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Abstract: Multimodal sentiment analysis aims to acquire and integrate sentimental cues from different
modalities to identify the sentiment expressed in multimodal data. Despite the widespread adoption
of pre-trained language models in recent years to enhance model performance, current research in
multimodal sentiment analysis still faces several challenges. Firstly, although pre-trained language
models have significantly elevated the density and quality of text features, the present models
adhere to a balanced design strategy that lacks a concentrated focus on textual content. Secondly,
prevalent feature fusion methods often hinge on spatial consistency assumptions, neglecting essential
information about modality interactions and sample relationships within the feature space. In order
to surmount these challenges, we propose a text-centric multimodal contrastive learning framework
(TCMCL). This framework centers around text and augments text features separately from audio and
visual perspectives. In order to effectively learn feature space information from different cross-modal
augmented text features, we devised two contrastive learning tasks based on instance prediction
and sentiment polarity; this promotes implicit multimodal fusion and obtains more abstract and
stable sentiment representations. Our model demonstrates performance that surpasses the current
state-of-the-art methods on both the CMU-MOSI and CMU-MOSEI datasets.

Keywords: multimodal sentiment analysis; contrastive learning; pre-trained language model; feature
fusion

1. Introduction

As a critical technology in human–computer interactions, sentiment analysis is widely
applied in fields such as disease treatment, public opinion analysis, and fatigue moni-
toring [1]. In its early stages, this work primarily relied on single modalities, such as
text [2–4] or audio [5–7]. In recent years, with the development of multimedia and short
video platforms, multimodal sentiment data have exploded, presenting new challenges
and attracting numerous scholars to engage in multimodal sentiment analysis. Unlike
uni-modal sentiment recognition, multimodal sentiment recognition enhances sentimental
feature understanding by introducing information from other modalities, providing a
more comprehensive and nuanced sentimental understanding. This approach addresses
information gaps and ambiguity issues in uni-modal sentiment analysis [8].

Early research in this field focused on extracting and mining sentimental information,
often neglecting attention to multimodal fusion perception [9–12]. Subsequently, with
the rise of deep learning, multimodal sentiment analysis began leveraging deep neural
networks to extract and fuse features from different modalities automatically. The emphasis
shifted toward designing efficient neural network architectures to integrate various types
of data, resulting in the proposal of several excellent multimodal fusion methods [13–17].
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With the advent of pre-trained language models, such as the BERT series [18–20], the
models trained on large corpora demonstrated the efficient capture of textual context
representations and superior performance in natural language processing tasks. This
significant progress led many researchers to combine pre-trained language models with
deep learning networks, leveraging both technologies’ strengths for augmented feature
extraction and fusion. Some studies [21–26] view pre-trained language models as excellent
alternatives to traditional word embedding methods such as GloVe [27] and Word2Vec [28].
In contrast, others design models with fine-tuned pre-trained language models as the core
framework [29–31].

Although prior research has leveraged pre-trained language models to enhance multi-
modal sentiment analysis (MSA) tasks, the design of these models has not yet broken the
paradigm of modal balance. Researchers overlook the fact that the density and quality of
textual information far surpass those of the other two modalities (audio and visual) after
the improvement provided by pre-trained language models. This viewpoint is further
corroborated by extensive ablation experiments in the realm of MSA [23,32]. Therefore, we
adopt a text-centric model design philosophy, focusing on the textual modality and utilizing
audio and visual modalities as auxiliary components to augment textual information for
sentiment analysis.

Moreover, current research on multimodal feature fusion often relies on the assump-
tion of feature space consistency. Directly processing different modal features under this
assumption overlooks the distribution differences that carry implicit inter-sample relation-
ships and modality interaction information. In this paper, we use contrastive learning to
capture these differences and apply them to sentiment representation learning. Many stud-
ies have demonstrated the superiority of contrastive learning in information acquisition
within feature spaces [33–35].

Based on the considerations above, we propose a text-centric multimodal contrastive
learning (TCMCL) framework for multimodal sentiment analysis. The framework is
centered around text and incorporates a cross-modal text augmentation module based
on Siamese network architecture, which augments textual features separately with audio
and visual conditions to expand nontextual sentiment clues. Within this architecture,
we introduce two contrastive learning tasks to delve deeper into sample correlations
and modality interaction information. Following the idea of text-centric approaches, the
instance prediction-based contrastive learning (IPCL) task achieves the implicit fusion
and alignment of multimodal sentiment information through the cross-prediction of the
two augmented text features. Supervised by label information, sentiment polarity-based
contrastive learning (SPCL) efficiently learns subtle feature differences among samples with
different sentiment polarities, maintaining the model’s sensitivity to sentiment expression.
Our experimental results demonstrate the superiority of our framework in multimodal
sentiment analysis tasks.

In summary, our contributions are the following:

• We have introduced a text-centric multimodal contrastive learning (TCMCL) frame-
work for sentiment analysis. The framework uses audio and visual modal information
to provide auxiliary augmentations to textual content.

• We have proposed two contrastive learning strategies based on instance prediction
and sentiment polarity, aiming to unearth deep sentimental space information and
achieve implicit cross-modal fusion alignment.

• Our model achieves state-of-the-art performance on the CMU-MOSI and CMU-
MOSEI datasets.

The rest of the paper is structured as follows: Section 2 provides an overview of the
existing research on multimodal sentiment analysis and comparative learning, and Section 3
presents a detailed explanation of our proposed TCMCL framework. Section 4 presents
our experimental results and provides thorough analyses. Finally, Section 5 summarizes
the findings and conclusions of this paper.
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2. Related Work

In this section, we primarily discuss the work related to the TCMCL framework,
including topics related to multimodal sentiment analysis and contrastive learning.

2.1. Multimodal Sentiment Analysis

As an evolving research domain, multimodal sentiment analysis integrates various
modalities such as text, visuals, and audio to understand and analyze sentimental expres-
sions comprehensively. Early research often employed simple concatenation or cascading
strategies for data fusion [9–12].

However, with the rapid development of deep learning technologies, the methodology
for multimodal sentiment analysis has also been continuously innovating. For instance,
methods based on long short-term memory (LSTM) [36], gated recurrent unit (GRU) [37],
and convolutional neural networks (CNNs) effectively perform feature extraction and
the fusion of multimodal data through carefully designed combinations. Poria et al. [38]
successfully utilized deep networks based on RNNs for multimodal sentiment recogni-
tion. Zadeh et al. [14] employed a tensor fusion network (TFN) for end-to-end learning,
achieving a more detailed and comprehensive understanding of sentiments through the
outer product fusion of tensor representations from multiple perceptual modalities. Zadeh
et al. [16] developed the multi-memory fusion network (MFN) model by utilizing memory
attention networks and multiview gated memories for temporal information modeling in
multi-perspective temporal learning. Kumar et al. [39] achieved deep multimodal feature
vector fusion by introducing learnable gating mechanisms, self-attended context represen-
tations, and recurrent layer-based self and gated cross-fusion. Paraskevopoulos et al. [17]
proposed a neural architecture for multimodal fusion, utilizing a feedback mechanism in
the forward pass during network training to capture top-down cross-modal interactions.
Subsequently, numerous studies have employed even more novel approaches. For example,
Nguyen et al. [40] combined 3D convolutional neural networks (C3Ds) and deep belief
networks (DBNs), introducing deep spatiotemporal features and effectively fusing visual
and audio feature vectors through bi-linear pooling techniques. Zhang et al. [41] proposed
quantum-inspired multimodal networks (QMNs) by utilizing the mathematical formalism
of quantum theory (QT) to simulate interactions between modalities and speakers.

The rise of pre-trained language models, such as ELMo [42], GPT [43], and BERT [18],
has brought about significant transformations in the field of natural language processing
(NLP). These models are pre-trained on large corpora and capture complex semantic infor-
mation and contextual relationships, substantially improving text analysis performance.
They have not only propelled the development of NLP but have also been widely applied
in research on multimodal sentiment analysis. Many studies replace traditional word
embedding methods, such as GloVe and Word2Vec, with pre-trained language models for
text feature extraction. For instance, researchers such as Han, Yu, and Hazarika [21–23]
have incorporated BERT as the feature extraction tool for textual information in their
model designs. Zeng et al. [44] pre-trained BERT on MSA corpora, resulting in improved
performance in text feature extraction. Simultaneously, other studies adopt fine-tuned
pre-trained language models as the main framework for cross-modal fusion. For instance,
Yang et al. [29] used an improved BERT model—ALBERT—and fused text and audio
information through model fine-tuning and masked multimodal attention mechanisms.
Rahman et al. [30] introduced a multimodal adaptive gate (MAG), enabling BERT and
XLNet to accept and process multimodal nonlinguistic data during the fine-tuning phase.
Kim et al. [31] proposed All-modalities-in-One BERT for multimodal sentiment analysis,
a model pre-trained on two tasks, multimodal masked language modeling (MMLM) and
cross-modal alignment prediction (AP), aiming to capture dependencies between modali-
ties. These studies consistently indicate that pre-trained language models have significant
potential to enhance text representations, with textual information deserving more atten-
tion compared with audio and video modalities. In order to build upon this observation,
our research steadfastly adopts a text-centric approach. Contrary to the balanced model
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design strategy, our framework is primarily centered around text, utilizing audio and
visual modalities to augment the expressive capability of textual sentiment features, and is
ultimately employed for sentiment analysis.

2.2. Contrastive Learning

As a self-supervised learning approach, contrastive learning aims to learn more mean-
ingful and robust data representations by exploring the similarity or dissimilarity between
data samples. Self-supervised contrastive learning has been extensively studied in the
field of computer vision (CV), leading to a series of models based on its fundamental
principles. The InstDisc model [45] introduced pivotal concepts such as individual dis-
crimination tasks and a memory bank, which have since served as fundamental elements
in self-supervised contrast learning. The individual discrimination task partitions each
instance (e.g., an image) into distinct categories, enabling the model to discern individual
instances. The positive samples are the instances themselves (after data augmentation),
and the negative samples comprise other instances in the dataset. Moreover, InstDisc
employs a memory bank to archive features for all instances, integrating proximal regu-
larization constraints to facilitate momentum-based feature updates within the memory
bank, thus alleviating any storage pressures on the model. In diverging from InstDisc,
the MoCo model [33] replaces the traditional memory bank with queues as an auxiliary
data structure for negative sample storage. It also employs momentum encoders in lieu of
conventional constraint terms, enabling encoder updates instead of feature modifications.
The SimCLR model [34] eschews the use of a memory bank, opting instead for a larger
batch size and generating pairs of positive and negative samples within the same batch of
data. Its minimalist model architecture consists solely of a pair of shared encoders and a
projection layer. Subsequent models, such as BYOL [46] and SimSiam [35], eschew negative
samples entirely, adopting a twin network architecture that utilizes only positive samples
for training. As self-supervised representation learning methods, they have surpassed
traditional supervised learning methods in multiple visual tasks.

Moreover, natural language processing (NLP) has spawned a wealth of good work,
but its model structure is still similar to the several architectures mentioned above. The key
distinction in the application of self-supervised contrastive learning in these two fields lies
in the data augmentation methods. In image processing, data augmentation predominantly
involves cropping, rotating, Gaussian blurring, and adding Gaussian noise, whereas these
operations are not directly applicable to text. The ConSERT model [47] utilizes adversarial
attack, token shuffling, cutoff (token cutoff and feature cutoff), and dropout to augment
text, achieving favorable results through contrastive learning. Conversely, SimCSE [48]
employs a more straightforward and elegant approach, utilizing two different dropout
augmentations on textual data to construct pairs of positive samples. These studies demon-
strate the effectiveness of contrast learning in extracting high-level abstract features and
provide new directions for downstream research. Inspired by the above work, we applied
the principles of self-supervised contrast learning to the multimodal sentiment analysis
framework and designed a cross-modal text augmentation method. In addition, we ex-
tended the application of contrast learning from self-supervised learning to supervised
learning, using sentiment labeling to enhance the adaptability of features to domain tasks.

3. Methods

In this section, we provide an overarching introduction to the proposed text-centric
multimodal contrastive learning (TCMCL) framework for sentiment analysis. Subsequently,
we present detailed information on the feature extraction process for three modalities and
describe the network structure of the cross-modal text augmentation module. Additionally,
we introduce two contrastive learning tasks conducted in this module. Finally, we explain
the calculation of the overall training loss.
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3.1. Overall Architecture

Figure 1 provides a comprehensive overview of the TCMCL framework, which is
centered around text and comprises two main components: the feature extraction module
and the cross-modal text augmentation mechanism (highlighted in purple). In the fea-
ture extraction module, we utilized a pre-trained BERT model for text feature extraction,
COVAREP [49] for audio feature extraction, and FACET [50] for visual feature extraction.
Subsequently, we performed word-level alignment and length segmentation on the three
types of features. The cross-modal text augmentation module employs a Siamese network
architecture, where each branch consists of a text augmentation encoder and a projection
layer. The branches share weights and perform text augmentation encoding from both
audio and visual aspects. Additionally, we designed two contrastive learning tasks based
on instance prediction and sentiment polarity to achieve implicit modal alignment and
learn deeper representations of sentiment features. Finally, we merged the augmented text
features from both branches to form the ultimate multimodal representation and used this
for sentiment analysis computation.

Parameter Sharing

Data Transfer

Alignment and Segmentation

TEXT
AUGMENTATION

ENCODER

TEXT
AUGMENTATION

ENCODER

PROJECTION
 LAYER

PROJECTION
 LAYER

+

Fv

COVAREP

i just get so tired of
unpredictable movies

E[CLS] E[1] E[2] E[N]

C T1 T2 TN

BERT
pre-training model

FACET

FaFt

Feature Extraction
Module

Cross-modal Text
Augmentation

Figure 1. A diagram of the overall architecture of TCMCL.
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3.2. Single-Modal Feature Extraction

To begin with, in order to effectively extract features from different modalities, we
adopted distinct approaches. In the textual domain, we employed the pre-trained BERT
model to process the text, obtaining embeddings and contextual information for each word
in the sentence. Audio features, on the other hand, are more abundant and complex. In
order to acquire comprehensive audio information, we opted for the COVAREP audio
processing toolkit to extract the following features: the fundamental frequency, quasi-open
quotient, normalized amplitude quotient, glottal source parameters (H1H2, Rd, and Rd
conf), voice/unvoiced (VUV), multidimensional quality (MDQ), first three formants, pitch
strength parameters (PSP), harmonics-to-noise ratio (HMPDM 0–24), and the harmonics-to-
noise ratio difference (HM-PDD 0–12), as well as the spectral tilt/slope of wavelet responses
(peak/slope) and mel-frequency cepstral coefficients (MCEP 0–24). Feature extraction for
visual information is equally crucial in multimodal analysis. In this study, we employed
the FACET library for the batch processing of visual information, extracting critical visual
features such as facial action units, landmarks, head pose, gaze tracking, and histograms of
oriented gradient (HOG) features.

Upon obtaining feature sequences from the three modalities of text, audio, and vi-
sual information, we aligned all three modalities following the convention in [51]. This
word-level alignment ensures synchronization between the audio and visual features and
each word in the text, enabling the model to establish a word-level feature sequence for
subsequent computation and analysis. Furthermore, to optimize the model’s processing
capability, reduce the computational burden, and eliminate redundant information, we
standardized the length of the feature sequences for all modalities to a fixed scale (N). This
standardization was implemented through segmentation and discarding data beyond the
sequence length N, effectively eliminating some blank feature vectors.

The above operations can be simply expressed as the following:

Ft = faas(BERT(T)) ∈ RN×dt (1)

Fa = faas(COVAREP(A)) ∈ RN×da (2)

Fv = faas(FACET(V)) ∈ RN×dv (3)

where T, A, and V represent the raw data of the text, audio, and visual modalities, respec-
tively. The function faas symbolizes word-level alignment and segmentation operations.
Ultimately, we have derived three modal key sequence features: Ft, Fa, and Fv. The se-
quence length of these features is denoted as N, whereas dt, da, and dv represent the feature
dimensions of the three modalities.

The extracted feature information was fed into the subsequent stages of the TCMCL
framework, offering substantial support for our multimodal sentiment analysis task.

3.3. Cross-Modal Text Augmentation

In order to further extract sentiment-related commonalities across the three modalities
and capture the feature space differences arising from modality interactions, we designed a
cross-modal text augmentation module. This module adopts a Siamese network architec-
ture comprising two components: the text augmentation encoder and the projection layer.
Specifically, the text augmentation encoder treats the features from auxiliary modalities (au-
dio and visual) as supplements to and augmentations of text features, thus integrating the
features from auxiliary modalities into text features to enrich them while preserving textual
contextual information. The projection layer performs spatial mapping on the augmented
text features to acquire high-dimensional abstract information. Within this module, we
combine two contrastive learning tasks based on instance prediction and sentiment polarity,
achieving the implicit multimodal fusion of sentiment information and augmenting the
model’s ability to differentiate between different sentimental states, thereby improving
overall performance.
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3.3.1. Siamese Network Structure

The cross-modal text augmentation module consists mainly of a text augmentation
encoder and a projection layer. Due to parameter sharing between branches, we illustrate
the network structure and parameter-passing mechanism by using the text and visual
modality branches as examples, as depicted in Figure 2.

QKV

×K 

LinerLinerLinerLinerLinerLinerLinerLinerLiner

Concat

Liner

ReLU

Liner

Liner

TEXT
AUGMENTATION

ENCODER

PROJECTION
 LAYER

FvT FtT

AugmentedTv

ProjectedTv

Figure 2. Illustration of the cross-modal text augmentation module’s text–visual branch.

Initially, we outlined the structure of the text augmentation encoder, a pivotal compo-
nent in enhancing the multimodal sentiment analysis procedure. As illustrated in Figure 2,
the text augmentation encoder comprises K stacked multi-head cross-attention units. Cross-
attention mechanisms are commonly employed to extract modality interaction information
and perform feature fusion. In the TCMCL model, these mechanisms are designed to delve
into the augmentation effects of audio and visual information on text. Consequently, to
preserve the contextual representation advantages of text features better than traditional
methods that emphasize dependencies between sequences, our attention mechanisms
focus more on the information correlation between different modality features. In the
preceding feature extraction stage, we obtained diverse and rich information from the
audio and visual modalities using specialized tools. By leveraging feature-level attention
mechanisms, we can more clearly identify which features of the auxiliary modalities are
most advantageous for text representation, effectively augmenting text features.

In order to emphasize attention toward the features, we first transposed the text and
visual features to obtain Fa

⊤ and Fv
⊤. Subsequently, we utilized Fa

⊤ as Q, Fv
⊤ as K, and

V for multi-head attention computation. Such transformation facilitates feature attention
during the subsequent attention computation and changes the dimensions of the different
modality features from their respective d to the sequence length, N, due to transposition.
This enables direct parameter sharing between the two branches of the text augmentation
encoder. The specific computation process of the text augmentation encoder is as follows.
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Initially, we map Q, K, and V into distinct subspaces through linear transformations:

Qi = QWQ
i

Ki = KWK
i

Vi = VWV
i

(4)

where WQ
i , WK

i , and WV
i represent the learnable weight matrix, and i denotes the i-th

attention head. After linear mapping, attention is computed for each head:

Attention(Qi, Ki, Vi) = softmax

(
QiKT

i√
dk

)
Vi (5)

At this stage, QiKT
i captures feature-level attention when moving from text to visuals,

with a matrix size of dt × da, instead of the sequence-level attention of N × N. Here, the
denominator is employed to scale the dot product results, preventing gradient vanishing
issues. The softmax function is applied to each row to transform scores into probabilities.

Subsequently, the outputs from all heads are concatenated and passed through another
linear transformation:

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO (6)

where headi = Attention(Qi, Ki, Vi), WO represents another learnable weight matrix, and
h denotes the total number of heads. Thus, we obtain the feature-level attention when
moving from the text to the visual modality MultiHead(Q, K, V).

Finally, we generate residual connection between Q and MultiHead(Q, K, V) to maxi-
mize the preservation of textual features’ characteristics, forming the output of the current
multi-head cross-attention unit:

AugmentedTv = Q + MultiHead(Q, K, V) (7)

AugmentedTv will serve as the input Q for the next iteration of the cross-attention unit,
as illustrated in Figure 2. After iterating K times, we obtain our feature fusion module’s
final output: AugmentedTv.

Through a feature-level attention mechanism, we successfully integrate and comple-
ment the targeted augmentation of the visual-assisted modality’s feature information into
text information. By maintaining the predominant role of textual information, this fusion
strategy introduces beneficial attention to feature-level visual information. We consider
the module output as an augmented encoding of the text, which, in conjunction with the
augmented encoding from another branch, elevates the sentimental expression of the text,
laying a solid foundation for downstream tasks.

Next, we devised a projection layer to map the aforementioned augmented features
into a new space, aiming to capture abstract and robust sentiment features better. The
specific operations of the projection layer are expressed as follows:

Z1 = Linear(AugmentedTv)

ReLU1 = ReLU(Z1)

ProjectedTv = Linear(ReLU1)

(8)

We obtained a higher-level abstract representation by introducing a projection layer,
denoted as ProjectedTv. During this process, our objective was to reduce dimensionality
and extract key sentiment features from the raw data.

Similarly, through the text audio branch, we acquired text features that are augmented
by audio (AugmentedTa) and projected features ProjectedTa.
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3.3.2. Contrastive Learning Task: IPCL and SPCL

In the cross-modal text augmentation module, we introduced two contrastive learning
tasks: instance prediction-based contrastive learning (IPCL) and sentiment polarity-based
contrastive learning (SPCL). These tasks are employed to overcome the assumption of
feature space consistency and effectively utilize feature space information containing inter-
sample correlations and modality interactions to enhance the performance of multimodal
sentiment analysis.

Firstly, in order to learn more abstract and robust sentiment representations within
the augmented text features, we drew inspiration from contrastive learning efforts [35,46]
and proposed an instance-based contrastive learning task. Specifically, we employed the
prediction of augmented features using projection features, a prediction process that is cross-
branched. In other words, we predict AugmentedTa using ProjectedTv and AugmentedTv
using ProjectedTa. We treat (ProjectedTv, AugmentedTa) and (ProjectedTa, AugmentedTv)
as our (query/key) pairs. During training, the contrastive learning task adheres to the
principle of instance discrimination, where the query and key from the same sample form
positive pairs, and other instances within the batch are treated as negative samples. The
contrastive learning loss is computed using the widely used InfoNCE loss [52]. The specific
calculation process is where we first compute the contrastive learning loss for (ProjectedTv,
a = AugmentedTa) and (ProjectedTa, AugmentedTv) as follows:

LIPCL 1 = − log
exp(sim(ProjectedTv, AugmentedTa)/τ)

∑n
i=1 exp

(
sim

(
ProjectedTv, AugmentedT(i)

a

)
/τ
) (9)

LIPCL 2 = − log
exp(sim(ProjectedTa, AugmentedTv)/τ)

∑n
i=1 exp

(
sim

(
ProjectedTa, AugmentedT(i)

v

)
/τ
) (10)

where n denotes the batch size, sim is a similarity calculation function, and τ is a temper-
ature parameter used to control the scaling of similarity scores. Subsequently, the sum
of the two losses above constitutes the loss LIPCL for the instance prediction contrastive
learning task.

LIPCL = LIPCL 1 + LIPCL 2 (11)

By pulling the distances between the positive sample pairs that we selected closer and
pushing the distances between negative sample pairs further apart, the instance prediction-
based contrastive learning task primarily achieves the following functions. By taking the
contrastive learning of (ProjectedTv, AugmentedTa) as an example, ProjectedTv represents
the high-dimensional information of visually augmented text features, and AugmentedTa
represents the auditory augmented text clues. Bringing the distances between positive
samples closer implies the alignment of the spatial features of the text features containing
different modal information, integrating information from different modalities during the
process, and accomplishing implicit multimodal feature fusion, as well as retaining the
common sentimental features of different modalities. Since we use projected features to
predict augmented features, this process also promotes the augmented features to approach
higher-dimensional abstract sentiment, enhancing the stability of sentimental expression in
the augmented features. At the same time, contrastive learning also pushes the distances
between the negative sample pairs further apart, making the sentimental expressions of
different samples more discriminative in space.

Following this, we extended the contrastive learning paradigm to supervised tasks. In
the sentiment polarity-based contrastive learning task (SPCL), we leveraged label informa-
tion to guide the model in learning more discriminative sentiment features. Specifically,
we categorized the data into three classes: positive, neutral, and negative, based on the
sentiment polarity criterion. In selecting sample pairs, samples with the same sentiment
polarity as the target sample are considered positive samples, whereas samples with differ-
ent sentiment polarities are treated as negative samples. We conducted contrastive learning
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on the projection features; it is noteworthy that within the same batch, ProjectedTv and
ProjectedTa are treated as a set by following the above partitioning rules and participat-
ing in the contrastive learning loss computation. This process also employs InfoNCE to
compute the loss, which is expressed by the following formula:

LSPCL = − log
exp

(
sim

(
Ptarget, Ppositive

)
/τ
)

∑n
i=1 exp

(
sim

(
Ptarget, Pnegative

(i)
)

/τ
) (12)

where Ptarget ∈ {ProjectedTv, ProjectedTa} and Pnegative represent a situation with a differ-
ent sentiment polarity from Ptarget within the mentioned set. τ is a temperature parameter.

SPCL continuously utilizes label information to adapt the projected features to sen-
timent analysis domain tasks. During this process, we adjusted the feature space of the
projection features for the two branches, which can be regarded as a form of clustering oper-
ation. Simultaneously, this operation effectively enhances the model’s focus on challenging
samples within the features.

In the SPCL task, the projected features learned to be more sentimentally sensitive
expressions, and this enhancement was also reflected in the IPCL task by influencing the
augmented text features through cross-projection. The two tasks complement and influence
each other, working together in different ways to promote augmented text features to
exhibit a spatial distribution of features that is more consistent with sentiment analysis.

3.4. Total Training Loss

Finally, the two text augmentation features, AugmentedTv and AugmentedTa, were
combined. The resulting sum, Fout, passes through a dropout and the fully connected layers
to obtain our predicted sentiment score, ŷ.

Fout = AugmentedTv + AugmentedTa (13)

ŷ = FC(Dropout(Fout)) (14)

The predicted sentiment score, ŷ, along with the true labels of the samples, y, were
used to calculate the regression task loss. Specifically, we employed mean squared error
(MSE) loss:

LMSE =
1
n

n

∑
i=1

(ŷi − yi)
2 (15)

where n represents the batch size. By combining our two contrastive learning losses, the
overall training loss for the model is given by the following:

L = αLMSE + βLIPCL + γLSPCL (16)

Here, α, β, and γ are the weighted coefficients utilized to adjust the contributions of
different loss terms to the total loss.

4. Experiments

In this section, we initially present the relevant information about the datasets, evalua-
tion metrics, experimental details, and baseline models used to validate the effectiveness of
TCMCL. Subsequently, we showcase specific experimental results, analyzing the perfor-
mance of TCMCL on the datasets. We conducted ablation experiments and visualization
studies, further scrutinizing the impact of each component on the overall model.

4.1. Datasets and Evaluation Indicators

We evaluated the proposed TCMCL framework on the widely used multimodal senti-
ment analysis datasets CMU-MOSI [53] and CMU-MOSEI [54]. These datasets encompass
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rich monologues from YouTube videos containing expressions of sentiment in the text,
visual, and audio modalities. CMU-MOSI comprises 2199 video segments, each associated
with a sentiment score label in the range of −3 to +3, representing the sentiment from
negative to positive. CMU-MOSEI is more extensive, including 23,453 video segments
covering 1000 different speakers across 250 diverse topics, and it is annotated with senti-
ment scores and an additional six emotion category labels. The data from both datasets
underwent manual screening, a facial feature extraction confidence check, and a forced
alignment confidence check. This process ensured that each video clip included in the
datasets contained high-quality tri-modal information.

We performed two tasks on the datasets: regression analysis and classification analysis.
We calculated the mean squared error (MAE) and Pearson correlation coefficients (Corr)
for the regression tasks between our predicted values and actual sentiment scores. Subse-
quently, we transformed the regression model output for the binary classification tasks,
determining whether the sentiment tendency was positive or negative. We used binary
classification accuracy (Acc2) and the F1 score (F1) as evaluation metrics. Furthermore,
we extended sentiment analysis to a finer-grained seven-class classification task, utilizing
seven-class accuracy (Acc7) to comprehensively evaluate the model’s capability in handling
complex sentiment classification. The left side of the separator “/” represents the criteria
for negative and non-negative classification, and the right side represents the positive and
negative classification criteria.

4.2. Experimental Details

All the experiments in this study were conducted in a consistent experimental envi-
ronment to ensure the comparability and reliability of the results. The model was trained
on two NVIDIA GeForce RTX 3090 GPUs, with the environment consisting of Python 3.7
+ PyTorch 1.9.0. The TCMCL model utilized BERT-BASE. After feature extraction, the dt,
da, and dv were 768, 74, and 47, respectively. In the final loss computation, the weighted
coefficients α, β, and γ were set to 1, 0.05, and 0.1, respectively. Regarding the training
settings, the model’s learning rate was set to 5 × 10−5, using the Adam optimizer with a
cosine annealing learning rate schedule (with a warm-up). A total of 80 epochs were trained
with a batch size of 32. Additionally, Section 3 mentions some of the other parameters in
the model, the specific settings of which are shown in Table 1.

Table 1. Parameter settings.

Parameter Value

Length of feature sequence: N 50
Number of heads of multi-attention mechanisms: i 5

Number of layers of attention units: K 1
Projection layer: Linear layer size 768 and 128

Temperature parameter: τ 0.7
Dropout rate 0.5

4.3. Baselines

In order to validate the performance of our proposed model in multimodal sentiment
analysis tasks, we compared it with the current leading models:

TFN [14]: The tensor fusion network aggregates the interactions between uni-modal,
bi-modal, and tri-modal data through tensor fusion, facilitating the end-to-end learning of
dynamics within and between modalities.

MFN [16]: The memory fusion network introduces a novel neural architecture for
multiview sequential learning, explicitly addressing both view-specific and cross-view
interactions through a system of LSTMs, the delta-memory attention network (DMAN),
and multiview gated memory.
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MFM [55]: The multimodal factorization model decomposes the representation into
multimodal-discriminative and modality-specific generative factors. This optimization aids in
achieving joint generative-discriminative objectives and reconstructing missing modalities.

MulT [32]: The multimodal transformer employs directional pairwise cross-modal
attention for cross-modal interactions, which attends to the interactions between multi-
modal sequences across distinct time steps and latently adapts streams from one modality
to another.

MISA [23]: The modality-invariant and -specific representations project modalities
into two distinct subspaces, offering a holistic perspective on multimodal data for sentiment
prediction tasks.

MAG-BERT [30]: The multimodal adaptation gate for BERT introduces a multimodal
adaptation gate to enable fine-tuned BERT and XLNet models to incorporate multimodal
nonlinguistic data.

Self-MM [22]: The self-supervised multimodal model engages in joint training for
both multimodal and uni-modal tasks by autonomously generating single-modal la-
bels and adjusting weight strategies. It simultaneously acquires modality consistency
and distinctiveness.

MMIM [21]: MultiModal InfoMax maximizes mutual information hierarchically within
uni-modal input pairs and between multimodal fusion results and uni-modal inputs to
preserve task-related information during multimodal fusion.

MIB [24]: The multimodal information bottleneck achieves efficient multimodal rep-
resentation learning by leveraging the information bottleneck (IB) to filter out uni-modal
noise, ensuring powerful and nonredundant representations.

MMLATCH [17]: Bottom-up, top-down fusion proposes a neural architecture that
captures top-down cross-modal interactions by using a feedback mechanism in the forward
pass during network training.

SPECTRA [56]: Speech–text dialog pre-training for understanding spoken dialog with
ExpliCiT cRoss-Modal Alignment improves downstream task performance by designing
novel temporal location prediction tasks and cross-modal response selection tasks.

The SPECTRA model is trained using text and audio only, whereas all the remaining
baselines simultaneously use text, audio, and visual modes for multimodal sentiment analysis.

4.4. Experimental Results

Table 2 presents the experimental results of all the baseline models and our proposed
TCMCL model based on the aforementioned datasets and MSA metrics. The results
demonstrate that our model achieves state-of-the-art performance on the CMU-MOSI and
CMU-MOSEI multimodal sentiment datasets, with improvements across all evaluation
metrics. Compared with the best baseline, TCMCL demonstrates enhancements in various
metrics on both the CMU-MOSI and CMU-MOSEI datasets, with the most significant
improvements being observed in the binary classification task (right), showing increases of
0.9% and 0.2% in Acc2, with the F1 also increasing by 0.9% and 0.2%. In the seven-class
classification tasks, TCMCL achieves improvements of 0.3% and 0.5% on the two datasets.
The model also performs exceptionally well in regression tasks, with the MAE metrics
decreasing by 0.017 and 0.017 and the Corr metrics increasing by 0.01 and 0.006, respectively.

Overall, the models leveraging the pre-trained language model BERT for textual pro-
cessing (e.g., MISA, Self-MM, MMIM, and MIB) consistently outperform earlier approaches
in terms of multimodal sentiment analysis (MSA) performance across these benchmarks.
These experimental findings underscore the efficacy of BERT in enhancing text representa-
tion and affirm the superiority of a text-centric multimodal contrastive learning framework
for sentiment analysis.
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Table 2. Experimental results of TCMCL versus baseline models on the CMU-MOSI and CMU-MOSEI
datasets. The symbol ↓ indicates better performance as the data decreases, whereas ↑ indicates improved
performance as the data increases. The best results are highlighted in bold and the second best results
are marked with underlines.

Model
CMU-MOSI CMU-MOSEI

MAE ↓ Corr ↑ Acc2 ↑ F1 ↑ Acc7 ↑ MAE ↓ Corr ↑ Acc2 ↑ F1 ↑ Acc7 ↑
TFN 0.944 0.672 79.3/80.0 79.3/80.1 33.8 0.566 0.708 80.1/82.1 80.2/82.3 48.8

MFN 0.952 0.695 79.1/80.6 79.0/80.5 32.7 0.589 0.725 79.9/82.4 80.0/82.6 47.4

MFM 0.915 0.704 79.8/80.4 79.8/80.2 33.2 0.632 0.719 80.0/82.8 80.6/83.0 49.2

MulT 0.787 0.783 80.8/82.1 80.9/82.2 36.2 0.617 0.722 82.5/83.5 82.6/83.7 50.9

MISA 0.771 0.786 81.6/83.2 81.6/83.3 39.1 0.599 0.724 82.1/84.3 82.4/84.4 48.9

MAG-BERT 0.731 0.783 82.7/85.0 82.6/85.0 44.3 0.563 0.749 82.3/84.9 82.6/84.9 51.4

Self-MM 0.727 0.787 83.0/85.1 82.3/85.1 44.2 0.559 0.744 81.5/85.1 81.7/85.1 51.2

MMIM 0.729 0.782 83.0/85.3 83.0/85.2 44.4 0.556 0.753 82.0/85.3 82.4/85.2 51.6

MIB 0.723 0.769 82.8/85.3 82.8/85.2 42.6 0.584 0.741 82.0/84.4 81.9/84.3 51.9

MMLATCH 0.736 0.721 81.7/84.1 81.7/84.1 43.0 0.582 0.723 81.2/83.0 81.2/83.0 52.1

SPECTRA 0.721 0.790 83.1/85.8 83.1/85.8 44.7 0.551 0.749 82.2/85.6 82.1/85.5 52.3

TCMCL 0.704 0.807 84.4/86.7 84.3/86.7 45.0 0.541 0.759 82.8/85.8 83.2/85.7 52.8

4.5. Ablation Study

In order to investigate the roles and influences of different modules in TCMCL further,
we conducted ablation experiments using the CMU-MOSI dataset as an example, focusing
on several aspects outlined below.

4.5.1. Uni-Modal Versus Multimodal

One of the key principles of TCMCL is to prioritize text as the central modality and
augment it by incorporating audio and visual modalities. In order to demonstrate the
effectiveness of this text-centric approach, we reconstructed the model’s performance on the
MSA task under various uni-modal settings. We also reconstructed the model with audio
and visuals as the central modalities. Notably, in uni-modal experiments, where no other
modalities are involved, self-attention is utilized in the augmentation module, rendering
the two contrastive learning tasks ineffective. Finally, we constructed a balanced model
with three central strategies in parallel. Specifically, the model maps the outputs of the three
central strategies through a linear layer to the same dimension as the text-centric output.
These outputs are then summed to form the output of the entire balanced model, with
the total loss of the model being the sum of the MSE loss and the three sets of contrastive
learning losses. The specific experimental results of all the models are shown in Table 3.

The experimental results indicate that under the uni-modal setting, the text modality
demonstrates significantly better performance. This aligns with the findings of numerous
prior studies [23,32], reflecting the superiority of text over the other two modalities in MSA
tasks and affirming the rationale behind the text-centric model design strategy. On the
other hand, under the multimodal setting, all three modalities show notable performance
improvements, particularly the audio-centric and visual-centric approaches, which exhibit
reductions of 0.163 and 0.188 in the regression metric MAE, respectively, and enhancements
of 5.6% and 4.9% in the binary classification metric Acc2 (right). This significant progress is
also attributed to the incorporation of textual information, enhancing the representation
of sentiment features. Among the three central strategies, the text-centric multimodal
contrastive learning (TCMCL) approach undoubtedly performs the best in MSA tasks.
Compared with the other two strategies, audio-centric and visual-centric, TCMCL shows
respective increases of 3.7% and 2.3% in Acc2 (right).
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Table 3. Experimental results of the model under uni-modal conditions with three central strategies.
The symbol ↓ indicates better performance as the data decreases, whereas ↑ indicates improved
performance as the data increases. The best results are highlighted in bold.

MAE ↓ Corr ↑ Acc2 ↑ F1 ↑ Acc7 ↑
Text 0.793 0.769 81.9/83.8 81.7/83.8 41.0

Audio 0.971 0.667 76.5/77.4 76.5/77.5 30.2
Visual 0.944 0.723 78.0/79.5 78.0/79.6 32.8

Audio-centric 0.808 0.768 81.6/83.0 81.6/83.1 40.3
Visual-centric 0.756 0.780 82.5/84.4 82.6/84.4 42.4
Balance Model 0.747 0.778 82.2/84.9 82.2/84.8 41.6

Text-centric 0.704 0.807 84.4/86.7 84.3/86.7 45.0

Furthermore, compared with the balance model, the text-centric model continues to
demonstrate superior performance. While the balance model incorporates contrastive learn-
ing tasks and cross-modal augmentation mechanisms, the inherent differences between the
three centralized outputs inevitably introduce information interference and conflicts, hin-
dering the accurate capture of sentiment features. In contrast, the text-centric model focuses
on text information processing and enhances performance through contrastive learning
and cross-modal augmentation, thus exhibiting better performance in sentiment analysis.

The performance variations observed in Table 3 among those models employing
different modality design strategies underscore an important fact: the model design strategy
profoundly influences the learning and recognition of sentiment information. Due to its
representational advantage, the text modality occupies a paramount position in multimodal
tasks, and the design of a text-centric approach leads to better MSA performance. In
summary, the experiments demonstrate that a text-centric model design approach is the
preferred solution for MSA tasks.

4.5.2. With or Without Contrastive Learning Tasks

In this study, we propose two contrastive learning tasks based on instance prediction
and sentiment polarity to learn spatial representation information about augmented text
features. In order to further investigate the contributions of these tasks to the model, we
conducted a series of ablation experiments, as shown in Table 4.

Table 4. Results of ablation experiments on contrastive learning tasks in TCMCL. The symbol ↓
indicates better performance as the data decreases, whereas ↑ indicates improved performance as the
data increases. The best results are highlighted in bold.

MAE ↓ Corr ↑ Acc2 ↑ F1 ↑ Acc7 ↑
w/o IPCL 0.731 0.785 83.0/85.5 83.2/85.5 43.4
w/o SPCL 0.719 0.797 83.9/86.1 83.8/86.1 43.9

w/o CL 0.745 0.784 82.8/84.7 82.8/84.7 42.3

TCMCL 0.704 0.807 84.4/86.7 84.3/86.7 45.0

Initially, we independently removed instance prediction-based contrastive learning
(IPCL), resulting in significant discrepancies in all metrics compared with TCMCL, demon-
strating the importance of IPCL. After removing IPCL, the MAE metric increased by 0.027,
and correlation decreased by 0.022 in the regression task, whereas in the classification task,
both Acc2 (right) and F1 (right) decreased by 1.2%, and the seven-class accuracy Acc7
decreased by 1.6%. The consistent performance degradation can be attributed to the crucial
role of IPCL in implicit multimodal alignment and fusion. Ignoring this task results in
more noise and misunderstanding introduced by directly manipulating the two augmented
text features, given the vastly different impacts of the two auxiliary modalities on text.
Subsequently, we eliminated sentiment polarity-based contrastive learning (SPCL), which
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led to some performance drops across all metrics, albeit slightly less than with the removal
of IPCL. The most noticeable changes were in Acc2 and F1, both decreasing by 0.7%, which
directly related to sentiment polarity recognition performance. This indicates that under
the supervision of sentiment polarity labels, SPCL indeed enables the model to learn more
sentiment-sensitive feature representations. Finally, when both contrastive learning tasks
are removed simultaneously, and the model is trained solely using regression task loss, we
observe a further decline in model performance. These results indicate that regardless of
which contrastive learning task is omitted, the model’s performance is affected, affirming
the indispensability of both contrastive learning tasks in the model.

The ablation study in this subsection validates some additional insights. The previous
subsection mentioned that the pure-text model used self-attention for feature augmentation
and ran without contrastive learning. This subsection demonstrates the performance of
the model without contrastive learning when utilizing cross-modal text augmentation.
We find that in the absence of contrastive learning tasks, cross-modal text augmentation
leads to improved model performance, with a 0.9% increase in Acc2 (right) in the binary
classification task. This demonstrates that the augmentation in the text-centric model
relative to pure text is not solely attributable to contrastive learning tasks, validating the
effectiveness of augmenting text features through auxiliary modalities.

4.5.3. Feature-Level Attention Versus Sequence-Level Attention

In the third section, we extensively discussed the cross-attention mechanism employed
in this study, emphasizing feature-level attention instead of traditional sequence-level
attention. We designed a comparative experiment to demonstrate the superiority of feature-
level attention in augmenting text features. In this experiment, to simulate the application
of sequence-level attention, we adjusted the model structure to refrain from transposing
the features Ft (text), Fa (audio), and Fv (visual). Instead, we passed the audio and visual
features through their respective linear layers, maintaining their dimensions, da and dv,
and keeping consistency with the text dimension, dt. Table 5 presents the experimental
results for both attention mechanisms in detail.

Table 5. Experimental results of sequence-level attention and feature-level attention. The symbol ↓
indicates better performance as the data decreases, whereas ↑ indicates improved performance as the
data increases. The best results are highlighted in bold.

MAE ↓ Corr ↑ Acc2 ↑ F1 ↑ Acc7 ↑
Sequence-level attention 0.739 0.788 82.9/84.8 82.9/84.9 41.6
Feature-level attention 0.704 0.807 84.4/86.7 84.3/86.7 45.0

The results indicate that feature-level cross-attention outperforms traditional sequence-
level attention across all metrics. We speculate that the difference may stem from the fact that
during sequence attention, we capture correlations between different modality sequences,
but these correlations may vary significantly across different samples. In contrast, the finer
granularity of feature-level attention—achieved by focusing on which features are more
effective—can better capture cross-modal sentiment feature interactions while preserving the
contextual information among text sequences. Integrating auxiliary modality information
into text features on a feature-by-feature basis can augment the text more effectively, thereby
boosting the model.

4.6. Parameter Experiments

We conducted sensitivity experiments on the key parameters of the TCMCL model to
examine their impact on model performance.

4.6.1. Different Attention Unit Layers

In the design of the Siamese network, the text feature augmentation encoder employs
a stack of K attention units. In order to explore the impact of the number of units, K, on the
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model, we evaluated the binary classification accuracy metrics for different K settings. Our
primary evaluation metrics are Acc2 and F1. The specific data are illustrated in Figure 3.

Figure 3. Experimental results of the TCMCL model with different numbers of attention units (K).

We comprehensively evaluated model performance across varying K values within
the range of 1 to 10. The findings reveal a consistent decreasing trend in the metrics as K
increases, eventually reaching a point of stabilization. Notably, the optimal performance is
observed when K is set to 1.

4.6.2. Different Loss Weights

The experimental details subsection provides detailed descriptions of the weighting
settings for model training loss. In order to thoroughly investigate the influence of the
weighting coefficients α, β, and γ on model performance, we conducted a systematic
experimental analysis of various weighting combinations. Specifically, the experiments fix
α at 1 and vary β and γ to examine the relationship between α, β, and γ for quantification
purposes. The evaluation metric for this experiment is binary classification accuracy
(Acc2). Table 6 presents the specific values used in the experiment and the corresponding
experimental results.

Table 6. Experimental results of TCMCL with different β and γ values. The best results are highlighted
in bold.

β

0.05 0.1 0.15 0.2 0.25 0.3

γ

0.05 86.0 85.9 84.8 83.9 84.3 83.8
0.1 86.7 85.4 84.6 84.0 84.2 83.6

0.15 85.5 84.4 83.9 83.7 82.9 82.9
0.2 84.7 84.1 84.0 83.5 82.7 82.6

0.25 83.9 83.7 83.2 83.5 82.8 82.6
0.3 84.0 83.2 83.0 82.4 82.5 82.3

The experimental results demonstrate that the model achieves optimal performance
when β is set to 0.05 and γ to 0.1. It is evident from the table that the model performs
better when β and γ are smaller. This phenomenon can be attributed to the primary
objective of multimodal sentiment analysis, which is to minimize the discrepancy between
the model’s predicted scores and the true sentiment scores, and this is directly optimized
by using the mean squared error (MSE) loss function. The incorporation of contrastive
learning loss aims to further refine the distribution of the sentiment feature space for better
multimodal information integration. However, assigning higher weights to the contrastive
learning loss often shifts the model’s focus toward adjusting spatial relationships between
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samples, deviating from the primary task of multimodal sentiment analysis. This deviation
leads to predicted scores drifting further from the ground truth, thereby impacting the
model’s performance.

4.7. Visualization Study

In order to validate the concept that the contrastive learning task can effectively
utilize feature space information to learn superior sentiment features, we conducted a
visual exploration using the test set of the CMU-MOSI dataset. Specifically, we performed
T-SNE [57] dimensionality reduction visualization on the final feature outputs, Fout, of
the model under conditions with and without contrastive learning tasks, as depicted in
Figure 4a,b, respectively.

(a) Without contrastive learning (b) With contrastive learning

Figure 4. T-SNE visualization of the model feature output Fout.

From these figures, it can be observed that after the model performs contrastive
learning tasks, the spatial distribution of the sentiment features exhibits a more pronounced
clustering effect across different categories, showing more concentrated and structured
clustering for the different sentiment categories. Particularly, within the negative sentiment,
the clustering is no longer loose and disordered. The clustering centers of both the negative
and positive sentiment features have also been pushed farther apart. Additionally, the
distribution of neutral sentiment data in the space aligns better with the trend of sentiment
variation. The visualization studies suggest that incorporating contrastive learning tasks
can optimize the spatial distribution between samples and sentiment categories, facilitating
a better understanding of the sentimental feature representation of the model.

5. Conclusions

This study introduces a novel text-centric multimodal contrastive learning framework
for sentiment analysis (TCMCL). By diverging from previous studies, we emphasize the
centrality of text in the framework’s design, considering audio and visual features as sup-
plementary augmentations to textual sentiment information. Two contrastive learning tasks
were introduced to overcome the assumption of feature space consistency, directing attention
to the information in the feature space. This approach not only captures implicit cross-modal
interactions but also enhances the sentimental sensitivity of the features. Extensive experi-
mentation on the CMU-MOSI and CMU-MOSEI datasets demonstrated the superiority of
TCMCL, validating the effectiveness of the text-centric model design approach. Through
visualization, we further elucidate the role of contrastive learning tasks in the model. In
summary, this research provides new insights into the design strategy of such models. It
is worth noting that there are currently various methods with which to augment the text
modality using auxiliary modalities. In the future, we aim to explore multiple augmentation
strategies to achieve outstanding performance in multimodal sentiment analysis.
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