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Abstract

:

Distinguishing data that satisfy the differential characteristic from random data is called a distinguisher attack. At CRYPTO’19, Gohr presented the first deep-learning-based distinguisher for round-reduced SPECK. Building upon Gohr’s work, various works have been conducted. Among many other works, we propose the first neural distinguisher using single and multiple differences for format-preserving encryption (FPE) schemes FF1 and FF3. We harnessed the differential characteristics used in FF1 and FF3 classical distinguishers. They used SKINNY as the inner encryption algorithm for FF3. On the other hand, we employ the standard FF1 and FF3 implementations with AES encryption (which may be more robust). This work utilizes the differentials employed in FF1 and FF3 classical distinguishers. In short, when using a single 0x0F (resp. 0x08) differential, we achieve the highest accuracy of 0.85 (resp. 0.98) for FF1 (resp. FF3) in the 10-round (resp. 8-round) number domain. In the lowercase domain, due to an increased number of plaintext and ciphertext combinations, we can distinguish with the highest accuracy of 0.52 (resp. 0.55) for FF1 (resp. FF3) in a maximum of 2 rounds. Furthermore, we present an advanced neural distinguisher designed with multiple differentials for FF1 and FF3. With this sophisticated model, we still demonstrate valid accuracy in guessing the input difference used for encryption.
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1. Introduction


Differential cryptanalysis [1] is one of the primary cryptanalysis techniques. If it is possible to predict the key by analyzing the differential characteristic, the cryptographic algorithm can be considered insecurely designed. Distinguishing data that satisfy differential characteristics (i.e., input/output differentials) from random data is referred to as a distinguisher attack, which is more powerful than an exhaustive search. Depending on the method of classifying the input difference, it is divided into a binary classification model (i.e., distinguishing random data and input difference) and a multi-classification model (i.e., distinguishing multiple-input differences).



Recently, with the development of deep learning [2,3,4,5,6,7,8], various studies on deep-learning-based distinguishers [9,10] have been presented [11,12,13,14,15,16,17,18,19,20,21]. Deep learning is well-suited for probabilistically distinguishing data that satisfy differential characteristics, as it has the capability to make probabilistic predictions about data. In detail, the deep learning algorithm [22] consists of multiple layers, each composed of multiple neurons. Neurons calculate their final values by summing the weighted values from the previous layer and passing them through an activation function. This process is repeated for each layer, starting from the input layer. The network learns by minimizing the difference between the predicted output and the actual labels using a loss function (e.g., binary cross-entropy, categorical cross-entropy, mean squared error, etc.). In this process, an optimization function (e.g., stochastic gradient descent (SGD), RMSprop, Adam) is used for effective minimization. Once trained, the network can predict using its trained weights. A well-trained network can make robust predictions even about untrained data, and the design goal is to create such a robust neural network. For this reason, many studies on neural distinguishers are being conducted, but research on deep-learning-based distinguishers for format-preserving encryption (FPE) schemes ([23], see Section 2.1 for details) such as FF1 (https://github.com/PaddyKe/FFX/tree/main/FFX/FF1 accessed on 21 March 2024) and FF3 (https://pypi.org/project/ff3/ accessed on 21 March 2024), has not yet been conducted.



1.1. Our Contribution


In this work, for the first time, we propose a neural distinguisher based on deep learning for FPE schemes FF1 and FF3 considering single- and multiple-input differences. Significantly, our results demonstrate that the deep-learning-based distinguisher is well suited for format-preserving encryption schemes as well. In brief, the following contributions are presented in this paper:




	
The first neural distinguisher for the NIST FPE family: We propose the first neural distinguisher for FF1 and FF3, which are NIST standard format-preserving ciphers. Our neural distinguisher works successfully in the number and lowercase domains and can be effectively utilized for cryptanalysis using differential characteristics.



	
Successful verification of two models (single-input difference and multiple-input difference): Our neural distinguisher is divided into an implementation that distinguishes single-input differences and multiple-input differences. When using a single-input difference, the cipher data are distinguished from random data. When multiple-input differences are used, the model can distinguish the input difference used for the input data among multiple-input differences. We adopt both approaches and successfully demonstrate the effectiveness of our model.



	
Our neural distinguisher can attack various variants of FF1 and FF3: While format-preserving encryption includes an encryption function, the presence of differential characteristics remains independent of the specific encryption function. Consequently, our neural distinguisher can be effectively employed for distinguisher attacks targeting various variants of FF1, FF3.









1.2. Organization


The remainder of this paper is organized as follows. The backgrounds of the format-preserving encryption and the neural distinguisher are summarized in Section 2. In Section 3, we present the first neural distinguisher (single- and multiple-input differences) for FF1 and FF3. We evaluate and analyze the performance of our neural distinguisher for FF1 and FF3 in Section 4. Finally, we discuss and conclude this work in Section 5.





2. Prerequisites


2.1. Format-Preserving Encryption


When applying block ciphers to database encryption, it often leads to changes in the data type or length, necessitating database structure engineering. This issue becomes particularly critical when encrypting sensitive data such as credit card numbers.



However, format-preserving encryption (FPE) [23] is a method that preserves the plaintext structure even after encryption, unlike block ciphers. As a result, there is no need for additional storage capacity to store ciphertext compared to plaintext. In this context, FPE is a cost-effective and efficient solution for integration into database systems without requiring extensive engineering efforts.



In this work, our focus is on the FPE schemes FF1 and FF3, both standardized by NIST (https://csrc.nist.gov/news/2016/nist-released-special-publication-800-38g accessed on 21 March 2024). FF1 consists of 10 rounds with the same block size and a key size of 128 bits, while FF3 comprises 8 rounds with a block size of 32 bits and a key size of 128 bits. Both FPE ciphers are designed using a Feistel architecture and incorporate encryption functions similar to AES into the inner round function (it is worth noting that the encryption function used within FPE can be customized [24,25]).



Although FF1 and FF3 share some similarities, FF1 offers higher security due to its increased number of rounds and its ability to support a wider range of protected data formats compared to FF3. On the contrary, FF3 has a higher data throughput compared to FF1.




2.2. Differential Characteristic


Differential cryptanalysis [1] is a representative cryptanalysis method of block ciphers. The input difference ( δ ) is the XOR between the plaintext pairs (   P 0  ,  P 1   ), and the output difference ( Δ ) is the XOR between the ciphertext pairs. As in Equation (1),   C 0   and   C 1   are the results of encrypting (E)   P 0   and   P 1  , respectively. The output difference ( Δ ) can be obtained by XORing   C 0   and   C 1  . Here, a differential characteristic means a pair of input and output differences (  δ , Δ  ).



In the case of an ideal cipher, when plaintext with any input difference is encrypted, the output difference should be uniform (like random). A weak cryptographic algorithm has a certain output difference corresponding to an input difference. If the probability of satisfying an output difference for an input difference is greater than the random probability, the ciphertext can be distinguished from the random. These characteristics have remained even when encryption is performed and can be inferred probabilistically.


      P 1  =  P 0  ⊕ δ ,        C 0  = E  (  P 0  )  ,  C 1  = E  (  P 1  )  ,       Δ =  C 0  ⊕  C 1      



(1)








2.3. Neural-Network-Based Distinguisher for Differential Cryptanalysis


A neural network can be a good solution for distinguisher attacks, as it can probabilistically satisfy specific output differences for given input differences. Consequently, the neural distinguisher performs probabilistic prediction on data applied to distinguisher attacks using differential characteristics. Most of the ongoing works of neural distinguishers are derived from [11], and they focus on target ciphers and input differences. In [11], proposed at CRYPTO’19, the first neural distinguisher is proposed for round-reduced SPECK32/64. Their neural distinguisher successfully distinguishes cryptographic data from random data for up to 7 rounds and extends up to 8 rounds through transfer learning. In [12], two distinguisher models considering multi-input differential and single differential are presented. And the target ciphers are GIMLI, ASCON, KNOT, and Chaskey. The proposed MLP-based neural distinguisher successfully distinguishes 8-round GIMLI, 3-round ASCON, 10/12-round KNOT (256/512-bit), and 4-round Chaskey. In addition, many works [13,17,18,19,20] on various cryptographic and differential characteristics are being conducted, focusing on SPECK.





3. Neural Distinguisher for FF1 and FF3


This section describes our neural distinguisher specifically designed for the FPE schemes (FF1 and FF3). Our neural distinguisher is based on the Baksi et al. scheme [12]. Also, our neural distinguisher for FPE schemes is based on Dunkelman et al.’s ePrint’20 paper [26]. They determined the differential characteristic of FPE shemes. Furthermore, our implementation is categorized into two types based on the utilized input differences, namely, ModelOne (Algorithm 1) and ModelMul.



ModelOne is a binary model capable of distinguishing cipher data with a single-input difference from random data, while ModelMul is designed to distinguish multiple-input differences. Details about both models are described in Section 3.1 and Section 3.2. In addition, we perform the hyper-parameter optimization for both models.






	Algorithm 1 ModelOne: Training procedure



	
	1:

	
Training Data   T D     ← [   ]                        ▷ Empty state




	2:

	
for i from 0 to   n − 1   do




	3:

	
    Choose random plaintext   P 0   and   P 1  




	4:

	
       P 2  ←  P 0  ⊕ δ  




	5:

	
    Ciphertexts    C 0  ,  C 1  ,   and   C 2     ← F P  E  e n c     (   P 0  ,  P 1   , and   P 2  )     ▷ Generate ciphertexts




	6:

	
      T  D i  ←   Assign labels 0 to   (  C 0  | |  C 1  )   and 1 to   (  C 0  | |  C 2  )  




	7:

	
end for




	8:

	
Train model   D L   with   T D  




	9:

	
a ← Output of   D L                       ▷a is training accuracy




	10:

	
if    a >      1 2    then




	11:

	
    Continue the training procedure




	12:

	
else                                 ▷  a =  1 2   




	13:

	
    Abort   D L  




	14:

	
end if














3.1. ModelOne: Single-Input Difference


3.1.1. Dataset


Figure 1 illustrates the overall generation process and the generated dataset using a single-input difference of ModelOne. First, random plaintexts   P 0   and   P 1   for encryption are generated. Furthermore, we generate plaintext   P 2   to satisfy the input difference  δ  with   P 0   (i.e.,   P 2   =    P 0  ⊕ δ  ). Then, the ciphertexts   C 0  ,   C 1  , and   C 2   are generated by encrypting the plaintexts   P 0  ,   P 1  , and   P 2  .



  C 0   and   C 1   are the ciphertexts generated by encrypting the random plaintexts   P 0   and   P 1   that do not satisfy a differential characteristic (i.e.,   ∉ δ − Δ  ). On the other hand, the pair of   C 0   and   C 2   has a special relationship that satisfies the differential characteristic (i.e.,   ∈ δ − Δ  ).



We assign the label 0 (random) to the result of concatenating the two values (   C 0   | |   C 1   ) indicating random data. On the other hand,   C 0   and   C 2   are the ciphertexts for plaintexts that satisfy the input difference  δ . The concatenated value (   C 0   | |   C 2   ) corresponds to cipher-related data that satisfy the differential   δ − Δ   with a certain probability. We assign label 1 (cipher) to the concatenated result of   C 0   and   C 2   (   C 0   | |   C 2   ), which satisfies the differential.



FPE is designed to operate within specific domains, ensuring that encrypted data maintain their original format, which is crucial for data integrity, compliance, and system compatibility. Throughout this paper, we define the following two domains: the number domain (0 to 9) and the lowercase-letter domain (a to z). Also, the dataset consists of bits of ciphertext pairs (i.e.,    C 0   | |   C 1  → 0 . . . 1  | |  0 . . . 0  ).



For the input difference (for the dataset), we use 0x0  | | K   (K is a hexadecimal number ranging from 0x0 to 0xF). Our choice is based on Equation (3) in [26]. The authors demonstrate that when 0x0  | | K   is used, the probability of a differential is high. It should be noted that since these input differences are independent of the inner encryption function (such as SKINNY, SPECK, or AES), our work can be applied to various implementations of FPE schemes.




3.1.2. Architecture and Training


ModelOne receives concatenated random data (   C 0   | |   C 1   ) or cipher data (   C 0   | |   C 2   ) and classifies them into random (label 0) or cipher (label 1). Each bit of the ciphertext pair in the dataset is assigned to each neuron of the input layer. Then, the output of the input layer passes through the hidden layer. In the output layer, a final value between 0 and 1 is calculated by applying a sigmoid activation function. Then, the loss of the final value and the actual value (0 or 1) is calculated. Figure 2 shows the process of ModelOne using a single-input difference.



If training to distinguish input data is performed correctly, our model can work as a neural distinguisher for FF1 and FF3. To work as a valid distinguisher, it must achieve an accuracy greater than   1 2  , which is a random probability.



Table 1 shows the hyperparameters of ModelOne (FF1 and FF3). The epoch is set to 20 and 15 for ModelOne, and a dense layer with all nodes fully connected is used. ModelOne performs binary classification because it should distinguish input from random or cipher data. Thus, binary cross-entropy is used as the loss function. Additionally, the Adam optimization function (known for its good performance) is employed in our model. For more sophisticated learning, the learning rate of the optimization function is adjusted during training (the learning rate starts at 0.001 and decreases to 0.0001).





3.2. ModelMul: Multiple-Input Differences


3.2.1. Dataset


Similar to ModelOne, a random plaintext   P 0   is generated. Then, plaintext pairs that satisfy multiple-input differences are generated. That is,   P 0   is XORed with   δ n   (different input difference) to obtain plaintext   P n  . Lastly, each plaintext   P n   (with different input differences) is encrypted to generate the ciphertext   C n  . In short, ModelMul takes multiple ciphertexts with different input differences as a training data set.



   C 0   | |   C n    is labeled as class   n − 1   since   C n   is the ciphertext obtained by encrypting the plaintext with n different input differences, respectively (e.g.,   C 3   corresponds to   Δ 3  ). In the distinguisher that uses multiple-input differences, the number domain (0 to 9) and the lowercase-letter domain (a to z) are also used in the FF1 and FF3 encryption process. As in ModelOne, we adopt the input difference 0x0  | | K   (K is a hexadecimal number ranging from 0x0 to 0xF). Figure 3 shows the generation process of the dataset using multiple input differences.




3.2.2. Model Architecture and Training


In this model, the attacker chooses the input differences   δ 0  ,   δ 1  ,…,   δ  n − 1    (  n > 2  ). Figure 4 and Algorithm 2 show the system logic of ModelMul using multiple-input differences. In the training phase, the deep learning model is learning to find whether there is any pattern (i.e., differential characteristics) in the outputs. Through this training process, ModelMul can distinguish multiple-input differences. While ModelOne can classify only random and one-input differences, ModelMul works as a distinguisher for data that satisfy multiple differential characteristics. If n input differences are used, an accuracy greater than   1 / n   (the probability of random data) must be achieved in order to work as a valid distinguisher. If the accuracy of the training is higher than   1 / n  , the model finds a pattern from the cipher’s outputs and a differential attack proceeds. On the other hand, if the training accuracy is less than or equal to   1 / n  , the model is aborted.



In brief, ModelMul receives ciphertext pairs that satisfy the differential characteristics as input and classifies them based on the input differences used. Finally, our ModelMul can distinguish the input differences used in the cipher data.






	Algorithm 2 ModelMul: Training procedure



	
	1:

	
Training Data   T D     ← [   ]   ▷ Empty state




	2:

	
Choose random plaintext P                  ▷ Step 2




	3:

	
Ciphertext   C ← F P  E  e n c    ( P )    ▷  F P  E  e n c     means FF1 or FF3 encryption




	4:

	
for i from 0 to   n − 1   do




	5:

	
       P i  ← P ⊕  δ i   




	6:

	
       C i  ← F P  E  e n c    (  P i  )   




	7:

	
    Append   T D   with   (  C i  ⊕ C , i )    ▷   C i  ⊕ C   is from class i




	8:

	
end for




	9:

	
Repeat from Step 2




	10:

	
Train DL model with   T D  




	11:

	
a ← Output of trained DL model        ▷a is training accuracy




	12:

	
if    a >      1 n    then




	13:

	
    Continue the training procedure




	14:

	
else                           ▷  a =  1 n   




	15:

	
    Abort DL model




	16:

	
end if
















3.3. Hyper-Parameter Tuning


Table 1 also lists the hyperparameters (FF1 and FF3) of ModelMul. Initially, we set the epoch to 50, but it was confirmed that the same accuracy was achieved even at 20 and 15, so the optimal epoch is set. Also, for ModelMul, the same dense layer as ModelOne is used. However, ModelMul performs multi-class classification because it classifies multiple pairs of ciphertexts that satisfy the output difference. In addition, the Adam optimization function is also used. Lastly, for more sophisticated learning, the optimizer learning rate is adjusted from 0.001 to 0.00001 and the Relu function is used for fast convergence to the hidden layer. We experimented with various batch sizes (e.g., 64, 128) but confirmed that 32 is optimal in terms of memory, time, and accuracy. In addition, we tried to adjust the number of layers and the number of units in each layer, but it can be seen that the complex model is not efficient for our dataset.



As noted earlier, our model structures are simple, but they are optimized models for our dataset. There is an advantage in terms of file size, as the model structure is not complicated. In addition, our models have been sufficiently simplified such that there will be no shortage for deployment. If it is further optimized and made lightweight, it will have more advantages in large-scale deployment. Therefore, this remains our future work. In particular, we built a deep learning model that can be applied to both ModelOne and ModelMul. This shows that it is a model with high generalization performance.





4. Evaluation


4.1. Experimental Environment


This experiment is performed on Google Colaboratory, a cloud computing platform supporting Ubuntu 20.04.5 LTS and Tesla T4 (GPU) 12GB RAM. As the programming environment, TensorFlow 2.12.0 and Python 3.9.16 are used.



To enhance the robustness of our result, we deliberately constructed a separate dataset to serve as an independent variable in our experimentation. Furthermore, by conducting multiple trials, we significantly increased the reliability of our results. This methodological approach ensures that the outcomes observed are not merely coincidental but are, in fact, the average of numerous iterations.




4.2. Result for One-Input Difference


In the case of FF1 (resp. FF3), in the number domain, when utilizing 0x0F (resp. 0x08) as the input difference, ModelOne can effectively distinguish data for up to 10 rounds (resp. 8 rounds) with a commendable accuracy of 0.85 (resp. 0.98). When employing different input differences, it demonstrates relatively lower accuracy compared to 0F (resp. 08)



In the lowercase domain, as the number of plaintext and ciphertext cases increases, ModelOne for FF1 (resp. FF3) can distinguish data for a maximum of 2 rounds. It attains an accuracy of 0.522 (resp. 0.55) for 0x0F (resp. 0x08), which is somewhat lower than in the number domain. The input difference 0x03 (resp. 0x01) provides an accuracy approximately 0.1 (resp. 0.35) lower than that of 0x0F (resp. 0x08). The underlying reason for these results, as noted in [26], is that when employing input differences of 0x0F (resp. 0x08), they exhibit the anticipated differentiation properties. Table 2 and Table 3 show the results of FF1 and FF3 ModelOne based on input differences. This experiment reaffirms that data with output differences based on the input differences of 0x0  | | K   can be reliably predicted with a high probability.




4.3. Result for Multiple-Input Differences


We use the input difference 0x0  | | K   (see Section 3.1). Each dataset is set according to the input difference pair used and there are   2  18.6097    data points in each class. We set 0x0F (resp. 0x08), assumed as the best difference in FF1 (resp. FF3) [26], as a fixed input difference. Then, with 0x0F (resp. 0x08) fixed, datasets are generated by expanding the data for different input differences. Table 4 shows the details of the input difference dataset for ModelMul.



Valid accuracy is determined by the number of input differences used. For example, if three input differences are used, an accuracy higher than 0.3333 (  1 3  ) should be achieved. This is because it is assumed that data can be distinguished only when accuracy higher than random probability is achieved.



We perform experiments on I1∼I14 (different combinations of input differences) and achieve valid accuracies in both the number and lowercase domains (it is natural that accuracy decreases as the number of classes increases). Similar to ModelOne, which utilizes a single-input difference, ModelMul can be used as a valid distinguisher for FF1 and FF3 since it can distinguish 0x0  | | K   differences. Table 5 and Table 6 show the results of ModelMul according to input difference dataset for FF1 and FF3, respectively. Among I1∼I14, I2 shows the highest reliability in the number and lowercase domains (reliability means test accuracy valid accuracy). A distinguisher with high reliability has the ability to robustly classify differential characteristics. According to our results, the reliability tends to decrease as the number of differential characteristics used increases. This phenomenon is thought to occur because the more differential characteristics to be distinguished, the more complex the problem to be solved (in general, the more complex data are used, the larger the model required is). It is considered that there will be an optimal structure of the neural network according to the input difference, and this remains for our future work.



Figure 5 shows the reliability according to each differential characteristic and dataset. According to Dunkelman et al., the 0x08 differential characteristic was found to be the best differential in the FPE family, and 0x01 and 0x02 were found to be relatively poor differentials. ModelOne for FF1 shows the highest reliability in both domains when it is 0x0F. From this, we can see that 0x0F is also a good differential characteristic. ModelOne for FF3 shows the highest reliability in the 0x08 difference, as seen in Dunkelman et al. ModelMul for FF3 shows the highest reliability when it is the I2 dataset in both domains. I2 is a dataset that includes two bad differential characteristics (0x01, 0x02) and a good differential characteristic (0x08). Using this dataset is believed to have high accuracy and reliability because our distinguisher model belongs to a problem that is easy to classify.



One more thing to note is that, in [26], for the classical distinguisher for FF1 and FF3, the authors use SKINNY as an inner encryption function. On the other hand, for FF1 and FF3, we used the default implementation using AES. The distinguisher attack using the input differences 0x0  | | K   succeeds despite the inner encryption function being changed. Additionally, in our results, it is observed that the accuracy for 0x0F (resp. 0x08) is higher and the accuracy for 0x03 (resp. 0x01) is lower for FF1 (resp. FF3). This result seems to have come from the fact that the differential characteristic of FPE is independent of the inner encryption function. Thus, we believe that our neural distinguisher structure and differential characteristics may be applicable to other FF1 and FF3 variants as well (naturally, training needs to be performed again according to the data).





5. Conclusions


In this work, we propose the first neural distinguisher for FF1 and FF3. According to the method of classifying the input difference, the distinguisher type is divided into a binary classification model, ModelOne, and a multi-classification model, ModelMul.



In ModelOne, when 0x0F (resp. 0x08) is used, a high accuracy of 0.85 (resp. 0.98) is achieved for 10 rounds (resp. 8 rounds). In the lowercase domain, up to 2 rounds can be distinguished. In ModelMul, the accuracy exceeds the valid accuracy in all cases, and the highest reliability is obtained in I2. Through our experiments, we observe the accuracy of 0x0F (resp. 0x08) is higher, and the accuracy of 0x03 (resp. 0x01) is low, relatively.



In our implementation, a different inner encryption function is used than in existing implementations, but the differential characteristic and probabilities appear to be maintained. That is, the input difference 0x0  | | K   remains independent of the inner encryption function. Thus, it seems that our distinguisher may be utilized for variants of FF3.



For our future work, we plan to train our ModelMul on wider domains (e.g., uppercase letters, combinations of each domain). Because model optimization is important to improve generalizability, it is also important to use data with a wider range of domains. We will focus on this part. Additionally, limitations in the experimental environment made it difficult to use large amounts of data and data based on more expanded domains. We will strive to improve the experimental environment and perform more reliable validation.
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Figure 1. Dataset with one input difference. 
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Figure 2. System diagram of ModelOne. 
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Figure 3. Dataset with multiple-input differences. 
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Figure 4. System diagram of ModelMul. 
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Figure 5. Reliability of ModelOne and ModelMul. 
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Table 1. Hyperparameters of ModelOne and ModelMul.






Table 1. Hyperparameters of ModelOne and ModelMul.





	
Model

	
ModelOne

	
ModelMul






	
Schemes

	
FF1/FF3

	
FF1/FF3




	
Epochs

	
20/15

	
20/15




	
Loss function

	
Binary cross-entropy

	
Categorical cross-entropy




	
Optimizer

	
Adam (0.001 to 0.0001, learning rate decay)




	
Activation function

	
ReLu (hidden)




	
Softmax (output)

	
Sigomid (output)




	
Batch size

	
32




	
Hidden layers

	
5/4 hidden layers (with 64/128 units)




	
Parameters

	
173,956/74,497

	
173,956/75,787











 





Table 2. Result of FF1 ModelOne according to input difference.






Table 2. Result of FF1 ModelOne according to input difference.





	
0x

	
Number (10 Rounds)

	
Lowercase (2 Rounds)




	
Training

	
Validation

	
Test

	
Reliability

	
Training

	
Validation

	
Test

	
Reliability






	
01

	
0.732

	
0.741

	
0.733

	
0.233

	
0.500

	
0.500

	
0.500

	
0.000




	
02

	
0.741

	
0.752

	
0.743

	
0.243

	
0.510

	
0.512

	
0.510

	
0.010




	
03

	
0.711

	
0.712

	
0.711

	
0.211

	
0.522

	
0.520

	
0.522

	
0.022




	
04

	
0.751

	
0.752

	
0.752

	
0.252

	
0.511

	
0.512

	
0.510

	
0.010




	
05

	
0.752

	
0.751

	
0.752

	
0.252

	
0.511

	
0.512

	
0.511

	
0.011




	
06

	
0.751

	
0.752

	
0.752

	
0.252

	
0.511

	
0.512

	
0.511

	
0.011




	
07

	
0.751

	
0.751

	
0.752

	
0.252

	
0.511

	
0.511

	
0.511

	
0.011




	
08

	
0.801

	
0.802

	
0.802

	
0.302

	
0.511

	
0.511

	
0.511

	
0.011




	
09

	
0.841

	
0.842

	
0.841

	
0.341

	
0.522

	
0.521

	
0.522

	
0.022




	
0A

	
0.842

	
0.841

	
0.841

	
0.341

	
0.500

	
0.510

	
0.510

	
0.010




	
0B

	
0.822

	
0.821

	
0.822

	
0.322

	
0.511

	
0.511

	
0.511

	
0.011




	
0C

	
0.855

	
0.854

	
0.855

	
0.355

	
0.500

	
0.500

	
0.500

	
0.000




	
0D

	
0.788

	
0.788

	
0.788

	
0.288

	
0.511

	
0.511

	
0.511

	
0.011




	
0E

	
0.811

	
0.812

	
0.811

	
0.311

	
0.522

	
0.521

	
0.522

	
0.022




	
0F

	
0.855

	
0.854

	
0.855

	
0.355

	
0.522

	
0.522

	
0.522

	
0.022











 





Table 3. Result of FF3 ModelOne according to input difference.
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0x

	
Number (8 Rounds)

	
Lowercase (2 Rounds)




	
Training

	
Validation

	
Test

	
Reliability

	
Training

	
Validation

	
Test

	
Reliability






	
01

	
0.629

	
0.624

	
0.623

	
0.123

	
0.545

	
0.544

	
0.543

	
0.043




	
02

	
0.829

	
0.825

	
0.825

	
0.325

	
0.552

	
0.548

	
0.545

	
0.045




	
03

	
0.783

	
0.769

	
0.771

	
0.271

	
0.52

	
0.514

	
0.513

	
0.013




	
04

	
0.761

	
0.756

	
0.757

	
0.257

	
0.523

	
0.52

	
0.517

	
0.017




	
05

	
0.773

	
0.752

	
0.747

	
0.247

	
0.539

	
0.538

	
0.537

	
0.037




	
06

	
0.758

	
0.748

	
0.75

	
0.25

	
0.523

	
0.519

	
0.523

	
0.023




	
07

	
0.756

	
0.739

	
0.74

	
0.24

	
0.532

	
0.529

	
0.529

	
0.029




	
08

	
0.987

	
0.976

	
0.977

	
0.477

	
0.556

	
0.554

	
0.554

	
0.054




	
09

	
0.962

	
0.942

	
0.941

	
0.441

	
0.547

	
0.543

	
0.549

	
0.049




	
0A

	
0.969

	
0.953

	
0.951

	
0.451

	
0.538

	
0.534

	
0.532

	
0.032




	
0B

	
0.97

	
0.965

	
0.966

	
0.466

	
0.53

	
0.526

	
0.522

	
0.022




	
0C

	
0.97

	
0.959

	
0.959

	
0.459

	
0.538

	
0.536

	
0.539

	
0.039




	
0D

	
0.968

	
0.965

	
0.966

	
0.466

	
0.532

	
0.524

	
0.518

	
0.018




	
0E

	
0.964

	
0.963

	
0.963

	
0.463

	
0.549

	
0.549

	
0.551

	
0.051




	
0F

	
0.965

	
0.939

	
0.941

	
0.441

	
0.528

	
0.524

	
0.524

	
0.024











 





Table 4. Details of the input difference dataset.
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Dataset

	
Data Size

	
Input Difference Pair

	
Valid Accuracy






	
I1

	
  2  18.6097    per class

	
01, 08

	
>0.500




	
I2

	
01, 02, 08

	
>0.333




	
I3

	
01∼03, 08

	
>0.250




	
I4

	
01∼04, 08

	
>0.200




	
I5

	
01∼05, 08

	
>0.166




	
I6

	
01∼06, 08

	
>0.142




	
I7

	
01∼08

	
>0.125




	
I8

	
01∼09

	
>0.111




	
I9

	
01∼0A

	
>0.100




	
I10

	
01∼0B

	
>0.090




	
I11

	
01∼0C

	
>0.083




	
I12

	
01∼0D

	
>0.076




	
I13

	
01∼0E

	
>0.071




	
I14

	
01∼0F

	
>0.066











 





Table 5. Result of FF1 ModelMul according to input differences.
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Dataset

	
Number (8 Rounds)

	
Lowercase (2 Rounds)




	
Training

	
Validation

	
Test

	
Reliability

	
Training

	
Validation

	
Test

	
Reliability






	
I1

	
0.520

	
0.520

	
0.520

	
0.020

	
0.520

	
0.520

	
0.520

	
0.020




	
I2

	
0.340

	
0.339

	
0.340

	
0.007

	
0.360

	
0.360

	
0.360

	
0.027




	
I3

	
0.260

	
0.260

	
0.260

	
0.010

	
0.270

	
0.270

	
0.270

	
0.020




	
I4

	
0.210

	
0.210

	
0.210

	
0.010

	
0.200

	
0.200

	
0.200

	
0.010




	
I5

	
0.170

	
0.170

	
0.170

	
0.004

	
0.180

	
0.180

	
0.180

	
0.004




	
I6

	
0.150

	
0.150

	
0.150

	
0.008

	
0.150

	
0.150

	
0.150

	
0.008




	
I7

	
0.130

	
0.130

	
0.130

	
0.005

	
0.130

	
0.130

	
0.130

	
0.005




	
I8

	
0.120

	
0.120

	
0.120

	
0.009

	
0.120

	
0.120

	
0.120

	
0.009




	
I9

	
0.120

	
0.110

	
0.120

	
0.020

	
0.100

	
0.100

	
0.110

	
0.010




	
I10

	
0.100

	
0.100

	
0.100

	
0.010

	
0.100

	
0.100

	
0.100

	
0.010




	
I11

	
0.090

	
0.090

	
0.090

	
0.007

	
0.090

	
0.090

	
0.090

	
0.007




	
I12

	
0.080

	
0.080

	
0.080

	
0.004

	
0.080

	
0.080

	
0.080

	
0.004




	
I13

	
0.080

	
0.080

	
0.080

	
0.009

	
0.080

	
0.080

	
0.080

	
0.009




	
I14

	
0.070

	
0.070

	
0.070

	
0.004

	
0.070

	
0.070

	
0.070

	
0.004











 





Table 6. Result of FF3 ModelMul according to input differences.
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Dataset

	
Number (8 Rounds)

	
Lowercase (2 Rounds)




	
Training

	
Validation

	
Test

	
Reliability

	
Training

	
Validation

	
Test

	
Reliability






	
I1

	
1.00

	
1.00

	
1.00

	
0.500

	
0.55

	
0.55

	
0.55

	
0.050




	
I2

	
0.99

	
1.00

	
0.99

	
0.657

	
0.54

	
0.54

	
0.54

	
0.207




	
I3

	
0.72

	
0.72

	
0.72

	
0.470

	
0.38

	
0.37

	
0.37

	
0.120




	
I4

	
0.46

	
0.45

	
0.45

	
0.250

	
0.29

	
0.29

	
0.29

	
0.090




	
I5

	
0.33

	
0.33

	
0.33

	
0.164

	
0.24

	
0.23

	
0.23

	
0.064




	
I6

	
0.25

	
0.25

	
0.25

	
0.108

	
0.20

	
0.20

	
0.20

	
0.058




	
I7

	
0.22

	
0.22

	
0.22

	
0.095

	
0.17

	
0.17

	
0.17

	
0.045




	
I8

	
0.19

	
0.19

	
0.19

	
0.079

	
0.15

	
0.15

	
0.15

	
0.039




	
I9

	
0.17

	
0.17

	
0.17

	
0.070

	
0.13

	
0.13

	
0.13

	
0.030




	
I10

	
0.16

	
0.15

	
0.15

	
0.06

	
0.12

	
0.12

	
0.12

	
0.030




	
I11

	
0.14

	
0.14

	
0.14

	
0.057

	
0.11

	
0.11

	
0.11

	
0.027




	
I12

	
0.13

	
0.12

	
0.12

	
0.044

	
0.10

	
0.10

	
0.10

	
0.024




	
I13

	
0.12

	
0.11

	
0.12

	
0.049

	
0.09

	
0.09

	
0.09

	
0.019




	
I14

	
0.11

	
0.11

	
0.11

	
0.044

	
0.08

	
0.08

	
0.08

	
0.014
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