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Abstract: Recent advancements in deep learning and video analysis, combined with the efficiency
of contemporary computational resources, have catalyzed the development of advanced real-time
computational systems, significantly impacting various fields. This paper introduces a cutting-edge
video analysis framework that was specifically designed to bolster security in museum environments.
We elaborate on the proposed framework, which was evaluated and integrated into a real-time video
analysis pipeline. Our research primarily focused on two innovative approaches: action recognition
for identifying potential threats at the individual level and trajectory extraction for monitoring
museum visitor movements, serving the dual purposes of security and visitor flow analysis. These
approaches leverage a synergistic blend of deep learning models, particularly CNNs, and traditional
computer vision techniques. Our experimental findings affirmed the high efficacy of our action
recognition model in accurately distinguishing between normal and suspicious behaviors within
video feeds. Moreover, our trajectory extraction method demonstrated commendable precision
in tracking and analyzing visitor movements. The integration of deep learning techniques not
only enhances the capability for automatic detection of malevolent actions but also establishes the
trajectory extraction process as a robust and adaptable tool for various analytical endeavors beyond
mere security applications.

Keywords: video; museum; action; trajectory; deep learning

1. Introduction

Security in museums stands as a paramount concern, transcending the mere safe-
guarding of physical assets to preserving invaluable cultural heritage. The vulnerability
of museums to various threats, ranging from theft to vandalism and even terrorism, un-
derscores the necessity for robust security measures. Over the years, traditional security
methods, which rely heavily on manual surveillance and intermittent patrols, have shown
themselves to be insufficient in adequately addressing the evolving nature of security
challenges within museum spaces [1]. These methods often suffer from limitations such as
human error, limited coverage, and delayed response times, leaving museum collections
susceptible to potential harm.

Moreover, the increasing value and visibility of cultural artifacts have made museums
attractive targets for illicit activities, exacerbating the urgency for enhanced security proto-
cols. The repercussions of security breaches extend far beyond mere financial losses [2],
encompassing irreparable damage to irreplaceable artifacts and the erosion of public trust
in the institution’s ability to preserve cultural treasures. In light of these challenges, there
exists a pressing need for innovative security solutions that can effectively mitigate risks
while minimizing disruption to the visitor experience.
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Recognizing the inadequacy of traditional security measures, museums have in-
creasingly turned to technological advancements to bolster their security infrastructure.
Among the most common innovations is the integration of video surveillance systems,
which offer comprehensive monitoring capabilities across museum premises. Video surveil-
lance not only provides a means of continuous monitoring but can also serve as a valuable
tool for post-incident analysis and forensic investigations. The proliferation of cameras
across museum premises has significantly increased the volume of video data generated
by surveillance systems. This abundance of footage presents a formidable challenge that
requires the development of intelligent video analysis techniques capable of processing
and extracting actionable insights in real time.

In recent years, significant strides have been made in the field of video analysis, which
were largely driven by the rapid advancement of deep learning techniques [3,4]. Deep
learning, which is a subset of artificial intelligence inspired by the structure and function of
the human brain, has revolutionized the field of computer vision by enabling machines to
learn complex patterns and features directly from raw data [5–7]. This paradigm shift has
led to remarkable progress in tasks such as image classification, object detection, and se-
mantic segmentation, laying the groundwork for innovative applications in surveillance
and security.

One of the most notable advancements enabled by deep learning is the development
of convolutional neural networks (CNNs) [8,9], which were shown to be highly effective in
analyzing visual data, including video streams [10].

Furthermore, deep learning approaches have shown great promise in addressing some
of the longstanding challenges in video analysis, such as robustness to variations in lighting
conditions, camera viewpoints, and object occlusions.

Through techniques such as transfer learning [11,12] and data augmentation [13],
researchers have been able to leverage pre-trained deep learning models and synthetic data
to improve the generalization capabilities of video analysis systems, making them more
adaptable to real-world scenarios. Additionally, the availability of powerful computational
resources, such as graphics processing units (GPUs) and cloud computing platforms, has
significantly accelerated the training and deployment of deep learning models for real-time
video analysis applications [14–18].

Real-time analysis plays a pivotal role in modern museum security, enabling the swift
detection and response to potential threats. The integration of automated surveillance
systems capable of analyzing video feeds in real-time has emerged as a critical component in
bolstering museum security. However, given the computational constraints inherent in real-
time applications, the efficiency of algorithms becomes paramount. Lightweight algorithms,
which prioritize computational speed without sacrificing accuracy, are particularly crucial
in this context. Moreover, it is essential to utilize algorithms and deep learning models that
are proficient in utilizing the capabilities of modern computational resources, like GPUs.

In this work, we concentrated on two crucial aspects of video analysis within museum
security: action recognition and trajectory analysis. Action recognition serves as a pivotal
tool for anomaly detection, with the aim to identify malevolent actions indicative of poten-
tial threats. Examples of such actions include loitering near sensitive exhibits, suspicious
movements around restricted areas, or attempts at unauthorized access. By integrating
action recognition into security protocols, the burden on security personnel can be allevi-
ated, allowing for more efficient monitoring and response procedures. The detection of
anomalies in museum environments remains an underexplored area in the existing litera-
ture. By addressing this gap, our study makes significant contributions to the field. First,
we present the use of action classification techniques for anomaly detection in museum
surveillance videos. To the best of our knowledge, our study represents the first attempt to
apply action recognition techniques for anomaly detection in a museum context. The main
objective of this part of the study was to evaluate whether the action recognition framework
can be used to effectively model the anomaly detection problem. To this end, we selected
two deep neural networks with the characteristics of allowing a highly parallel execution,
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thus being lightweight, and validated their anomaly detection capabilities. We also inves-
tigated the impact of various factors such as dataset augmentation; balancing; and the
inclusion of staged examples, both anomalous and normal, on the detection performance.
Finally, we propose a priority-based approach to deal with classification ambiguity in
crowded scenes, providing a nuanced solution to address complex surveillance scenarios.

Anomaly detection through action recognition in museums presents unique challenges
that are distinct from conventional action recognition tasks. Defining actions within the
context of museum settings is challenging due to the diverse range of visitor behaviors and
interactions with exhibits. Furthermore, contextual factors, such as crowded spaces and
privacy considerations, further complicate dataset collection and model training. In this
study, we addressed these challenges by rigorously testing and comparing two deep learn-
ing methods for action recognition, focusing particularly on their effectiveness in anomaly
detection. Our approach leveraged 3D CNNs that were tailored to classify actions within
museum surveillance footage. We also explored the utility of data-augmentation techniques
and the inclusion of staged and out-of-context videos to enhance the model robustness.

Trajectory analysis offers dual utility for both security and behavioral analysis pur-
poses within museum environments. From a security standpoint, trajectory analysis enables
the identification of anomalous behaviors, such as loitering in restricted areas or erratic
movements, serving as an additional layer of security threat detection. Additionally, trajec-
tory analysis aids in identifying high-risk areas where valuable artifacts may be vulnerable
to damage or theft, facilitating targeted security measures. For behavioral analysis, trajec-
tory data support crowd management initiatives, visitor engagement analysis, and exhibit
effectiveness evaluations. Our research addresses significant gaps in the existing literature
on human trajectory estimation by camera videos. Previous studies ignored the use of
pose extraction techniques, which allow for the estimation of the ground position of the
tracked subject based on all the detected keypoints and their measured distance from the
ground plane. In addition, the integration of trajectory analysis alongside video data for
anomaly detection has been little explored. In response to these gaps, our contribution to
the field is multifaceted. First, we present a novel approach that utilizes deep-learning-
based pose extraction, ground position estimation, and homographic projections to obtain
the trajectories. Second, we proposed a new distance metric, which we then used for
trajectory clustering, allowing for more effective grouping of trajectory data for anomaly
identification. Furthermore, we validated the effectiveness of our trajectory reconstruction
technique and confirmed its reliability in real-world scenarios. Finally, we demonstrated
the utility of the extracted trajectories, performed a clustering for an illustrative application,
and highlighted the versatility and practicality of our proposed methodology in the context
of museum surveillance.

Our paper presents a novel approach to trajectory extraction, integrating deep learning
and pose estimation techniques to accurately capture visitor trajectories within museum
spaces. We addressed perspective deformation introduced by camera angles, ensuring
trajectory data are represented in the ground plane for an accurate analysis. Additionally,
we evaluated the effectiveness of our trajectory extraction method, demonstrating its utility
for the further analysis and clustering of visitor behaviors.

Furthermore, we integrated the described techniques into a comprehensive framework
for real-time video analysis, enabling museums to proactively monitor security threats and
visitor behaviors. We assessed the real-time performance of our framework, demonstrating
its efficiency in processing and analyzing surveillance footage. Encouragingly, our results
indicate promising prospects for anomaly detection through action recognition, as our meth-
ods were found to be effective in classifying actions and distinguishing between normal
and anomalous behaviors. Similarly, our trajectory extraction method exhibited minimal
approximation errors, indicating its suitability for extracting trajectories for subsequent
analysis and behavioral categorization.

This research was conducted in partnership with the Museo dell’Opera della Metropoli-
tana di Siena (OPA), which granted access to a dataset of footage recorded by surveillance
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cameras installed in various rooms of the museum. This partnership offered full support to
the research activities, enhancing the depth and breadth of the investigation.

The structure of this paper is as follows: In Section 1, we provide a comprehensive
literature review of the field, discussing relevant works and delineating areas of research
focus. Section 2 provides a detailed description of the techniques presented in this study,
including the methodologies employed and the experiments conducted to evaluate their
efficacy. In Sections 3 and 4, we describe the experimental setup and we present and discuss
the results obtained from the experiments, detailing the performance of the proposed
techniques. Finally, Section 5 summarizes the main highlights of this work, outlines open
problems, and suggests future research directions.

Related Works

Video surveillance involves various tasks, from capturing and processing data to
analyzing and applying it. This review explores the different facets of video surveillance
and summarizes the main advances and methods in the field. In video surveillance, scene
control is one of the main difficulties. Historically, this problem has been addressed using
active sensors, such as sonar, laser, and radar sensors [19–22]. Thanks to technological
progress, nowadays, video surveillance mostly relies on IP cameras, which enable direct
monitoring of the relevant scenes. When unusual events occur, the operators who watch
the live stream alert the authorities to deal with possible dangers or problems. To improve
museum security, operators require the aid of automated or semi-automated surveillance
systems capable of identifying anomalous events. Some solutions attempt to reach a
trade-off between the system’s ability to detect intruders, which must meet a minimum
required level, and the size of the sensor, which should be minimized. Some examples
can be found in [23], where a low-cost security device is proposed and visible light is
employed for communication, and [24], where the authors described the use of a network
of motion sensors placed in crucial positions. Ref. [25] illustrates how to track people and
other objects in museum halls through the use of a stereo camera, which is also used to
estimate a 3D model of such rooms, with the goal of notifying the human operator in
charge of handling anomalous events. Refs. [26,27] offer extensive examinations of diverse
methods for video anomaly detection. The authors compared different versions of the
problem and methods for anomaly detection. They noted that some anomalies can be
classified based on the context, such as human–artwork interaction in museums. They
review the conventional techniques for anomaly detection, which include distance-based,
probabilistic, and reconstruction-based methods, and highlight the recent trend of using
deep learning approaches.

Various techniques have been proposed for anomaly detection using deep-learning-
based methods to address the related challenges [28–31]. The recognition of actions is
approached through various methods, each utilizing spatial and temporal information
within videos in different ways. Models such as C3D [10,32] are based on the extraction
of deep spatio-temporal features using architectures that employ 3D convolutions. These
convolutions extend the standard convolutional filters used in CNNs to capture temporal
information in addition to spatial features. To avoid the need to train the 3D CNNs from
scratch, several techniques have been developed. The most relevant is I3D (Inflated 3D
CNN) [33], where the authors proposed building the 3D convolutional filters starting from
the weights of the convolutional layers of neural networks trained on image datasets. Some
examples of architectures developed around the I3D idea are the Interaction Reduced Chan-
nel Separated Network (IRCSN) [34] and the Temporal Pyramid Network (TPN) [35]. In
this work, we explored the capabilities and limitations of the IRCSN and TPN architectures
in the context of museums.

Our attention was directed toward the task of anomaly detection in surveillance
systems. As highlighted by Berroukham et al. [36], the task of detecting anomalies can
be effectively approached using deep learning techniques, which are categorized into
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four main strategies: reconstruction error, future frame prediction, classification, and
scoring methods.

Reconstruction error techniques use a reconstruction error function to measure how
likely a sample is to be an anomaly. The function’s output score shows how much a sample
differs from the training distribution. Usually, a lower score means a normal sample, as it is
closer to the training data, while a higher score means an abnormal sample, as it is farther
from the expected data distribution. Hasan et al. [37] proposed a minimally supervised
approach to learning normal patterns using auto-encoders (AEs). The authors trained an
AE on the spatio-temporal features of the samples and then used a fully convolutional AE
to measure the reconstruction error. Sabokrou et al. [38] presented a method for detecting
and localizing anomalies in videos using two types of cubic patches. One type uses an AE
to reconstruct the input video patch, while the other type uses sparse representation to
encode the input video patch.

Future frame prediction is a technique that tries to forecast the next image in a video
sequence given the previous ones. It is based on the assumption that normal events follow
a certain pattern or logic over time, which can be learned from the training data, while
this behavior does not occur for an abnormal video. Refs. [39,40] show that a network can
anticipate normal activities matching the ones in the training videos.

Classification proposed in work like that from Mohammad et al. [41] treats anomaly
detection as a classification task. They used fully convolutional neural networks (FCNNs)
and temporal information to analyze the deep layer outputs and find and locate anomalies
in videos.

The main idea of the scoring-based method is to generate an anomaly score that may
be used to determine whether a video segment or frame is abnormal. Sultani et al. [42]
proposed an approach to learning anomalies by utilizing both normal and abnormal
videos, where they suggested using weakly labeled training videos to learn anomalies.
Another method was proposed by Xu et al. [43], which involves an unsupervised learning
approach to automatically learn feature representations. A brand new double fusion
architecture was created to take advantage of the complementing information contained
in both the appearance and movement patterns, combining typical early fusion and late
fusion advantages.

One of the most widespread action classification datasets is Kinetics-400 [44]. This
is a collection of 400 classes (actions), each with 400 or more clips that last about 10 s
on average. The actions include solo and group performances, some involving objects.
The clips are extracted from YouTube videos and labeled with the corresponding action,
duration, and the number of performers.

Regarding human trajectory estimation, there are different types of approaches.
Ref. [45] faced the problem of trajectory prediction as a sequence generation task, where
the goal was to predict the future trajectory of people based on their past positions. The au-
thors proposed a long short-term memory (LSTM) model that can learn general human
movement and predict their future trajectories. Zhao et al. [46] studied the task of trajec-
tory estimation for assessing risks on a construction site, where they split the problem
into the detection and after tracking. They used a YOLO (you only look once) model,
namely, YOLOv3 [47], to detect a person in danger, and a tracking algorithm (in this case, a
Kalman [48] filter and Hungarian algorithm [49]) to achieve pedestrian tracking. In [50],
the authors present an unsupervised method for the representation of the activity taking
place in a scene. This method is based on the detection of salient points in space and time
that correspond to regions with a significant amount of activity. The method then tracks
these points in time using a state estimation approach to reach a representation based on
short trajectories.

Clustering is a technique that involves grouping data points based on their similarity
or dissimilarity. It is one of the main unsupervised learning tasks, where the data have
no labels or predefined categories. Clustering can be used for exploratory data analysis,
feature engineering, pattern discovery, anomaly detection, and other similar applications.
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Many clustering algorithms have been proposed for different types of data and objectives.
Some of the well-known clustering algorithms are as follows:

K-means clustering, which is a centroid-based algorithm that partitions the data into
K clusters, where each cluster is represented by its mean or center. The algorithm iterates
until the cluster assignments do not change or a maximum number of iterations is reached.
K-means clustering is simple and fast, but it requires specifying the number of clusters and
it may not work well with non-spherical or noisy data [51].

DBSCAN, which is a density-based algorithm that identifies clusters as regions of
high density separated by regions of low density. The algorithm does not need the number
of clusters as an input, but it requires two parameters: the minimum number of points
in a cluster and the maximum distance between two points to be considered neighbors.
DBSCAN can handle arbitrarily shaped clusters and outliers, but it may not work well with
a varying density or high-dimensional data [52].

Spectral clustering is a graph-based algorithm that uses the eigenvalues and eigen-
vectors of a similarity matrix to partition the data into clusters. The algorithm can capture
complex structures and non-linear relationships, but it also requires the number of clusters
as an input and it may be computationally expensive for large datasets [53].

Hierarchical clustering [54] consists of a family of algorithms that build a hierarchy
of clusters by either merging smaller clusters into larger ones (agglomerative) or splitting
larger clusters into smaller ones (divisive). The algorithm produces a dendrogram that
shows the nested structure of the clusters and allows for choosing the optimal level of
granularity. Hierarchical clustering does not need the number of clusters as an input, but it
may be sensitive to the choice of distance measure and linkage criterion.

2. Materials and Methods

This section outlines the methodologies implemented in our study, organized into three
primary segments. Initially, Section 2.1 discusses the technique utilized for the automatic
identification of anomalies. Following this, Section 2.2 elaborates on the method for extract-
ing trajectories and provides a practical application scenario. Lastly, Section 2.3 explains
the integration of these two approaches and their application to video stream analysis.

2.1. Video Anomaly Detection

In this subsection, we elaborate on the video anomaly detection approach implemented
in our study.

Method Description

Our approach to anomaly detection in surveillance videos leveraged a supervised,
scene-based action recognition methodology. By integrating supervision into the tradition-
ally unsupervised realm of anomaly detection, we gained vital insights into distinguishing
between anomalous and normal behaviors. This integration allowed for a more nuanced
understanding of the dynamics within surveillance footage, significantly enhancing our
ability to identify deviations from expected patterns.

Our methodology consisted of segmenting the videos into small clips and assigning
them with the class representing the action contained in the clip. This labeling process
posed challenges, particularly when multiple individuals simultaneously performed differ-
ent actions in the camera frame. To address this complexity, we introduced a priority policy,
which favored actions of higher significance—especially anomalies—to ensure precise
classification. Our action repertoire covered typical behaviors in museum settings, such as
walking, taking pictures, and sitting. We also identified critical behaviors that are indicative
of potential security breaches, including touching artwork and crossing restricted areas.
To capture atypical interactions with artworks not classified under standard categories,
we established an encompassing category: abnormal interaction with artwork. This me-
thodical classification aided in the accurate identification and analysis of both regular and
anomalous behaviors.
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To perform action recognition, our approach harnessed sophisticated deep learning
frameworks based on the 3D CNN model [10,32], which is a specialized extension of CNNs
designed for effectively analyzing 3D data structures. In this methodology, videos were
viewed as sequences of 2D frames and aggregated to create a 3D tensor. This tensor became
the input for our model, to which we applied 3D convolutional filters. These filters adeptly
captured both spatial and temporal dimensions of the video data, enabling a comprehensive
analysis of actions within the sequences through the intricate patterns and dynamics they
unveiled. The essence of 3D CNNs lies in their capability to capture both spatial and
temporal information inherent in video data. By extending the traditional 2D convolutional
operations into the temporal dimension, these networks excel at extracting spatio-temporal
features crucial for action-recognition tasks.

We employed the I3D method [33] to derive our 3D CNN architectures. I3D represents
a technique for obtaining a 3D CNN without the need for extensive training, capitalizing
on the effectiveness of established 2D CNN architectures. This approach involves inflating
the 2D convolutional filters into their 3D counterparts. The process of inflation entails
replicating the filters across the temporal dimension and subsequently normalizing them
by dividing the resulting 3D filter by the size of the temporal dimension. Through this
process, I3D effectively extends the capabilities of conventional CNNs to directly process
video. This approach was shown to be highly effective in initializing the weights of a 3D
CNN, leveraging the strong spatial features extracted by established CNNs for images,
such as ResNet [55] and VGG [56].

In our investigation, we focused on two prominent architectures inspired by the
I3D concept: the Interaction Reduced Channel Separated Network (IRCSN) [34] and the
Temporal Pyramid Network (TPN) [35].

The IRCSN model exploits the concept of channel separation, which is typical of
some convolutional architectures [57–59], and applies it to 3D CNNs. Channel separation
in standard CNNs involves approximating the typical convolutional filters, which span
across the spatial dimensions and consider all the channels, with a sequence of 1 × 1 × C
point-wise filters and N × N × 1 filters. The first focuses exclusively on the channel
dimension, neglecting spatial interactions, whereas the second concentrates only on the
spatial dimensions, omitting channel interactions. This strategy of separation diminishes
the interaction between various elements of the feature maps fed into the convolutional
layer. Nonetheless, this method significantly enhances the computational efficiency, fa-
cilitating the development of architectures that are both deeper and more efficient. This
balance between computational economy and architectural depth allows for advanced
model designs that can process complex data more effectively without compromising on
performance. This enhancement results in an overall performance gain, as the model can
focus more effectively on relevant spatial and temporal cues that are essential for accurate
action recognition.

Conversely, the TPN model capitalizes on the intrinsic tempo and rhythm inherent in
action sequences. The TPN achieves this by extracting features at multiple levels of depth
within a ResNet backbone. This multi-level feature extraction is advantageous because it
allows the model to simultaneously capture both low-level details and high-level spatio-
temporal patterns. The extracted features are then subject to a sequence of handcrafted
transformations, including spatial and temporal modulations. By incorporating a temporal
pyramid structure, the TPN can effectively capture temporal dependencies across different
time scales, enhancing its ability to discern subtle variations in action sequences.

Both architectures leverage the I3D technique for initializing the weights of their
convolutional filters. Notably, both architectures come in various versions with different
bottleneck ResNet backbones. Furthermore, to enhance their performance, both architec-
tures underwent fine-tuning on the Kinetics-400 dataset. Specifically, in our work, we
employed the IRCSN with a ResNet-152 backbone and the TPN with a ResNet-50 backbone,
both incorporating bottleneck structures.
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2.2. Trajectory Extraction and Analysis

We present a methodology for extracting trajectories of museum visitors from video
footage, along with the approach employed to analyze these trajectories. We represent
the trajectory τ of a detected object as a set of 4-tuples: τ = {(ti, xi, yi, zi), i = 1, 2, . . . , n},
where ti represents the frame number and xi, yi, and zi represent the real-world coordinates
assigned to the object at that frame. If the trajectory belongs to one of the axial planes, one
of the coordinates is always equal to 0. In our work, we always project the trajectory into
the xy plane (the ground plane). With this assumption, the z component of the position can
be discarded and we consider τ = {(ti, xi, yi), i = 1, 2, . . . , n}.

Method Description

We decided to incorporate homographic transformations into our approach, enabling
the extraction of trajectories within the world coordinate system rather than the image
coordinate system. As stated, the trajectories were also projected onto the ground plane.
We chose to use homographies for several reasons. First, they normalized the extracted
trajectories, making them independent of the camera viewpoint. Such a normalization
was useful when analyzing trajectories captured from different camera angles. Further-
more, this transformation ensured that distances within the trajectories are normalized,
allowing for a more fair evaluation of the accuracy of the extraction method. Additionally,
by projecting the trajectories onto the ground plane, we obtained metric coordinates that
overcome the limitations of pixel coordinates and provide meaningful spatial information.
A homographic transformation is a mathematical transformation that maps points from
one plane to another while preserving straight lines [60]. In the context of trajectory extrac-
tion, it allows for switching between image, camera, and world reference systems. This
transformation is achieved through the application of two matrices: the extrinsic matrix
and the intrinsic matrix. The extrinsic matrix takes into account the camera pose, which
transforms world coordinates into camera coordinates using the pinhole camera model
and corresponding coordinates. The intrinsic matrix represents the internal parameters of
the camera, such as the focal length and distortion coefficients. Applying these matrices
performs the transformation from the camera coordinates to image coordinates [60]. Ho-
mographic transformations operate in projective spaces, and their application is performed
through the use of homogeneous coordinates [60]. More in detail, given two planes in
a projective space, there always exists a unique correspondence between their homolo-
gous points. This relationship is succinctly described by a homographic transformation,
which establishes a bijective relationship between correspondent points on the two planes,
enabling the mapping of points from one plane to the other.

To accurately determine the necessary transformation matrices, we performed a calibra-
tion of the camera. Our methodology encompassed two primary phases in the calibration
process. Initially, we utilized the camera’s intrinsic parameters to assemble the intrinsic
matrix. Subsequently, we engaged in a detailed assessment of the real-world coordinates
and their corresponding image coordinates, focusing on a specifically chosen set of points.
This two-step approach ensured a comprehensive calibration, enabling precise transfor-
mations. For simplicity, our research narrowed its scope to a single camera and viewpoint.
Specifically, we employed the Carrier TVGP-M01-0201-PTZ-G model (Carrier, Notting Hill,
VIC, Australia), which is characterized by a 2.8 mm focal length and sensor dimensions
of 7.2 × 5.4 mm. This camera is capable of capturing images in full HD (FHD) resolution,
achieving a crisp 1920 × 1080 pixel clarity. This focused approach allowed for a detailed
examination of the camera’s performance under controlled conditions. Figure 1 shows the
homographic transformation applied to the hall of statues in the museum.
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(a) Original frame. (b) Distorted frame. (c) Planimetry.

Figure 1. (a) shows the original frame; (b) shows the frame distorted with homographic projection;
(c) shows the planimetry of the same room. The colored circles provide insight into the transformation
of positions and distances between points. (b) was obtained using only the extrinsic projection matrix,
which took into consideration the pose (position and orientation) of the camera, and could be used to
convert the positions of each of the pixels in (a) to an estimated position in the ground plane. Due
to this choice for the reference plane, the pixels that did not represent objects on the ground were
mapped to the wrong position, causing a higher distortion, which can be observed on the regions of
(b) that represent the statues. Notably, the transformed pixel position was not arranged on a regular
grid. For this reason, a grid had to be defined over the new space, and the intermediate pixel values
were obtained by interpolation.

By referring to the previous approach of employing a single camera and viewpoint,
this study introduced a comprehensive video trajectory extraction pipeline. The proposed
extraction pipeline is based on a series of sequential steps that are executed for each frame
of the video, ensuring a thorough analysis and processing of the captured footage:

1. Background learning and subtraction to exclude the static portions of the video frame
from the analysis;

2. Detection of people in the scene;
3. Tracking and re-identification of detected people to maintain consistent identities

across frames;
4. Pose estimations of the detected people to infer the positions of their heads and feet;
5. Estimations of the heights of the detected people, whenever possible, to project their

position onto the ground plane, even if the feet are occluded in some frames;
6. Projection of the people’s positions onto the ground plane using homographic trans-

formations and exploiting the information about the feet and/or head positions,
combined with the estimated height of each individual.

The described pipeline is visually represented in Figure 2.

Background 
learning

DetectorBackground 
subtraction

Tracking

Pose 
estimation

Height 
estimation

Homographic 
projectionFrames Trajectory on the 

ground plane

Figure 2. Trajectory extraction pipeline.

Background subtraction was performed using a Gaussian mixture model (GMM) [61,62],
which models the background of the scene. Initially, during a warm-up phase at the
beginning of video processing, the GMM model was built using the first 15 s of video,
allowing it to adapt to the static elements in the scene and capture their composition. Then,
once the model was built, it was frozen for the remaining part of the video processing.
During the operational phase, each frame of the video was compared with the learned
background model, allowing foreground objects to be identified by detecting deviations
from the background statistics. In contrast to the conventional GMM approach, which con-
tinuously repeats the background estimation process to compensate for day–night changes,
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our operational scenario exhibited negligible environmental variability throughout the day,
enabling us to fix the background image following a specified time interval. Nevertheless,
a monitoring process remained in place to ensure that no significant changes occur. Should
substantial deviations be detected, the background learning process was initiated once
more, as outlined earlier. Verification involved comparing the frozen static background
with regions of the current image that were not occupied by detected targets. This process
ensured that the background estimation remained consistent and accurate, providing a
reliable foundation for analyzing changes or anomalies within the observed scene.

The detection and pose estimation steps in our pipeline were carried out using the
YOLOv8 model developed by Ultralytics [63]. Specifically, we employed the XL version of
the model, which is the largest and most powerful variant. Using the default pre-trained
checkpoint, namely, yolov8x-pose, the model can simultaneously perform both detection
and pose estimation tasks. In the detection phase, the model identifies individuals within
the frame by delineating bounding boxes around them. Then, in the pose estimation phase,
the model identifies and locates 17 body keypoints according to the COCO Keypoints
val2017 [64] labeling scheme, which includes anatomical landmarks, such as the nose, ears,
hands, and feet. Notably, the YOLOv8 model reliably handles challenging scenarios, such
as partial occlusion or detection of only a subset of keypoints, ensuring robust performance
in diverse real-world conditions [65–68].

The tracking and reidentification steps are crucial for maintaining continuity and iden-
tity across frames, especially in dynamic environments, such as museums, where multiple
people are typically present at the same time. In museums, however, re-identification
is even more challenging due to the typically poor lighting conditions used to preserve
the artwork exhibited in the galleries. For this purpose, we used BoT-SORT [69]. This
advanced multi-object tracking approach employs Kalman filtering [48] to analyze object
motion and a sophisticated deep-learning-based appearance feature extractor for matching.
This dual strategy allows for the precise association of objects across frames, leveraging
both their motion and visual attributes. These attributes enable BoT-SORT to facilitate
short-range re-identification, indicating that the re-identification process is particularly
effective when the object to be tracked has moved minimally and/or only a short time
has elapsed. The process facilitates BoT-SORT in generating tracklets, which depict the
uninterrupted movement of an object over time. Additionally, BoT-SORT enhances the
track accuracy through a post-processing stage, where the interpolation of points within
each tracklet is performed to achieve seamless, continuous tracks.

In the final step of our pipeline, we projected the extracted tracks onto the ground plane
using the two homographic transformation matrices obtained through camera calibration.
Specifically, for each person, a representative point in the image coordinates was selected.
We opted to utilize the midpoint of the segment connecting the two feet, provided they
were visible within the frame. However, to accommodate scenarios where the feet may
be occluded, our proposed method includes the estimation and tracking of each person’s
height. This height is estimated using the head keypoint and the same homographic
transformations employed for projection. Consequently, even if the feet are obscured,
as long as the head keypoint is visible, the person’s position can be accurately projected
onto the ground plane.

After the validation of the trajectory extraction approach, we moved on to use the
extracted trajectories to perform a preliminary analysis of visitor behavior. Using the
trajectories obtained from a one-hour recording within the same museum hall used for the
previous experiments, we performed hierarchical clustering to identify patterns within the
movements of the visitors. Using a bottom-up approach, the extracted trajectories were
systematically grouped based on their similarities, which allowed for the identification of
distinct behavioral patterns exhibited by visitors throughout the observation period.
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2.3. Integration and Video Stream Processing

We integrated the approaches described in Sections 2.1 and 2.2 into a unified dataflow
pipeline capable of processing video streams in real time. This pipeline manages all aspects
of computation, including video acquisition, preprocessing, action recognition, trajectory
extraction, annotation of video with processing results, and the visualization and/or storage
of processed frames. In addition, the pipeline is designed to raise events in various forms,
allowing for integration with various security management systems. This capability is
essential for real-world applications, especially in scenarios where the pipeline is used for
the real-time processing of video streams from security cameras.

The integrated system was constructed as a graph dataflow, where individual blocks
perform elementary operations and are connected to form a unique processing pipeline.
These blocks communicate with each other through a message-passing paradigm, where
messages are referred to as packets. Upon their arrival, packets are enqueued in the
input queue of the designated block responsible for their processing. These packets are
subsequently processed sequentially by their corresponding blocks. To enhance both the
efficiency and scalability, the system employs a multi-threaded architecture, enabling blocks
to process packets in parallel. This is governed by a priority policy that effectively manages
congestion within the system. Blocks experiencing higher levels of congestion are granted
increased processing time, facilitating a quicker clearance of their packet queues. This
strategic allocation of resources ensures smooth and efficient packet processing across
the system.

Additionally, the system is also capable of controlling multiple cameras simultaneously,
optimizing the use of existing computational blocks.

The integration of the trajectory extraction pipeline and the anomaly detection system
allows for a synergy between the two: the person detector used in trajectory extraction can
be exploited to crop the video around the detected people, allowing the action detection
system to focus on each individual and detect only their actions. To preserve the important
information about the visual context around each person, the bounding boxes are enlarged
by 50% in width and 20% in height, before cropping.

Figure 3 graphically represents the entire system, showing the interconnected blocks
and their respective dataflow. It also illustrates the message-passing mechanism used in
the system, showing how packets are exchanged between interconnected blocks.

Figure 4 shows some examples of execution of the complete pipeline.

IP Camera 1

Detector

Input Handler 1

IP Camera N Input Handler N

1) Preprocessing
2) Action recognition
3) Anomaly detection

Action 
Recognition

1) Pose estimation
2) Trajectory extraction
3) Homography

Pose
and

Trajectory

Event
Raiser

Output Handler

Visualization

Storage

Event

Buffer

Figure 3. Integrated system pipeline.
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(a) Normal scenario. (b) Anomaly encountered.

Figure 4. This figure shows the system working in the control room of the OPA museum in Siena.
Since the control room operators are Italian, the actions of each person are labeled in Italian. In the
figure, we have camminare, which means walk and nessuna azione, which is no action, in green (a),
and in red, the detected anomalies, in this case tocca opera, which means touch an artwork (b).

3. Experiments

For each of the three main video analysis contributions presented in this paper, we
describe the experimental setup.

3.1. Video Anomaly Detection

We begin by detailing the dataset selected for the training and evaluation, highlighting
its relevance and the rationale behind its choice. Following this, we discuss our experimen-
tal setup, which includes a series of steps to prepare the data for analysis. This preparation
involved (a) preprocessing techniques to ensure the data were in a suitable format for pro-
cessing, (b) augmentation methods to increase the diversity and robustness of our dataset,
and (c) optimization strategies to enhance the performance of our anomaly detection model.

3.1.1. Dataset Composition

Anomaly detection in museum environments faces a significant challenge due to
the scarcity of supervised datasets. Constructing a large-scale dataset for this purpose is
hindered by privacy constraints and limitations on gathering surveillance footage from
museums. To address this challenge, we collaborated with the OPA museum to collect
a small dataset that comprised both real and staged video clips obtained from various
museum rooms and camera viewpoints. We refer to this as the original dataset. We gathered
video footage from two distinct rooms: the Sala del Duccio and the Sala delle Statue. In each
room, footage was captured from four different perspectives. Cameras were strategically
positioned at opposing ends to ensure comprehensive coverage, and each was mounted
at varying elevations to optimize the field of view (for security purposes, as the cameras
in question are integral to the museum’s internal security infrastructure, we are unable to
disclose details about them or their precise locations, as well as images captured from them
during the visit time of the museum). This dataset encompassed recordings for a total of
277 min, with single-clip durations ranging from 2 to 20 min. The recordings were collected
on eight different days in three different months to account for seasonal variations and
they were scheduled at diverse times of the day to ensure a comprehensive capture of the
variations in pedestrian volume, from the busiest to the quietest moments. Each recording
day was assigned with an equal overall recording duration, with a maximum difference
between different days of 2 min. Long recordings were subdivided into shorter clips lasting
5 to 10 s each to ensure the presence of at least one action in every clip. In the labeling
process for the short video clips, the following rule was employed: if a clip showed only
one person, the label reflected their action; for clips with multiple individuals, the label was
determined by prioritizing the most significant action observed. Actions such as touching
an artwork were prioritized over less significant actions, like walking, given the relatively
small set of detectable actions within museum environments. The complete set of actions
with their corresponding priorities is outlined in Table 1, while additional details on the
dataset composition are presented in Figures 5 and 6.
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In the second phase of our experimental work, we collected an additional dataset of
staged videos captured in many non-museum settings. The primary goal of this second step
was to expand the set of video clips that included anomalous actions and, more broadly,
actions of lower frequency. This strategic decision was made to strengthen the diversity
and richness of our dataset, thereby increasing the robustness and effectiveness of our
anomaly detection algorithms. We refer to the combination of this newly acquired dataset
with the original dataset as the extended dataset to denote its expanded scope and enriched
content. The videos constituting the extended dataset were collected in a total of seven
locations, more precisely, four house rooms and three university rooms. Being controllable
recording setups, we implemented different strategies to improve the variability of the
recordings to improve the resulting generalization. First, we used a set of five cameras and
a total of 21 viewpoints, 3 for each location. Then, we employed a sample of 12 participants
of different sexes, ages, and appearances to act in the footage. In addition to ensuring a
broad spectrum of clothing, we implemented a specific protocol for staged activities. Each
participant was instructed to modify their clothing by incorporating distinct elements, such
as hats or hand-carried items for each action. This protocol was established to introduce
variability and promote the robustness of our dataset against variations in apparel, thereby
facilitating greater generalization. The total duration of the footage was 132 min and the
dataset construction step was the same as for the original dataset.

The original dataset was split into training, validation, and test sets. The training
set was composed of the videos recorded in 4 days, while the validation and test sets
were built over 2 days of recording each. This constituted the dataset setup of the first
experimental phase. The extended dataset was completely added to the training set in the
second experimental phase.

Touching an artwork Beyond room limits Anomaly interaction Take a photo Walking Sitting Talking Nothing
Class
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Figure 5. Class samples distribution with respect to original and extended datasets, grouped by
assigned action.

Table 1. Set of predictable actions, along with their priority (higher priority is given to actions with a
lower value).

Action Anomaly Priority

Touching an artwork ✓ 1
Beyond room limits ✓ 2
Anomaly interaction ✓ 3

Take a photo 4
Walking 5
Talking 6
Sitting 7

Nothing 8
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Figure 6. Class samples distribution of the action type (normal or anomalous action), grouped by the
experimental stage of employment (original or extended dataset).

3.1.2. Experimental Setup

For the implementation of the model, we relied on the MMAction2 framework devel-
oped by the openMMLab team [70].

Before providing the video clips to the model, they were subject to a normalization
procedure to adapt them to the expected input of the model. This preprocessing was
applied to RGB clips spanning durations of 5 to 10 s, recorded at a frame rate of 30 frames
per second (FPS). The procedure is graphically represented in Figure 7 and was composed
of the following steps:

1. Decoding: extracting the corresponding sequence of frames;
2. Time window sampling: randomly selecting a frame window of 64 frames;
3. Uniform frame sampling: dividing the obtained frame window into eight equally

long parts and selecting the first frame of each part while ignoring the others;
4. Resizing: adjusting the spatial dimensions to ensure their shortest side is 256 pixels;
5. Cropping: center-cropping the frames to obtain eight RGB square frames with a side

length of 224 pixels;
6. Normalization: channel-wise normalization of the resulting images by subtracting the

mean and dividing by the standard deviation of the color distribution.

Time
Window

Extraction

Frame
Sampling

Resize +
Crop +

Normalize

Raw
video Input X

(ready for the model)

Figure 7. Video preprocessing pipeline.

After each video clip was normalized, it was fed into the feature extraction architec-
ture, which consisted of either the IRCSN or TPN. These architectures produce a 2048-
dimensional feature vector that represents salient aspects of the spatio-temporal video
content. This feature vector is then passed through a final classification layer that encodes
the relationship between the extracted features and corresponding actions. The linear clas-
sifier includes a softmax normalization step, which makes the output values interpretable
as action probabilities. To determine whether a given clip should be classified as a normal
action or an anomaly, we selected the action with the maximum conditional probability and
we used the mapping described in Table 1, which prioritized actions based on predefined
criteria. In constructing our system, we leveraged the transfer of features extracted by
existing checkpoints of IRCSN and TPN that were pre-trained on the Kinetics-400 action
recognition dataset. Specifically, we froze these networks during training and only fine-
tuned the parameters of the final classification head. The action recognition pipeline is
illustrated in Figure 8.
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Figure 8. Action recognition pipeline.

In our study, we examined the effect of using augmentation versus not using augmen-
tation. Data augmentation is the process of creating additional training examples that are
obtained by applying minimal transformations to the original data, such as rotations and
translations. Its objective is to increase the variability of the dataset and improve the model
performance. We applied several data-augmentation techniques, including random rota-
tions (videos randomly rotated between −30° and +30° to introduce orientation variations),
random horizontal flipping, and Gaussian noise (added to 50% of the input videos with a
randomly selected standard deviation between 0 and 3 to diversify the pixel values and
increase the model’s robustness to noise). Additionally, during training, each loaded video
underwent a different color jitter to further improve the model’s robustness to color varia-
tions. These transformations were applied to both the training and validation examples,
effectively increasing their size and variability. Moreover, to correct for the class imbalance,
we examined the effect of removing a portion of the most common classes to ensure that no
action was excessively prevalent compared with the others during training. In our study,
we compared the outcomes obtained with and without using class-balancing techniques.

Throughout the training phase, we investigated the effectiveness of two learning
algorithms, namely, stochastic gradient descent (SGD) and Adam [71]. We maintained
consistency with the previous studies [34,35] by using the same set of hyperparameters.
In particular, we set the learning rate to 0.01 for both optimization algorithms. The learning
rate determines the step size during optimization. Furthermore, to mitigate overfitting,
we applied a weight decay regularization term in the loss function, with a regularization
weight of 10−4. We used the standard Adam parameters [71]. These parameters modulate
the dynamics of the adaptive learning rates and the momentum computation. For the
SGD, a momentum rate of 0.9 was incorporated to allow for accelerated optimization by
accumulating gradient updates over time. Each experiment spanned 50 epochs, with the
best model selected based on maximizing the validation acc@1 metric, which was evaluated
every five epochs. In addition, a multistep learning rate scheduler [72] was employed
to improve the convergence of the training. The base learning rate was multiplied by a
gamma factor of 0.1 at epoch 20 and epoch 40.

This study assessed the effectiveness of our machine learning models using a range of
metrics, primarily including the following:

1. Accuracy (acc@1): This metric measures the percentage of video clips in which the
action is correctly recognized by the model. It serves as a reliable indicator of the
model’s ability to identify different actions in the videos.

2. Area under the ROC curve (ROCAUC): The goal of anomaly detection is to distinguish
between normal and abnormal actions. To evaluate the performance in scenarios
with unbalanced datasets, where anomalies occur much less frequently than normal
instances, the ROCAUC was adopted for the binary classification task. The ROCAUC
is a suitable method for this purpose.

3. Mean class accuracy (MCA): The MCA represents the mean accuracy of the system
and it is calculated as the average of the acc@1 metrics computed on the examples of
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each class individually. This metric provides valuable insight into the performance of
the model for each specific action category.

4. Confusion matrix: In addition, an in-depth analysis of the confusion matrix was
performed to better understand the model’s ability to minimize false positives and
false negatives, which is a critical aspect, especially in real-world museum settings.

5. F1-score: The F1-score is suitable to assess the overall performance of the binary
classification system that is supposed to distinguish between normal and anomalous
clips. This metric gives a trade-off between precision and recall, providing a measure
of the minimization of false positives and false negatives.

We conducted two sets of experiments: First, we focused on refining the optimization
setup by evaluating the different optimization algorithms to select the most appropriate
optimizer. Subsequently, we evaluated the impact of dataset augmentation and balancing
techniques on the accuracy and robustness of the model. The main results of the training
and evaluation experiments are reported in Section 4.

3.2. Trajectory Extraction and Analysis
3.2.1. Dataset Composition

To validate the accuracy of our trajectory extraction pipeline, we conducted experi-
ments on a dataset consisting of 100 tracks. These tracks were extracted from video clips
recorded by the same camera described in Section 2.2. The dataset consisted of samples
extracted from 20 video clips with a total duration of 30 min. For evaluation purposes, the
ground truth was established through meticulous manual annotation of each video clip,
with labels consistently applied to every fourth frame. Initially, these labels were assigned
in the image space and then projected onto the ground plane of the world coordinate
system using the homographic transformations described in Section 2.2. Figure 9 illustrates
a selection of the extracted trajectories in image space, which were superimposed on the
planimetry of the museum hall. The similarity between Figure 9a and Figure 9b was due
to the quality of the automatic trajectory extraction method, which returned an accurate
approximation of the ground truth trajectories extracted by a human.

(a) Manually labeled, ground truth trajectories. (b) Automatically extracted trajectories.

Figure 9. The green lines represent a random subset of the manually labeled (a) and corresponding
automatically extracted (b) trajectories.

3.2.2. Experimental Setup

In the first experimental phase, the automatically extracted trajectories were compared
with the manually labeled ground truth trajectories. To ensure compatibility between
the two sets of trajectories, we took care to synchronize the manually and automatically
labeled trajectory points by subsampling frames at the same rate. This ensured that
corresponding points in both trajectories were aligned in time. Next, the distance between
the corresponding nodes of each pair of trajectories was measured using a simple Euclidean
distance metric. These node distances were then aggregated to compute the mean absolute
error (MAE), root-mean-squared error (RMSE), and maximum absolute error (MaxAE),



Electronics 2024, 13, 1194 17 of 26

along with the standard deviation of the error distribution (stdAE). The use of the Euclidean
distance had the advantage of returning distances expressed in meters in the same reference
system of the trajectories, which allowed for a qualitative evaluation of the quality of the
trajectory approximation.

For the clustering, we used a distance measure based on the mean absolute Euclidean
distance between two trajectories, ignoring time information to focus only on the paths that
the visitors took during their stay in the hall. To quantify the distance between trajectories
of varying lengths, characterized by differing numbers of nodes, we employed a symmetric
spline approximation technique. Initially, for two distinct trajectories, namely, τ and τ′,
which comprised n and n′ nodes, respectively, we approximated these as polylines. This
was achieved by interpolating between nodes using a first-degree spline, thus generating
continuous curves τ̂ and τ̂′. Subsequently, we calculated the distance of each node in the
discrete trajectory τ to the approximated polyline τ̂′ and computed the mean distance across
all nodes. This process was repeated for the trajectory τ′, assessing its nodes’ distances to
the polyline τ̂. The final distance measure between the two trajectories was determined by
averaging these mean distances.

Once the clustering process was complete, we manually determined the number
of clusters based on their intra-cluster distance. This selection allowed us to identify
meaningful groupings of trajectories that captured different movement patterns within the
museum hall. In Section 4.2, we present detailed results of this analysis.

3.3. Integration and Video Stream Processing

To assess the overall performance of the system, we calculated the average interval
between the completion of the processing for one sub-window of frames and the subsequent
sub-window. This metric shed light on the system’s efficiency and its competency in
managing real-time video processing demands.

4. Results and Discussion
4.1. Video Anomaly Detection

In the first experimental phase, we used only the original dataset. The results of this
set of experiments are presented in Table 2.

First, we consistently observed high top-five accuracy. However, given the limited
number of classes in our problem (eight), it was relatively easy to include the target class in
the top five predicted classes. As a result, we decided not to consider the top-five accuracy
in subsequent experiments. Our investigation revealed that models trained with Adam
consistently performed worse than those trained with other optimizers in terms of the RO-
CAUC. This finding guided our subsequent experiments. Notably, no significant difference
between the IRCSN and TPN models was observed, except for the reduced performance
of TPN when using the Adam optimizer. Regarding dataset balancing, we expected that
a more balanced dataset would result in a better internal description of the actions and
improve the reliability of the test results. However, in practice, class balancing greatly
limited the set of available examples for training, thereby compromising the generalization
capability of the model and the accuracy of the test results. This consideration justified
extending the dataset with new real (staged) and artificial data samples.

The results obtained through data augmentation are promising and surpassed those of
previous experiments. Moreover, this conclusion is supported by a larger and more diverse
test set, which increased the confidence in our measurements. The results of the second
experimental phase are reported in Table 3.
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Table 2. Results of the first experimental phase, based on the original dataset. The bold results are the
best according to the considered metric, while the underlined results are the second best.

Model Optimizer Balancing acc@1 ↑ MCA ↑ ROCAUC ↑

IRCSN Adam 68.6% 55.2% 95.1%
IRCSN SGD 71.2% 61.7% 98.8%

TPN Adam 45.6% 30.8% 68.4%
TPN SGD 66.0% 59.7% 98.3%

IRCSN Adam ✓ 59.0% 58.1% 84.4%
IRCSN SGD ✓ 57.4% 51.1% 88.73%

TPN Adam ✓ 27.9% 25.4% 88.2%
TPN SGD ✓ 57.4% 56.8% 88.7%

Table 3. Results of the second experimental phase, based on the extended dataset. The bold results
are the best according to the considered metric, while the underlined results are the second best.

Model Balancing Augmentation acc@1 ↑ MCA ↑ ROCAUC ↑

IRCSN Staged 72.7% 62.2% 95.3%
TPN Staged 70.7% 63.1% 94.1%

IRCSN ✓ Staged 67.1% 51.6% 97.1%
TPN ✓ Staged 60.6% 52.6% 94.0%

IRCSN Staged + augmented 73.0% 53.4% 96.9%
TPN Staged + augmented 72.1% 66.9% 95.1%

IRCSN ✓ Staged + augmented 66.1% 59.2% 96.7%
TPN ✓ Staged + augmented 69.2% 66.8% 93.6%

The fact that the ROCAUC metric consistently reached above 90% indicates the validity
of the approach. Its variation between different configurations was negligible. Although the
effect of dataset balancing remained slightly negative, it was less pronounced than in
previous experiments, suggesting potential benefits from further data enrichment efforts.
In particular, the IRCSN demonstrated an ability to discriminate between normal actions
and anomalies, while the highest accuracy in recognizing the precise actions was achieved
by the TPN.

To measure the quantity of false negative and false positive examples, while also
considering the proportion between the two, we calculated the F1-score on the validation
set for the model with the best accuracy (acc@1). We tested various decision thresholds and
selected 0.6 as the threshold resulting in the best F1-score. We then computed the F1-score
of the selected model on the test set using the chosen threshold and obtained a value of
86.7%. Using the same model and threshold selection, we computed the confusion matrix,
which is shown in Figure 10.
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Figure 10. Action recognition confusion matrix.
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In this situation, when the MCA was lower than the acc@1 metric, it reflected superior
performance in classifying actions that were more frequent in the dataset. This result was
advantageous considering that the most frequent actions were normal actions. A smaller
MCA compared with the corresponding acc@1 reduced the false positives, increasing the
system usability and reliability.

4.2. Trajectory Extraction and Analysis

The aggregated results of the comparison of the extracted trajectories with the ground
truth are reported in Table 4, while the distribution of the distance between the predicted
and real nodes of the trajectories is shown in Figure 11.
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Figure 11. Distribution of the distance between the predicted and real nodes of the trajectories.

Table 4. Aggregated trajectory estimation errors. All the metrics represent distances, and thus, they
are expressed in meters.

MAE [m] ↓ RMSE [m] ↓ MaxAE [m] ↓ STD [m] ↓

0.18 0.30 4.36 0.23

The test results on the accuracy of the trajectory extraction method show promising
results for its applicability within the museum environment. With a mean error below
20 cm, the achieved accuracy level was considered highly acceptable for the specific
environment under investigation. Such a low error rate allows for the effective use of
trajectory information for both analytical insights and security purposes. On average,
the results show satisfactory performance, as characterized by a tightly concentrated
distribution of errors around the mean. This concentration was further emphasized by
the significantly low standard deviation, which quantitatively expressed the consistency
and reliability of the trajectory extraction method across different scenarios within the
museum environment.

In our clustering experiment, the hierarchical clustering algorithm revealed two pri-
mary clusters, as shown in Figure 12. The intuitive interpretation of these clusters suggests
a division between those visitors who lingered in the museum hall and explored a portion
of it and those individuals who used the space as a thoroughfare. While this preliminary
analysis provides initial insights into visitor behavior, further exploration with a larger
dataset could yield a more comprehensive and informative analysis. With additional data,
we expect to be able to reveal more nuanced patterns and behaviors among museum
visitors, enhancing our understanding of their interactions within the space.
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Figure 12. The different trajectory colors identify the different clusters. By choosing to terminate the
clustering algorithm after identifying two clusters, the trajectory segmentation highlighted different
behavioral patterns exhibited by visitors within the museum hall.

4.3. Integration and Video Stream Processing

To evaluate the time efficiency of the integrated pipeline, we conducted experiments
using video footage with a frame rate of 30 FPS and a full-HD resolution. The analysis
showed that the average time between consecutive sub-windows of frames was 1471 ms,
with a standard deviation of 338 ms. The performance of the pipeline was significantly
affected by two main factors. First, the real-time arrival of frames while processing a live
video stream imposed constraints on the overall pipeline speed. Second, the computational
requirements of the action recognition network, which is the most resource-intensive
component of the pipeline, also affected the performance (368 ms on average). Person
detection and pose estimation took, respectively, 41 ms and 24 ms for their inferences on
average (Table 5). Despite these challenges, it is noteworthy that the observed average time
was close to the expected ideal time. Considering that each frame sub-window consists of
64 frames, the expected ideal time was approximately 64/30 × 1000 ≃ 2133 ms. The result
obtained was consistent with this expectation, taking into account the potential overhead
in the processing pipeline. Additionally, we examined how the time required to analyze
a packet changed over time. We first considered the three main computational blocks
(Figure 13) where we demonstrated that the pipeline achieved a steady state in terms of
computational time within five packets. Figure 13a–c shows the execution time required
to perform inference over a packet over time; while the action recognition maintained the
same inference time over time, Figure 13b shows that the method reached a steady state
after a few packets. Then we examined the total execution time (Figure 14).

Table 5. Mean and standard deviation referring to Figure 13a–c, respectively.

Operation Execution Time (ms)

Mean Std

Action recognition 386.72 145.75
Person detection 41.31 7.14
Pose estimation 24.36 1.61
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Figure 13. Neural models inference time as time goes on: (a)—action recognition model; (b)—person
detection model; (c)—pose estimation model.
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Figure 14. Evolution of time needed to analyze a packet.

5. Conclusions

This work tested various deep learning models to detect anomalous behavior inside
museums. First, we introduced a prioritization approach, which effectively addressed
the challenges associated with multiple actors appearing within each frame. We then
applied various data-augmentation techniques, including examples from various sources
and implementing dataset-balancing strategies. These efforts led to significant outcomes
and improved the models’ abilities to generalize across different scenarios.

Moreover, we proposed an approach for trajectory extraction and validated it by
measuring its accuracy against ground truth data. Additionally, we used the extracted
trajectories for a preliminary analysis based on clustering to identify different trajectory pat-
terns and interpret them, trying to infer the behavior of the visitors. Finally, we integrated
the two proposed techniques into a unique video-processing system.

This study’s most significant findings can be summarized as follows:

1. Identification of effective models: The investigation successfully identified and val-
idated models that are valuable in a museum setting. These models demonstrated
their utility in addressing the specific anomaly detection challenges encountered in
this environment.

2. Priority policy for actions: Our study introduced a novel approach to prioritizing
actions within the anomaly detection framework. This policy addresses the challenge
of ambiguous action prediction by establishing a hierarchical system for determin-
ing the importance of detected actions. This approach effectively allows for the
use of scene-based action recognition to detect anomalies, also in the presence of
multiple individuals.
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3. Dataset improvement techniques: The experiments that involved data-augmentation
techniques, dataset balancing, and the introduction of new and out-of-domain ex-
amples resulted in positive outcomes of model generalization. These techniques
enhanced the model’s ability to adapt to various scenarios, improving its performance
and robustness.

4. Ground plane trajectory extraction: a novel approach for ground plane trajectory
extraction was proposed and validated, demonstrating a degree of accuracy sufficient
for most tasks required in a museum environment.

5. Real-time video processing system: The anomaly detection and trajectory extrac-
tion systems were seamlessly integrated into a unified video processing architecture
capable of processing a video stream in real-time. The performance of the system
was tested to assess its ability to operate in real-time, demonstrating its potential for
practical deployment in real-world scenarios.

5.1. Limitations

Although our approach shows promise in detecting anomalies within museum envi-
ronments, it is important to acknowledge its limitations that may affect its effectiveness in
real-world scenarios. First, our scene-based approach struggles to handle multiple simulta-
neous actions within a scene, risking missed detections or false alarms. Second, while our
prioritization policy was designed to deal with prediction ambiguity, it lacks full control
over the predicted actions. In complex scenarios, prioritization may consider not only the
action but also contextual factors, leading to potentially suboptimal decisions, especially in
crowded environments. This vulnerability could be exploited by well-prepared adversaries,
compromising the system’s effectiveness in detecting anomalies and potentially resulting
in damage to artworks. Accurate action selection and prioritization are essential to mitigate
this risk, ensuring effective threat response and asset protection.

5.2. Future Work

The results of this study are encouraging for the advancement of automated anomaly
detection through surveillance camera footage. However, to further enhance the effec-
tiveness and accuracy of these detection systems, several avenues for future research
were identified.

First, there is a significant opportunity to tailor anomaly detection models specifically
for the unique environment of museums. This customization could involve refining existing
models or experimenting with innovative approaches, such as vision transformers and
skeleton-based action recognition techniques. Such explorations are anticipated to not
only boost the model performance but also uncover novel insights into the dynamics of
anomaly detection within specialized settings. Second, the efficiency of models focusing on
individual actions warrants thorough evaluation. This is because a more refined under-
standing and improvement of person-focused action recognition could potentially offer
superior results over current scene-based methodologies. Delving deeper into the nuances
of individual behaviors could unlock new dimensions in surveillance analytics, offering a
more granular and precise detection capability. Moreover, more advanced video processing
approaches should be used in place of standard background subtraction. Intelligent video
segmentation could represent the next step toward complete scene understanding [73,74].
Lastly, the exploration of advanced video stream processing techniques presents a promis-
ing frontier. By leveraging strategies that capitalize on the temporal continuity of video
footage, such as utilizing overlapping frame windows and extracting additional contextual
information, there is the potential to significantly enhance the detection framework. These
approaches could lead to more robust and responsive anomaly detection systems that
are better equipped to identify and respond to irregular activities in real time. From the
point of view of the extracted trajectory, a straightforward application lies in refining our
anomaly detection algorithm. By leveraging information derived from specific trajectory
patterns, the latter can provide valuable insights for recognizing threats as they occur or
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even predicting them by behavioral analysis. In addition to refining our anomaly detection
algorithm based on extracted trajectory data, further directions for future work include
extending our capabilities to multi-camera tracking [75]. By integrating data from cameras
positioned in different rooms within the museum, we can track individuals over larger
areas, resulting in more comprehensive or extended trajectories. This broader scope allows
for the detection of more complex behaviors. In addition, the exploration of alternative
approaches to object detection and tracking, such as those based on vision transformers,
represents another promising direction for advancing our analytic capabilities and improv-
ing the accuracy of anomaly detection algorithms [76,77]. These efforts will contribute to a
more robust and sophisticated system for monitoring and securing museum environments.

In conclusion, while the initial findings are promising, the path ahead is rich with
potential for innovation and refinement in the field of anomaly detection. By pursuing these
suggested research directions, there is a strong possibility of achieving more sophisticated,
efficient, and accurate surveillance systems that are capable of safeguarding our public
spaces with unprecedented effectiveness.
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