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Abstract: Sign Language Recognition (SLR) systems are crucial bridges facilitating communication
between deaf or hard-of-hearing individuals and the hearing world. Existing SLR technologies,
while advancing, often grapple with challenges such as accurately capturing the dynamic and
complex nature of sign language, which includes both manual and non-manual elements like facial
expressions and body movements. These systems sometimes fall short in environments with different
backgrounds or lighting conditions, hindering their practical applicability and robustness. This study
introduces an innovative approach to isolated sign language word recognition using a novel deep
learning model that combines the strengths of both residual three-dimensional (R3D) and temporally
separated (R(2+1)D) convolutional blocks. The R3(2+1)D-SLR network model demonstrates a superior
ability to capture the intricate spatial and temporal features crucial for accurate sign recognition. Our
system combines data from the signer’s body, hands, and face, extracted using the R3(2+1)D-SLR
model, and employs a Support Vector Machine (SVM) for classification. It demonstrates remarkable
improvements in accuracy and robustness across various backgrounds by utilizing pose data over
RGB data. With this pose-based approach, our proposed system achieved 94.52% and 98.53% test
accuracy in signer-independent evaluations on the BosphorusSign22k-general and LSA64 datasets.

Keywords: sign language recognition; deep learning; feature fusion

1. Introduction

People express their thoughts, feelings, and intentions through verbal communication,
namely, speaking. However, many deaf or hard-of-hearing people have trouble speaking
and understanding what is being said. According to the World Federation of the Deaf,
there are over 70 million deaf people worldwide, with more than 80 percent living in
developing countries [1]. Many of these deaf and hard-of-hearing people use visual signs
known as sign language to communicate with one another, rather than spoken words or
auditory phrases [2]. These visual signs comprise a mix of manual features—including
hand shape, posture, position, and movement—and non-manual features, such as head
and body posture, facial expressions, and lip movements [3]. The primary method of
communication for deaf people is sign language. Ordinary people cannot understand most
signs without training, and the number of interpreters in the community is insufficient,
creating a communication barrier between the deaf and the community [4]. Consequently,
many deaf individuals may find it challenging to form social relationships and encounter
numerous barriers in education, healthcare, and employment. This results in feelings of
social isolation and loneliness. Technological advancements have spurred the development
of Sign Language Recognition (SLR) studies aimed at addressing this issue.

The primary objective of SLR studies is to develop algorithms and methods for accu-
rate sign recognition. When deaf people’s gestures are translated into spoken or written
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language, ordinary hearing people can understand them. Therefore, SLR technologies
promote the integration of the deaf minority by eliminating the linguistic barrier between
them and the hearing majority [4]. SLR is crucial not only for facilitating communication
between deaf and hearing communities but also for increasing the content available to the
deaf, through initiatives like developing accessible educational tools, games for the deaf
community, and creating visual dictionaries of sign language [5]. Developments in the field
of deep learning have significantly impacted SLR studies.

In recent years, deep learning methods have succeeded significantly in image and
video processing areas [6–9]. This progress has had a significant impact on SLR work,
improving the accuracy and efficiency of these systems. Existing techniques based on deep
learning are generally based on Convolutional Neural Networks (CNNs). Thus, 2D-CNNs
have been used to recognize 2D static images such as sign alphabets or sign digits [10–12].
However, 2D-CNNs alone cannot extract temporal features of sign language words and
sentences composed of video frames. This problem has been overcome by first using 2D-
CNNs to create representations of video frames and then using Recurrent Neural Network
(RNN) such as Long Short-Term Memory (LSTM) networks [13], Bidirectional LSTM (Bi-
LSTM) networks [5], or transformers [14] to extract temporal information. Other structures
that capture spatial and temporal information in videos are 3D-CNN [15], formed by
adding a third dimension to the 2D convolution process, and (2+1)D-CNNs [16], obtained
by combining 2D and 1D convolution. For the SLR task, researchers have often used 3D-
CNNs [17–19] and (2+1)D-CNNs [20–22]. Although these models are frequently used in the
SLR task, there is rarely any research [23,24] investigating the possibility of building a new
deep learning model with 3D-CNN and (2+1)D-CNN. In this context, this study develops an
innovative deep learning model based on the fusion of the block structures of both methods
to take advantage of the advantages of 3D-CNN and (2+1)D-CNN. The resulting model is
expected to exhibit a more effective feature extraction and classification performance.

Despite the success of deep learning methods in the SLR task, significant challenges
still need to be addressed. In particular, signer differences between signers complicate the
recognition process, so the developed systems must perform with high accuracy while being
signer-independent [25]. A complete SLR system should consider facial expressions [26,27],
body language, and hand gestures since a holistic evaluation of these features is essential
for full SLR [28,29]. The dynamic nature of sign language requires integrating both spatial
and temporal dimensions of the data, which necessitates the creation of efficient models
that can capture both spatial and temporal information. Background differences, varying
lighting conditions, and various visual clutter also pose additional challenges for algorithms
to correctly recognize and discriminate sign words [30,31]. The development of real-
time applications places high demands on computational power and significant efforts
to keep algorithms running fast and accurate [32]. Overcoming these challenges requires
in-depth research and innovative developments in the field of SLR. Only in this way can the
communication barriers between sign language users and the wider society be overcome,
enabling both parties to better understand and interact.

The motivation of our research is to overcome the current challenges in SLR technology
and to facilitate the communication of hearing-impaired individuals in society by enabling
the conversion of sign language gestures into text or speech with the SLR system we
develop. In this context, our research aimed to increase the accuracy and efficiency of the
SLR process, thereby expanding social integration and communication opportunities for
hearing-impaired individuals. In this way, it aimed to build bridges of interaction between
individuals using sign language and the hearing community so that both groups can better
understand and interact with each other.

For this purpose, we are developing a robust and highly accurate system for rec-
ognizing isolated sign language words. This system is based on a novel R3(2+1)D-SLR
network that combines the advantages of 3D and (2+1)D convolutional blocks. Designed to
efficiently extract both spatial and temporal features, this network enhances the precision
of SLR. Our approach aims to create a comprehensive and accurate recognition system by
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fusing the features of the sign components (body, hands, and face) extracted from R3(2+1)D-
SLR to classify them with SVM. Moreover, by basing our proposed system on pose data,
we enhance its robustness to changing background conditions and performance challenges
in real-world scenarios, thereby improving SLR accuracy irrespective of background noise.

In conclusion, this research aims to contribute to the elimination of communication
barriers between hearing-impaired individuals and the general public and to make signifi-
cant advances in SLR technology. We briefly summarize the contributions of this study to
the literature as follows:

• We introduce a novel R3(2+1)D-SLR network that innovatively merges R(2+1)D and
R3D blocks for enhanced sign language interpretation, offering a deeper understand-
ing of both spatial and temporal dimensions of sign language.

• Utilizing the advanced capabilities of the MediaPipe library, our study leverages high-
precision pose data to extract detailed spatial and temporal features. This methodology
allows for a more accurate and nuanced understanding of sign language gestures,
improving the model’s performance.

• We achieve a comprehensive SLR system by integrating and classifying complex fea-
tures from the body, hands, and face, utilizing SVM for superior accuracy, highlighting
our approach’s effectiveness in capturing the nuances of sign communication.

• Incorporating real-world backgrounds in our testing datasets underlines our system’s
adaptability and reliability in diverse environments, addressing a critical challenge
in SLR.

• Our strategic use of pose images to enhance system robustness against variable back-
grounds showcases our commitment to developing practical, real-world SLR solutions.

The rest of the paper is organized as follows: Section 2 presents the literature review;
Section 3 presents the proposed R3(2+1)D-SLR model and feature fusion-based system;
Section 4 presents the experiments and results; Section 5 concludes the paper.

2. Related Literature

This section reviews recent advancements in vision-based isolated SLR, focusing on
research involving the BosphorusSign22k-general [33,34] and LSA64 [35] datasets, and
discusses methodological approaches in the field.

In studies on the BosphorusSign22k-general subset, consisting of 174 isolated Turkish
Sign Language words, Kindiroglu et al. [36] developed a feature set named Temporal
Accumulative Features (TAF) for the isolated SLR task. This feature set is based on the
temporal accumulation of heatmaps obtained from joint movements. This feature set aims
to recognize and classify sign language gestures by visually encoding how the movements
and hand shapes in sign language videos change over time. As a result of the classification
using CNN, a recognition accuracy of 81.58% was achieved. In their study, Gündüz and
Polat [19] adopted a multistream data strategy, leveraging information from the face, hands,
full body, and optical flow for training their Inception3D model. Additionally, for the LSTM
network, they focused on utilizing data related to body and hand pose data. By integrating
the feature streams generated from these models, they inputted the combined data into a
dual-layer neural network. This innovative approach increased the accuracy from 79.6%
to an impressive 89.3% on the BosphorusSign22k-general dataset using full-body data,
demonstrating the significant impact of various feature combinations on SLR research.

Regarding studies on the LSA64 dataset containing 64 Argentine Sign Language words,
Ronchetti et al. [37] proposed a probabilistic model that combines sub-classifiers based
on different types of features such as position, movement, and hand shape, achieving an
accuracy of 97% on the LSA64 dataset, in addition to an average accuracy of 91.7% in their
signer-independent evaluation. Rodriguez et al. [38] proposed a model using cumulative
shape difference with SVM and achieved 85% accuracy on the LSA64 dataset. Konstan-
tinidis et al. [39] proposed a model based on processing hand and body skeletal features
extracted from RGB videos using LSTM layers and late fusion of the processed features.
Their proposed model achieved 98.09% accuracy. In later work, the same authors [40]
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improved the performance of their method to 99.84% by adding additional streams that
process RGB video and optical flow data. Masood et al. [41] proposed a model that extracts
spatial features with CNN and then classifies them by extracting temporal features by
feeding the pool layer output into RNN before converting it into a prediction. Their model
achieved 95.2% accuracy in 46 subcategories of the LSA64 dataset. Zhang et al. [42] pro-
posed a neural network with an alternative fusion of 3D-CNN and Convolutional LSTM,
called a Multiple Extraction and Multiple Prediction (MEMP) network, to extract and
predict motion videos’ temporal and spatial feature information multiple times. On LSA64,
the network achieved an identification rate of 99.063%. Imran and Raman [43] used motion
history images, dynamic images, and RGB motion image templates, which can represent
a video in a single image, to fine-tune three pre-trained CNNs. By fusing the outputs of
these three networks with a fusion technique based on their proposed kernel-based extreme
learning machine, they achieved a 97.81% accuracy. The model proposed by Elsayed and
Fathy [44] using 3D-CNN followed by Convolutional LSTM achieved a 97.4% test accuracy
for 40 categories. Marais et al. [45] trained the Pruned VGG network with raw images
and achieved a 95.50% test accuracy. In another study by the same authors [46], using
the InceptionV3-GRU architecture, they achieved a 97.03% accuracy in signer-dependent
testing and 74.22% in signer-independent testing. Alyami et al. [47] classified the key points
extracted from the signer’s hands and face using a transformer-based model. On the LSA64
dataset, they achieved a 98.25% and 91.09% accuracy in signer-dependent and independent
modes, respectively. Furthermore, the combination of hand and face data improved the
recognition accuracy by 4% compared to hand data alone, emphasizing the importance of
non-manual features in recognition systems.

Rastgoo et al. [48] utilized a CNN-based model to estimate 3D hand landmark points
from images detected by a Single Shot Detector (SSD). They applied the singular value
decomposition method, a feature extractor, to the coordinates of these 3D hand key points
and the angles between the finger segments, fed the obtained features as input to the
LSTM, and predicted 100 Persian signs with a 99.5% accuracy. Samaan et al. [49] achieved
accuracies of 99.6%, 99.3%, and 100% in LSTM, Bi-LSTM, and GRU models, respectively,
on a ten-class dataset, utilizing pose landmark points derived from MediaPipe. Although
the test accuracy of the proposed method is high, the number of classes is quite low com-
pared to the number of words used in general sign language dictionaries. Castro et al. [50]
introduced a multi-stream approach involving processing summarized RGB frames, seg-
mented regions of the hands and face, joint distances, and artificially generated depth data
through a 3D-CNN. In this method, it was shown that the addition of artificial depth maps
increased the generalization capacity for different signers. Their method achieved a 91%
recognition accuracy on a dataset with 20 classes. Hamza et al. [51] obtained a 93.33%
recognition accuracy using the convolutional 3D model and data augmentation techniques
of transformation and rotation on a dataset of 80 classes, where each class contained very
few examples. This study demonstrated the effectiveness of data augmentation methods
on limited datasets. Laines et al. [52] presented an innovative approach to isolated SLR
using a Tree Structure Skeleton Image (TSSI) representation that converts pose data into
an RGB image, improving the accuracy of skeleton-based models for SLR. In the TSSI
representation, columns represent landmark points, rows capture the evolution of these
points over time, and RGB channels encode the (x, y, z) coordinates of the points. These data
were classified with DenseNet-121, achieving recognition accuracies of 81.47%, 93.13%, and
98% for datasets with 100, 226, and 30 classes, respectively. In particular, taking into account
critical components of sign language, such as facial expressions and detailed hand gestures,
significantly improved the accuracy of the model. In their study, Podder et al. [25] obtained
an 87.69% recognition accuracy on a dataset of 50 classes with their proposed MobileNetV2-
LSTM-SelfMLP model using MediaPipe Holistic-based face and hand-segmented data. The
method proposed by Jebali et al. [53] is an innovative training approach to SLR that incor-
porates an integrated approach of manual and non-manual features. Basically, using deep
learning models such as CNN and LSTM, a system is developed that can simultaneously
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process information from both hand gestures and non-manual components such as facial
expressions, and a significant improvement in system performance is observed with the
use of non-manual features. It achieved test accuracies of 90.12% and 94.87% on datasets
with 450 and 26 classes, respectively.

The real world for SLR recognition may not consist of a flat or fixed background
image, but all of the studies mentioned above were evaluated on images with a flat or
fixed background. Consequently, this study tested the proposed systems with varied
backgrounds added to the test datasets to better simulate real-world conditions. In addition,
the proposed R3(2+1)D-SLR network was trained separately for body, hands, and face
images obtained by extracting spatial and temporal features from each video with the help
of pose data, and the features were fused to classify with SVM for more accurate SLR.
Moreover, to make the proposed system more robust to different background conditions, it
is proposed to use images derived from pose data instead of standard raw images.

3. Methodology

In this section, the datasets used in the design of the proposed system, the data
preprocessing steps, the proposed deep learning model, the fusion technique used, and the
classification method are detailed. The diagram of the proposed final system is shown in
Figure 1.
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3.1. Datasets

The BosphorusSign22k dataset [33,34] comprises isolated Turkish sign words recorded
by six distinct signers. The dataset contains 744 sign words: 428 for health, 163 for finance,
and 174 for general use. In this study, the general sub-dataset comprising 174 sign word
classes containing a total of 5788 signs was used. Data providers set aside the signs created
by “User 4” as test data and all other signs as training data.

The LSA64 dataset [35] consists of 64 Argentine sign language words. The dataset
consists of 3200 videos in which ten signers repeat each sign five times. Signers were
recorded using colored gloves, with each hand receiving a different color. The dataset is not
explicitly separated into training and test sets. Therefore, based on studies in the literature,
the dataset was organized for three different experimental studies.

• Experiment 1 (E1): As in the study by Marais et al. [46], the 5th and 10th signers were
used as test data and the rest as training data.

• Experiment 2 (E2): Nine out of ten signers were allocated for training, with the
remaining one serving as test data. This procedure was iterated ten times, each time
selecting a different signer for testing.

• Experiment 3 (E3): The dataset underwent a random split, allocating 80% for training
and 20% for testing purposes.
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Adding Background Images to Test Datasets

Given that real-world data encompass a variety of backgrounds, analyzing sign lan-
guage videos against a uniform background may not yield a realistic assessment. In this
context, in order to better mimic real-world conditions, 40 different background images
selected from indoor and outdoor locations were specially added to the test videos in the
datasets. This approach was employed during the testing phase to assess the model’s SLR
proficiency across diverse backgrounds. Sample frames from the videos with a modified
background are presented in Figure 2.
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This procedure was applied only for the test set; no background changes were made to
the videos in the training set. The reason for this approach is to allow the model to learn on
a fixed background during the training process and then to objectively test how effectively
the model can recognize signs on different backgrounds during the testing process. This
methodology allows for a comprehensive evaluation of the model’s adaptability and
generalization to real-world scenarios.

3.2. Data Preprocessing
3.2.1. MediaPipe Holistic

Our study utilized pose data to extract the spatial and temporal features inherent
in sign language videos. To obtain the pose data, we utilized the Holistic solution of the
MediaPipe library [54], an open source library based on deep learning and computer vision
techniques. MediaPipe Holistic [55] detects up to 543 landmark points: 33 on the body, 468
on the face, and 21 on a single hand. Each landmark point consists of x, y, and z coordinates.
The x coordinate is the horizontal position of the landmark; the y coordinate is the vertical
position; and the z coordinate is the depth. This detailed pose information allows for a
more accurate extraction of spatial and temporal features from sign language word videos.

3.2.2. Spatial Sampling

To obtain spatial information, we first applied the MediaPipe Holistic method to
all image frames in each video in the datasets. Utilizing the x and y coordinates of the
landmark points, we segmented the images into body, hands, and face regions. After this
step, we resized the images to be used in the training process of our deep learning model.
We set the body and face images to a 112 × 112 resolution and the hands images to a
56 × 112 resolution. As a result of this process, focused data were generated so that our
model could analyze each component in detail. The resulting data are shown in Figure 3.

We also aimed to enable our system to recognize sign language signs with a high
accuracy and robustness, even under conditions of high background diversity and com-
plexity. For this purpose, we propose to update the traditional RGB video data used in our
system with pose data-based images obtained with MediaPipe Holistic. The pose images
corresponding to the RGB video data that we created for this purpose are given in Figure 4.
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During preprocessing, legs were omitted from body pose images, as they do not
influence sign interpretation. In addition, the face was removed from the body pose image
as it would be evaluated separately; instead, the head was painted with a solid color to
represent the posture position. In the hands pose images, a different color was assigned to
each finger in order to analyze the subtle nuances of hand gestures and sign language in
more detail. Additionally, we compared the efficacy of colored versus non-colored hands
pose images in capturing the nuances of sign language. This approach allows us to study
in detail the effect of color coding on the sign recognition capacity of our model. In the face
pose images, the eyebrows, eyes, and mouth are painted in different colors to more clearly
detect facial expressions and emotional expressions; especially the eyes and the inside of
the mouth are completely painted to emphasize opening and closing movements. This
detailed approach is expected to increase the robustness of our proposed SLR system to
background noise and improve accuracy rates through a comprehensive analysis of sign
language components.

3.2.3. Temporal Sampling

Temporal sampling was employed to adapt sign language videos for effective process-
ing by deep learning models. This is because deep learning models usually expect a fixed
size of data as input when training. Therefore, converting different lengths of videos into a
fixed size is a way to standardize the model’s training process and improve its efficiency. In
this process, we calculated the Manhattan distance between consecutive frames using the
x,y coordinates of the landmark points of each frame obtained using MediaPipe Holistic.
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And we repeated this process for all frames in the video. The formulation is given in
Equation (1):

Dk = ∑N
i=1

(∣∣∣xk
i − xk+1

i

∣∣∣+ ∣∣∣yk
i − yk+1

i

∣∣∣), (1)

where Dk is the total Manhattan distance between k and k + 1 consecutive frames, and
N represents the number of landmarks in each frame. This method is calculated for each
feature (body, hands, face) using its own landmark points. As a result of this calculation
process, we identified the 32 frames that caused the highest variation among the Manhattan
distances obtained over the whole video. For videos with fewer than 32 frames, we
duplicated the first and last frames as needed to reach a total of 32. This approach captured
frames depicting the highest motion intensity, essential for sign language interpretation.
Thus, the most informative frames that can represent the sign were identified to be used to
train our deep learning model.

3.3. Proposed Model
3.3.1. Convolutional Neural Network (CNN)

Recent years have seen substantial advances in computer vision research, driven by
deep learning [56]. At the center of this progress are Convolutional Neural Networks
(CNNs), which are particularly prominent in tasks such as image classification [57–60]
and object detection [61–63]. CNNs have become a standard in many image processing
tasks owing to their ability to extract features from complex image data and make accurate
classifications using these features. In particular, Two-Dimensional Convolutional Neural
Networks (2D-CNNs) have been widely recognized for their structural simplicity and
efficient learning algorithms [64]. The basic convolution function used in a 2D-CNN can be
expressed as in Equation (2):

f2D(I) = I ∗ K2D, (2)

Here, I is an image matrix, K2D is a 2D convolution kernel, and “∗” represents the
convolution process. This process is used to detect features such as patterns, edges, and
texture in images. However, they are insufficient for extracting temporal features from
video data where the relationship between successive frames is important, such as sign
language words. This problem is solved by using 3D convolution kernels, which are
obtained by adding a third dimension to 2D convolution to learn both temporal and spatial
information from video [65–67].

Deep learning networks called 3D-CNNs [15,68] are networks that process three-
dimensional (3D) data, including videos and 3D medical images. These networks use 3D
convolution kernels to extract both spatial and temporal features from the data, as opposed
to the 2D kernels used by traditional CNNs. This approach makes it possible to effectively
detect the motion and dynamics of objects in videos and the spatial relationships between
structures in 3D images. The 3D convolution process on a video (V) can be represented in
Equation (3):

f3D(V) = V ∗ K3D, (3)

3D convolution operations are designed to cover all channels of the input data, which
means that each convolution kernel (K3D) is of size Cin × t × k × k. Here, Cin represents
the number of input channels, t the temporal depth, and k the kernel size (Figure 5a).
This structure implies that the kernel can handle the multi-channel nature of the input
data and will process all channels simultaneously. As a result of this process, the features
extracted by the kernel contain the information of all channels, resulting in Cout feature
maps. This approach underpins the advanced spatio-temporal feature extraction capability
of 3D convolution.
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Another structure used to extract temporal information between consecutive frames
is (2+1)D convolution [16]. They decompose the traditional 3D convolution process into
spatial and temporal dimensions, first extracting the spatial information in each video frame
through 2D convolutions and then processing temporal features through 1D convolutions
on the resulting spatial feature maps (Figure 5b). The convolution of a video (V) (2+1)D
can be expressed by Equation (4):

f1D(f2D(V)) = (V ∗ K2D) ∗ K1D, (4)

This decomposed approach allows the model to learn both spatial details and temporal
variations more effectively [20]. Moreover, adding activation functions between 2D and
1D convolution operations increases the complexity of the network and its capacity for
nonlinear learning. This strategy strengthens the nonlinear properties of the model to better
capture the relationships between spatial and temporal dimensions, thus improving the
overall performance of the model [16].

3.3.2. R3(2+1)D Convolution Block

This study introduces a fusion of R3D and R(2+1)D convolution blocks, creating the
novel R3(2+1)D block structure. A convolution block is the fundamental component of a
CNN network, which typically consists of multiple layers, including a convolutional layer,
batch normalization, a nonlinear activation function, and a pooling layer. The architecture
of a CNN network consists of multiple block structures stacked to form a deeper network.
Each block extracts more complex features from the input data, and the final output of the
last block is used for classification or other tasks.

The R3D block consists of two 3D convolution layers (Figure 6a), and the R(2+1)D
block consists of two (2+1)D convolution layers (Figure 6b). After each layer, 3D Batch
Normalization (BN) is applied to make the network more stable and regular, and after
each 3D BN, the Rectified Linear Unit (ReLU) activation function is applied. After passing
through the convolution layers, the input data are summed with the output value as a
residual connection. This value is again passed through a ReLU function and forwarded
to the next layers. The output of the i-th residual block can be expressed as follows
(Equation (5)):

xi = xi−1 + F(xi−1; θi), (5)
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where xi−1 is the input data of layer i; F(; θi) denotes the combination of the two convolu-
tions calculated with weights θi and the application of the 3D BN and ReLU functions.
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In these structures, 3D BN [69] is applied after each convolution operation. This
normalization process accelerates and stabilizes the training of networks by normalizing
the inputs in each mini-batch to have a mean of zero and a variance of one. The formula in
Equation (6) illustrates the 3D BN process:

BN(x) = γ

 x − µB√
σ2

B + ϵ

+ β, (6)

In this formula, µB and σ2
B represent the mini-stack mean and variance across depth,

height, and width for 3D inputs. γ and β are learnable parameters for scaling and shifting.
This approach makes the training of deep 3D models both stable and fast.

After the BN process, the activation function is applied to increase the nonlinearity of
the model. In this study, ReLU was preferred as the activation function. The formula of the
ReLU activation function is shown in Equation (7):

ReLU(x) = max(0, x), (7)

Equation (7) serves as a pivotal component in introducing non-linearity within the
network. It operates by retaining any positive input as is, while converting any negative
input to zero. This simplicity not only facilitates computational efficiency but also helps in
mitigating the vanishing gradient problem, thereby expediting the learning process [70].

In this work, we introduce a novel block structure, R3(2+1)D block, by fusing R3D
and R(2+1)D convolution blocks. This fusing is illustrated in Figure 6c, where the input
data are processed through both R3D and R(2+1)D blocks, with the outcomes summed
at the blocks’ outputs. This approach allows us to utilize the strengths of both R3D and
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R(2+1)D blocks—A for the 3D convolution block and B for the (2+1)D convolution block.
The output for the i-th residual block is formulated as follows (Equation (8)):

xi = ReLU(A(xi−1) + B(xi−1)), (8)

To the best of our knowledge, this fusion of block structures in the proposed R3(2+1)D-
SLR network represents an innovative step towards improving video data processing.
By merging the depth and complexity of R3D blocks with the refined spatial-temporal
decomposition offered by R(2+1)D blocks, this architecture aims to achieve a balanced
extraction of features from 3D data. In the next section, we introduce the deep learning
network we designed for the SLR task using the R3(2+1)D block structure.

3.3.3. Proposed R3(2+1)D-SLR Network

We present R3(2+1)D-SLR network architecture designed for the SLR task, utilizing
the R3(2+1)D convolution block, in Table 1 and Figure 7. The architecture comprises a
stem layer followed by four layers, each incorporating an R3(2+1)D block. The stem layer,
similar in structure to the R3(2+1)D block, comprises a combination of 3D and (2+1)D
convolution; however, unlike the R3(2+1)D block, it contains one 3D and one (2+1)D
convolution layer each. The convolution blocks in the stem layer have 32 convolution
kernels of size 7 × 7 with a stride of 2, processing the incoming data of dimensions
3 × 32 × 112 × 112 (where 3 represents the number of RGB channels; 32, the total number
of video frames; 112 × 112, the width and height of the image) and converting them
to an output of dimensions 32 × 32 × 56 × 56, which are then passed to the next layer.
The subsequent layers following the stem layer contain 64, 64, 128, and 128 convolution
kernels, respectively, with the stride value set to 2 in the first and third layers, performing
downsampling.

Table 1. Proposed R3(2+1)D-SLR network architecture.

Layer Input Size Output Size R3(2+1)D-CNN

Stem layer 3 × 32 × 112 × 112 32 × 32 × 56 × 56 3 ×
[
(1 × 7 × 7 stride 1,2,2

3 × 1 × 1 stride 1,1,1)
]
, 32 3 × [(3 × 7 × 7 stride 1,2,2)], 32

Layer 1 32 × 32 × 56 × 56 64 × 16 × 28 × 28
32 ×

[
(1 × 3 × 3 stride 1,2,2

3 × 1 × 1 stride 2,1,1)
]
, 64

64 ×
[
(1 × 3 × 3 stride 1,1,1

3 × 1 × 1 stride 1,1,1)
]
, 64

32 × [(3 × 3 × 3 stride 2,2,2)], 64
64 × [(3 × 3 × 3 stride 1,1,1)], 64

Layer 2 64 × 16 × 28 × 28 64 × 16 × 28 × 28
64 ×

[
(1 × 3 × 3 stride 1,1,1

3 × 1 × 1 stride 1,1,1)
]
, 64

64 ×
[
(1 × 3 × 3 stride 1,1,1

3 × 1 × 1 stride 1,1,1)
]
, 64

64 × [(3 × 3 × 3 stride 1,1,1)], 64
64 × [(3 × 3 × 3 stride 1,1,1)], 64

Layer 3 64 × 16 × 28 × 28 128 × 8 × 14 × 14
64 ×

[
(1 × 3 × 3 stride 1,2,2

3 × 1 × 1 stride 2,1,1)
]
, 128

128 ×
[
(1 × 3 × 3 stride 1,1,1

3 × 1 × 1 stride 1,1,1)
]
, 128

64 × [(3 × 3 × 3 stride 2,2,2)], 128
128 × [(3 × 3 × 3 stride 1,1,1)], 128

Layer 4 128 × 8 × 14 × 14 128 × 8 × 14 × 14
128 ×

[
(1 × 3 × 3 stride 1,1,1

3 × 1 × 1 stride 1,1,1)
]
, 128

128 ×
[
(1 × 3 × 3 stride 1,1,1

3 × 1 × 1 stride 1,1,1)
]
, 128

128 × [(3 × 3 × 3 stride 1,1,1)], 128
128 × [(3 × 3 × 3 stride 1,1,1)], 128

Avgpool 128 × 8 × 14 × 14 128 3D adaptive average pooling

FC 128 Class size Fully connected layer

Softmax Class size Class size Softmax classifier

After data processing through these R3(2+1)D blocks, they are reduced to a 128-
dimensional vector by the 3D adaptive average pooling process following the last convo-
lution layer. This process is instrumental in preserving essential features while reducing
the data to a more manageable format. The resulting 128-dimensional vector is then fed
into a fully connected layer, which serves as a bridge to the classification layer. To finalize
the classification process, a softmax function is applied at the output of the fully connected
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layer, converting the 128-dimensional vector into probability scores corresponding to the
targeted number of classes. The class with the highest probability score is then selected
as the model’s final prediction, providing a clear and interpretable output for the SLR
task. Overall, this architecture allows for a balanced extraction of spatial and temporal
information from sign language video data, offering a rich set of features in terms of both
depth and complexity.
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3.4. Feature Fusion

An effective SLR system must consider all sign components’ features for completeness.
For this reason, we first trained separate models for body, hands, and face data and
extracted 128 dimensional feature vectors from each model. Feature fusion merges these
diverse feature sets into a unified representation, enabling a comprehensive evaluation.
Our proposed SLR system employs simple concatenation for feature fusion. This method
creates a single long vector by adding different feature vectors end-to-end. The feature
vectors obtained from the body, hands, and face models are combined as in Equation (9):

Fconcatenated =
[
Fbody || Fhands || Fface

]
, (9)

Here, the operator || indicates the merging process. This simple yet effective method
allows the model to integrate information from different types of features and make a more
comprehensive inference of meaning.

3.5. Support Vector Machine

This study utilized a Support Vector Machine (SVM) to classify the fused feature
vectors from the models. SVM, a supervised learning algorithm, classifies and regresses
by identifying the optimal hyperplane that separates the feature space [71]. SVM creates
hyperplanes in a high-dimensional space to classify the training dataset. If the training
set cannot be linearly separated, a kernel function is used to pass the data to a new vector
space. In this work, we used Radial Basis Function (RBF) kernels [72], where a distance
measure is smoothed by a radial (exponential) function. The RBF kernel effectively manages
nonlinear relationships between class labels and attributes, unlike linear kernels. The choice
of SVM in our study is due to its capacity to work with high-dimensional data [73], its
generalization capability [74,75], and its ability to effectively solve nonlinear classification
problems [76,77]. Particularly in tasks with complex spatial and temporal features, such as
SLR [78,79], these features of SVM significantly increase the success of the model.

4. Experiments and Results

For the implementation of the proposed SLR system, we utilized a PC equipped with
Ubuntu 18.04, an Intel Core i5-8400 processor, 16 GB RAM, and a 12 GB GeForce GTX
1080 Ti GPU. In these experiments, the PyTorch library was used. All models were trained
with the SGD optimizer for 35 epochs. The batch size was set to 8 and the learning rate was
initially set to 1 × 10−2 and then reduced by 1/10 every 15 epochs.
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4.1. Training Models

In order to evaluate the performance of our proposed R3(2+1)D-SLR model, we
developed the R(2+1)D-10 model with only R(2+1)D blocks and the R3D-10 model with
only R3D blocks, both with the same depth. We also used non-pretrained versions of these
models in order to benchmark them against the R3D-18 and R(2+1)D-18 models [16] with
more layers. For the evaluation of the model performances, we used RGB body images
from both BosphorusSign22k-general and LSA64 datasets as training material, as detailed
in Section 3.2.2. RGB body data have dimensions of 3 × 32 × 112 × 112. Post-training test
performances of these models are compared in Table 2.

Table 2. Comparison of models.

Models
Test Accuracy (%) Training Time

(s/batch)
Inference
Time (ms)

Number of
ParametersBosphorusSign22k-General LSA64 (E1)

R3D-18 71.33 90.93 0.58 372 33 M
R(2+1)D-18 73.12 94.99 1.01 617 31 M

R3D-10 54.79 97.81 0.12 54 1.9 M
R(2+1)D-10 72.18 97.81 0.14 79 1.8 M

R3(2+1)D-SLR 79.66 98.90 0.24 116 3.8 M

Our R3(2+1)D-SLR model demonstrated a significant performance advantage over
existing models on the BosphorusSign22k-general and LSA64 datasets. The R3(2+1)D-SLR
model presented a balanced efficiency on the SLR task, both in terms of test accuracy
(79.66% and 98.90%) and inference time (116 ms). In particular, the model’s test accuracy
was significantly higher than that of models containing only R(2+1)D or R3D blocks of
the same depth, providing important evidence for how a block-level fusion approach can
improve the generalization ability of models.

The training time and inference time metrics showed that the R3(2+1)D-SLR model
provides an appropriate balance between complexity and performance. This balance
underlines that the model can be a practical solution for real-time applications and increases
the applicability of deep learning models. Moreover, the number of parameters of the
model (3.8 M) is able to achieve a high test accuracy while keeping the computational load
at reasonable levels, which further enhances the efficiency and applicability of the model.

Consequently, the balanced performance profile provided by the R3(2+1)D-SLR model
positions it as a preferable choice for SLR tasks. Therefore, only the proposed R3(2+1)D-SLR
network is used for SLR system design in the following sections of the paper.

4.2. Feature Fusion with Raw Data

Although body images capture all structures of a sign, reducing the resolution to
112 × 112 results in significant detail loss. This challenge is addressed in our study by
separately analyzing each structure that represents the sign, including face and hands
images, in addition to body images. Distinct models were trained for each of these features
to harness their unique representational capabilities fully.

Our sign prediction strategy merges 128-dimensional feature vectors extracted from
each model before the fully connected layer, creating a comprehensive 384-dimensional
feature vector. This composite vector is subsequently utilized as the input for the SVM
classifier, with the objective of capturing a holistic representation of sign language words.
Figure 8 outlines our proposed system.

The test results of the models trained for each feature and the results of the test
performed by classifying the feature fusion with SVM are shown in Tables 3 and 4.
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Table 3. Test accuracy of a system with raw data as input (BosphorusSign22k-general).

Feature
Test Accuracy (%)

No Background With Background

Body 79.66 16.12
Hands 83.24 56.69
Face 22.23 19.81

Fusion + SVM 91.78 72.39

Table 4. Test accuracy of a system with raw data as input (LSA64).

Feature Background
Status

Test Accuracy (%)

E1
E2

E3
1 2 3 4 5 6 7 8 9 10 Mean

Body no background 98.90 97.50 94.06 97.50 96.87 99.37 99.37 94.37 96.24 96.24 99.37 97.09 99.53
with background 72.65 58.43 31.25 44.68 59.37 57.49 72.18 55.62 51.87 64.99 72.50 56.84 66.09

Hands
no background 91.25 98.12 95.31 91.87 96.24 95.62 92.18 97.18 96.56 93.75 91.25 94.81 99.21

with background 77.65 86.87 81.87 78.75 82.81 77.18 80.31 86.56 81.56 71.56 79.06 80.65 86.56

Face
no background 60.15 60.93 56.87 60.00 64.37 65.31 58.12 66.56 59.06 56.56 60.93 60.87 80.78

with background 61.25 59.06 55.31 59.06 63.74 64.68 59.37 62.18 59.06 55.31 60.00 59.78 76.09

Fusion+
SVM

no background 99.37 99.68 99.37 99.06 99.37 99.37 99.68 99.68 100 99.37 99.68 99.53 99.84
with background 95.31 93.43 84.68 93.43 94.68 95.62 97.81 95.62 95.93 91.87 95.93 93.90 98.90

Our experimental evaluation reveals the effectiveness of this feature fusion approach.
As indicated in Table 3, hands images consistently outperformed full-body images in
the BosphorusSign22k-general dataset, capturing distinctive features with a test accuracy
of 83.24%. Although face images achieved a lower test accuracy of 22.23%, they were
instrumental in identifying unique characteristics across 174 word classes. The integration
of body, hands, and face images through the SVM classification resulted in a significant
increase in test accuracy to 91.78%.

Further analysis was conducted with test sets modified by the addition of back-
grounds, aiming to assess model robustness under varying conditions. The introduction
of backgrounds led to a noticeable decline in test accuracy, underscoring the impact of
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background complexity on model performance. Specifically, the accuracy for body im-
ages plummeted from 79.66% to 16.12%, and for hands images from 83.24% to 56.69%
within the BosphorusSign22k-general dataset. Despite this, the fused features’ classifica-
tion via SVM demonstrated resilience, with the test accuracy reducing less dramatically
from 91.78% to 72.39%, highlighting the robustness of our feature fusion approach against
background variations.

Table 4 illuminates the efficacy of our system across signer-independent (E1 and E2)
and signer-dependent (E3) evaluations within the LSA64 dataset. Specifically, the table
shows the body image’s superior performance compared to the hands image. Remarkably,
the face image demonstrated significant representation for the 64 word classes, underscor-
ing its substantial role in sign word recognition. The synthesized feature fusion, classified
via SVM, achieved an impressive signer-independent test accuracy of 99.37% in E1, an
average of 99.53% in E2, and 99.84% in the signer-dependent assessment of E3. The in-
troduction of backgrounds to the LSA64 dataset test data precipitated a notable decline
in accuracy, albeit the adverse effect was mitigated by the feature fusion strategy. This
mitigation underscores the robustness of the fused feature approach, particularly when
contrasted with the outcomes from the BosphorusSign22k-general dataset.

Our analysis underlines the need to consider both manual and non-manual features
for a correct evaluation in SLR tasks. Our empirical evidence, derived from both datasets,
confirms that a fusion of features markedly surpasses the performance of individual
features. Moreover, the addition of a background to the test images led to a degradation
in accuracy, attributed to the introduction of noise and extraneous information into the
classification model. These results show that the background is important in the recognition
of sign language words; therefore, the background should be taken into account when
designing an SLR model.

4.3. Feature Fusion with Pose-Based Data

To build a more robust SLR system resilient to varying background images, we re-
peated the model training with pose images as outlined in Section 3.2.2 and illustrated in
Figure 9. The test accuracy performance of the models is shown in Tables 5–7.
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Table 5. Test accuracy of a system with pose data as input (BosphorusSign22k-general).

Feature
Test Accuracy (%)

No Background With Background

Body 79.97 76.29
Hands 88.40 86.51
Face 10.64 9.79

Fusion + SVM 94.52 93.25

Table 6. Comparison of hands features.

Feature Test Accuracy (%)

Raw image 83.24
Uncolored pose image 83.14

Colored pose image 88.40

Table 7. Test accuracy of a system with pose data as input (LSA64).

Feature Background
Status

Test Accuracy (%)

E1
E2

E3
1 2 3 4 5 6 7 8 9 10 Mean

Body no background 94.99 93.75 96.24 89.06 94.99 98.43 95.62 92.81 96.56 93.12 97.81 94.84 99.37
with background 93.59 92.50 94.99 84.06 93.75 97.18 94.37 89.06 94.06 91.25 94.99 92.62 98.75

Hands
no background 92.81 97.50 98.12 92.18 94.37 95.93 93.12 96.24 93.12 94.37 93.43 94.84 99.06

with background 90.93 95.31 97.81 89.68 93.43 92.18 90.62 93.75 92.18 91.25 90.93 92.71 97.65

Face
no background 20.78 23.74 25.00 24.06 20.00 25.31 20.00 18.75 18.43 15.31 25.31 21.59 54.37

with background 19.21 21.56 20.62 22.49 17.49 26.24 15.00 15.62 18.43 16.24 23.43 19.71 50.93

Fusion
+ SVM

no background 96.56 100 99.68 97.18 98.43 99.68 98.75 98.12 98.12 98.43 96.87 98.53 100
with background 95.46 99.68 99.68 96.25 97.18 99.68 97.81 97.18 98.43 97.81 95.62 97.93 99.68

Table 5 demonstrates that, for the BosphorusSign22k-general dataset, pose images
without backgrounds significantly improved performance for both body and hands features.
In particular, there was a significant increase in accuracy in the hands pose image. Building
on these insights, to explore the impact of finger color differentiation, we compared the
accuracy of using colored versus uncolored hands pose images from the BosphorusSign22k-
general dataset. Table 6, alongside Figure 10, presents the results for all hands data versions,
showcasing the trained model’s outcomes.
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The color differentiation of fingers enhanced test accuracy by 5.26% over the uncolored
version and 5.16% over the raw image version. This is because the finger’s orientation,
position, and shape are better distinguished as each finger is colored with a different color.
Therefore, the hands pose image with colored fingers performs better than both the raw
hands image and the uncolored hands pose image.
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There was a decrease in accuracy for the face pose images obtained from the Bosphorus-
Sign22k-general dataset compared to the raw data. This is because although eyebrows, eyes,
and lips are prominent in the face pose image, many details that could represent the sign
are lost. Despite this challenge with face pose images, in the test with SVM classification of
the fused features, there was an increase from 91.78% to 94.52%.

When the evaluations were performed using test images with a background, the test
accuracy increased for all features except the face images. The accuracy of the proposed
final system increased from 72.39% to 93.25%.

The experimental studies using pose images for the BosphorusSign22k-general dataset
were repeated using the LSA64 dataset, and the results are reported in Table 7. For the
LSA64 dataset, the use of pose data generally resulted in a decrease in accuracy in the
evaluations with un-backgrounded test images. However, it was observed that using
colored hands pose images generally provided a higher test accuracy than the raw images.
There was a significant drop in accuracy for the face feature, as important details were lost in
the pose data. In the tests performed with backgrounded test images, there was an increase
in accuracy for all data types except for the face feature. For the proposed feature fusion-
based system, although the accuracy decreased in the tests without background compared
to the raw images, in the tests with background the signer-independent recognition accuracy
increased from 95.31% to 95.46% for E1, from 93.90% to 97.93% for E2, and from 98.90% to
99.68% for signer-dependent (E3) recognition.

In summary, using pose images instead of normal images improved the accuracy of the
final merged system in both datasets when evaluated with test images with backgrounds.
Owing to the pose images, the system is robust to different backgrounds, making it more
suitable for use in a real-world scenario. Furthermore, using pose data can eliminate
disadvantageous factors for recognition accuracy due to different background and lighting
conditions and shadows, as well as personal differences such as beards, mustaches, long
hair, and different clothes.

4.4. Comparison with Other Studies

This section compares studies in the literature using BosphorusSign22k-general and
LSA64 datasets and the proposed final SLR system’s performances. Only the results
obtained with the original test sets are included for comparison. Studies using the
BosphorusSign22k-general dataset and test results of the proposed system are shown
in Table 8.

Table 8. Comparison of the proposed system with results in the literature (BosphorusSign22k-
general).

Studies Test Accuracy (%)

Kindiroglu et al. (2019) [36] 81.58
Gündüz and Polat (2021) [19] 89.35

Our method (raw image-based input) 91.78
Our method (pose image-based input) 94.52

As can be seen from Table 8, while the study presented by Kindiroglu et al. [36] is
based on pose data with an accuracy of 81.58%, Gündüz and Polat [19] achieved a higher
accuracy rate of 89.35% by using multimodal data (RGB, pose, optical flow) and considering
body, hands, and face data together. Our method surpassed existing studies, achieving
a 91.78% accuracy with raw images and 94.52% with pose-based inputs. Moreover, the
proposed R3(2+1)D-SLR network achieved an 88.40% test accuracy with the colored hands
pose image. These results show that our model can effectively extract rich spatial and
temporal features from both raw images and pose data. By fusing these features extracted
from the body, hands, and face, the accuracy of the recognition was significantly improved.
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For the LSA64 dataset, signer-dependent and signer-independent evaluations were
performed to make comparisons with the studies in the literature. The results are shown in
Table 9.

Table 9. Comparison of the proposed system with results in the literature (LSA64).

Studies Test Accuracy (%)

E1
Marais et al. (2022) [46] 74.22

Our method (raw image-based input) 99.37
Our method (pose image-based input) 96.56

E2

Ronchetti et al. (2016) [37] 91.7
Rodriguez et al. (2018) [38] 85

Alyami et al. (2023) [47] 91.09
Our method (raw image-based input) 99.53
Our method (pose image-based input) 98.53

E3

Ronchetti et al. (2016) [37] 97
Konstantinidis et al. (2018) [39] 98.09
Konstantinidis et al. (2018) [40] 99.84

Zhang et al. (2019) [42] 99.063
Imran and Raman (2020) [43] 97.81

Marais et al. (2022) [45] 95.50
Alyami et al. (2023) [47] 98.25

Our method (raw image-based input) 99.84
Our method (pose image-based input) 100

As can be seen from Table 9, the proposed feature fusion-based method outperformed
the existing works in the literature using the LSA64 dataset both in E1 and E2, which
are signer-independent evaluations, and in E3, which is a signer-dependent evaluation.
Compared to the method proposed by Marais et al. [46] based on the InceptionV3-GRU
method using the entire video image with signers 5 and 10 separated as a test, our R3(2+1)D-
SLR model achieved a recognition accuracy of 94.99% with an increase of 5.44% for the
same input modality. This shows the superiority of our proposed deep learning model over
InceptionV3-GRU in spatial and temporal feature extraction. This result increased up to
99.37% with the inclusion of hands and face data. While the 91.09% accuracy rate obtained
by Alyami et al. [47] in E2, another signer-independent experimental environment, shows
the strengths of transformer models, our model achieved a 99.53% accuracy for the raw-
image input and a 98.53% accuracy for the pose-based input on the LSA64 dataset, which
provides a significant advantage, especially for in-depth processing of spatio-temporal
features. In E3, a signer-dependent evaluation, the 99.84% accuracy rate presented by
Konstantinidis et al. [40] is a remarkable achievement in SLR. This paper proposes a model
based on VGG-16 and LSTM that thoroughly examines body, hands, and face data using a
multimodal approach covering RGB, pose, and optical flow data. However, our proposed
method achieved a 99.84% accuracy for raw image-based input and 100% accuracy for pose-
based input, which emphasizes the superiority of our method. In addition, the recognition
accuracy of 99.53% achieved by our proposed R3(2+1)D-SLR model with RGB body data
emphasizes the importance of the effective use of deep learning models.

5. Conclusions

In summary, our novel R3(2+1)D-SLR network marks a significant advancement in
SLR by effectively merging R3D and R(2+1)D convolution blocks. This innovative approach
facilitates a deeper understanding and a more accurate capture of sign language’s complex
spatial and temporal dynamics. Together with this proposed network, our comprehensive
methodology integrating the fusion of body, hands, and face features based on pose data
consistently outperformed and surpasses the work in the existing literature on various
datasets and under different background conditions.



Electronics 2024, 13, 1188 19 of 22

Our future work will focus on exploring alternative classifiers to the SVM used in our
proposed SLR system and optimizing their hyperparameters. In particular, going beyond
direct feature fusion, we aim to explore the potential of alternative ensemble techniques
such as boosting, bagging, and stacking to more effectively integrate and evaluate different
feature sets. We will also focus on the robustness and adaptability of the SLR system,
examining the integration of additional data augmentation techniques in addition to back-
ground variations to increase the model’s adaptability to various environmental conditions.
Together, these efforts aim to propel SLR technology forward, improving communication
access and inclusivity for the deaf and hard-of-hearing.
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