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Abstract: The cost-effectiveness, compact size, and inherent flexibility of UAV technology have
garnered significant attention. Utilizing sensors, UAVs capture ground-based targets, offering a
novel perspective for aerial target detection and data collection. However, traditional UAV aerial
image recognition techniques suffer from various drawbacks, including limited payload capacity,
resulting in insufficient computing power, low recognition accuracy due to small target sizes in
images, and missed detections caused by dense target arrangements. To address these challenges,
this study proposes a lightweight UAV image target detection method based on YOLOv8, named
Aero-YOLO. The specific approach involves replacing the original Conv module with GSConv and
substituting the C2f module with C3 to reduce model parameters, extend the receptive field, and
enhance computational efficiency. Furthermore, the introduction of the CoordAtt and shuffle attention
mechanisms enhances feature extraction, which is particularly beneficial for detecting small vehicles
from a UAV perspective. Lastly, three new parameter specifications for YOLOv8 are proposed to
meet the requirements of different application scenarios. Experimental evaluations were conducted
on the UAV-ROD and VisDrone2019 datasets. The results demonstrate that the algorithm proposed
in this study improves the accuracy and speed of vehicle and pedestrian detection, exhibiting robust
performance across various angles, heights, and imaging conditions.

Keywords: vehicle detection; UAV imagery; YOLO; GSConv; C3 module; CoordAtt mechanism;
shuffle attention mechanism

1. Introduction

In recent years, unmanned aerial vehicles (UAVs) have emerged as a burgeoning
technology owing to their advantages of low cost, compact size, and operational flexibility
(the abbreviations corresponding to all phrases can be found in Appendix A) [1,2]. Serving
as ideal tools for low-altitude aerial photography, these UAVs utilize sensors to effortlessly
capture ground targets, thereby acquiring images with enhanced maneuverability. This
technological advancement has provided novel solutions across various domains, signifi-
cantly improving the efficiency of aerial target detection and the precision of data collection.

The rapid advancement of UAV technology is spurred by the concerted efforts of
remote sensing departments and agricultural sectors across several nations. UAVs play a
pivotal role in multiple domains, including security monitoring [3], aerial photography [4],
high-speed deliveries [5], wildlife conservation [6], agriculture [7], and transportation
systems [8]. Nevertheless, owing to the flexibility of UAVs, capturing vehicle exteriors
and dimensions presents substantial variations (e.g., as depicted in Figure 1), allowing
image capture from diverse perspectives and heights, leading to intricate and diverse
backgrounds.

Traditional algorithms encounter challenges in target detection due to insufficiently
prominent target features, resulting in slow detection speeds, low accuracy, and susceptibil-
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ity to false positives and negatives. In contrast, the You Only Look Once (YOLO) model
has garnered significant attention for its outstanding accuracy and real-time performance,
markedly enhancing both detection precision and speed, thus playing a pivotal role in
target detection. However, the size and weight limitations of UAVs restrict the performance
of onboard computing devices, necessitating the reduction of computational and storage
expenses while maintaining superior detection performance.

Figure 1. Examples of unmanned aerial vehicle images in the VisDrone dataset, including images
with varied and complex backgrounds, weather conditions, and lighting, as well as varying vehicle
appearances and sizes.

Previous UAV visual recognition has often relied on larger models to improve recog-
nition rates due to imaging issues with UAV images [9–11]. Simultaneously, the lack of
information points in images often requires lowering predictive confidence to enhance
model generalization. However, reducing confidence levels may lead to issues like erro-
neous fitting of picture data. To address this challenge, this paper introduces a lightweight
UAV vehicle recognition algorithm based on the YOLOv8 model, termed Aero-YOLO. The
key contributions of this research can be summarized as follows:

• The replacement of the original Conv module [12] with Grouped Separable Convolu-
tion (GSConv) led to a reduction in model parameters, an expanded receptive field,
and improved computational efficiency.

• The incorporation of the CoordAtt and shuffle attention [13] mechanisms bolstered
feature extraction, particularly benefiting the detection of small or obstructed vehicles
from the perspective of unmanned aerial vehicles.

• After comparative analysis with Adaptive Moment Estimation (Adam) [14], the se-
lection of Stochastic Gradient Descent (SGD) as the optimizer resulted in superior
performance in model convergence and overall efficiency.

• Substituting the original CSPDarknet53 to Two-Stage FPN (C2f) module with C3
resulted in a lightweight structure for the model.

• Building upon the existing parameters of YOLOv8, three new parameter specifi-
cations were introduced, namely Aero-YOLO (extreme), Aero-YOLO (ultra), and
Aero-YOLO (omega).

We conducted comparative experiments using the UAV-ROD [15] and VisDrone2019
datasets [16]. Our comparative analysis demonstrated that our proposed method signifi-
cantly outperforms existing detection models and current mainstream parameter models.
Furthermore, we conducted specific ablation experiments on the VisDrone2019 dataset to
validate the feasibility and effectiveness of our proposed network optimization methods.
The results indicated that Aero-YOLO significantly enhances the performance of unmanned
aerial vehicle visual recognition models, even when utilizing the same or fewer network
model parameters.
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The remainder of this paper is organized as follows. Section 2 reviews the related
works, Section 3 elaborates on our proposed methodology, Section 4 presents the experi-
mental findings, and the conclusions are provided in Section 5.

2. Related Works

Target detection has long been a focal point in the field of computer vision [17],
aiming to accurately identify and locate objects, discern their categorical attributes, and
precisely determine their positions within images. With the advent of deep learning and
the widespread deployment of surveillance cameras [18], object detection has garnered
heightened importance. Broadly, object detection algorithms are typically categorized
into two-stage and one-stage approaches, differing fundamentally in their processing
stages. Two-stage algorithms involve the use of separate networks for region proposal and
classification/regression tasks. A classic example of a two-stage approach is the Faster
R-CNN [19], which relies on region-based convolutional neural networks. In contrast,
single-stage methods like YOLO [20], SSD [21], and RetinaNet [22] utilize a single network
to directly classify bounding boxes and perform adjustments using anchor points.

One of the most representative algorithms among one-stage detectors is the YOLO
series. YOLO employs convolutional neural networks to extract image features and directly
predicts bounding boxes and categories by generating anchored boxes, thereby enabling
real-time object detection. YOLOv2 [23] replaced the original YOLO’s Google Inception
Net (GoogleNet) with Darknet-19, while YOLOv3 [24] upgraded Darknet-19 to Darknet-
53 and adopted a multi-scale framework with residual connections from ResNet [25].
YOLOv4 [26] combined CSPNet [27], the Darknet-53 framework, CIoU loss [28], and
the Mish activation function [29] to enhance performance. YOLOv5 integrated various
architectures mentioned earlier and offered multiple choices in terms of inference speed,
accuracy, and computational cost. YOLOv8 [30], released in January 2023, incorporated
updates from YOLOv5 [31], which are discussed in this paper.

The rapid development of deep learning-based object detection models has led some
scholars to apply their enhanced versions to object detection in drone imagery. Traditional
UAV aerial image recognition techniques suffer from limitations in computing power due to
the restricted payload of UAVs, resulting in low recognition accuracy for small target sizes
and missed detections in densely populated areas. Maintaining a balance between detec-
tion accuracy and inference efficiency remains crucial. Ruiqian Zhang et al. [32] proposed a
multiscale adversarial network to address the diversity challenges in UAV imagery, integrat-
ing deep convolutional feature extractors, multiscale discriminators, and a vehicle detection
network, significantly enhancing vehicle detection performance. Seongkyun Han et al. [33]
designed DRFBNet300, incorporating deeper receptive field block (DRFB) modules to improve
feature map expressiveness for detecting small objects in UAV images. Mohamed Lamine
Mekhalfi et al. [34] introduced CapsNets to tackle complex object detection issues in UAV
images, accurately extracting hierarchical positional information compared to traditional con-
volutional neural networks, thereby improving object detection accuracy and computational
efficiency. Z. Fang et al. [35] proposed a dual-source detection model, DViTDet, based on
Vision Transformer Detector (ViTDet), leveraging Transformer networks to extract features
from various sources and employing feature fusion to utilize cross-source information. They
demonstrated that combining CNNs and Transformer networks can extract richer features.

These previous models still suffer from issues such as low detection accuracy, ineffi-
cient computational performance, and inadequate detection capabilities for small objects to
some extent. Our research aims to address these challenges by proposing Aero-YOLO, a
lightweight UAV vehicle detection model based on YOLOv8. By incorporating advanced
modules like the CoordAtt attention mechanism, shuffle attention mechanism, and GSConv,
we enhance YOLOv8. It is anticipated that this optimized object detection framework will
exhibit significant advantages in UAV vehicle and pedestrian recognition.
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3. Materials and Methods
3.1. Aero-YOLO Model Architecture

Aero-YOLO represents an enhanced version of the YOLOv8 model tailored for UAV
target detection tasks. Its architectural design is illustrated in Figure 2. Aero-YOLO
integrates GSConv and C3 in its backbone to reduce network computational overhead.
Moreover, it capitalizes on two attention mechanisms, CoordAtt and shuffle attention, sig-
nificantly reinforcing the feature extraction capability, which is particularly advantageous
for detecting small or obstructed vehicles from a UAV perspective.

The overall framework of Aero-YOLO comprises four parts: input, backbone, neck,
and head. The input section of the Aero-YOLO network primarily manages image scaling,
data augmentation, adaptive anchor computation, and adaptive image scaling. The default
input image size is set at 640 × 640 × 3. Its backbone consists of GSConv modules, C3
modules, CoordAtt attention mechanisms, and Spatial Pyramid Pooling Fusion (SPPF)
modules. In the network’s head, the original Conv module is replaced with GSConv, and
shuffle attention mechanisms are added before two GSConv modules. In comparison with
related products like YOLOv8, Aero-YOLO achieves an optimal balance between detection
accuracy and computational cost.

Figure 2. The architecture of Aero-YOLO.

3.1.1. Object Detection Framework

The YOLO model architecture stands as one of the prominent object detection algo-
rithms currently in use. YOLOv8 has exhibited commendable results in terms of speed
and accuracy. Considering the vehicle recognition performance and resource constraints
in UAVs [36], we opted for YOLOv8 as our foundational model for research. As the latest
state-of-the-art (SOTA) model, it offers both object detection and instance segmentation
capabilities, presenting various scale models to adapt to diverse scene requirements. Com-
pared to its predecessors, YOLOv8 introduces structural changes, including adjustments
in certain bottleneck structures, adopting an anchor-free approach with decoupled heads,
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and modifications in top-layer activation functions. It leverages multiple loss functions
such as binary cross-entropy for classification loss and CloU and distribution focal loss for
localization loss [37], while optimizing data augmentation strategies to enhance accuracy.
For output bounding boxes, it employs post-processing techniques like non-maximum sup-
pression (NMS) to filter out detections in regions lacking significance, reducing redundant
and overlapping boxes for more precise results.

Despite YOLOv8 demonstrating commendable performance, deploying it on lightweight
agile UAVs presents challenges due to computational requirements, larger model sizes, and
significant variations in captured vehicle appearances and sizes. To enhance detection perfor-
mance concerning scale variations and computational costs, Aero-YOLO modifies the network
structure in two aspects.

3.1.2. Lightweight Network Optimization

In the original YOLOv8 backbone, the intermediate feature maps from conventional
convolutions exhibited significant redundancy, contributing to increased computational
costs. The challenge lay in reducing algorithmic overhead while preserving algorithm
performance. This section proposes modifications to two modules to minimize algorith-
mic costs.

GSConv emerges as the preferred choice for optimizing lightweight networks by
reducing model parameters, broadening receptive fields, and enhancing computational
efficiency. Replacing standard convolutional layers, GSConv bolsters the network’s feature
extraction capabilities. Research indicates that integrating GSConv throughout the network
notably augments depth while reducing inference speeds. This module’s structure encom-
passes Conv, DWConv, Concat, and shuffle operations [38]. The structure of the GSConv
module is shown in Figure 3. The input feature map, derived from standard convolutions,
yields half the channel count as output channels. Retaining the channel count through
depth-wise separable convolutions, the channels are then merged to restore the original
count, finally outputting the results via the shuffle module. Combining group convolutions
with depth-wise separable convolutions, GSConv intensifies feature extraction and fusion
abilities, facilitating better capture of crucial vehicle features in images. Simultaneously,
it slashes computational and parameter counts by approximately 30% to 50%, sidestep-
ping redundant information and complex calculations. The computational complexity of
GSConv, compared to standard convolutions, is expressed as

OGSConv

OSC
=

W · H · K1 · K2 · (C1 + 1) · C2
2

W · H · K1 · K2 · C1 · C2
=

1
2
+

1
2C1

,

where W and H denote the output feature map’s width and height, K1 and K2 refer to the
convolution kernel’s size, C1 signifies the kernel’s channel count, and C2 stands for the
output feature map’s channel count. When C1 is substantial, GSConv’s computational
complexity approaches 50% of SC. In the original backbone network of YOLOv8, the
intermediate feature maps from conventional convolution computations exhibit significant
redundancy, resulting in increased computational costs. Addressing the challenge of
reducing algorithmic expenditure while preserving algorithm performance is the focus of
this section, achieved through modifications in two modules.
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Figure 3. Structure of the GSConv module.

Simultaneously, the basic structure of the C3 and C2f modules follows a Cross-Stage
Partial Network (CSP) architecture, differing primarily in the selection of correction units.
While C3 provides feature expressiveness requisite for vehicle detection tasks, it maintains
a lighter structure more suitable for drone deployment. Consequently, the C2f module
has been supplanted by the C3 module, effectively reducing computational burdens while
sustaining high performance. The module’s structure, as depicted in Figure 4, routes
the feature map into two paths after entering C3: the left path traverses a Conv and a
bottleneck, while the right path undergoes a single Conv operation. Eventually, the outputs
from both paths are concatenated and processed through another Conv layer. Within C3,
the three Conv modules, each being a 1 × 1 convolution, handle dimensionality reduction
or expansion. The bottleneck in the backbone employs residual connections comprising
two Convs: the first is a 1 × 1 convolution, halving the channel count, followed by a
3 × 3 convolution, doubling the channel count. This initial reduction aids the convolutional
kernel in better grasping feature information, while the subsequent expansion enables the
extraction of more detailed features. Finally, the residual structure, combining the input
and output, prevents gradient vanishing issues.

Figure 4. Structure of the C3 module.

3.1.3. Feature Extraction Optimization

To enhance vehicle detection accuracy in drone-captured scenes, we introduce two
pivotal attention mechanisms: CoordAtt and shuffle attention. These mechanisms aim to
bolster the model’s ability to identify smaller or occluded vehicles, thereby enhancing detec-
tion performance from the drone’s perspective. Below, we detail our attention mechanisms
and explore their roles and advantages within the optimized lightweight network.

Primarily, a CoordAtt module is incorporated after each C3 module with the aim
of directing the model’s attention to features at different locations, which is particularly
significant for addressing small vehicles or local regions that may appear in the UAV
perspective. The network structure of the CoordAtt module is illustrated in Figure 5.
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Figure 5. The schematic diagram of the CoordAtt module.

CoordAtt integrates positional data within channel attention, skillfully avoiding two-
dimensional global pooling by decomposing channel attention into two one-dimensional
feature encodings [39]. This approach astutely aggregates the input features into two
independently directional-aware feature maps, vertically and horizontally. These maps
not only embed directional information but also capture long-range spatial dependencies
along the spatial axis through two attention maps generated by encoding. Eventually,
multiplying these two attention maps with the input feature map highlights the expressions
of the regions of interest.

While embedding coordinate information, the challenge of retaining positional data
arises in global pooling. Hence, capturing through horizontal and vertical decomposed
pooling is executed. Specifically, for each feature output, representation occurs as follows:

zch(h) =
1

W

W−1

∑
i=0

xc(h, i),

zcw(w) =
1
H

H−1

∑
j=0

xc(j, w),

where H and W represent the height and width of the pooling kernel. These transformations
aggregate features from two spatial directions, forming a pair of directional-aware feature
maps while capturing dependencies and preserving positional information.

The generation of coordinated attention undergoes concatenation, followed by subse-
quent 1 × 1 convolutions. Spatial data in both vertical and horizontal spaces are encoded
through BatchNorm and nonlinear activations. These encoded data are segmented and
then adjusted in channel size using another 1 × 1 convolution to align with the input.
The entire process concludes by normalizing and weighted fusion through the sigmoid
function:

yc(i, j) = xc(i, j) · gh
c (i) · gw

c (j),

where xc(i, j) represents the input feature map, whereas gh
c (i) and gw

c (j) denote attention
weights in two spatial directions.

Subsequently, the introduction of the channel attention mechanism, namely shuffle
attention, is implemented. This mechanism aids in enhancing the network’s efficiency in
utilizing features from different channels. By rearranging and integrating feature channels,
shuffle attention directs the network’s focus toward crucial channel information, contribut-
ing to improved feature distinctiveness, especially in scenarios involving occluded vehicles.
The network structure of the shuffle attention module is illustrated in Figure 6.
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Figure 6. Structure of the shuffle attention module.

For the task of drone-based vehicle recognition, the SA module implements an innova-
tive and efficient attention mechanism by embedding positional information into channel
attention [40]. To retain this information, the module abstains from utilizing 2D global
pooling, instead proposing the decomposition of channel attention into two parallel 1D
feature encodings. This approach aggregates the input features into two directional-aware
feature maps along both the vertical and horizontal axes. These feature maps encompass
embedded direction-specific information, encoding it into two attention maps, each captur-
ing long-range spatial dependencies of the input feature map. Thus, positional information
is stored within the generated attention maps. Finally, the product of these two attention
maps is applied to the input feature map, emphasizing the expressions of the regions
of interest.

For a given input feature map x ∈ RC×W×H , C, H, and W represent the number of
channels, height, and width, respectively. Initially, the feature map X is segmented into G

groups along the channel dimension, denoted as X = [X1, . . . , XG], with Xi ∈ R(
C
G )×W×H .

Subsequently, each group is further divided into two branches along the channel direction,

Xi1, Xi2 ∈ R

(
C
G
2

)
×W×H

. One branch leverages inter-channel relationships to generate a
channel attention map, while the other branch employs spatial attention maps between fea-
tures.

Regarding channel attention, shuffle attention employs a lightweight strategy [41],
combining global average pooling, scaling, and an activation function to achieve a bal-
ance between speed and precision in the drone environment. The specific mathematical
formulations are as follows:

s = fgp(Xi1) =
1

H × W

H

∑
x=1

W

∑
y=1

Xi1(x, y),

X′
i1 = σ( fc(s))× Xi1 = σ(w1s + b1)× Xi1,

where w1, b1 ∈ R

(
C
G
2

)
×1×1

represents the network’s trainable parameters and σ denotes
the sigmoid activation function.

Concerning spatial attention, to complement channel attention, group normalization
operations are introduced. The specific mathematical expression is outlined below:

X′
i2 = σ(w2 × GN(Xi2 + b2)× Xi2),
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where w2, b2 ∈ R

(
C
G
2

)
×1×1

represents the network’s trainable parameters and σ indicates
the sigmoid activation function.

Following attention learning and feature recalibration, aggregation of the two branches

is required to obtain X′
i =

[
X′

i1, X′
i2
]
∈ R(

C
G )×W×H . Then, aggregation of all sub-features

and channel mash operations are performed.
Through the introduction of these two attention mechanisms, the model aims to better

capture crucial features in drone-captured scenes, enhancing the accuracy in detecting
small or obscured vehicles.

3.2. The Model Parameters of Aero-YOLO

For Aero-YOLO, we introduce three new sets of model parameters: Aero-YOLO
(extreme), Aero-YOLO (ultra), and Aero-YOLO (omega). The parameter models of Aero-
YOLO are presented in Table 1. They strike a balance between model performance and
computational complexity, offering adaptability and versatility across various applica-
tion scenarios.

1. Aero-YOLO (extreme): Prioritizes performance enhancement while focusing on
improving computational efficiency. It involves a moderate reduction in model size,
suitable for resource-constrained scenarios with extensive datasets.

2. Aero-YOLO (ultra): Aims to achieve a comprehensive balance by adjusting the pro-
portions of depth, width, and channel numbers. This adjustment seeks the optimal
equilibrium among performance, computational complexity, and resource utilization,
suitable for general-purpose application scenarios.

3. Aero-YOLO (omega): Emphasizes maintaining high performance while reducing
computational complexity. It concentrates on optimizing extreme scenarios and
complex environments within object detection to achieve more precise detection and
localization.

The introduction of these three parameter models enriches the selection range of Aero-
YOLO, better meeting diverse requirements across different tasks and environments. The
subsequent versions of Aero-YOLO, namely Aero-YOLO (omega), Aero-YOLO (ultra), and
Aero-YOLO (extreme), are abbreviated as Aero-YOLOo, Aero-YOLOu, and Aero-YOLOe,
respectively. To provide a clearer demonstration of the model’s architecture, the parameters
of the backbone and head layers of the Aero-YOLO model are displayed in Tables 2 and 3.

Table 1. Summary of Aero-YOLO models by depth, width, max. channels, and layers.

Model Depth Width Max. Channels Layers

n 0.33 0.25 1021 225
s 0.33 0.50 1021 225
m 0.67 0.75 768 295
l 1.00 1.00 512 365
x 1.00 1.25 512 365
e 1.33 1.25 256 513
u 1.33 1.25 512 513
o 1.66 1.50 256 583
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Table 2. Aero-YOLO’s backbone layer parameters.

Layer Type Parameters

1 GSConv [−1, 1, GSConv, [64, 3, 2]]
2 GSConv [−1, 1, GSConv, [128, 3, 2]]
3 C3 [−1, 3, C3, [128, True]]
4 GSConv [−1, 1, GSConv, [256, 3, 2]]
5 C3 [−1, 6, C3, [256, True]]
6 CoordAtt [−1, 1, CoordAtt, []]
7 GSConv [−1, 1, GSConv, [512, 3, 2]]
8 C3 [−1, 6, C3, [512, True]]
9 CoordAtt [−1, 1, CoordAtt, []]
10 GSConv [−1, 1, GSConv, [1024, 3, 2]]
11 C3 [−1, 3, C3, [1024, True]]
12 CoordAtt [−1, 1, CoordAtt, []]
13 SPPF [−1, 1, SPPF, [1024, 5]]

Table 3. Aero-YOLO’s head layer parameters.

Layer Type Parameters

1 nn.Upsample [None, 2, ‘nearest’]
2 Concat [−1, 8], 1, Concat, [1]
3 C2f [−1, 3, C2f, [512]]
4 nn.Upsample [None, 2, ‘nearest’]
5 Concat [−1, 3], 1, Concat, [1]
6 C2f [−1, 3, C2f, [256]]
7 Shuffle Attention [−1, 1, Shuffle Attention, [16, 8]]
8 GSConv [−1, 1, GSConv, [256, 3, 2]]
9 Concat [[−1, 15], 1, Concat, [1]]
10 C2f [−1, 3, C2f, [512]]
11 Shuffle Attention [−1, 1, Shuffle Attention, [16, 8]]
12 GSConv [−1, 1, GSConv, [512, 3, 2]]
13 Concat [[−1, 12], 1, Concat, [1]]
14 C2f [−1, 3, C2f, [1024]]
15 Detect [[18, 21, 24], 1, Detect, [nc]]

4. Experiments and Results
4.1. Datasets and Experimental Details
4.1.1. VisDrone2019 Dataset

The VisDrone2019 dataset, collected by the AISkyEye team at Tianjin University,
stands as a significant dataset for object detection. It comprises images captured from
drone perspectives, along with corresponding annotation files, serving the purpose of
training and evaluating computer vision algorithms. With over 10,000 images, it includes
6471 training, 548 validation, 1610 test, and 1580 competition images. The images exhibit
diverse sizes ranging from 2000 × 1500 to 480 × 360, encompassing scenes spanning streets,
squares, parks, schools, and residential areas, with shooting conditions varying from ample
daytime lighting to inadequate nighttime lighting, cloudy, strong light, and glare. The
detailed annotation files meticulously catalog ten different object categories depicted in the
images, such as pedestrians, bicycles, cars, trucks, tricycles, canopy tricycles, buses, and
motorcycles.

4.1.2. UAV-ROD Dataset

The UAV-ROD dataset comprises 1577 images, encompassing 30,090 annotated vehicle
instances delineated by oriented bounding boxes. Image resolutions are set at 1920 × 1080 and
2720 × 1530 pixels, with drone flight altitudes ranging from 30 to 80 meters. Encompassing
diverse scenes such as urban roads, parking lots, and residential areas, the dataset provides
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a rich array of visual contexts. It is segmented into training and testing subsets, comprising
1150 and 427 images, respectively.

4.1.3. Experimental Environment

In this study, experiments were conducted using PyTorch 2.0.0 based on GPU for
the experimental setup. PyTorch utilizes CUDA 11.8 to support the parallel computation
of the YOLOv8 deep learning model. Leveraging GPU and CUDA, we accelerated the
computational processes and employed the PyTorch framework for model construction
and training. For the detailed configuration specifics of the experimental setup, refer to
Table 4.

Table 4. Experimental setting.

Device Configuration

CPU 13th Gen. Intel(R) Core(TM) i9-13900K
GPU NVIDIA GeForce RTX 4090

System Windows 10
Framework Pytorch 2.0.0

IDE Pycharm 2022.2.2
Python version version 3.10.9

4.1.4. Evaluation Metrics

This study conducted a comprehensive assessment of the proposed method, examining
its performance in terms of detection accuracy and model parameter size. Multiple metrics
were utilized to evaluate the model performance, including precision (P), recall (R), average
precision (AP), F1-score, and mean average precision (mAP). P gauges the accuracy of the
model in predicting positive classes, whereas R measures the model’s capability to identify
true-positive classes. The F1-score is a comprehensive metric that balances precision and
recall, representing their harmonic mean. AP signifies the area enclosed by the precision–
recall curve, offering an assessment of overall model performance. Additionally, mAP
measures the average precision across all object categories, providing a holistic view to
evaluate the model’s performance in recognizing multiple classes. The equations for these
metrics are illustrated in Formulas (1)–(5):

P =
TP

(TP + FP)
, (1)

R =
TP

(TP + FN)
, (2)

AP =
∫ 1

0
p(r) dr, (3)

mAP =
1
k

k

∑
i=1

APi, (4)

F1 = 2 · P · R
P + R

. (5)

Furthermore, the number of model parameters (Params) represents the count of param-
eters (i.e., weights) the model uses to learn patterns from training data; more parameters
indicate increased model complexity. The Giga Floating-Point Operations (GFLOPs) is a
unit used to measure the total number of floating-point operations performed in a com-
puter, where 1 GFLOP is equivalent to 109 Floating-Point Operations (FLOPs). GFLOPs
is commonly used to assess the computational requirements of deep learning models,
especially in tasks that demand substantial computing resources. The Frames per Second
(FPS) metric signifies the speed at which the model analyzes images during target detection,
serving as an indicator of its detection efficiency. Evaluating the real-time performance
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of the model in detection tasks allows for the examination of the dynamic relationship
between accuracy and FPS. Consequently, both FPS and accuracy play pivotal roles in
determining the model’s applicability in practical scenarios.

4.2. Results on the VisDrone2019 Dataset

A series of experiments was conducted on the VisDrone2019 dataset to showcase the
advantages of the proposed architecture. Comparative experiments involved widely used
methods like YOLOv5, YOLOv8 improved with MobileNetv3, MobileNetv2-SSD [42], the
method proposed by Li et al [43], and the original YOLOv8. Apart from the standard
YOLOv8 model, we presented three novel parameter configurations—Aero-YOLOe, Aero-
YOLOu, and Aero-YOLOo—with all training and testing processes employing identical
default runtime settings and image processing rules.

Figure 7 illustrates the performance of various experimental models concerning their
AP values. On the VisDrone dataset, the Aero-YOLO network consistently leads in almost
all precision metrics. The assessment distinctly indicates that the Aero-YOLO series outper-
forms both the YOLOv5 and fundamental YOLOv8 models. Notably, Aero-YOLOe, Aero-
YOLOu, and Aero-YOLOo exhibit significant improvements, emphasizing their prowess in
object detection. For instance, Aero-YOLOe achieves an mAP@0.5 of 0.434, marking a 9.0%
increase over the baseline YOLOv5l and a 4.6% rise over the YOLOv8l-based model.

Figure 8 showcases the performance of all experimental models in terms of F1 and P
values. The Aero-YOLO series demonstrates a pronounced advantage in F1 values. For
example, Aero-YOLOo, Aero-YOLOu, and Aero-YOLOe all achieve an F1-score of 0.47,
surpassing the performance of YOLOv5, the MobileNetv3 series, and the basic YOLOv8
model. Compared to the baseline YOLOv5l, the F1-score shows an improvement of 6.8%
and a 2.1% increase relative to the YOLOv8l-based model. This signifies the superior per-
formance of the Aero-YOLO model in balancing precision and recall. In terms of R values,
the Aero-YOLO series exhibits competitiveness, surpassing other models. Aero-YOLOe
achieves an R value of 0.63, marking a 6.8% improvement over the baseline YOLOv5l and a
3.2% increase over the YOLOv8l-based model. The overall trend indicates a proportional
increase in R values with the increment of the model scale.

Figure 7. Vertical drop lines of mAP@50 for various models (MobileNetv2-SSD [42]; Li et al. [43]) .
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Figure 8. F1-score and precision bar charts.

To further explore the complexity and computational efficiency of our proposed
method, Figure 9 illustrates the Params, GFLOPs, and FPS. Compared to the baseline
YOLOv8 model, Aero-YOLO exhibits reductions of approximately 23% in the Params
and 22% in the GFLOPs, and it also demonstrates a significant advantage in FPS. These
improvements stem from Aero-YOLO’s substitution of the original YOLOv8 Conv and C2f
modules with GSConv and C3f modules, resulting in a more streamlined model structure.
The adoption of Aero-YOLO significantly alleviates the computational burden on-board
drones and achieves a well-balanced lightweight model, ideal for resource-constrained
environments such as unmanned aerial vehicles.

Figure 9. Params, GFLOPs, and FPS bar charts (MobileNetv2-SSD [42]; Li et al. [43]) .

Overall, Aero-YOLO performed exceptionally well in drone vehicle detection tasks,
reducing the Params and GFLOPs while improving model accuracy, showcasing the effec-
tiveness of our model in experimental settings.

The experimental outcomes of our Aero-YOLO model are visually depicted in
Figures 10 and 11, with detected objects delineated by rectangles and annotated with
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their predicted categories. Figure 10 showcases selected instances of vehicles under vari-
ous conditions, encompassing both daytime and nighttime scenarios, as well as diverse
angles and altitudes. The majority of vehicles in these images were accurately detected.
Particularly notable is our algorithm’s capability to identify vehicles partially obscured at
image edges or occluded, underscoring its robust ability to detect vehicle objects from UAV
images.

Figure 10. Samples of vehicle recognition under varying lighting and weather conditions and
crowded backgrounds were collected.

In Figure 11, images exhibiting erroneous detections or undetected elements are
presented. It can be observed that most false detections occurred in images captured from
high altitudes and those containing vehicles with significant size disparities, indicating the
potential for improvement in the proposed detector. Further inspection reveals instances of
missed detections in many distant, densely packed vehicles and small targets, emphasizing
the ongoing challenge of detecting occluded objects. Moreover, certain real objects were
inaccurately labeled; for instance, in the first image of the last row in Figure 11, a trash
bin was misidentified as a pedestrian. We acknowledge that mislabeled real objects might
impact the model’s training and experimental evaluations. However, rectifying all labels
within this training dataset poses a challenging task.
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Figure 11. Samples of vehicle recognition under varying lighting and weather conditions and
crowded backgrounds were collected.

4.3. Results on the UAV-ROD Dataset

Based on the results presented in Table 5, comparative experiments were conducted on
the UAV-ROD dataset using the Aero-YOLO model. As the model size increased from Aero-
YOLOn to Aero-YOLOo, there was an improvement in accuracy, albeit accompanied by a
proportional increase in model parameters and computational complexity. Concurrently,
the Aero-YOLO model demonstrated superiority across most metrics, particularly excelling
in mAP50-95 compared to other models. Compared to the YOLOv8 series and other popular
object detection models, Aero-YOLO exhibits better performance, further validating its
significant advantage in the field of unmanned aerial vehicle object detection, especially
concerning small object handling and high-precision detection.
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Table 5. Comparison experiment of Aero-YOLO on the UAV-ROD dataset.

Methods P R mAP@50 mAP50-95 Params (M) GFLOPs

Aero-YOLOn 0.980 0.971 0.993 0.916 27.7 6.7
Aero-YOLOs 0.984 0.975 0.993 0.93 99 22.3
Aero-YOLOm 0.987 0.974 0.994 0.936 201.1 61.8
Aero-YOLOl 0.989 0.977 0.994 0.941 440 125.9
Aero-YOLOx 0.99 0.976 0.994 0.945 531 196.6
Aero-YOLOe 0.989 0.977 0.994 0.944 254.9 149.9
Aero-YOLOu 0.991 0.98 0.995 0.946 634.1 235.1
Aero-YOLOo 0.992 0.979 0.996 0.947 415.8 247.3

YOLOv8n 0.974 0.961 0.991 0.88 30.1 8.1
YOLOv8s 0.985 0.963 0.991 0.911 111.3 28.4
YOLOv8m 0.984 0.969 0.993 0.925 258.4 78.7
YOLOv8l 0.986 0.975 0.993 0.932 436.1 164.8
YOLOv8x 0.985 0.977 0.993 0.934 681.2 257.4

R-RetinaNet 0.968 0.942 0.977 0.885 36.3 9.2
Faster R-CNN 0.972 0.951 0.980 0.912 41.4 11.7

TS4Net 0.977 0.952 0.981 0.906 37.6 9.4
YOLOv5m-CSL 0.936 0.927 0.943 0.844 20.8 6.1

CFC-Net 0.981 0.972 0.993 0.924 37.5 9.4

Figure 12 presents selected visualizations from the UAV-ROD dataset, showcasing
our method’s precise vehicle detection across various backgrounds, encompassing urban
roads, residential areas, and roadsides. Even among densely packed vehicles, our approach
adeptly discriminated each vehicle.

Figure 12. Visual demonstrations of precise vehicle detection across diverse backgrounds in the
UAV-ROD dataset.
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4.4. Ablation Experiments

A series of ablation experiments was conducted on the VisDrone dataset to investigate
the impact of different network structures on the final detection outcomes. The results
are summarized in Table 6. We sequentially modified the networks with the GSConv, C3,
double shuffle attention, and CoordAtt modules while changing the optimizer to SGD,
leading to the development of Aero-YOLO. Each model underwent metric evaluation on
the VisDrone2019-Val dataset under consistent hyperparameters: input image size of 640 ×
640, batch size set to 8 for all models, and training epochs fixed at 100.

Table 6. Ablation experiment of Aero-YOLO on the VisDrone2019 dataset.

Method Size R mAP@50 F1 Params (M) GFLOPs

YOLO v8

n 0.49 0.295 0.33 3.2 8.7
s 0.55 0.360 0.40 11.2 28.6
m 0.59 0.392 0.43 25.9 78.9
l 0.61 0.415 0.46 43.7 165.2
x 0.61 0.422 0.46 68.2 257.8

YOLO v8 + GSConv

n 0.48 0.287 0.32 2.82 7.8
s 0.55 0.355 0.39 10.36 26.8
m 0.58 0.387 0.42 24.44 75.2
l 0.60 0.410 0.45 41.69 158.9
x 0.60 0.417 0.45 65.12 248.0

YOLO v8 + GSConv + C3

n 0.47 0.274 0.31 2.55 7.0
s 0.54 0.352 0.39 9.29 23.1
m 0.58 0.384 0.42 20.89 62.1
l 0.60 0.406 0.45 34.69 125.9
x 0.60 0.412 0.45 54.18 196.4

YOLO v8 + GSConv + C3
+ Double Shuffle
Attention + Adam

n 0.48 0.294 0.33 2.77 7.3
m 0.58 0.383 0.41 22.22 64.2
x 0.62 0.411 0.44 57.63 201.9

YOLO v8 + GSConv + C3
+ Double Shuffle
Attention + SGD

n 0.49 0.293 0.33 2.77 7.3
s 0.55 0.355 0.39 9.95 24.8
m 0.59 0.391 0.43 22.22 64.2
l 0.61 0.414 0.45 36.90 129.5
x 0.62 0.422 0.46 57.63 201.9

Aero-YOLO

n 0.49 0.286 0.33 2.40 7.0
s 0.56 0.353 0.39 9.91 22.6
m 0.60 0.389 0.42 20.12 62.2
l 0.61 0.415 0.45 34.02 126.6
x 0.63 0.431 0.47 53.13 197.4
e 0.63 0.434 0.47 25.51 150.7
u 0.64 0.436 0.47 63.44 236.0
o 0.63 0.439 0.47 41.61 248.4

Replacing YOLOv8’s Conv module with GSConv and C2f with C3 notably decreased
both the GFLOPs and Params, resulting in a marginal decline in the mAP@0.5, F1, and R
metrics. Striking a balance between model size and performance in aerial imagery, where
sacrificing a slight performance margin facilitated substantial reductions in the GFLOPs
and Params, emerged as a more significant consideration. Integrating a dual-layer shuffle
attention mechanism into YOLOv8’s head segment saw a maximum 6.9% improvement
in mAP@50, enhancing recognition of intricate details in specialized vehicles and thereby
augmenting detection capabilities. The comparison between the Adam [44] and SGD
optimizers indicated superior model performance with SGD.

To seamlessly incorporate the CoordAtt module into the backbone network, parameter
adjustments were executed without inflating the GFLOPs or Params. However, improve-
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ments in the R, mAP@0.5, and F1 metrics demonstrated the efficacy of the CoordAtt module
modifications in enhancing detection accuracy.

Overall, the Aero-YOLO series maintains relatively high detection performance while
reducing model parameters, showcasing its potential and advantages in lightweight object
detection.

5. Conclusions and Future Outlook

The realm of aviation imagery poses numerous challenges, encompassing small target
sizes, low resolution, occlusions, variations in pose, and scale, all significantly impacting
the performance of many object detectors. Throughout the detection process, there remains
a perpetual need to strike a balance between accuracy and inference efficiency. In response
to this challenge, we introduce Aero-YOLO, an unmanned aerial vehicle (UAV) object
detection algorithm. We propose three novel parameter configurations aimed at bolstering
feature extraction capabilities while concurrently reducing computational requirements.
Specifically, we replace the C2f module in the backbone network with C3, substitute the
Conv module with GSConv, and introduce the CoordAtt and shuffle attention mechanisms
in both the backbone and head.

When evaluated on the VisDrone2019 dataset using the parameter specifications (n, s,
m, l, x) of YOLOv8, Aero-YOLO exhibits a 23% reduction in parameters while maintaining
close proximity to its F1, R, and mAP@50 metrics. Under the new parameter settings,
Aero-YOLOe aligns its parameter count with YOLOv8m, yet demonstrates significant im-
provements in the F1, mAP, and R indicators. Additionally, experiments conducted on the
UAV-ROD dataset demonstrate Aero-YOLO’s consistent excellence, affirming its superior
performance in UAV-based vehicle recognition. Although Aero-YOLO has improved the
accuracy of target detection, it has not effectively addressed the issue of identifying vehicles
that are occluded or blurred. In our forthcoming research, we plan to delve deeper into the
Aero-YOLO algorithm to better address issues related to occlusion and target blurring. Ad-
ditionally, the future stages of the project will involve field-testing the proposed algorithm
to validate its performance in real-world scenarios.
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Appendix A

In the text, we employ abbreviated forms for certain phrases, such as abbreviating “You
Only Look Once” to “YOLO”. For reader convenience, these abbreviations are compiled in
Table A1.

Table A1. Table of Terminology Abbreviations.

Full Name Abbreviation

unmanned aerial vehicles UAVs
You Only Look Once YOLO

Adaptive Moment Estimation Adam
Stochastic Gradient Descent SGD

CSPDarknet53 to Two-Stage FPN C2f
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Table A1. Cont.

Full Name Abbreviation

Aero-YOLO (extreme) Aero-YOLOe
Aero-YOLO (ultra) Aero-YOLOu

Aero-YOLO (omega) Aero-YOLOo
Google Inception Net GoogleNet

Deeper Receptive Field Block DRFB
Vision Transformer Detector ViTDet

Spatial Pyramid Pooling Fusion SPFF
state of the art SOTA

non-maximum suppression NMS
Cross-Stage Partial Network CSP

precision P
recall R

average precision AP
mean average precision mAP

number of model parameters Params
Giga Floating-Point Operations GFLOPs

Floating-Point Operations FLOPs
Frames per Second FPS
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