convolution Architecture Based on Fast FIR Algorithm.
IEEE Trans. Circuits Syst. II 2022, 69, 984–988. [CrossRef]

37. Yanamala, R.M.R.; Pullakandam, M. A High-Speed Reusable Quantized Hardware Accelerator Design for CNN on Constrained
Edge Device. Des. Autom. Embed. Syst. 2023, 27, 165–189. [CrossRef]

38. De França, A.B.Z.; Oliveira, F.D.V.R.; Gomes, J.G.R.C.; Nedjah, N. Hardware Designs for Convolutional Neural Networks:
Memoryful, Memoryless and Cached. Integration 2024, 94, 102074. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TCSII.2018.2865896
https://doi.org/10.1109/JSSC.2017.2764045
https://doi.org/10.1016/j.sysarc.2018.12.008
https://doi.org/10.1007/s13369-022-06931-1
https://doi.org/10.1109/TVLSI.2019.2905242
https://doi.org/10.1109/TVLSI.2019.2913958
https://doi.org/10.1109/5.726791
https://pytorch.org/docs/stable/quantization.html
https://doi.org/10.1109/TCSI.2017.2735490
https://doi.org/10.1109/JSSC.2017.2778281
https://doi.org/10.1109/TCSII.2021.3121081
https://doi.org/10.1007/s10617-023-09274-8
https://doi.org/10.1016/j.vlsi.2023.102074

	Introduction 
	Related Works 
	Preliminaries 
	CNN Basics 
	Bit-Serial Computing Basics 
	Quantization 

	Column-Buffering Dataflow 
	System Architecture 
	Overview 
	Design of the PEA 
	The Design of the MAC 

	Implementation and Evaluation 
	CNN Validation 
	Synthesis Results 
	Prototype Verification 

	Conclusions 
	References

