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Abstract: The number of patients with cardiovascular diseases worldwide is increasing rapidly,
while medical resources are increasingly scarce. Heart sound classification, as the most direct
means of discovering cardiovascular diseases, is attracting the attention of researchers around the
world. Although great progress has been made in heart sound classification in recent years, most of
them are based on traditional statistical feature methods and temporal dimension features. These
traditional temporal dimension feature representation and classification methods cannot achieve
good classification accuracy. This paper proposes a new partition attention module and Fusionghost
module, and the entire network framework is named PANet. Without segmentation of the heart sound
signal, the heart sound signal is converted into a bispectrum and input into the proposed framework
for feature extraction and classification tasks. The network makes full use of multi-scale feature
extraction and feature map fusion, improving the network feature extraction ability. This paper
conducts a comprehensive study of the performance of different network parameters and different
module numbers, and compares the performance with the most advanced algorithms currently
available. Experiments have shown that for two classification problems (normal or abnormal), the
classification accuracy rate on the 2016 PhysioNet/CinC Challenge database reached 97.89%, the
sensitivity was 96.96%, and the specificity was 98.85%.

Keywords: heart sound classification; bispectrum; PANet

1. Introduction

Cardiovascular diseases pose a significant threat to global health, contributing to an
increasing number of fatalities. Consequently, the importance of early prevention strategies
for heart disease is of great significance [1]. Heart sound signals, which carry early patho-
logical indicators of cardiovascular diseases, have been demonstrated to be effective in their
early detection. Auscultation, a traditional method used by doctors to detect heart disease,
involves the use of a stethoscope. This non-invasive, cost-effective technique requires
only simple equipment, making it an ideal choice for cardiac examinations, particularly in
smaller clinics with limited medical resources. However, the effectiveness of auscultation
largely hinges on the clinical experience and skills of the doctor. While cardiologists achieve
an accuracy rate of about 80% [2], primary care physicians typically reach only 20–40% [3].
Given these limitations, there is a pressing need for automated analysis and classification
of heart sounds using computer-based methods.

Historically, heart sound signal processing has relied on traditional methods such
as time-domain analysis and Mel Frequency Cepstral Coefficients (MFCC) [4]. These
approaches, while foundational, often fail to capture the complex, non-linear characteristics
of heart sounds, limiting their effectiveness in robust classification tasks. Furthermore,
the sequential nature of heart sound signals poses additional challenges for traditional
machine learning techniques and models, including Recurrent Neural Networks (RNN) [5],
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which, despite their aptitude for temporal data, struggle with capturing the intricate phase
information and non-linear interactions present in heart sound signals.

To surmount these challenges, we pivot to bispectrum analysis for feature extraction,
a method renowned for its proficiency in analyzing non-linear, non-Gaussian, and non-
minimum phase stationary random signals. The bispectrum approach not only quantifies
quadratic phase coupling and non-linear interactions but also maintains its effectiveness
in noisy conditions, capturing the nuanced characteristics of heart sound signals with
greater fidelity.

Our novel solution, the Partition Attention Network (PANet), leverages the bispectral
analysis to transform heart sound signals into a two-dimensional image format, enabling
the application of Convolutional Neural Networks (CNN) [6] for feature extraction and
classification. This allows us to exploit the spatial processing strengths of CNNs, over-
coming the limitations of traditional methods and RNNs in heart sound signal analysis.
By integrating advanced bispectral feature representation with a sophisticated CNN archi-
tecture, our method marks a significant advancement in the automated analysis of heart
sound signals, promising enhanced accuracy and efficiency in the classification tasks.

This work introduces a thoughtful advancement in heart sound signal classification
by addressing the shortcomings of existing feature representations and learning models.
Through the introduction of a novel feature representation and network architecture, we
not only enhance the classification performance but also pave the way for more reliable
automated heart sound analysis tools, offering a potent solution for the early detection and
prevention of cardiovascular diseases.

The main contributions of this paper are as follows:

1. In order to enable the network to learn the regional characteristics of the bispectrum,
we propose a partition attention module based on the attention mechanism, which
enables the network to automatically learn and assign different importance weights
to different regions of the bispectrum.

2. The deployment of the Partition Attention Module introduces a dynamic and effective
method to recalibrate and emphasize the features within the bispectrum, significantly
enhancing the model’s focus on critical regions.

3. A novel features fusion module called FusionGhost is proposed to improve network
feature extraction capability, and experiments show that it has better feature fusion
and multi-dimensional extraction ability than Ghostnet module [7].

2. Related Work

This section provides a succinct overview of traditional machine learning methodolo-
gies, deep learning strategies, and techniques for converting time series data into images,
specifically for heart sound classification.

2.1. Traditional Machine Learning Methods

The essence of heart sound classification involves extracting pivotal features from car-
diac audio signals. A variety of studies [8–12] have implemented techniques encompassing
statistical analysis, feature engineering, empirical wavelet transform (EWT) [13], and CNN
for the extraction and segmentation of features in heart sound signals.

Post-extraction, the most distinctive features are identified for the classification pro-
cess. Researches [8,11] have developed methodologies for selecting these features and
incorporating them into classifiers for heart sound categorization. In [11], deep structured
features created using a wavelet-based deep CNN were employed.

Subsequent to feature selection, the training and evaluation of models are performed.
A range of machine learning models are evaluated to ascertain the most proficient classifier,
as demonstrated in [9]. The paper [14] employed an ensemble learning approach that
synergizes various features and classifiers to elevate the precision of automated heart
sound classification. This method also achieved remarkable results in model evaluation,
marked by elevated accuracy, sensitivity, specificity, and overall scores. In [15], wavelet
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analysis methods combined with a suite of deep learning models were used for heart sound
classification, with experiments showing its superiority over previous techniques in two
distinct datasets.

While traditional machine learning methods play a crucial role in heart sound classifi-
cation, they are not without their drawbacks. These include intricate data preprocessing,
the necessity to segment heart sound signals, and the potential for manually selected
features to compromise robustness and generalizability. However, these methodologies
still offer invaluable perspectives and act as foundational references in the domain of heart
sound classification. Continuing to explore and enhance these methods remains imperative
for the advancement of the field.

2.2. Rnn Methods

Heart sounds, inherent in their acoustic nature, exhibit a sequential pattern that is
characteristic of time series. Recurrent Neural Networks, tailor-made for sequential data
analysis, have shown remarkable efficacy in classifying such signals. This is evidenced
in [16], where Bayesian Long Short-Term Memory (BLSTM [17]) networks have been
successfully used to classify medical time series, such as heart sound recordings.

The research in [18] applied a windowed Discrete Fourier Transform (DFT) to each data
sample, incorporating the variance and standard deviation of each window as distinctive
features. This technique empowered the RNN to extract pivotal time series features, crucial
for identifying anomalies in heart sounds.

In the study cited in [19], data framing ensures uniform sampling rates across all
audio files, and down-sampling methods were implemented to lower the sound signal
frequency, ensuring minimal performance degradation. Finally, an RNN was effectively
used to classify these heart sound signals.

In [20], Logistic Regression-Hidden Semi-Markov Models (LRHSMM) were used for
identifying heart states. After segmenting heartbeat recordings, the first 13 MFCCs were
selected for a compact representation of the Phonocardiograms (PCG) [21] signal. Various
RNN models were then applied for classification.

The study in [22] adopted an experimental method to establish effective feature subsets
from both time-domain and frequency-domain features, with classification executed using
LSTM. RNNs are instrumental in examining the long-term dependencies of time series
attributes, facilitating the extraction of diverse features within the time and frequency
domains of heart sound signals.

Although RNNs have demonstrated potential in classifying heart sounds, they are
not without drawbacks. They particularly struggle with long data sequences due to the
vanishing gradient issue, impeding their capability to discern long-term data dependencies.
Moreover, RNNs necessitate extensive datasets and significant computational resources for
effective training. In contrast, CNNs, especially in the context of spectrogram-based heart
sound analysis, may provide a more efficient and robust approach for classifying heart
sounds. This possibility merits further investigation in upcoming research.

2.3. CNN Methods

CNNs are leveraged for analyzing features from heart sound signals to identify useful
patterns for classification.

In [23], an extensive array of 497 features from eight different domains was extracted
and incorporated into the CNN framework. The authors of [24] recommended using
advanced Mel-frequency cepstrum coefficient (MFCC) features alongside convolutional
recurrent neural networks. This study also converted one-dimensional waveforms into
two-dimensional time-frequency heat maps through MFCCs, where deep CNNs undertook
both the feature extraction and classification tasks.

Another paper [25] focused on extracting Power Spectral Density (PSD) features,
considering each PSD from a 5-second interval as a single-channel image, and used a
convolutional architecture for processing. Meanwhile, [26] divided preprocessed PCGs



Electronics 2024, 13, 1179 4 of 25

into four distinct heart sound states based on a technique suggested in [27], followed by
the extraction of 124 time-frequency features that were input into a CNN for analysis.

The authors of [28] presented an innovative CNN layer, featuring time-convolutional
(tConv) units that replicate Finite Impulse Response (FIR) filters. Furthermore, [29] em-
ployed U-net for segmenting heart sounds, with CNNs conducting the classification. The
study [30] demonstrates the use of Particle Swarm Optimization (PSO) for optimizing CNN
hyper-parameters in environmental sound classification, indicating potential applications
for enhancing heart sound analysis accuracy.

CNNs are beneficial in extracting heart sound signal features to some degree, facilitat-
ing the discovery of associations among diverse feature vectors. However, most examined
methods primarily layer heart sound signal features like MFCC and Discrete Wavelet Trans-
form (DWT) [31] for network input. This approach has its drawbacks as it does not maintain
local feature consistency in the feature map. Consequently, this limits the convolutional
neural network’s capability to effectively extract features pertinent for classification.

2.4. Methods for Converting Heart Sound Signals into Images

Several studies have devised techniques to convert time series data into image forms,
leveraging computer vision for effective feature extraction and classification. Driven by
deep learning’s breakthroughs in fields like computer vision and speech recognition, the re-
searchers in [32] developed an innovative method to transform time series data into various
image formats, including Gramian Angular Fields (GAF) and Markov Transition Fields
(MTF), facilitating the application of computer vision methods in classification tasks. In this
framework, GAF images are formed in a polar coordinate system and depicted as Gramian
matrices, where each matrix element represents the cumulative trigonometric interactions
across different time intervals. Meanwhile, MTF images illustrate the probabilities of
first-order Markov transitions in one axis, while mapping time dependencies on another.

In research [33], a pioneering deep neural network was designed for recognizing
human activities using data from multiple sensors. This design innovatively converts time
series data from sensors into images, ensuring the preservation of key features necessary
for accurate recognition of human activities.

While the methods of GAF and MTF have been effective in transforming time series
data into images for classification, they have certain limitations. GAF, which represents
images as a Gramian matrix using a polar coordinate system, may require substantial
computational resources, especially for longer time series. Furthermore, GAF may lose
some information during the transformation process. In contrast, MTF maps out first-order
Markov transition probabilities and temporal dependencies across different dimensions.
However, MTF only captures transitions between adjacent elements, potentially missing
out on capturing transitions over larger time intervals.

2.5. Novelty and Comparison with Existing Techniques

In the field of heart sound signal processing, although traditional machine learning
methods, RNN-based approaches, and existing CNN methods have made some progress,
they still show significant limitations in handling complex signal characteristics, especially
non-linear, non-Gaussian, and non-minimum phase stationary random signals. Addressing
this challenge, this study proposes an innovative method for heart sound signal classifica-
tion, which utilizes bispectral analysis to convert heart sound signals into images, followed
by feature extraction and classification using CNN. Our method not only effectively quanti-
fies quadratic phase coupling and non-linear interactions, but also, compared to traditional
image encoding methods such as GAF and the MTF, bispectral imaging retains more
original signal information, providing a richer feature learning foundation for CNN.

Furthermore, we introduced the Partition Attention Module (PA Module) and the
FusionGhost Module, two innovative structures that significantly enhance the network’s
ability to learn features from heart sound signals and optimize the automatic learning
and fusion of features. The automatic emphasis on the most discriminative regions in the
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bispectral image by the PA Module further improves the accuracy and generalizability of the
classification model. Meanwhile, the FusionGhost Module enhances feature expression by
merging feature maps of different scales, significantly improving classification performance.

Table 1 summarizes the comparison between our method and existing technologies,
highlighting the innovations and advantages of this research:

Table 1. Comparative analysis of heart sound signal processing methods.

Feature/Method Traditional ML RNN Methods CNN Methods
Other Image
Conversion

Methods

Our Method
(Bispectral

Imaging + CNN)

Feature Extraction Manual Sequential Raw/Simple Limited Bispectral for
non-linear features

Signal Conversion None None Limited GAF, MTF Bispectral retains
more information

Non-linear Feature Handling Limited Limited Limited Limited Efficient
Complex Signal Processing Low Moderate Moderate Moderate High

Noise Robustness Limited Limited Limited Limited Significantly en-
hanced

Automatic Feature Learning None Yes Yes Limited Strong
Attention to Key Areas None None None None PA Module

Feature Fusion Strategy Stacking Temporal Fusion Multi-layer Fusion Simple FusionGhost
improves fusion

Through this comparison, it is evident that our research demonstrates significant
advantages in capturing non-linear features, signal conversion efficiency, classification
performance, as well as handling complex signals and robustness to noise compared to
traditional methods and existing technologies. These innovations not only advance the
development of heart sound signal processing technology but also provide an efficient and
accurate technical solution for the early diagnosis and monitoring of cardiovascular diseases.

In conclusion, this study introduces a novel approach in heart sound signal classifica-
tion by integrating bispectral imaging with advanced CNN architectures. The subsequent
sections will detail the specific methodologies employed, further illustrating the effective-
ness and efficiency of our proposed solution in addressing the challenges of heart sound
signal analysis.

3. Methodology

Our heart sound classification approach, as depicted in Figure 1, begins with the
preprocessing of the initial heart sound signals to eliminate noise. This is followed by
the transformation of these preprocessed signals into bispectra. The bispectra, serving
as inputs, are then trained through PANet to yield a classification model. During the
testing phase, test samples undergo the same preprocessing and bispectrum generation
steps, and are subsequently inputted into the trained network model to obtain classifica-
tion results. This method capitalizes on the strengths of CNNs in feature extraction and
classification, and effectively carries out heart sound classification. Moreover, the use of
bispectra offers its own advantages. It transforms one-dimensional heart sound signals into
two-dimensional images, facilitating subsequent feature extraction and classification. In the
following sections, we will delve into the specifics of each step and their methodologies.
This comprehensive approach not only harnesses the power of CNNs but also leverages
the unique benefits of bispectra, providing an effective and efficient solution for heart
sound classification.
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Figure 1. After the original heart sound signal is denoised in the preprocessing stage, bispectrum is
extracted as the input of PANet, and the classification model is obtained after training. In the test
phase, the test samples should also be denoised and generated bispectrum as the input of the trained
network model.

3.1. Signal Preprocessing

In the signal preprocessing stage of our heart sound classification method, we apply
a fifth-order Butterworth band-pass filter [34] with a passband of 25–400 Hz. This filter
is instrumental in eliminating low-frequency artifacts, baseline drift, and high-frequency
interference from the originally acquired heart sound signals. The Butterworth filter is
chosen for its flat frequency response in the passband and sharp rolloff, defined by the
transfer function:

H( f ) =
1√

1 +
(

f
fc

)2n
(1)

where f is the frequency, fc is the cutoff frequency, and n is the order of the filter. In our ap-
plication, the passband is specifically set to 25–400 Hz to focus on the frequency components
relevant to heart sound signals.

Additionally, the raw heart sound signals are normalized [35] to a range between −1
and 1 to ensure consistency in signal amplitude across all samples. This normalization
is crucial for facilitating a fair comparison and analysis of the signals, regardless of their
original amplitude levels. The normalization formula is as follows:

xnorm =
x − min(x)

max(x)− min(x)
× 2 − 1 (2)

where x represents the original signal. This process scales the amplitude of the signals,
ensuring uniformity across the dataset.

The combination of Butterworth filtering and normalization significantly enhances
the clarity and quality of the heart sound signals, as can be seen in the improved signal
profiles shown in Figure 2. The preprocessing step ensures that the heart sound signals are
streamlined and standardized, providing a clean baseline for the accurate detection and
classification of cardiac events. The filtered signals exhibit a reduction in background noise
and artifacts, while the normalization process ensures a consistent signal amplitude across
all recordings, which is crucial for the subsequent automated analysis.

3.2. Bispectrum Feature Representation

In our heart sound signal classification methodology, the generation of the bispectrum
is a crucial step that transforms the original one-dimensional heart sound signal into a
two-dimensional image rich in frequency and phase information. This transformation
begins with preprocessing the heart sound signals to reduce noise and enhance signal
quality. Subsequently, we employ the Fourier Transform to decompose the processed
signal into its frequency components, capturing the signal’s fundamental spectral infor-
mation. Following this, we apply the Short-Time Fourier Transform (STFT) to analyze
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these frequency components over localized time intervals, obtaining the signal’s dynamic
time-frequency information. Finally, we compute the correlations between these frequency
components to derive the bispectrum. The bispectrum quantitatively captures the quadratic
phase coupling of frequency components in the signal, encoding the heart sound signal
into a comprehensive two-dimensional bispectrum image. This image encompasses not
only amplitude information but also phase information, providing a robust feature set for
further analysis using CNNs.

Figure 2. (Upper left): Normal heart sound signal before filtering. (Upper right): Normal heart
sound signal after filtering. (Lower left): Abnormal heart sound signal before filtering. (Lower right):
Abnormal heart sound signal after filtering. The amplitude values are relative, as the signals have
been normalized.

3.2.1. Fourier Transform

The Fourier Transform plays a pivotal role in audio signal processing. It has the
ability to decompose complex audio signals into a series of simple sine and cosine waves.
The frequency, amplitude, and phase of these waves can be used to fully reconstruct the
original signal. This capability makes the Fourier Transform a fundamental tool for audio
signal analysis, as it can reveal the spectral characteristics of the audio signal, i.e., the
intensity of each frequency component in the signal.

The mathematical definition of the Fourier Transform includes both continuous and
discrete forms. The formula for the continuous Fourier Transform is:

F(ω) =
∫ +∞

−∞
f (t)e−iωtdt (3)

where F(ω) is the function after the Fourier Transform, f (t) is the original function, ω is
the frequency, and t is the time. The formula for the Discrete Fourier Transform (DFT) is:

X(k) =
N−I

∑
n=0

x(n)e−i2πkn/N (4)

where x(k) is the result of the Discrete Fourier Transform, x(n) is the discrete input signal,
k is the discrete frequency, and N is the length of the signal. These formulas describe how
to transform a signal from the time domain to the frequency domain.

However, a major limitation of the Fourier Transform is that it can only provide global
frequency information of the signal, and cannot provide time-frequency information of
the signal. In other words, the Fourier Transform cannot tell us when a certain frequency
component appears in the signal. To solve this problem, the Short-Time Fourier Transform
(STFT) was proposed. The STFT applies the Fourier Transform to different parts of the
signal, providing time-frequency information of the signal.
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3.2.2. STFT

Short Time Fourier Transform, as shown in Equation (5), is a time-frequency analysis
algorithm commonly used to analyze non-stationary signals. It divides the signal into
many small time intervals, considers that the signal tends to be stable in each time interval,
and carries out Fourier transform in each time interval in order to determine the frequency
distribution of each time period.

X(n, ω) =
+∞

∑
m=−∞

x(m)ω(n − m)e−jωm (5)

3.2.3. Bispectrum

The Bispectrum, a higher-order spectral analysis technique, provides a comprehensive
representation of a signal by quantifying the coupling relationship between its oscillatory
components. It extracts nonlinear coupling features and generates a complete coupling
feature map across different frequencies.

In more detail, the Bispectrum is a third-order spectral analysis method that captures
the phase coupling information which is typically missed by power spectrum methods.
Mathematically, for a discrete signal X( f ) , its bispectrum Bis( f1, f2) is defined as

Bis( f1, f2) = lim
T→∞

(
1
T
)E[X( f1 + f2)X∗( f1)X∗( f2)] (6)

where E denotes the expectation, * denotes the complex conjugate, and f1, f2 are the frequencies.
This formula illustrates how the bispectrum captures phase coupling information in

the signal: if components at frequencies f1 and f2 exist in the signal and their phases are cou-
pled,then the value of the bispectrum at ( f1, f2) will be non-zero. The bispectrum captures
phase coupling in signals, mapping frequency domain characteristics and phase coupling
characteristics onto a two-dimensional image via Fourier transform and second-order mo-
ment. This mapping is bijective, allowing signal recovery from the bispectrum. However,
as it captures only second-order statistical characteristics, higher-order nonlinearities or
phase couplings may not be captured.

In summary, the bispectrum is a potent tool for encoding heart sound signals into
images, preserving feature relationships and facilitating local feature extraction using
CNNs. Each pixel in the image represents a feature, and spatial relationships between
pixels represent feature relationships, providing more information for effective feature
extraction and classification.

3.3. Classification Network Framework

In this section, we introduce a novel network architecture named Partition Attention
Network (PANet), which is based on CNN. This innovative architecture is designed to
enhance the efficiency and accuracy of heart sound classification tasks. The PANet is com-
posed of several key components, each playing a crucial role in the network’s performance.
These components include the Network Structure, the Partition Attention Module, and the
FusionGhost Module. As we delve deeper into this section, we will provide a detailed
description of each component and explain how they collectively contribute to the superior
performance of the PANet.

Network Structure

Figure 3 illustrates the overall network structure of the proposed PANet and the
input and output sizes of each module are shown in Table 2. The input of the network is
bispectrum. PA module make use of the attention mechanism to assign different importance
weights to different areas of the bispectrum, so that the network can pay more attention to
the parts that need attention. After that, a larger receptive field can be obtained through
the stacking of multi-layer convolution.
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Table 2. Network structure.

Layers Input Size Output Size Parms FLOPs

PA module 256 × 256 × 1 128 × 128 × 4 2,097,796 4,195,196
Conv1 128 × 128 × 4 128 × 128 × 64 320 7,340,032
Inception1 128 × 128 × 64 128 × 128 × 64 38,912 151,011,944
Concat & Pooling 128 × 128 × 64 64 × 64 × 128 0 2,097,152
Inception2 64 × 64 × 128 64 × 64 × 128 51,200 209,715,200
Conv2 64 × 64 × 128 32 × 32 × 128 295,168 301,989,888
Inception3 32 × 32 × 256 32 × 32 × 256 205,312 244,366,784
Conv3 32 × 32 × 256 16 × 16 × 256 590,080 150,994,944
FusionGhost Module1 16 × 16 × 256 8 × 8 × 128 147,456 9,437,184
FusionGhost Module2 8 × 8 × 128 4 × 4 × 64 36,864 589,824
Classification Layer 4 × 4 × 64 2 2050 4094

The integration of different scale features is realized through the Inception structure [36].
It is known for its efficient utilization of computing resources within the network. It achieves
this by incorporating multiple kernel sizes in each layer of the network, allowing it to capture
complex features from both global and local perspectives effectively. In our PANet, we have
adapted this architecture to enhance its feature extraction capability specifically for heart
sound signals represented as bispectrums. This adaptation ensures that intricate patterns
embedded within different frequency bands are captured comprehensively.

In the context of our network structure, the Inception modules (Inception1, Inception2,
and Inception3) are used to integrate different scale features. As shown in Table 2, each
Inception module takes an input with a certain size and outputs a feature map of the same
size, but with more channels. This means that the Inception modules are able to extract
more complex features without changing the spatial dimensions of the feature maps. This
is particularly useful for tasks like heart sound classification, where the spatial structure of
the input (in this case, the bispectrum) contains important information.

In parallel to the advanced Inception structures, our PANet incorporates a series of
convolutional layers, namely conv1, conv2, and conv3, each serving a distinct purpose in
the feature extraction process. The conv1 layer, receiving the attention-weighted bispec-
trum from the PA module, initiates the feature extraction with multiple filters, expanding
the depth of the feature maps while preserving spatial resolution. This is followed by
a novel concat and pooling operation, where the outputs of conv1 and Inception1 are
concatenated along the channel dimension, effectively amalgamating their feature repre-
sentations. A subsequent pooling step not only compresses the spatial dimensions but
also amplifies the depth of the features, setting the stage for deeper feature integration in
the subsequent layers. As the signal progresses through conv2, the network performs a
pivotal operation: The feature maps are scaled up by a factor of two in conv2, capturing
finer details vital for precise heart sound classification. After this, a Channel Shuffle is
executed to mix these channels. This ensures a more holistic learning of features, as it
encourages different filters to share information, leading to a more generalized and robust
feature representation. The shuffle not only prevents over-specialization of filters on certain
feature types but also aids in maintaining effective feature diversity. Consequently, this
elevates the network’s ability to discern subtle patterns within the heart sound signals,
crucial for accurate classification. After further refinement through Inception2, the signal is
propelled through conv3, which acts as a bridge to the sophisticated FusionGhost modules,
seamlessly transitioning from dense feature maps to more abstract representations, priming
the network for the final classification task.

While convoluting the feature map, the FusionGhost module performs linear trans-
formation and stitching with the convolution results, not only improving convolution
efficiency but also maintaining consistency of features. Finally, the full connection layer
aggregates all features and obtains the probability of classification.
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Figure 3. The overall network framework of PANet.

3.4. Partition Attention Module

Our heart sound signal classification framework features the innovative Partition
Attention Network (PANet), a key development that significantly elevates the model’s
proficiency in isolating and analyzing critical features of heart sound signals. Central to this
enhancement is the Partition Attention Module, a sophisticated mechanism designed to
meticulously partition the input feature map, thereby facilitating a more granular analysis
of the acoustic signals. Figure 4 provides a detailed visual representation of the nuanced
operations within the Partition Attention Module, beginning with a bispectrum as the
initial input. This bispectrum is processed through a Partition Mechanism, segmenting
the signal into distinct blocks, which are subsequently streamlined via an Average Pooling
layer into a pooled feature map.This streamlined process paves the way for Global Feature
Vector Extraction, where a Block Descriptors Set is formulated, encapsulating the essential
traits of the signal. The journey of data transformation continues with a Dimensional
Transformation, preparing the data for the subsequent stages of processing. A critical phase
follows, where a Weight Allocation layer assigns a vector of block weights, ingeniously
designed to magnify the significant features within the heart sound signals through an
element-wise multiplication with the initial blocks. This methodical enhancement of pivotal
features underscores the advanced capability of PANet in accentuating crucial patterns
within the heart sound signals, thereby underlining the framework’s enhanced effectiveness
in the precise classification of these signals.

Partition Mechanism: The initial step involves uniformly dividing the input two-
dimensional feature map (e.g., 256 × 256 × 1) into B equivalent blocks, where B = 4 serves as
a typical example, with each block having dimensions of 128 × 128. This segmentation not
only divides the feature map physically but also logically treats each block as an individual
channel, enabling detailed local feature extraction.

Average Pooling Layer: Each block is subjected to an average pooling operation to
reduce its dimensionality. Average pooling computes the mean of the elements within
a specified neighborhood, effectively condensing the information into a more compact
representation. For a block of size n × n, the average pooling operation with a pooling size
of k × k is defined as:

P(i, j) =
1
k2

k−1

∑
s=0

k−1

∑
t=0

I(i + s, j + t) (7)

where P(i, j) is the pooled value, I(i, j) is the original value at the (i, j)th position in the
block, and the summation is carried out over the k × k neighborhood.



Electronics 2024, 13, 1179 11 of 25

Figure 4. The structure of the partition attention module.

Global Feature Vector Extraction: After average pooling, each block is transformed
into a global feature vector. This vectorization step converts the pooled n/k × n/k block
into a one-dimensional array of length (n/k)2, capturing the essence of the block’s features.
The transformation is represented by:

v = vec(P) (8)

where v is the global feature vector and vec(P) denotes the vectorization of the pooled
block P.

Block Descriptors Set: The global feature vectors from all blocks are concatenated
to form the feature vector set V, represented as a matrix : V =

(
v1 v2 . . . vB

)
, where

each vi is the vectorized representation of block i.
Dimensional Transformation: To process these feature vectors and extract pivotal

information for the classification task, two fully connected layers, represented as linear
transformation layers, G1 and G2, are employed. G1 reduces the dimensions of the feature
vectors in V, aiming to simplify computations and highlight key features. The dimensions
of G1 are defined as R N

r ×N , where r is the reduction ratio. Subsequently, G2 maps the
output of G1 to the final number of blocks B, with dimensions RB× N

r .
Weight Allocation Layer: The linear transformations provided by G1 and G2 generate

a set of weights ω for each block. These weights are computed by passing the feature vector
set V through G1 for dimension reduction, followed by an application of the ReLU func-
tion [37] for non-linear activation, and finally through G2 for mapping to the weight space
corresponding to the number of blocks B. This process is mathematically represented as:

ω = ReLU(G2(G1(V))) (9)

where the ReLU function introduces non-linearity, aiding the model in learning complex
patterns of weight distribution. The weight vector ω represents the importance of each
block for the classification task, allowing the model to focus more on blocks containing
significant information.
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These weights are then used to reweight the feature map, producing the output of
the PA module. Each block’s original features un are multiplied by their corresponding
weights ωn, yielding reweighted features which emphasize the more informative parts of
the input. The operation for obtaining the final weighted feature map is given by :

P̃n = un · ωn (10)

where P̃n represents the reweighted feature of the n-th block. This reweighting process en-
sures that the network prioritizes blocks with essential information, significantly improving
the overall performance of the model.

3.5. FusionGhost Module

In our heart sound signal classification framework, the FusionGhost module plays
a crucial role in enhancing the depth and breadth of feature extraction while optimizing
computational efficiency and strategically fusing features. After the heart sound signals
have been processed through a series of convolutional layers, enriched by the Inception
modules, and integrated via a concat and pooling operation. Following these initial
processes, the FusionGhost module takes action. As Figure 5 illustrates, this module
begins by passing the input through a convolutional layer, creating a set of intrinsic
feature maps, denoted as Fintrinsic. In a parallel process, these Fintrinsic feature maps are
subjected to a series of cost-effective operations aimed at generating additional feature maps
efficiently. The outputs of these operations are then concatenated, and it is this concatenated
outcome that is identified as Fghost. These ghost feature maps, crafted to enrich the signal
representation without a hefty computational cost, are fused with the intrinsic feature
maps. The resulting concatenation, Ff used, is the culminating output comprising the fused
feature maps that incorporate comprehensive information from both intrinsic and ghost
operations. The strategic placement of the FusionGhost module ensures that the network
not only leverages pivotal information from the heart sound signals but also synthesizes
and refines this information in a computationally savvy manner, significantly enhancing
classification accuracy.

Figure 5. The FusionGhost module structure, showcasing the generation of ghost feature maps from
intrinsic feature maps through cheap operations.

3.5.1. Primary Convolution

Within the FusionGhost module, the primary convolution layer (Convprimary) is de-
fined as the first convolution operation processing the input feature map X ∈ RH×W×Cin ,
where H, W, and Cin respectively denote the height, width, and the number of channels of
the input feature map. The purpose of this convolution layer is to generate a set of intrin-
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sic feature maps Fintrinsic, laying the groundwork for subsequent feature map expansion.
The operation of the primary convolution layer can be expressed as

Fintrinsic = Convprimary(X; θprimary) (11)

where θprimary represents the parameters of the primary convolution layer, including the
weights and bias of the convolution kernels. Fintrinsic ∈ RH′×W ′×Cm , with Cm being the
number of channels in the intrinsic feature maps, and H′ and W ′ being the height and
width of the feature maps after convolution, which depend on the size of the convolution
kernel, padding, and stride.

The computational cost of the primary convolution layer is primarily determined by
its convolution operation, which can be estimated by the following formula:

Costprimary = H′ × W ′ × Cin × Cm × K2 (12)

where K is the size of the convolution kernel. To reduce computational cost, Cm is typically
chosen to be less than Cin, and K is selected to be as small as possible. The principle
of choosing Cm is to minimize the computational cost while ensuring sufficient feature
extraction capability. Ideally, the value of Cm.

3.5.2. Cost-Effective Operations and Feature Fusion Strategy

The FusionGhost module introduces cost-effective linear operations through the Φ
function, aimed at expanding the network’s feature representation capacity with minimal
computational resource consumption. This function applies a series of operations to the
intrinsic feature maps Fintrinsic produced by the primary convolution layer, generating the
so-called ghost feature maps Fghost, mathematically expressed as

Fghost = Φ(Fintrinsic; θΦ) (13)

where θΦ represents the parameters involved in the Φ function, and Fghost are the ghost
feature maps obtained through these cost-effective operations. These operations include
the use of small-scale convolution kernels and linear activations, effectively expanding the
model’s width and capacity.

In processing heart sound spectrograms, the Φ operation’s multi-scale convolution
kernels significantly enhance the model’s ability to comprehend input data, especially
crucial in handling the complexity of heart sound signals. To maintain the consistency of
output feature map dimensions after applying convolution kernels of different scales, it is
necessary to adjust the padding of each convolution operation appropriately, calculated
as
⌊

k−1
2

⌋
, ensuring the dimensions of the output feature map consistent with the input,

providing a solid foundation for subsequent feature fusion.
To generate the additional n − m ghost feature maps, an equal distribution strategy

is chosen, where each scale of the Φ operation is responsible for generating an equal
number of ghost feature maps. Therefore, each scale of convolution kernels (1 × 1, 3 × 3,
5 × 5) will generate n−m

3 ghost feature maps. These feature maps are then directly concate-
nated with the intrinsic feature maps Fintrinsic, forming the final output feature map set
Ff used = Concat(Fintrinsic, Fghost). Through this design, the FusionGhost module enriches
the model’s feature representation while controlling the overall computational cost, making
it suitable for environments with limited computational resources.

By combining cheap operations with a feature fusion strategy, not only is the section
made more concise, but it also focuses on the core functionality and implementation method
of the module, making the overall description more compact and understandable.

3.5.3. Computational Complexity

The theoretical speed-up ratio (rs) of employing the FusionGhost module over tra-
ditional convolution is calculated by comparing the computational complexities of both
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operations. According to the design principles of the FusionGhost module, the speed-up
ratio can be expressed as

rs =
n · h′ · w′ · c · k · k

n
s · h′ · w′ · c · k · k + (s − 1) · n

s · h′ · w′ · d · d
(14)

where d × d is similar in magnitude to k × k, and s is much smaller than c. This equation
indicates that the FusionGhost module not only minimizes computational costs but also
accelerates model operation, making it particularly beneficial for processing extensive
datasets typical in heart sound signal classification tasks.

Similarly, the compression ratio can be calculated as

rc =
n · c · k · k

n
s · c · k · k + (s − 1) · n

s · d · d
≈ s · c

s + c − 1
≈ s, (15)

which equals the speed-up ratio achieved by the FusionGhost module. This analysis
underscores the module’s effectiveness in reducing memory usage and computational costs,
thus facilitating efficient network operation even in resource-constrained environments.

By integrating the FusionGhost module, networks not only enjoy reduced compu-
tational complexity and enhanced operational speed but also maintain high accuracy
in feature representation and classification tasks, especially in analyzing complex heart
sound spectrograms.

3.6. Computation Analysis

The parameters of the PA module mainly come from the fully connected layer. The num-
ber of neurons in G1 is 64 × 64 × 4, in G2 is 128, and in the final output layer is 4. Therefore,
the number of parameters can be calculated by 64 × 64 × 4 × 128 + 128 + 128 × 4 + 4,
resulting in a total of 2,097,796 parameters for the PA module. The computational load of
the PA module primarily originates from the Average Pooling and the fully connected layer.
The computational load of Average Pooling is: 128 × 128 × 4, and the fully connected
layer is: 64 × 64 × 4 × 128 + (64 × 64 × 4 − 1) × 128 + 128 × 4 + 127 × 4. Thus, the total
computational load of the PA module is the sum of these two parts, amounting to 4,195,196.

Conv1’s convolutional kernel size is 1 × 1 × 64, with a stride of 2. Therefore, the num-
ber of parameters for Conv1 can be calculated as 1 × 1 × 4 × 64 + 64, and its computational
load is 128 × 128 × 64 × (4 + 4 − 1). Thus, Conv1 has 320 parameters and a computational
load of 7,340,032.

Inception1 module’s parameters and computational load are derived from four
branches: one with a 1 × 1 convolution, one with a 1 × 1 and a 3 × 3 convolution, one with a
1× 1 and a 5× 5 convolution, and one with a 3× 3 max pooling and a 1× 1 convolution. With in-
put and output sizes both at (128, 128, 64), the total parameter count for Inception1 sums up
to 38,912, calculated from the individual branches’ parameters (1024 + 10,240 + 26,624 + 1024),
and the total computational load reaches 151,011,944, derived from the computational loads of
each branch (2,097,152 + 39,845,888 + 106,954,752 + 2,097,152).

For Concat+Pooling, there are no parameters involved, and the computational load
primarily stems from the pooling operation. This operation utilizes average pooling,
with an input dimension of (128, 128, 128) and an output dimension of (64, 64, 128), using a
pooling size of (2, 2) and a stride of 2. Consequently, the computational load is calculated
to be 2,097,152, following the formula 64 × 64 × 128 × 4.

Inception2 module’s parameters and computational load are derived from four
branches: one with a 1 × 1 convolution, one with a 1 × 1 and a 3 × 3 convolution, one with
a 1 × 1 and a 5 × 5 convolution, and one with a 3 × 3 max pooling and a 1 × 1 convolution.
Inception2 operates with an input and output size of (64, 64, 128). The total parameters
for Inception2 are derived from the sum of its branches’ parameters, amounting to 51,200.
Similarly, the computational load of Inception2 is the sum of its branches’ computational
load, totaling 209, 715, 200.
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Conv2 processes inputs of size (64, 64, 128) and outputs of (32, 32, 128) using 3 × 3
convolutions with a stride of 2. To enhance the model’s feature extraction capabilities, we
employed two instances of Conv2. Each Conv2 has a parameter count of (3 × 3 × 128 + 1) ×
128 and a computational load of 32 × 32 × 128 × (3 × 3 × 128). Thus, with two Conv2 layers,
the total parameters amount to 295,168, and the combined computational effort is 301,989,888.

Inception3 module’s parameters and computational load are derived from four
branches: one with a 1 × 1 convolution, one with a 1 × 1 and a 3 × 3 convolution,
one with a 1 × 1 and a 5 × 5 convolution, and one with a 3 × 3 max pooling and a 1 × 1
convolution. Inception3 operates with input and output dimensions of (32, 32, 256). The to-
tal parameters for Inception3, aggregated from its individual branches, amount to 205,312,
calculated as 16,384 × 4 + 36,864 + 102,400. Likewise, its computational load, summed
from the contributions of each branch, totals 244,366,784, with a calculation breakdown of
16,777,216 × 4 × 47,185,920 × 131,072,000.

Conv3 with an input size of (32, 32, 256) and reduces the output to (16, 16, 256) through
3 × 3 convolutions with a stride of 2. The total parameters for Conv3 are calculated as
3 × 3 × 256 + 1) × 256, which equals 590,080. The computational load for Conv3 is deter-
mined by the formula 16 × 16 × 256 × 3 × 3 × 256), resulting in 150,994,944 operations.

FusionGhost Module1 has an input dimension of (16, 16, 256) and produces an output
of (8, 8, 128). It involves 147,456 parameters, calculated from 3 × 3 × 256 × 64, and its
computational operations amount to 9,437,184, determined by 3 × 3 × 256 × 8 × 8 × 64.

FusionGhost Module2 takes an input of (8, 8, 128) and yields an output dimension of
(4, 4, 64). This module requires 36,864 parameters, computed as 3 × 3 × 128 × 32, and its
total computational operations are 589,824, derived from 3 × 3 × 128 × 4 × 4 × 32.

The Classification Layer includes a Flatten operation and a fully connected layer.
The input size is (4, 4, 64), and it is flattened into 4 × 4 × 64 neurons, which are then fully
connected to 2 neurons. The Classification Layer has a total of 2050 parameters, calculated
as 4 × 4 × 64 × 2 + 2, and the computational load is 4094, derived from
2 × (4 × 4 × 64 × 4 × 4 × 64 − 1).

As shown in Table 2, which outlines the parameters and computational efforts for each
layer, it is found that PANet possesses a total of 3,465,158 (3.46 M) parameters and requires
computational efforts amounting to 1,081,742,242 (1081.7 M). Compared to contemporary
networks of similar capabilities, PANet demonstrates an advantage in terms of both param-
eter efficiency and computational load. This reflects the optimization considerations we
incorporated during the design phase of PANet, aimed at enhancing network efficiency
and practicality.

Through the innovative integration of the PA module and the FusionGhost mod-
ule, PANet not only achieves high accuracy in heart sound signal classification but also
maintains a compact and efficient network architecture. These modules employ a re-
fined attention mechanism and an effective feature fusion strategy, significantly reducing
unnecessary computational overhead without compromising performance.

Moreover, the design of PANet takes into account the adaptability to diverse computa-
tional settings, including resource-constrained devices, ensuring its practical applicability
across a wide range of scenarios [38]. We believe that these attributes position PANet as
a valuable tool in the field of heart sound signal processing, particularly for medical and
healthcare applications requiring efficient and accurate heart sound classification.

4. Experiments

This experimental section offers a comprehensive evaluation of the Partition Attention
Network (PANet), our proposed method. The evaluation is organized into three main
parts for clarity and depth. Initially, the ablation study of the PA module and FusionGhost
module, crucial to our network’s architecture, is discussed in Section 4.2. Following this,
Section 4.3 examines various methods for imaging heart sounds, specifically comparing
the effects of bispectrum analysis, GAF, and MTF [32]. The comparative analysis of PANet
against established models such as RNN MFCC [20], 2D-CNN [39–41], and 1D-CNN [42,43]
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is detailed in Section 4.4. Moreover, the evaluation of our method’s resilience to noise—a
critical factor in real-world applications—has been designated its own segment, detailed in
Section 4.5. This separation underlines our commitment to thoroughly investigate PANet’s
robustness under various noise conditions, an aspect pivotal for practical deployment
in heart sound analysis. The comprehensive structure of our experimental evaluation is
designed to not only validate the efficacy of PANet but also to demonstrate its adaptability
and reliability across a spectrum of challenges inherent in heart sound classification.

4.1. Experimental Setup

Our experiments were conducted in a robust hardware and software environment.
The hardware utilized was the high-performance TESLA V100S GPU. On the software side,
we operated on the Ubuntu 22.04 operating system with TensorFlow 2.15 [44] serving as
the backbone for our machine learning tasks.

In the research we conducted, we utilized the PhysioNet/Computing in Cardiol-
ogy (CinC) Challenge 2016 database [16], a publicly accessible repository of heart sound
recordings. This database was selected for its comprehensive and diverse collection of
2435 recordings from 1297 individuals, representing a wide spectrum of cardiac conditions,
including both healthy subjects and those suffering from various cardiac ailments such
as heart valve disease and coronary artery disease. The diversity of the recordings, made
in a variety of settings using different types of equipment, presents a unique opportunity
to test and refine our PANet under realistic and challenging conditions. The detailed
annotations and the breadth of data provided by the database enable a rigorous evaluation
of our method’s performance across a range of heart sound characteristics. Furthermore,
its widespread use as a benchmark in heart sound analysis research allows for direct com-
parison with existing methodologies, underscoring the relevance and potential impact
of our findings. The PhysioNet/CinC Challenge 2016 database stands out as an ideal
standard for assessing heart sound classification techniques due to its rich dataset, fostering
advancements in the early detection and diagnosis of cardiovascular diseases.

In addition, we extended our dataset repertoire by including the George B. Moody
PhysioNet Challenge 2022 dataset [45]. This more recent dataset is composed of a rich
array of heart sound recordings, offering a broad representation of both pediatric and
adult populations, with annotations detailing clinical findings, patient demographics,
and murmur characteristics. This dataset’s inclusion not only bolstered the diversity of
our experimental data but also provided an opportunity to evaluate PANet’s performance
against an up-to-date benchmark reflective of current clinical challenges. The combined
use of these datasets underscores our commitment to leveraging comprehensive data in
developing methodologies with real-world applicability and the potential for significant
clinical impact.

In evaluating our model’s effectiveness, we focused on three primary metrics: Accu-
racy, Sensitivity, and Specificity [46]. The definitions and calculations of these metrics are
as follows:

Accuracy represents the ratio of correct predictions (encompassing both true positives
and true negatives) to the overall number of cases analyzed.

Accuracy =
TP + TN

TP + TN + FP + FN
(16)

Sensitivity refers to the ratio of true positive cases that are accurately identified. It is
calculated as

Sensitivity =
TP

TP + FN
(17)

where TP (True Positives), TN (True Negatives), FP (False Positives), and FN (False Nega-
tives) [47] denote the number of positive cases correctly predicted by the classifier, the num-
ber of negative cases correctly predicted, the number of negative cases incorrectly predicted
as positive, and the number of positive cases incorrectly predicted as negative, respectively.
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Specificity indicates the ratio of true negative cases that are accurately recognized and
it is calculated as

Speci f icity =
TN

TP + FN
(18)

4.2. Evaluation of PA and FusionGhost Modules

In this section, we delve into the empirical evaluation of two key components within
our proposed PANet: the Partition Attention (PA) module and the FusionGhost module.
These components play pivotal roles in enhancing the network’s classification capabil-
ities by focusing on relevant features and improving feature consistency, respectively.
We present a series of experiments designed to quantify the impact of these modules on
the overall performance of PANet, comparing our approach against different configura-
tions and architectures to underscore their effectiveness. Detailed results are provided
in Tables 3–10, offering a comprehensive view of how each module contributes to the
network’s classification accuracy, specificity, and sensitivity.

Table 3. Effect of using PA module in PANet.

Network Accuracy Specificity Sensitivity

PANet 97.89% 96.96% 98.85%
PANet without PA module 96.34% 99.43% 93.37%

4.2.1. Pa Module

In this part, the PA module shows its better ability. Table 3 shows the function of PA
module on performance. We can draw a conclusion from the table that the PA module can
help the network focus more effectively on the part of the bispectrum that is useful for
classification tasks.

The number of blocks B is a hyperparameter which controls the number of bispectrum
blocks. To explore the impact of different number of blocks on module functionality, we
conduct experiments with PANet for a range of different B values. The result in Table 4
shows that better results can be obtained by dividing the bispectrum into four pieces.

Table 4. Effect of using differnet number of blocks for bispectrum.

B Accuracy Specificity Sensitivity

4 97.89% 96.96% 98.85%
16 96.90% 96.97% 96.54%

Different pooling methods in the module are tried. Average Pooling [48] computes the
average of the elements present in the region of feature map covered by the filter. On the
other hand, Max Pooling [49] is a pooling operation that selects the maximum element from
the region of the feature map covered by the filter. Table 5 shows that average pooling is
more sensitive to background information, which can integrate all information for decision
making and help classification.

Table 5. Effect of using differnet pooling method in PA module.

Pool Method Accuracy Specificity Sensitivity

maxpooling 97.81% 98.62% 95.68%
averagepooling 97.89% 96.96% 98.85%

Similarly, we explore different activation functions. The Sigmoid function [50] is a
type of activation function that maps any real-valued number to a value between 0 and 1.
On the other hand, the Rectified Linear Unit (ReLU) function outputs the input directly if
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it is positive; otherwise, it outputs zero. As shown in Table 6, the sigmoid function helps
improve classification.

Moreover, the reduction ratio r, as mentioned in Equation (6), serves as a hyper-
parameter. This parameter enables the adjustment of both the capacity and computational
demands of the PA module within our network.

To explore the balance between performance efficiency and computational expenses,
we conducted experiments using PANet with various values of r. The data presented
in Table 7 illustrate that the system’s performance remains stable across a spectrum of
reduction ratios. It is noteworthy that escalating complexity does not consistently enhance
performance, particularly at a minimal rate.

The parameter size of the model is significantly increased. Good accuracy can
be obtained by setting r = 16. In practice, the same ratio may not be optimal, so fur-
ther improvement can be obtained by adjusting the ratio to meet the needs based on a
given infrastructure.

Table 6. Effect of using differnet activation function in PA module.

Activiation Function Accuracy Specificity Sensitivity

ReLU 97.89% 96.96% 98.85%
sigmoid 97.74% 96.41% 99.14%

Table 7. Effect of using differnet reduction ratios in PA module.

Ratio Accuracy Specificity Sensitivity

4 97.33% 93.92% 98.28%
8 96.90% 92.82% 98.56%
16 97.89% 96.96% 98.85%
32 97.33% 95.30% 96.84%

4.2.2. FusionGhost Module

Ghost module is usually used to improve the efficiency of feature extraction, but we
find that its role is more than that. It can improve the consistency of features. The features
generated by linear transformation are consistent with the original features to a certain
extent, which is more conducive to extracting deep and general features. The experimental
results are shown in Table 8. Compared with ghost module and ordinary convolution, our
proposed FusionGhost module achieves better results.

Table 8. Effect of using FusionGhost module in PANet.

Network Accuracy Specificity Sensitivity

conv + PANet 96.76% 95.03% 98.56%
Ghost module + PANet 97.46% 95.58% 99.43%
FusionGhost module + PANet 97.89% 98.85% 96.96%

In order to explore the influence of the number of FusionGhost modules on the perfor-
mance of the model, we set up several groups of control experiments. The experimental
results, namely Table 9 show that the model achieves the optimal results when the number
of modules is 2.

In the implementation of ghost module, depth convolution is used to reduce the
number of parameters. However, when we use multiple convolution cores with different
sizes, we do not use a similar structure, but use ordinary convolution, which has achieved
better results. At the same time, we also try to use the effect of separable convolution.
The final experimental results are shown in Table 10.
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Table 9. Effect of different number FusionGhost module in PANet.

network Accuracy Specificity Sensitivity

FusionGhost module × 1 + PANet 97.04% 95.03% 99.13%
FusionGhost module × 2 + PANet 97.89% 98.85% 96.96%
FusionGhost module × 3 + PANet 96.48% 95.58% 97.41%

Table 10. Comparison of FusionGhost with Different Convolution Types.

Network Accuracy Specificity Sensitivity

FusionGhost with conv 97.89% 98.85% 96.96%
FusionGhost with separable conv 95.92% 93.37% 98.56%

4.3. Different Methods of Imaging Heart Sound

In this section, we not only prove that bispectral feature is an effective means of high-
dimensional feature transformation of heart sound signal, but also compare it with the
other two transformation methods. The results of three heart sound data feature conversion
methods are shown in Figure 6.

The bispectrum exhibits richer and more distinct pixel features, as shown in
Figure 6a1,a2. In the bispectrum images of normal and abnormal heart sound signals,
the color gradients and distributions are more pronounced, aiding in the accurate capture
of heart sound signal characteristics. We also compared the bispectrum with Gramian
Angular Summation Field(GASF) [51] and MTF. GASF is a variant of GAF, where the
summation operation is used instead of the difference operation used in GAF, chosen for
its superior preservation and highlighting of features. The GASF images are shown in
Figure 6b1,b2, and the MTF images are shown in Figure 6c1,c2. From the results of classifica-
tion accuracy, specificity, and sensitivity, the bispectrum also achieves the best performance.

Figure 6. Heart sound signal. (a1) Bispectrum from normal heart sound signal. (a2) Bispectrum
from abnormal heart sound signal. (b1) GASF from normal heart sound signal. (b2) GASF from
abnormal heart sound signal. (c1) MTF from normal heart sound signal. (c2) MTF from abnormal
heart sound signal.

Specifically, the bispectrum can more effectively capture the coupling relationship
between different frequencies of heart sound signals, as it encodes the complexity and
non-linear characteristics of the heart sound signals into the pixel features of the image.
This method enables CNNs to better extract and utilize these features for classification tasks.
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Additionally, the image features of the bispectrum are visually more prominent, making
the internal structure and dynamic changes of the heart sound signals more intuitive.

In the conducted experiments, as shown in Table 11, the classification accuracy of the
bispectrum reached 92.08%, with a specificity of 87.14%, and a sensitivity of 93.56%. These
results outperform the transformation methods of GASF and MTF, further validating the
effectiveness of the bispectrum as a high-dimensional feature transformation method for
heart sound signals.

Table 11. Comparison of different methods of imaging heart sound.

Transform Methods Accuracy Specificity Sensitivity

GASF 84.49% 60.00% 91.85%
MTF 90.43% 82.86% 92.70%
Bispectrum 92.08% 87.14% 93.56%

4.4. Comparision with State-of-the-Art Methods

A comprehensive evaluation was conducted on various models, including the pro-
posed PANet, to compare their performance. Sensitivity, specificity, and accuracy served as
the evaluation metrics.

The analysis presented in Table 12 highlights the PANet’s strong performance among
current state-of-the-art methods in the domain of heart sound classification. With an accu-
racy of 97.89%, PANet demonstrates a slight yet significant edge over other conventional
methods, illustrating its effective capability in harnessing and interpreting the complex
features inherent in heart sound signals. While the sensitivity and specificity of PANet
closely align with those of the top-performing RNN (LSTM, BLSTM, GRU, BiGRU) MFCC
methods, the slight increase in overall accuracy emphasizes PANet’s balanced proficiency
across various evaluation metrics.

Table 12. Comparison with state-of-the-art methods.

Methods
CinC 2016 CinC 2022

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

RNN(LSTM,BLSTM,GRU,BiGRU)MFCC [20] 98.86% 98.36% 97.63% 75.20% 76.51% 75.80%
2D-CNN Spectrograms [39] 93.20% 95.12% 97.05% 71.02% 72.37% 71.65%
2D-CNN wavelet transform Hilbert-huang
features [40]

98.00% 88.50% 93.00% 70.50% 69.8% 70.14%

2D-DNN MFSC [41] 89.30% 97.00% 95.50% 74.05% 75.26% 74.61%
1D-CNN Spectrograms [42] - - 96.48% 73.23% 74.51% 73.83%
1D-CNN 1D time-series signals [43] 85.29% 95.73% 93.56% 69.8% 70.18% 70.04%
LSTM MFCC [22] - - 91.39% 72.19% 73.42% 72.70%
2D-CNN Log-mel Spectrogram [30] 98.78% 97.74% 97.58% 76.16% 75.83% 76.84%
Proposed PANet 98.85% 96.96% 97.89% 76.31% 75.52% 77.02%

This margin of improvement is credited to our innovative use of bispectral analysis for
the image-based representation of heart sound signals, combined with the novel integration
of the Partition Attention (PA) module and FusionGhost module into the CNN architecture.
These methodological enhancements contribute to PANet’s nuanced ability to discern and
utilize the non-linear characteristics of heart sound signals more effectively than some
traditional RNN and CNN approaches.

It is important to note, however, that while PANet achieves the highest accuracy in
our comparative analysis, it does so amidst a backdrop of slightly lower sensitivity and
specificity when compared to some RNN techniques. This acknowledgment underlines
our commitment to a balanced evaluation of PANet’s capabilities and potential areas for
refinement. In the ensuing sections, we further explore the noise resistance and feature
extraction prowess of PANet relative to RNNs, thereby shedding light on the method’s
practical and theoretical contributions to the field of heart sound signal classification.
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4.5. Robustness Experiment

It was observed that the performance of RNNs was quite similar to the proposed
method PANet. Hence, a second experiment was designed specifically to test the feature ex-
traction capabilities and noise robustness of these two types of networks. The performance
of RNNs and CNNs was compared when dealing with noise in different frequency bands.

The frequency band was first divided into five parts: 0 Hz–100 Hz, 100 Hz–200 Hz,
200 Hz–300 Hz, 300 Hz–400 Hz, and 400 Hz–500 Hz. Gaussian noise of different magnitudes
was then added to each frequency band. Gaussian noise, characterized by amplitudes that
follow a normal distribution and having the same power at all frequencies, is a common
type of noise and an effective simulation of noise in real-world environments.

Different noise levels, ranging from 0% to 20%, were used. These noise levels corre-
spond to different decibel values. Decibels, a comparative measure used to express the
ratio between two values, were used to represent the ratio of the power of the noise signal
to the power of the original signal. The mathematical definition of decibels is:

dB = 10 · log10

(
Pnoise
Psignal

)
(19)

where Pnoise is the power of the noise signal and Psignal is the power of the original signal.
For each frequency band and each noise level, the classification accuracy of both RNNs

and PANet was tested. The aim was to understand the performance differences between
these two types of networks when dealing with different frequency bands and different
noise levels, as well as their feature extraction capabilities and noise robustness.

Upon further analysis of the results presented in Table 13 and its corresponding
Figure 7, we observed that the PANet exhibits superior performance over RNNs under
specific noise conditions and frequency bandwidths. Notably, at higher noise levels (e.g.,
−10 dB to −7 dB), PANet demonstrates significant robustness in maintaining classification
accuracy, especially pronounced in the high-frequency bands (300 Hz–500 Hz), where
PANet effectively sustains performance, in contrast to the notable decline observed with
RNNs. This observation underscores the advantage of our method in handling complex
noise environments likely encountered in real-world applications; despite PANet’s in-
creased sensitivity within the 200 Hz–300 Hz frequency band, its overall performance
and stability remain superior to RNNs.

Theoretically, the method of encoding heart sound signals into images using bispectrum
indeed creates coupling between the pixels of the signal through spectrum and phase. This
coupling allows CNNs to extract these features and focus on key areas (200–300 Hz frequency
band). This is because the working principle of CNNs is to extract local features by sliding
convolution kernels over the input data, allowing it to capture spatial structures and patterns
in the image. Therefore, when heart sound signals are encoded into images, CNNs can utilize
these spatial structures and patterns to extract features and focus on key areas.

Table 13. Comparative analysis of RNNs and PANet performance across different frequency bands
and noise Levels.

Noise Intensity (dB) 0–100 Hz 100–200 Hz 200–300 Hz 300–400 Hz 400–500 Hz
RNN PANet RNN PANet RNN PANet RNN PANet RNN PANet

0 0.9763 0.9789 0.9763 0.9789 0.9763 0.9789 0.9763 0.9789 0.9763 0.9789
0.01% (−40 dB) 0.9763 0.9749 0.977 0.9789 0.977 0.9799 0.9731 0.9789 0.971 0.9789
0.05% (−34 dB) 0.9762 0.9749 0.977 0.9789 0.9745 0.9799 0.9678 0.9789 0.9331 0.9789
0.1% (−30 dB) 0.9762 0.9724 0.977 0.9799 0.9689 0.9799 0.9636 0.9789 0.9089 0.9789
0.5% (−23 dB) 0.9752 0.9699 0.9795 0.9719 0.9204 0.9799 0.912 0.9739 0.8825 0.9789
1% (−20 dB) 0.9741 0.9624 0.9707 0.9619 0.8731 0.9799 0.8815 0.9699 0.8699 0.9789
5% (−13 dB) 0.971 0.9549 0.9232 0.9059 0.772 0.9519 0.812 0.9599 0.8562 0.9779
10% (−10 dB) 0.9583 0.9499 0.9045 0.8539 0.7352 0.9169 0.7857 0.9589 0.8499 0.9779
20% (−7 dB) 0.9425 0.9479 0.8773 0.8074 0.6962 0.8709 0.7731 0.9589 0.8215 0.9779
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Figure 7. Comparative analysis of RNNs and PANet performance across different frequency bands
and noise levels, illustrating the robustness of the networks to noise in heart sound signal classification.

RNNs use a sequence processing method, sharing parameters between time steps
to process sequence data. This parameter sharing mechanism may cause RNNs to have
poor robustness when dealing with high-frequency noise. This is because RNNs mainly
focus on the temporal dependencies in sequence data, not spatial structures and patterns.
Therefore, when faced with high-frequency noise, RNNs may not be able to effectively
extract features.

These findings validate the advanced capability of PANet in capturing and utilizing
the non-linear characteristics of heart sound signals through the combination of bispec-
tral image transformation and CNN integration. By focusing on key areas, such as the
200–300 Hz frequency band, PANet optimizes the recognition of non-linear and complex
patterns in heart sound signals, a feat challenging to achieve through traditional RNN
methods. This performance not only demonstrates the theoretical innovation of PANet but
also proves its contribution to enhancing the accuracy and robustness of heart sound signal
classification in practical applications.

In summary, by leveraging the spatial characteristics of CNNs and focusing on key
areas, PANet provides superior noise robustness. This not only offers new theoretical
support for heart sound signal classification but also provides valuable insights for future
research, showcasing the significance and practical value of the PANet method.

5. Conclusions

This research introduces a novel approach for heart sound classification using the
PANet. The method leverages bispectrum for encoding heart sound signals into images, cap-
turing the coupling between pixels and allowing CNNs to extract these features. The PANet
incorporates a partition attention module, enabling the network to learn regional charac-
teristics of the bispectrum and assign different importance weights to different regions.
A novel feature fusion module, FusionGhost, is proposed to enhance the network’s feature
extraction capability, showing better feature fusion and multi-dimensional extraction ability
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than the Ghostnet module. Comprehensive studies were conducted, including experiments
on the PhysioNet Computational Cardiology (CinC) 2016 Challenge Database, demon-
strating the effectiveness of the proposed algorithm. The method showed superior noise
robustness, particularly evident in the noise interference experiments.
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neural network approach. In Proceedings of the 2016 Computing in Cardiology Conference (CinC), Vancouver, WC, Canada,
11–14 September 2016; pp. 1129–1132.

13. Farge, M. Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 1992, 24, 395–458. [CrossRef]
14. Chen, J.; Dang, X.; Li, M. Heart sound classification method based on ensemble learning. In Proceedings of the 2022 7th

International Conference on Intelligent Computing and Signal Processing (ICSP), Xi’an, China, 15–17 April 2022; pp. 8–13.
15. Lee, J.A.; Kwak, K.C. Heart Sound Classification Using Wavelet Analysis Approaches and Ensemble of Deep Learning Models.

Appl. Sci. 2023, 13, 11942. [CrossRef]
16. Liu, C.; Springer, D.; Li, Q.; Moody, B.; Juan, R.A.; Chorro, F.J.; Castells, F.; Roig, J.M.; Silva, I.; Johnson, A.E.; et al. An open access

database for the evaluation of heart sound algorithms. Physiol. Meas. 2016, 37, 2181. [CrossRef]
17. Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput.

2019, 31, 1235–1270. [CrossRef]
18. Yang, T.C.I.; Hsieh, H. Classification of Acoustic Physiological Signals Based on Deep Learning Neural Networks with Augmented

Features. In Proceedings of the 2016 Computing in Cardiology Conference (CinC), Vancouver, WC, Canada, 11–14 September 2016;
pp. 569–572.

http://doi.org/10.1016/j.patcog.2017.10.013
http://dx.doi.org/10.3390/app10144791
http://dx.doi.org/10.3390/app8122344
http://dx.doi.org/10.1146/annurev.fl.24.010192.002143
http://dx.doi.org/10.3390/app132111942
http://dx.doi.org/10.1088/0967-3334/37/12/2181
http://dx.doi.org/10.1162/neco_a_01199


Electronics 2024, 13, 1179 24 of 25

19. Raza, A.; Mehmood, A.; Ullah, S.; Ahmad, M.; Choi, G.S.; On, B.W. Heartbeat sound signal classification using deep learning.
Sensors 2019, 19, 4819. [CrossRef]

20. Latif, S.; Usman, M.; Rana, R.; Qadir, J. Phonocardiographic sensing using deep learning for abnormal heartbeat detection. IEEE
Sensors J. 2018, 18, 9393–9400. [CrossRef]

21. Rangayyan, R.M.; Lehner, R.J. Phonocardiogram signal analysis: A review. Crit. Rev. Biomed. Eng. 1987, 15, 211–236.
22. Khan, F.A.; Abid, A.; Khan, M.S. Automatic heart sound classification from segmented/unsegmented phonocardiogram signals

using time and frequency features. Physiol. Meas. 2020, 41, 055006. [CrossRef] [PubMed]
23. Li, F.; Tang, H.; Shang, S.; Mathiak, K.; Cong, F. Classification of heart sounds using convolutional neural network. Appl. Sci.

2020, 10, 3956. [CrossRef]
24. Deng, M.; Meng, T.; Cao, J.; Wang, S.; Zhang, J.; Fan, H. Heart sound classification based on improved MFCC features and

convolutional recurrent neural networks. Neural Netw. 2020, 130, 22–32. [CrossRef]
25. Nilanon, T.; Yao, J.; Hao, J.; Purushotham, S.; Liu, Y. Normal/abnormal heart sound recordings classification using convolutional

neural network. In Proceedings of the 2016 Computing in Cardiology Conference (CinC), Vancouver, WC, Canada, 11–14
September 2016; pp. 585–588.

26. Potes, C.; Parvaneh, S.; Rahman, A.; Conroy, B. Ensemble of feature-based and deep learning-based classifiers for detection of
abnormal heart sounds. In Proceedings of the 2016 Computing in Cardiology Conference (CinC), Vancouver, WC, Canada, 11–14
September 2016; pp. 621–624.

27. Springer, D.B.; Tarassenko, L.; Clifford, G.D. Logistic regression-HSMM-based heart sound segmentation. IEEE Trans. Biomed.
Eng. 2015, 63, 822–832. [CrossRef]

28. Humayun, A.I.; Ghaffarzadegan, S.; Ansari, M.I.; Feng, Z.; Hasan, T. Towards domain invariant heart sound abnormality
detection using learnable filterbanks. IEEE J. Biomed. Health Inform. 2020, 24, 2189–2198. [CrossRef] [PubMed]

29. He, Y.; Li, W.; Zhang, W.; Zhang, S.; Pi, X.; Liu, H. Research on segmentation and classification of heart sound signals based on
deep learning. Appl. Sci. 2021, 11, 651. [CrossRef]
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