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Abstract: Coughing, a common symptom associated with various respiratory problems, is a crucial
indicator for diagnosing and tracking respiratory diseases. Accurate identification and categorization
of cough sounds, specially distinguishing between wet and dry coughs, are essential for under-
standing underlying health conditions. This research focuses on applying the Swin Transformer
for classifying wet and dry coughs using short-time Fourier transform (STFT) representations. We
conduct a comprehensive evaluation, including a performance comparison with a 2D convolutional
neural network (2D CNN) model, and exploration of two distinct image augmentation methods:
time mask augmentation and classical image augmentation techniques. Extensive hyperparameter
tuning is performed to optimize the Swin Transformer’s performance, considering input size, patch
size, embedding size, number of epochs, optimizer type, and regularization technique. Our results
demonstrate the Swin Transformer’s superior accuracy, particularly when trained on classically
augmented STFT images with optimized settings (320 × 320 input size, RMS optimizer, 8 × 8 patch
size, and an embedding size of 128). The approach achieves remarkable testing accuracy (88.37%)
and ROC AUC values (94.88%) on the challenging crowdsourced COUGHVID dataset, marking
improvements of approximately 2.5% and 11% increases in testing accuracy and ROC AUC values, re-
spectively, compared to previous studies. These findings underscore the efficacy of Swin Transformer
architectures in disease detection and healthcare classification problems.

Keywords: 2D CNN; cough classification; COUGHVID dataset; disease detection; data augmentation;
hyperparameter tuning; short-time Fourier transform (STFT); Swin Transformer

1. Introduction

Coughing is a prevalent symptom linked to various respiratory conditions and serves
as a crucial indicator for diagnosing and monitoring respiratory diseases. Accurate de-
tection and classification of cough sounds offer valuable insights into individuals’ health,
particularly in distinguishing between wet and dry coughs. This distinction is essential as
it assists in determining the nature and severity of respiratory infections.

Wet coughs, characterized by the presence of mucus or phlegm, are often associated
with conditions like bronchitis or pneumonia. In contrast, dry coughs, which do not
produce mucus, typically result from irritation or inflammation in the airways, as seen in
allergies, asthma, or viral infections.

This differentiation is not just crucial for diagnosis but also for the management of
respiratory conditions, providing valuable insights into the underlying causes and guiding
treatment approaches. Coughs can be characterized by different phases and frequencies,
and these characteristics vary between wet and dry coughs. In dry coughs, all three phases
of a cough signal are usually observed, with the initial burst of energy followed by a
phase of relatively less energy, especially at higher frequencies. This may indicate a less
productive and drier cough. In wet coughs, associated with mucus, the second phase often
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shows increased energy and activity, especially at higher frequencies, indicative of a more
productive cough associated with clearing the airways [1].

Traditional diagnostic approaches for coughs rely heavily on subjective assessments
by healthcare professionals, posing challenges such as time consumption, high costs, and
potential human errors. However, recent advancements in audio analysis and machine
learning present opportunities for automated cough detection and classification. Utiliz-
ing digital signal processing and pattern recognition, audio-based cough analysis offers
objective and efficient tools for healthcare practitioners to assess cough characteristics [2].

Several methods have been explored for classifying wet and dry coughs through audio
analysis. One prevalent technique involves extracting mel-frequency cepstral coefficients
(MFCCs) from cough sounds. MFCCs capture audio signal spectral characteristics and have
proven successful in various audio processing applications. Applying machine learning
algorithms, such as support vector machines (SVM) or convolutional neural networks
(CNN), to these MFCC features enables accurate wet and dry cough classification [3]. Also,
approaches that employ continuous wavelet transform (CWT) and short-time Fourier
transform (STFT), providing time-frequency representations of coughs signals, reflect
discriminative features for wet and dry cough classification [4].

Moreover, statistical features computed from cough signals, such as mean, standard
deviation, energy, and zero-crossing rate, have been utilized in classification tasks. These
features capture different aspects of the cough waveform and serve as inputs to different
machine learning algorithms [5].

Moving to deep learning models, particularly recurrent neural networks (RNNs) and
long short-term memory (LSTM) networks, have shown promise in audio classification
tasks. Processing raw audio samples or spectrogram representations of cough sounds,
these models demonstrate high accuracy in wet and dry cough classification [6].

In recent years, the application of state-of-the-art deep learning architectures, such
as Swin Transformers, has gained prominence in various domains, including medical
audio analysis. The unique ability of these transformer-based models to capture long-
range dependencies and hierarchical features makes them particularly promising for tasks
like cough classification. Swin Transformers, with their shifted window self-attention
mechanism, offer an innovative approach to processing image patches, allowing for efficient
feature extraction across diverse spatial scales. Leveraging the pre-trained representations
from these models or fine-tuning them on cough-specific datasets can potentially enhance
the robustness and accuracy of cough classification systems. The exploration of transformer
architectures in the realm of medical audio analysis signifies a promising direction for
advancing automated diagnostic tools and improving the understanding of respiratory
conditions based on cough sound patterns [7,8].

The application of sophisticated machine and deep learning techniques in the classifi-
cation of wet and dry coughs based on audio signals has seen significant advancements.
Various studies have explored diverse methodologies, data types, and metrics, particularly
in the context of respiratory illnesses and infectious diseases. This section reviews the key
contributions and methodologies related to the classification of wet and dry coughs using
artificial intelligence techniques. In our literature, we focused on the approaches that have
used the COUGHVID crowdsourced data, as in our case. The COUGHVID data represent
the widest, most diverse, and challenging public coughs data.

The COUGHVID public dataset comprises more than 25,000 crowdsourced cough
audio samples from diverse age groups, genders, and countries. This dataset encompasses
coughs from both COVID-19 patients and healthy individuals. Collected through an online
platform, participants recorded their coughs and provided information about their age, gen-
der, and health status. The dataset includes a meta file containing details such as file name,
subject status, age, gender, health condition, cough type, and a cough detection score [9].
This score, determined by an automatic detection algorithm, represents the probability
that the audio contains cough sounds. The cough type label indicates the cough as wet or
dry. This makes the dataset a good fit for wet and dry cough classification tasks. Different
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approaches for wet and dry coughs classification using the crowdsourced COUGHVID
dataset have been presented in the literature. In Table 1 below, we summarize the previous
methods and results for wet and dry cough classification using COUGHVID dataset.

Table 1. Previous trials for wet and dry cough classification using COUGHVID dataset.

Reference Method Year Dataset Information Results

[10] Audio features and XGBoost
using Bayesian optimization 2021 1659 coughs Testing accuracy: 66%

[11]
Adaptive synthetic (ADASYN)
oversampling cepstral-based
statistical features and MLP

2022
1145 dry cough and 409 wet
cough samples with 80–20

training–testing split
Testing accuracy: 85.84%

[12]

Oversampling via the SMOTE
algorithm and ANN, or

kNN/spectral and cepstral
features

2021 1659 with and without
segmentation

KNN classifier: AUC score of
0.61/ANN model an AUC

score of 0.63

[13]

Cochleagram image
classification using CNN with

data augmentation during
training using SMOTE

2022

396: 34 wet vs. 362 dry with
eight-fold cv cough samples

from 77 recordings (7 wet
cough recordings and 70 dry
cough recordings) (all four

physicians agreement)

AUC ROC of 80.71 for
automatic segmentation and

83.76 in manual
segmentation

[14]

Using spectral, cepstral, fractal,
and nonlinear time-series

analyses and neural network
pattern recognition

2023

70 wet vs. 30 dry cough
samples

70 signals are used for training;
15 signals are used for testing
and the last 15 signals are used

for validation

Prediction accuracy = 99%

[15]

Energy envelope peaks, crest
factors, zero-crossings, and

formant frequencies 1–4
introduced to SVM and LR

2023
870 cough samples: 347 wet

cough and 523 dry cough
samples

SVM achieves an average
testing accuracy of 71.26%
and an F1-score of 67.94%;
LRM classifier achieves an
accuracy of 71.26% and an

F1-score of 68.45%

In this paper, we introduce an outperforming approach in classifying dry and wet
coughs. Our method involves utilizing short-time Fourier transform (STFT) representations
of the crowdsourced COUGHVID cough data as input to a Swin Transformer model. This
model is compared with a traditional CNN 2D besides incorporating different image
augmentation techniques, i.e., time-masking and classical image augmentation. Also,
fine-tuning is implemented to enhance the Swin Transformer architecture and performance.

2. Materials and Methods

The methodology of this work involves comparing two distinct approaches for clas-
sification task of wet and dry coughs using STFT representations: a traditional 2D CNN
model and a Swin Transformer model. Both models undergo hyperparameter tuning and
are subjected to different image augmentation techniques at the input level.

2.1. Dataset

The dataset utilized in this study is the COUGHVID public dataset, consisting of
more than 25,000 cough audio recordings contributed by individuals of various age groups,
genders, and geographical locations. This dataset comprises coughs from both COVID-
19 patients and individuals in good health. Data collection occurred through an online
platform where participants recorded their coughs and provided information about their
age, gender, and health status [9].
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Each audio recording is associated with metadata which include details such as the
file name, the participant’s health status, age, gender, a cough detection score, and other
cough characteristics (i.e., wet or dry cough). The cough detection score represents the
likelihood that the audio contains cough sounds, as determined by an automated detection
algorithm. To ensure that all the audios used in our analysis genuinely include coughs, we
specifically included those with a score of 80% or higher. Regarding the wet/dry labeling,
it is conducted by four health practitioners. A voting mechanism is introduced to indicate
the cough as wet or dry, where the cough is included in the study only if three out of four
physicians agreed on the type of the cough. Therefore, after applying the cough detection
limit and the labels’ voting mechanism, the work included a total of 1432 dry coughs and
427 wet coughs. Two approaches are implemented and tested in this study based on the
dataset version. The first approach performs random undersampling to balance the classes
of the dataset. However, another approach tackles the unbalanced dataset.

2.2. Audio Data Preprocessing

To prepare the audio signals for analysis, we begin by removing any initial and final
periods of silence to reduce the computational power. Afterward, we make sure that all
signals share a common sampling frequency of 48,000 Hz for uniformity. Next, we apply a
pre-emphasis technique to highlight essential features within the audio data [16]. Following
this, we standardize the audio data by normalizing them, ensuring that the values fall
within a range of −1 to 1. This normalization simplifies the data for neural networks,
making it more conducive for learning [17].

Also, one of the preprocessing steps is unifying the lengths of the cough audios. This is
achieved by applying spline interpolation, where the lengths of all audios are unified to the
average length [18]. Next, a pre-emphasis filter is applied to the signals, which increases
the amplitude of high-frequency bands and decreases the amplitudes of the lower bands of
a signal (Equation (1)) [17].

y(t)= x(t)− αx(t − 1), (1)

where, y(t) is the output signal, x(t) is the input of the pre-emphasis filter, and α is the
pre-emphasis coefficient = 0.97

2.3. Extraction of Spectrogram Representations

The STFT representations are generated to capture the local frequency content over
time, essential for audio classification. We use 1024 frequency bins (n_fft) for high-frequency
resolution and set the hop length to 512 for a 50% overlap between frames, balancing
spectral precision with computational efficiency. Hann windowing is applied to minimize
artifacts in the Fourier transform [17]. Post-generation, STFT images undergo normalization
based on the mean and standard deviation of the three input channels individually and
we apply the formula presented below (Equation (2)). In our case, having image input,
we normalize them to make the model converge faster. For the STFT images, we compute
the mean and standard deviation independently for each of the three channels and then
perform normalization accordingly [19]. The normalization formula is as follows:

xnorm =
x − mean(x)

std(x)
, (2)

where x denotes the values in the three different channels, xnorm signifies the normalized
values, and std(x) is the standard deviation of x.

To address class imbalance, random downsampling is employed, resulting in 427 wet
cough and 432 dry cough STFT images for model input.

2.4. Implementing the 2D-CNN-Based Model

The 2D convolutional neural network (CNN) is a deep learning approach used for
analyzing and classifying images which consists of various layers such as convolutional
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layers, pooling layers, and fully connected layers. These layers work together to learn local
patterns, downsample the data, and classify the images. By applying filters and pooling
operations, the network extracts features and hierarchies of information, enabling it to
comprehend complex visual patterns and make accurate predictions [20]. Interestingly,
research has shown that shallow networks can be more effective than deep networks when
working with small datasets [16].

Based on this insight, we constructed a model consisting of two 2D CNN layers. A
fine-tuning of the model is applied using Keras tuner library in python; the tuner searches
for the optimal combination of the layers of the model, as well as the kernel, pooling, and
filter dimensions. Accordingly, a 3 × 3 kernel size is set for the two 2D CNN layers, each
having 256 filters and 128 filters, respectively. In addition, a batch normalization layer is
inserted between the two 2D CNN layers. The model also incorporates two max pooling
layers with 3 × 3 pooling size. Additionally, two ReLU dense layers of size 64 are included
with a dropout layer after each of them. Finally, a fully connected layer utilizing sigmoid
activation function is inserted for the final classification. The architecture of the model is
depicted in the flowchart below (Figure 1). The STFT images serve as an input to the model,
where an 80–20–10 training–validation–testing split is inherited. The validation and testing
accuracies of the model serve as evaluation metrics to assess its performance.
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2.5. Implementing the Swin-Transformer-Based Model

We propose the classification of wet and dry STFT representations using a Swin-
Transformer-based model. The Swin Transformer is a novel architecture based on the
Transformer for visual recognition tasks. It aims to overcome the limitations of traditional
convolutional neural networks (CNNs) by introducing a hierarchical structure and utilizing
the self-attention mechanism.

The Swin transformer is structured into multiple stages, each featuring hierarchical
windows that segment the input image into non-overlapping patches, enabling the capture
of local and global context. Within each stage, a self-attention mechanism with multi-
head attention assesses dependencies among patches, facilitating the understanding of
complex image relationships by considering long-range interactions. A distinctive shifting
operation between stages allows patches to change positions within windows, promoting
the integration of information across different parts of the image. Additionally, the Swin
Transformer incorporates a hierarchical approach to feature maps, progressively reducing
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their spatial resolution to decrease computational demands while preserving detailed
image representation [21].

Our Swin Transformer model’s architecture experimentation involves testing various
input sizes to identify the optimal configuration for image processing. Specifically, the input
layer accommodates images of sizes 224 × 224, 256 × 256, 320 × 320, or 384 × 384, each
represented as a MxNx3 tensor (Table 2). The primary goal is to determine the most effective
image size for our model’s architecture. Image augmentation techniques, including random
cropping and flipping, are employed to enhance the model’s ability to learn from different
image variations. This process is essential for the initial layers of our architecture (Table 2,
Layers 2–3).

Table 2. The Swin Transformer model’s architecture.

Swin Transformer Architecture

1. Input Layer

2. Random Crop Layer

3. Random Flip Layer

4. Patch Extract Layer

5. Patch Embedding Layer

6. Swin Transformer Layer 1

7. Swin Transformer Layer 2

8. Patch Merging

9. Global Average Pooling

10. Fully Connected Dense Layer

Following augmentation, the architecture processes the images through patch extrac-
tion and embedding stages. Each image patch is converted into a one-dimensional vector
and then linearly projected using a learnable weight matrix in the patch embedding layer
(Table 2, Layers 4–5). The core of the model consists of two Swin Transformer layers, which
are pivotal for the model’s ability to capture complex features and relationships within the
data (Table 2, Layers 6–7). These layers employ shifted windows-based multi-head self-
attention (MSA) modules, MLPs with GELU activation, layer normalization, and residual
connections to enhance learning efficiency and model performance.

The concluding phases of our model involve patch merging and global average
pooling, leading up to the final classification layer. The patch merging step aggregates
patch-level information, which is then compacted through global average pooling. This
compact representation is crucial for the model to make accurate predictions based on the
entire image. The final classification is executed with a dense layer utilizing a sigmoid
activation function, tailored for binary classification tasks like distinguishing between wet
and dry STFT images (Table 2, Layers 8–10).

Fine-tuning the model involves adjusting several parameters, including input size,
patch size, embedding dimension, the number of epochs, and the optimizer choice (Adam or
RMS) [22]. These adjustments are crucial for optimizing the model’s performance, ensuring
accurate predictions while avoiding overfitting or underfitting. The results, discussed
later, highlight the effectiveness of our chosen parameters in achieving high accuracy and
efficient training times.

2.6. Application of Augmentation Techniques on STFT Representations

Different versions of the STFT representations are introduced to the 2D-CNN model
and the Swin Transformer Model. The first two versions contain the original batches
of balanced and unbalanced wet/dry STFT images. Regarding the other two versions,
two augmentation techniques are performed in order to increase the training set size and
eventually enhance the generalization ability of the model [23].
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2.6.1. Time Mask Augmentation

Time mask augmentation is a powerful technique used in audio processing tasks to
enhance the performance of deep learning models [24]. In our case, this is achieved by
randomly masking consecutive time segments within the audio signal. These masks are ap-
plied to random time intervals of the training STFT representations of coughs audio signals.
This augmentation helps the model become more robust and generalized by allowing the
training of the model on various sets of data. Figure 2 shows an example of a time-masked
STFT image. The time mask augmentation is performed on the training set using the
“torchaudio.transforms” module’s time masking class in python, where the time mask size
is about 0.03 s, applied two times for each image with a 0.27 s interval between each [25].
The training set is augmented to double its size (i.e., a total of 1708 STFT representations).
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2.6.2. General Image Augmentation Techniques

We move to the second approach to STFT image augmentation, where edits and effects
like crop, rotation, shear, saturation, brightness, and noise addition are performed using
the Roboflow online datasets processing and management tool [26].

The augmentation settings and parameters performed on the wet and dry cough STFT
representations are listed below:

• Crop: 0% minimum zoom; 20% maximum zoom;
• Rotation: between −15◦ and +15◦;
• Shear: ±15◦ horizontal; ±15◦ vertical;
• Saturation: between −25% and +25%;
• Brightness: between −25% and +25%;
• Noise: up to 5% of pixels.

Accordingly, the number of STFT representations is augmented by a factor of three
(i.e., 3× original representations count). We originally had 429 dry and 422 wet cough STFT
images, which are increased in size to 1287 dry and 1266 wet cough STFT representations.

3. Evaluation Metrics

In our analysis, we implemented a robust set of metrics to rigorously evaluate the
performance of our classification models. The metrics used are accuracy, ROC AUC, and
F1-score [27–29]. Accuracy measures the number of correctly classified samples; however,
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the ROC curve is a plot of the true positive rate (TPR) versus the false positive rate (FPR).
Below are represented the equations of accuracy, TPR, FPR, and F1-score.

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

TPR =
TP

TP + FN
(4)

FPR =
FP

FP + TN
(5)

F1 − Score =
2 × Precision × Recall

Precision + Recall
(6)

Accuracy provides a straightforward measure of overall correctness but may be in-
adequate for unbalanced datasets. ROC AUC assesses the model’s ability to distinguish
between wet and dry coughs across various thresholds, making it robust for unbalanced
data by considering true positive and false positive rates. Meanwhile, the F1-score balances
precision and recall, offering a single metric that addresses the trade-off between false
positives and false negatives, thus ensuring a comprehensive evaluation of the classifier’s
performance across different aspects essential for wet/dry cough classification tasks. These
metrics provide a comprehensive understanding of the model’s capabilities across different
extents and offer a comprehensive evaluation of the different models’ performance across
different datasets, architectures, and parameters for classification.

4. Results

In this study, we assessed the performance of both the 2D CNN and the Swin Trans-
former models in classifying wet and dry coughs using STFT representations. Each model
underwent various training trials with different configurations. For the 2D CNN model,
trials included using unbalanced, original, and time-mask-augmented STFT representa-
tions. The Swin Transformer model was tested with different input sizes and augmentation,
including time mask and general image augmentations.

Figures 3 and 4 present the evaluation metrics of the three trials. The models are
trained using 100 epochs and Adam optimizer with an input size of 224 × 224. The change
in the optimizer’s choice and input shape did not significantly affect the results; however,
upon increasing the number of epochs, an overfitting was noticed; this is the reason behind
fixing the number of epochs to 100.

Moving to Swin-Transformer-based architecture, different models are trained with
different versions of the dataset, different input image size, as well as a different optimizer.
Also, a fine-tuning of the patch size and embedding dimension is performed, leading to
a choice of 8 × 8 for the patch size and 128 as the embedding dimension. Ten different
combinations of the Swin Transformer model are trained and established. In the first four
combinations, we test for the optimal input size. No significant change is noticed upon
changing the optimizer, and a number of epochs equal to 100 is set to prevent overfitting.
Table 3 depicts the different model results obtained upon varying the input shape using the
balanced version of the dataset. The increase in the input image size is constrained by the
maximum allowable dimensions that ensure training proceeds without crashing due to
hardware limitations.

Due to the memory requirements, computational cost, and model size constraints,
a compromise between these constraints and the accuracy of the model is established
for later stages, where a size of 320 × 320 is employed for the models’ trained using the
further trials.

Now, after training using the balanced dataset, a trial using the unbalanced dataset is
performed with a 320 × 320 input size, and the results are also depicted in Table 3.
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Table 3. Swin Transformer models’ accuracies upon different input sizes using the balanced and
unbalanced datasets.

Swin Transformer Models Trained Using Balanced
STFT Images on Different Input Shapes Training Validation Testing

224 × 224 78.45 74.50% 73.92%
256 × 256 78.96 73.49 74.73%
320 × 320 82.07% 75.84% 74.19%
384 × 384 82.49% 75.84% 76.08%

Swin Transformer Models Trained using Unbalanced
STFT Images on Different Input Shapes

320 × 320 76.3% 72.6% 73.07%

Similarly, another four combinations aim to test the effect of time mask augmentation
on the models. Table 4 shows the results of the Swin Transformer models upon training
using the time-mask-augmented dataset.

Table 4. Results of training the Swin Transformer models using the time-mask-augmented dataset
and different input shapes.

Swin Transformer Models Trained Using
Time-Mask Augmented STFT Images on
Different Input Shapes

Training
Accuracy

Validation
Accuracy

Testing
Accuracy

224 × 224 and Time Mask Augmentation 77.34 75.88 76.47
256 × 256 and Time Mask Augmentation 77.24 75.88 76.47
320 × 320 and Time Mask Augmentation 78.04 76.27 79.57
384 × 384 and Time Mask Augmentation 78.24 76.12 79.57

In the two last models’ combinations, training is performed with the augmented
dataset of the general image augmentation techniques (crop, rotation, shear, saturation,
brightness, and noise addition). The performance of the models is monitored upon chang-
ing the number of epochs and the optimizers. Figure 5 below shows the evolution of
the model accuracy and loss as more epochs are performed using Adam as an optimizer.
Similarly, the same monitoring is presented in Figure 6; however, the RMS optimizer is
implemented instead of Adam. In both models, the learning rate and weight decay are set
to 10−3. A learning rate and weight decay of 10−3 is a commonly chosen value that balances
fast convergence with stability and falls within the typical range for these hyperparame-
ters, which often vary from 10−1 to 10−6 in machine learning applications. Relatively low
learning rate and weight decay help with optimization dynamics; also, they contribute to
controlling the complexity of the model and improving generalization performance [30,31].
Figure 7 presents the training, validation, and testing accuracies of both models as well as
the testing ROC AUC and F1-score values.

It is important to mention the difference in the computational time between the
different scenarios tested on 300 training epochs, where the average training computational
time for the 2D-CNN-based models is 13 min for the different datasets. This training
time increases significantly when implementing Swin-Transformer-based models to reach
an average of 30 min for 320 × 320 input size. However, the time required for model
evaluation is approximately equal for both scenarios, with an average of 0.7 s for 2D CNN
models and 1 s for Swin Transformer models.
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Figure 5. Model’s training and validation accuracy (a) and loss (b) evolution when using the Adam
optimizer for 300 epochs of training.
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Figure 6. Model’s training and validation accuracy (a) and loss (b) evolution when using the RMSprop
optimizer for 300 epochs of training.
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5. Discussion

In our study, we employed a Swin-Transformer-based model to classify wet and dry
coughs using the COUGHVID dataset. Our approach, distinguished in the literature of
2023, utilizes augmented short-time Fourier transform (STFT) images derived from 429 dry
and 422 wet cough recordings. These were expanded to 1287 dry and 1266 wet cough STFT
representations through augmentation. The model was trained over 300 epochs using an
RMS optimizer, enhanced with weight decay regularization. This methodology yielded
a training accuracy of 88.88%, a validation accuracy of 84.39%, and a testing accuracy of
88.37%. Notably, our model achieved an ROC AUC of 94.88% and an F1-score of 88.06%.

The results of our study yield valuable insights:

1. Effectiveness of time mask augmentation: time mask augmentation led to a notable
improvement of 4% in testing accuracy (Figures 3 and 4 and Tables 3 and 4).

2. Swin Transformer’s performance: The performance of Swin Transformer models was
notably influenced by two parameters: input shape and optimizer. Increasing the
input shape led to a substantial increase in accuracy, as observed in the testing accura-
cies of both original and STFT time-mask-augmented images, with improvements of
2.16% and 3.1%, respectively (Tables 3 and 4). Comparison between architectures: The
Swin-Transformer-based architecture outperformed the 2D-CNN-based architecture
in classifying dry/wet STFT images. When implementing the original dataset, there
was an increase in testing accuracy from 72.85% to 76.08% (Figure 3 and Table 3).
This difference was even more pronounced (2.57% improvement) when applying
time mask augmentation, demonstrating the superiority of the Swin Transformer
architecture in wet/dry representation classification.

3. Balanced and unbalanced datasets: Although a balanced dataset has yielded better
performance, performing the same trials on an unbalanced dataset reflects a more
realistic approach. While balanced datasets ensure equal representation of each
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class, mimicking ideal conditions for training, unbalanced datasets better mirror real-
world scenarios, where certain classes may be more prevalent than others. Therefore,
evaluating model performance on unbalanced data provides insights into how well
the classifier generalizes to real-world conditions, where class distributions are often
skewed. It helps to identify potential biases and weaknesses in the model’s ability
to handle unbalanced data, thus guiding improvements in robustness and reliability.
Moreover, solutions developed on unbalanced datasets are more likely to be applicable
in practical settings, where unbalanced data are common, enhancing the model’s
practical utility and effectiveness.

4. Robustness enhancement through image augmentation: Image augmentation tech-
niques applied to the training dataset significantly improved the model’s robustness
and accuracy. There were substantial improvements of 6.4%, 8.56%, and 12% in
training, validation, and testing accuracies, respectively (Figure 3 and Table 4).

5. Optimizer selection: While the Adam optimizer provided a smoother training process,
the RMS optimizer outperformed it in terms of accuracy. A noticeable increase of
approximately 5% in training accuracy and 2% in testing accuracy was observed when
using the RMS optimizer. High ROC AUC and F1-score values of 94.88% and 88.06%,
respectively, were achieved (Figures 5–7).

6. Computational complexity: Generally, 2D CNNs are considered more computationally
efficient than Swin Transformers for image processing tasks. The 2D CNNs utilize
efficient operations like convolutions that exploit local dependencies in images and
are well-optimized for hardware acceleration on GPUs. However, Swin Transformers
rely on self-attention mechanisms, which involve heavier computations compared
to convolutions, especially for high-resolution images; the Swin Transformer has
achieved better accuracy but at the cost of higher computational demands [32].

7. Comparative analysis with literature: Unlike many literature approaches that often
start with unbalanced datasets and apply data augmentation techniques like ADASYN
and SMOTE, our approach began with a balanced dataset. Data augmentation was
applied symmetrically to both classes to preserve uniformity in dealing with STFT
representations of wet and dry coughs, reducing the risk of model bias. Addition-
ally, we ensured that augmented data were only integrated into the training split,
maintaining the integrity of validation and testing datasets for unbiased performance
evaluation. These findings highlight the efficacy of various strategies in improv-
ing cough sound classification using deep learning models, with a focus on Swin
Transformer architecture, input shape, image augmentation, and optimizer selection.
Comparing the accuracies in [10,11,15], our model outperformed them by an increase
of 22%, 2.5%, and 16.74% in the testing accuracy, respectively. Now, moving to the
comparison of AUC ROC in [13] with our approach, we surpassed the results by an
improvement of 11.12%. The testing accuracy in [14] is found to be 99%; however,
a total of only 100 cough audios was used for this approach, with only 15 audios
dedicated for testing.

6. Conclusions and Perspectives

Our investigation into the application of Swin Transformers for cough classification
marks a significant advancement in employing sophisticated machine learning techniques
within healthcare diagnostics. The study titled “Advancing Cough Classification: Swin
Transformer vs. 2D CNN with STFT and Augmentation Techniques” reveals the supe-
rior capability of Swin Transformers over conventional 2D CNN models, especially in
distinguishing between wet and dry coughs through STFT representations. The Swin Trans-
former model, particularly when trained on augmented STFT images, exhibited exceptional
proficiency in classifying cough types. This augmented approach significantly boosted
testing accuracy and ROC AUC values, underscoring the model’s enhanced predictive per-
formance. Additionally, the employment of innovative methodologies like time mask and
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general image augmentation techniques has substantially increased the model’s robustness
and its ability to generalize across various cough sound representations.

A detailed comparative analysis between the Swin Transformer and traditional 2D
CNN models has been provided, laying down a comprehensive benchmark for future
endeavors in the domain of cough sound analysis. Looking forward, several promising
directions are envisioned for extending the scope of our research. Applying our model
to a broader spectrum of cough datasets could offer a more in-depth evaluation of its
generalization capability and its relevance to diverse demographic and geographic pop-
ulations. Delving into hyperparameter optimization could unlock further performance
enhancements, with the exploration of alternative optimizers, learning rate schedules, and
regularization techniques potentially providing deeper insights into improving model
accuracy and efficiency. Moreover, integrating time-masked with general image augmen-
tation strategies might establish a more robust framework for cough sound classification,
leveraging the strengths of both approaches to set new performance benchmarks.

However, our study is not without its limitations. The computational demands of
Swin Transformers, notably higher than those of 2D CNNs, present a significant challenge.
While Swin Transformers excel in capturing complex patterns within STFT representations,
their reliance on self-attention mechanisms necessitates considerable computational re-
sources, particularly for processing high-resolution images. Furthermore, the extensive
range of models and configurations tested posed a formidable challenge in re-evaluating
computational times for previously examined scenarios, rendering a complete reassess-
ment unfeasible within our study’s scope. Additionally, while our model demonstrates
impressive accuracy on the COUGHVID dataset, its performance across other cough sound
datasets has yet to be thoroughly investigated, highlighting a need for further research to
ascertain the model’s predictive capabilities across varying datasets.

In conclusion, our study not only underscores the effectiveness of Swin Transformers
in cough sound classification but also presents new opportunities for advancing disease
detection and healthcare classification systems. Despite facing challenges related to compu-
tational efficiency, our work significantly contributes to the ongoing efforts in harnessing
advanced deep learning architectures for medical diagnostics. We are optimistic that future
progress in computational technology and algorithmic efficiency will amplify the impact
of Swin Transformers in healthcare applications, paving the way for the development of
improved diagnostic tools and enhancing patient outcomes.
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