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Abstract: Distinguishing data that satisfy the differential characteristic from random data is called
a distinguisher attack. At CRYPTO’19, Gohr presented the first deep-learning-based distinguisher
for round-reduced SPECK. Building upon Gohr’s work, various works have been conducted. Among
many other works, we propose the first neural distinguisher using single and multiple differences
for format-preserving encryption (FPE) schemes FF1 and FF3. We harnessed the differential charac-
teristics used in FF1 and FF3 classical distinguishers. They used SKINNY as the inner encryption
algorithm for FF3. On the other hand, we employ the standard FF1 and FF3 implementations with
AES encryption (which may be more robust). This work utilizes the differentials employed in FF1
and FF3 classical distinguishers. In short, when using a single 0x0F (resp. 0x08) differential, we
achieve the highest accuracy of 0.85 (resp. 0.98) for FF1 (resp. FF3) in the 10-round (resp. 8-round)
number domain. In the lowercase domain, due to an increased number of plaintext and ciphertext
combinations, we can distinguish with the highest accuracy of 0.52 (resp. 0.55) for FF1 (resp. FF3)
in a maximum of 2 rounds. Furthermore, we present an advanced neural distinguisher designed
with multiple differentials for FF1 and FF3. With this sophisticated model, we still demonstrate valid
accuracy in guessing the input difference used for encryption.

Keywords: deep learning; distinguisher; differential characteristic; format-preserving encryption

1. Introduction

Differential cryptanalysis [1] is one of the primary cryptanalysis techniques. If it is
possible to predict the key by analyzing the differential characteristic, the cryptographic
algorithm can be considered insecurely designed. Distinguishing data that satisfy differ-
ential characteristics (i.e., input/output differentials) from random data is referred to as a
distinguisher attack, which is more powerful than an exhaustive search. Depending on the
method of classifying the input difference, it is divided into a binary classification model
(i.e., distinguishing random data and input difference) and a multi-classification model
(i.e., distinguishing multiple-input differences).

Recently, with the development of deep learning [2–8], various studies on deep-
learning-based distinguishers [9,10] have been presented [11–21]. Deep learning is well-
suited for probabilistically distinguishing data that satisfy differential characteristics, as it
has the capability to make probabilistic predictions about data. In detail, the deep learning
algorithm [22] consists of multiple layers, each composed of multiple neurons. Neurons
calculate their final values by summing the weighted values from the previous layer and
passing them through an activation function. This process is repeated for each layer,
starting from the input layer. The network learns by minimizing the difference between
the predicted output and the actual labels using a loss function (e.g., binary cross-entropy,
categorical cross-entropy, mean squared error, etc.). In this process, an optimization function
(e.g., stochastic gradient descent (SGD), RMSprop, Adam) is used for effective minimization.
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Once trained, the network can predict using its trained weights. A well-trained network
can make robust predictions even about untrained data, and the design goal is to create
such a robust neural network. For this reason, many studies on neural distinguishers are
being conducted, but research on deep-learning-based distinguishers for format-preserving
encryption (FPE) schemes ([23], see Section 2.1 for details) such as FF1 (https://github.
com/PaddyKe/FFX/tree/main/FFX/FF1 accessed on 21 March 2024) and FF3 (https:
//pypi.org/project/ff3/ accessed on 21 March 2024), has not yet been conducted.

1.1. Our Contribution

In this work, for the first time, we propose a neural distinguisher based on deep
learning for FPE schemes FF1 and FF3 considering single- and multiple-input differences.
Significantly, our results demonstrate that the deep-learning-based distinguisher is well
suited for format-preserving encryption schemes as well. In brief, the following contribu-
tions are presented in this paper:

1. The first neural distinguisher for the NIST FPE family: We propose the first neural
distinguisher for FF1 and FF3, which are NIST standard format-preserving ciphers.
Our neural distinguisher works successfully in the number and lowercase domains
and can be effectively utilized for cryptanalysis using differential characteristics.

2. Successful verification of two models (single-input difference and multiple-input
difference): Our neural distinguisher is divided into an implementation that dis-
tinguishes single-input differences and multiple-input differences. When using a
single-input difference, the cipher data are distinguished from random data. When
multiple-input differences are used, the model can distinguish the input difference
used for the input data among multiple-input differences. We adopt both approaches
and successfully demonstrate the effectiveness of our model.

3. Our neural distinguisher can attack various variants of FF1 and FF3: While format-
preserving encryption includes an encryption function, the presence of differential
characteristics remains independent of the specific encryption function. Consequently,
our neural distinguisher can be effectively employed for distinguisher attacks target-
ing various variants of FF1, FF3.

1.2. Organization

The remainder of this paper is organized as follows. The backgrounds of the format-
preserving encryption and the neural distinguisher are summarized in Section 2. In Section 3,
we present the first neural distinguisher (single- and multiple-input differences) for FF1
and FF3. We evaluate and analyze the performance of our neural distinguisher for FF1
and FF3 in Section 4. Finally, we discuss and conclude this work in Section 5.

2. Prerequisites
2.1. Format-Preserving Encryption

When applying block ciphers to database encryption, it often leads to changes in
the data type or length, necessitating database structure engineering. This issue becomes
particularly critical when encrypting sensitive data such as credit card numbers.

However, format-preserving encryption (FPE) [23] is a method that preserves the
plaintext structure even after encryption, unlike block ciphers. As a result, there is no need
for additional storage capacity to store ciphertext compared to plaintext. In this context,
FPE is a cost-effective and efficient solution for integration into database systems without
requiring extensive engineering efforts.

In this work, our focus is on the FPE schemes FF1 and FF3, both standardized by NIST
(https://csrc.nist.gov/news/2016/nist-released-special-publication-800-38g accessed on
21 March 2024). FF1 consists of 10 rounds with the same block size and a key size of 128 bits,
while FF3 comprises 8 rounds with a block size of 32 bits and a key size of 128 bits. Both
FPE ciphers are designed using a Feistel architecture and incorporate encryption functions

https://github.com/PaddyKe/FFX/tree/main/FFX/FF1
https://github.com/PaddyKe/FFX/tree/main/FFX/FF1
https://pypi.org/project/ff3/
https://pypi.org/project/ff3/
https://csrc.nist.gov/news/2016/nist-released-special-publication-800-38g
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similar to AES into the inner round function (it is worth noting that the encryption function
used within FPE can be customized [24,25]).

Although FF1 and FF3 share some similarities, FF1 offers higher security due to its
increased number of rounds and its ability to support a wider range of protected data
formats compared to FF3. On the contrary, FF3 has a higher data throughput compared
to FF1.

2.2. Differential Characteristic

Differential cryptanalysis [1] is a representative cryptanalysis method of block ciphers.
The input difference (δ) is the XOR between the plaintext pairs (P0, P1), and the output
difference (∆) is the XOR between the ciphertext pairs. As in Equation (1), C0 and C1 are the
results of encrypting (E) P0 and P1 , respectively. The output difference (∆) can be obtained
by XORing C0 and C1. Here, a differential characteristic means a pair of input and output
differences (δ, ∆).

In the case of an ideal cipher, when plaintext with any input difference is encrypted,
the output difference should be uniform (like random). A weak cryptographic algorithm
has a certain output difference corresponding to an input difference. If the probability of
satisfying an output difference for an input difference is greater than the random probability,
the ciphertext can be distinguished from the random. These characteristics have remained
even when encryption is performed and can be inferred probabilistically.

P1 = P0 ⊕ δ,
C0 = E(P0), C1 = E(P1),
∆ = C0 ⊕ C1

(1)

2.3. Neural-Network-Based Distinguisher for Differential Cryptanalysis

A neural network can be a good solution for distinguisher attacks, as it can probabilisti-
cally satisfy specific output differences for given input differences. Consequently, the neural
distinguisher performs probabilistic prediction on data applied to distinguisher attacks
using differential characteristics. Most of the ongoing works of neural distinguishers are
derived from [11], and they focus on target ciphers and input differences. In [11], proposed
at CRYPTO’19, the first neural distinguisher is proposed for round-reduced SPECK32/64.
Their neural distinguisher successfully distinguishes cryptographic data from random
data for up to 7 rounds and extends up to 8 rounds through transfer learning. In [12],
two distinguisher models considering multi-input differential and single differential are
presented. And the target ciphers are GIMLI, ASCON, KNOT, and Chaskey. The proposed
MLP-based neural distinguisher successfully distinguishes 8-round GIMLI, 3-round ASCON,
10/12-round KNOT (256/512-bit), and 4-round Chaskey. In addition, many works [13,17–20]
on various cryptographic and differential characteristics are being conducted, focusing
on SPECK.

3. Neural Distinguisher for FF1FF1FF1 and FF3FF3FF3

This section describes our neural distinguisher specifically designed for the FPE
schemes (FF1 and FF3). Our neural distinguisher is based on the Baksi et al. scheme [12].
Also, our neural distinguisher for FPE schemes is based on Dunkelman et al.’s ePrint’20
paper [26]. They determined the differential characteristic of FPE shemes. Furthermore,
our implementation is categorized into two types based on the utilized input differences,
namely, ModelOne (Algorithm 1) and ModelMul.

ModelOne is a binary model capable of distinguishing cipher data with a single-input
difference from random data, while ModelMul is designed to distinguish multiple-input
differences. Details about both models are described in Sections 3.1 and 3.2. In addition,
we perform the hyper-parameter optimization for both models.
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Algorithm 1 ModelOne: Training procedure

1: Training Data TD← [ ] . Empty state
2: for i from 0 to n− 1 do
3: Choose random plaintext P0 and P1
4: P2 ← P0 ⊕ δ
5: Ciphertexts C0, C1, and C2 ← FPEenc (P0, P1, and P2) . Generate ciphertexts
6: TDi ← Assign labels 0 to (C0||C1) and 1 to (C0||C2)
7: end for
8: Train model DL with TD
9: a← Output of DL . a is training accuracy

10: if a > 1
2 then

11: Continue the training procedure
12: else . a = 1

2
13: Abort DL
14: end if

3.1. ModelOne: Single-Input Difference
3.1.1. Dataset

Figure 1 illustrates the overall generation process and the generated dataset using a
single-input difference of ModelOne. First, random plaintexts P0 and P1 for encryption are
generated. Furthermore, we generate plaintext P2 to satisfy the input difference δ with
P0 (i.e., P2 = P0 ⊕ δ). Then, the ciphertexts C0, C1, and C2 are generated by encrypting the
plaintexts P0, P1, and P2.

Figure 1. Dataset with one input difference.

C0 and C1 are the ciphertexts generated by encrypting the random plaintexts P0 and P1
that do not satisfy a differential characteristic (i.e., /∈ δ− ∆). On the other hand, the pair of
C0 and C2 has a special relationship that satisfies the differential characteristic (i.e., ∈ δ−∆).

We assign the label 0 (random) to the result of concatenating the two values (C0||C1)
indicating random data. On the other hand, C0 and C2 are the ciphertexts for plaintexts that
satisfy the input difference δ. The concatenated value (C0||C2) corresponds to cipher-related
data that satisfy the differential δ− ∆ with a certain probability. We assign label 1 (cipher)
to the concatenated result of C0 and C2 (C0||C2), which satisfies the differential.

FPE is designed to operate within specific domains, ensuring that encrypted data
maintain their original format, which is crucial for data integrity, compliance, and system
compatibility. Throughout this paper, we define the following two domains: the number
domain (0 to 9) and the lowercase-letter domain (a to z). Also, the dataset consists of bits
of ciphertext pairs (i.e., C0||C1 → 0...1||0...0).

For the input difference (for the dataset), we use 0x0||K (K is a hexadecimal num-
ber ranging from 0x0 to 0xF). Our choice is based on Equation (3) in [26]. The authors
demonstrate that when 0x0||K is used, the probability of a differential is high. It should be
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noted that since these input differences are independent of the inner encryption function
(such as SKINNY, SPECK, or AES), our work can be applied to various implementations of
FPE schemes.

3.1.2. Architecture and Training

ModelOne receives concatenated random data (C0||C1) or cipher data (C0||C2) and
classifies them into random (label 0) or cipher (label 1). Each bit of the ciphertext pair in
the dataset is assigned to each neuron of the input layer. Then, the output of the input
layer passes through the hidden layer. In the output layer, a final value between 0 and 1
is calculated by applying a sigmoid activation function. Then, the loss of the final value
and the actual value (0 or 1) is calculated. Figure 2 shows the process of ModelOne using a
single-input difference.

If training to distinguish input data is performed correctly, our model can work as a
neural distinguisher for FF1 and FF3. To work as a valid distinguisher, it must achieve an
accuracy greater than 1

2 , which is a random probability.

Figure 2. System diagram of ModelOne.

Table 1 shows the hyperparameters of ModelOne (FF1 and FF3). The epoch is set
to 20 and 15 for ModelOne, and a dense layer with all nodes fully connected is used.
ModelOne performs binary classification because it should distinguish input from random
or cipher data. Thus, binary cross-entropy is used as the loss function. Additionally,
the Adam optimization function (known for its good performance) is employed in our
model. For more sophisticated learning, the learning rate of the optimization function is
adjusted during training (the learning rate starts at 0.001 and decreases to 0.0001).
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Table 1. Hyperparameters of ModelOne and ModelMul.

Model ModelOne ModelMul

Schemes FF1/FF3 FF1/FF3

Epochs 20/15 20/15

Loss function Binary cross-entropy Categorical cross-entropy

Optimizer Adam (0.001 to 0.0001, learning rate decay)

Activation function
ReLu (hidden)

Softmax (output) Sigomid (output)

Batch size 32

Hidden layers 5/4 hidden layers (with 64/128 units)

Parameters 173,956/74,497 173,956/75,787

3.2. ModelMul: Multiple-Input Differences
3.2.1. Dataset

Similar to ModelOne, a random plaintext P0 is generated. Then, plaintext pairs that
satisfy multiple-input differences are generated. That is, P0 is XORed with δn (different
input difference) to obtain plaintext Pn. Lastly, each plaintext Pn (with different input
differences) is encrypted to generate the ciphertext Cn. In short, ModelMul takes multiple
ciphertexts with different input differences as a training data set.

C0||Cn is labeled as class n− 1 since Cn is the ciphertext obtained by encrypting the
plaintext with n different input differences, respectively (e.g., C3 corresponds to ∆3). In the
distinguisher that uses multiple-input differences, the number domain (0 to 9) and the
lowercase-letter domain (a to z) are also used in the FF1 and FF3 encryption process. As
in ModelOne, we adopt the input difference 0x0||K (K is a hexadecimal number ranging
from 0x0 to 0xF). Figure 3 shows the generation process of the dataset using multiple
input differences.

Figure 3. Dataset with multiple-input differences.

3.2.2. Model Architecture and Training

In this model, the attacker chooses the input differences δ0, δ1,..., δn−1 (n > 2). Figure 4
and Algorithm 2 show the system logic of ModelMul using multiple-input differences. In
the training phase, the deep learning model is learning to find whether there is any pattern
(i.e., differential characteristics) in the outputs. Through this training process, ModelMul can
distinguish multiple-input differences. While ModelOne can classify only random and
one-input differences, ModelMul works as a distinguisher for data that satisfy multiple
differential characteristics. If n input differences are used, an accuracy greater than 1/n (the
probability of random data) must be achieved in order to work as a valid distinguisher. If
the accuracy of the training is higher than 1/n, the model finds a pattern from the cipher’s
outputs and a differential attack proceeds. On the other hand, if the training accuracy is
less than or equal to 1/n, the model is aborted.
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In brief, ModelMul receives ciphertext pairs that satisfy the differential characteristics
as input and classifies them based on the input differences used. Finally, our ModelMul can
distinguish the input differences used in the cipher data.

Algorithm 2 ModelMul: Training procedure

1: Training Data TD← [ ] . Empty state
2: Choose random plaintext P . Step 2
3: Ciphertext C ← FPEenc(P) . FPEenc means FF1 or FF3 encryption
4: for i from 0 to n− 1 do
5: Pi ← P⊕ δi
6: Ci ← FPEenc(Pi)
7: Append TD with (Ci ⊕ C, i) . Ci ⊕ C is from class i
8: end for
9: Repeat from Step 2

10: Train DL model with TD
11: a← Output of trained DL model . a is training accuracy
12: if a > 1

n then
13: Continue the training procedure
14: else . a = 1

n
15: Abort DL model
16: end if

Figure 4. System diagram of ModelMul.

3.3. Hyper-Parameter Tuning

Table 1 also lists the hyperparameters (FF1 and FF3) of ModelMul. Initially, we set
the epoch to 50, but it was confirmed that the same accuracy was achieved even at 20 and
15, so the optimal epoch is set. Also, for ModelMul, the same dense layer as ModelOne is
used. However, ModelMul performs multi-class classification because it classifies multiple
pairs of ciphertexts that satisfy the output difference. In addition, the Adam optimization
function is also used. Lastly, for more sophisticated learning, the optimizer learning rate is
adjusted from 0.001 to 0.00001 and the Relu function is used for fast convergence to the
hidden layer. We experimented with various batch sizes (e.g., 64, 128) but confirmed that
32 is optimal in terms of memory, time, and accuracy. In addition, we tried to adjust the
number of layers and the number of units in each layer, but it can be seen that the complex
model is not efficient for our dataset.

As noted earlier, our model structures are simple, but they are optimized models
for our dataset. There is an advantage in terms of file size, as the model structure is not
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complicated. In addition, our models have been sufficiently simplified such that there will
be no shortage for deployment. If it is further optimized and made lightweight, it will
have more advantages in large-scale deployment. Therefore, this remains our future work.
In particular, we built a deep learning model that can be applied to both ModelOne and
ModelMul. This shows that it is a model with high generalization performance.

4. Evaluation
4.1. Experimental Environment

This experiment is performed on Google Colaboratory, a cloud computing platform
supporting Ubuntu 20.04.5 LTS and Tesla T4 (GPU) 12GB RAM. As the programming
environment, TensorFlow 2.12.0 and Python 3.9.16 are used.

To enhance the robustness of our result, we deliberately constructed a separate dataset
to serve as an independent variable in our experimentation. Furthermore, by conducting
multiple trials, we significantly increased the reliability of our results. This methodological
approach ensures that the outcomes observed are not merely coincidental but are, in fact,
the average of numerous iterations.

4.2. Result for One-Input Difference

In the case of FF1 (resp. FF3), in the number domain, when utilizing 0x0F (resp. 0x08)
as the input difference, ModelOne can effectively distinguish data for up to 10 rounds (resp.
8 rounds) with a commendable accuracy of 0.85 (resp. 0.98). When employing different
input differences, it demonstrates relatively lower accuracy compared to 0F (resp. 08)

In the lowercase domain, as the number of plaintext and ciphertext cases increases,
ModelOne for FF1 (resp. FF3) can distinguish data for a maximum of 2 rounds. It attains
an accuracy of 0.522 (resp. 0.55) for 0x0F (resp. 0x08), which is somewhat lower than
in the number domain. The input difference 0x03 (resp. 0x01) provides an accuracy
approximately 0.1 (resp. 0.35) lower than that of 0x0F (resp. 0x08). The underlying reason
for these results, as noted in [26], is that when employing input differences of 0x0F (resp.
0x08), they exhibit the anticipated differentiation properties. Tables 2 and 3 show the results
of FF1 and FF3 ModelOne based on input differences. This experiment reaffirms that data
with output differences based on the input differences of 0x0||K can be reliably predicted
with a high probability.

Table 2. Result of FF1 ModelOne according to input difference.

0x0x0x
Number (10 Rounds) Lowercase (2 Rounds)

Training Validation Test Reliability Training Validation Test Reliability
01 0.732 0.741 0.733 0.233 0.500 0.500 0.500 0.000

02 0.741 0.752 0.743 0.243 0.510 0.512 0.510 0.010
03 0.711 0.712 0.711 0.211 0.522 0.520 0.522 0.022
04 0.751 0.752 0.752 0.252 0.511 0.512 0.510 0.010

05 0.752 0.751 0.752 0.252 0.511 0.512 0.511 0.011

06 0.751 0.752 0.752 0.252 0.511 0.512 0.511 0.011

07 0.751 0.751 0.752 0.252 0.511 0.511 0.511 0.011

08 0.801 0.802 0.802 0.302 0.511 0.511 0.511 0.011
09 0.841 0.842 0.841 0.341 0.522 0.521 0.522 0.022
0A 0.842 0.841 0.841 0.341 0.500 0.510 0.510 0.010

0B 0.822 0.821 0.822 0.322 0.511 0.511 0.511 0.011
0C 0.855 0.854 0.855 0.355 0.500 0.500 0.500 0.000
0D 0.788 0.788 0.788 0.288 0.511 0.511 0.511 0.011
0E 0.811 0.812 0.811 0.311 0.522 0.521 0.522 0.022
0F 0.855 0.854 0.855 0.355 0.522 0.522 0.522 0.022
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Table 3. Result of FF3 ModelOne according to input difference.

0x0x0x
Number (8 Rounds) Lowercase (2 Rounds)

Training Validation Test Reliability Training Validation Test Reliability
01 0.629 0.624 0.623 0.123 0.545 0.544 0.543 0.043

02 0.829 0.825 0.825 0.325 0.552 0.548 0.545 0.045

03 0.783 0.769 0.771 0.271 0.52 0.514 0.513 0.013

04 0.761 0.756 0.757 0.257 0.523 0.52 0.517 0.017

05 0.773 0.752 0.747 0.247 0.539 0.538 0.537 0.037

06 0.758 0.748 0.75 0.25 0.523 0.519 0.523 0.023

07 0.756 0.739 0.74 0.24 0.532 0.529 0.529 0.029
08 0.987 0.976 0.977 0.477 0.556 0.554 0.554 0.054
09 0.962 0.942 0.941 0.441 0.547 0.543 0.549 0.049

0A 0.969 0.953 0.951 0.451 0.538 0.534 0.532 0.032

0B 0.97 0.965 0.966 0.466 0.53 0.526 0.522 0.022

0C 0.97 0.959 0.959 0.459 0.538 0.536 0.539 0.039

0D 0.968 0.965 0.966 0.466 0.532 0.524 0.518 0.018

0E 0.964 0.963 0.963 0.463 0.549 0.549 0.551 0.051

0F 0.965 0.939 0.941 0.441 0.528 0.524 0.524 0.024

4.3. Result for Multiple-Input Differences

We use the input difference 0x0||K (see Section 3.1). Each dataset is set according
to the input difference pair used and there are 218.6097 data points in each class. We set
0x0F (resp. 0x08), assumed as the best difference in FF1 (resp. FF3) [26], as a fixed input
difference. Then, with 0x0F (resp. 0x08) fixed, datasets are generated by expanding the
data for different input differences. Table 4 shows the details of the input difference dataset
for ModelMul.

Table 4. Details of the input difference dataset.

Dataset Data Size Input Difference
Pair Valid Accuracy

I1

218.6097 per class

01, 08 >0.500

I2 01, 02, 08 >0.333

I3 01∼03, 08 >0.250

I4 01∼04, 08 >0.200

I5 01∼05, 08 >0.166

I6 01∼06, 08 >0.142

I7 01∼08 >0.125

I8 01∼09 >0.111

I9 01∼0A >0.100

I10 01∼0B >0.090

I11 01∼0C >0.083

I12 01∼0D >0.076

I13 01∼0E >0.071

I14 01∼0F >0.066

Valid accuracy is determined by the number of input differences used. For example,
if three input differences are used, an accuracy higher than 0.3333 ( 1

3 ) should be achieved.
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This is because it is assumed that data can be distinguished only when accuracy higher
than random probability is achieved.

We perform experiments on I1∼I14 (different combinations of input differences) and
achieve valid accuracies in both the number and lowercase domains (it is natural that
accuracy decreases as the number of classes increases). Similar to ModelOne, which utilizes
a single-input difference, ModelMul can be used as a valid distinguisher for FF1 and FF3
since it can distinguish 0x0||K differences. Tables 5 and 6 show the results of ModelMul
according to input difference dataset for FF1 and FF3, respectively. Among I1∼I14, I2
shows the highest reliability in the number and lowercase domains (reliability means test
accuracy valid accuracy). A distinguisher with high reliability has the ability to robustly
classify differential characteristics. According to our results, the reliability tends to decrease
as the number of differential characteristics used increases. This phenomenon is thought to
occur because the more differential characteristics to be distinguished, the more complex
the problem to be solved (in general, the more complex data are used, the larger the model
required is). It is considered that there will be an optimal structure of the neural network
according to the input difference, and this remains for our future work.

Table 5. Result of FF1 ModelMul according to input differences.

Dataset
Number (8 Rounds) Lowercase (2 Rounds)

Training Validation Test Reliability Training Validation Test Reliability
I1 0.520 0.520 0.520 0.020 0.520 0.520 0.520 0.020

I2 0.340 0.339 0.340 0.007 0.360 0.360 0.360 0.027

I3 0.260 0.260 0.260 0.010 0.270 0.270 0.270 0.020

I4 0.210 0.210 0.210 0.010 0.200 0.200 0.200 0.010

I5 0.170 0.170 0.170 0.004 0.180 0.180 0.180 0.004

I6 0.150 0.150 0.150 0.008 0.150 0.150 0.150 0.008

I7 0.130 0.130 0.130 0.005 0.130 0.130 0.130 0.005

I8 0.120 0.120 0.120 0.009 0.120 0.120 0.120 0.009

I9 0.120 0.110 0.120 0.020 0.100 0.100 0.110 0.010

I10 0.100 0.100 0.100 0.010 0.100 0.100 0.100 0.010

I11 0.090 0.090 0.090 0.007 0.090 0.090 0.090 0.007

I12 0.080 0.080 0.080 0.004 0.080 0.080 0.080 0.004

I13 0.080 0.080 0.080 0.009 0.080 0.080 0.080 0.009

I14 0.070 0.070 0.070 0.004 0.070 0.070 0.070 0.004

Table 6. Result of FF3 ModelMul according to input differences.

Dataset
Number (8 Rounds) Lowercase (2 Rounds)

Training Validation Test Reliability Training Validation Test Reliability
I1 1.00 1.00 1.00 0.500 0.55 0.55 0.55 0.050

I2 0.99 1.00 0.99 0.657 0.54 0.54 0.54 0.207

I3 0.72 0.72 0.72 0.470 0.38 0.37 0.37 0.120

I4 0.46 0.45 0.45 0.250 0.29 0.29 0.29 0.090

I5 0.33 0.33 0.33 0.164 0.24 0.23 0.23 0.064

I6 0.25 0.25 0.25 0.108 0.20 0.20 0.20 0.058

I7 0.22 0.22 0.22 0.095 0.17 0.17 0.17 0.045

I8 0.19 0.19 0.19 0.079 0.15 0.15 0.15 0.039
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Table 6. Cont.

Dataset
Number (8 Rounds) Lowercase (2 Rounds)

Training Validation Test Reliability Training Validation Test Reliability

I9 0.17 0.17 0.17 0.070 0.13 0.13 0.13 0.030

I10 0.16 0.15 0.15 0.06 0.12 0.12 0.12 0.030

I11 0.14 0.14 0.14 0.057 0.11 0.11 0.11 0.027

I12 0.13 0.12 0.12 0.044 0.10 0.10 0.10 0.024

I13 0.12 0.11 0.12 0.049 0.09 0.09 0.09 0.019

I14 0.11 0.11 0.11 0.044 0.08 0.08 0.08 0.014

Figure 5 shows the reliability according to each differential characteristic and dataset.
According to Dunkelman et al., the 0x08 differential characteristic was found to be the
best differential in the FPE family, and 0x01 and 0x02 were found to be relatively poor
differentials. ModelOne for FF1 shows the highest reliability in both domains when it is
0x0F. From this, we can see that 0x0F is also a good differential characteristic. ModelOne
for FF3 shows the highest reliability in the 0x08 difference, as seen in Dunkelman et al.
ModelMul for FF3 shows the highest reliability when it is the I2 dataset in both domains.
I2 is a dataset that includes two bad differential characteristics (0x01, 0x02) and a good
differential characteristic (0x08). Using this dataset is believed to have high accuracy and
reliability because our distinguisher model belongs to a problem that is easy to classify.
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One more thing to note is that, in [26], for the classical distinguisher for FF1 and FF3,
the authors use SKINNY as an inner encryption function. On the other hand, for FF1 and
FF3, we used the default implementation using AES. The distinguisher attack using the
input differences 0x0||K succeeds despite the inner encryption function being changed.
Additionally, in our results, it is observed that the accuracy for 0x0F (resp. 0x08) is higher
and the accuracy for 0x03 (resp. 0x01) is lower for FF1 (resp. FF3). This result seems
to have come from the fact that the differential characteristic of FPE is independent of
the inner encryption function. Thus, we believe that our neural distinguisher structure
and differential characteristics may be applicable to other FF1 and FF3 variants as well
(naturally, training needs to be performed again according to the data).

5. Conclusions

In this work, we propose the first neural distinguisher for FF1 and FF3. According
to the method of classifying the input difference, the distinguisher type is divided into a
binary classification model, ModelOne, and a multi-classification model, ModelMul.



Electronics 2024, 13, 1196 12 of 13

In ModelOne, when 0x0F (resp. 0x08) is used, a high accuracy of 0.85 (resp. 0.98) is
achieved for 10 rounds (resp. 8 rounds). In the lowercase domain, up to 2 rounds can be
distinguished. In ModelMul, the accuracy exceeds the valid accuracy in all cases, and the
highest reliability is obtained in I2. Through our experiments, we observe the accuracy of
0x0F (resp. 0x08) is higher, and the accuracy of 0x03 (resp. 0x01) is low, relatively.

In our implementation, a different inner encryption function is used than in existing
implementations, but the differential characteristic and probabilities appear to be main-
tained. That is, the input difference 0x0||K remains independent of the inner encryption
function. Thus, it seems that our distinguisher may be utilized for variants of FF3.

For our future work, we plan to train our ModelMul on wider domains (e.g., uppercase
letters, combinations of each domain). Because model optimization is important to improve
generalizability, it is also important to use data with a wider range of domains. We will
focus on this part. Additionally, limitations in the experimental environment made it
difficult to use large amounts of data and data based on more expanded domains. We will
strive to improve the experimental environment and perform more reliable validation.
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