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Abstract: Modern electronic power systems rely heavily on analog circuits. The accurate detection of
analog circuit faults, especially soft faults, is of great significance for the maintenance and inspection
of electronic systems. This paper proposes the application of the Boruta feature selection method
to the field of the soft fault diagnosis of analog circuits to screen out low-dimensional and efficient
feature components from the high-dimensional time-domain statistical features and frequency-
domain features of circuit responses. Then, the feature components are used as the input to train the
LightGBM classification model, and the Bayesian optimization method is introduced to optimize
the model’s hyperparameters. Finally, the trained fault diagnosis model is verified in two typical
experimental circuits, and satisfactory accuracy is obtained.
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1. Introduction

The electronic circuit industry’s rapid evolution has propelled sophisticated devices
into nearly every aspect of our lives, from industrial production to everyday conveniences.
As these circuits become increasingly integrated, their functionalities and modularity are
also growing, demanding heightened operational reliability. This imperative is particu-
larly critical in demanding fields like aerospace, military, and medicine, where systems
often operate under extreme conditions [1]. Achieving stable, error-free performance
is paramount in these applications. Failure to diagnose faults promptly can lead to
significant consequences.

While electronic circuits come in two flavors—digital and analog—troubleshooting
issues in the latter proves significantly more demanding. This stems from several inherent
characteristics of analog circuits: component complexities, measurement uncertainties,
limited observability, etc. Despite these challenges, the significance of analog circuits
cannot be understated. Even in mixed-signal devices where digital circuits dominate in
number, 80% of faults occur in the analog portions [2]. This highlights the critical need for
advancements in analog fault diagnosis techniques.

Two distinct categories encompass the fault diagnosis methods applicable to analog cir-
cuits which are called model-based and data-driven methods. The former generally hopes
to derive the transfer function equation of the circuit, mainly through analyzing the circuit
design principle or adopting some parameter identification techniques. Obviously, for
simple circuits, such methods usually have certain effects. Nevertheless, with the escalating
complexity of the circuit, the difficulty of obtaining a usable transfer function equation,
or even just estimating some parameters, is greatly increased, and it is quite challenging.
Relatively speaking, data-driven methods are more popular and have more operability.

There exist two distinct categories of faults in analog circuits. The first type is called a
hard fault, which refers to the open circuit or short circuit caused by the physical damage
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or connection error of electronic components. In serious cases, it can lead to the circuit
being completely unable to work. Many people have done relevant research on the open-
circuit and short-circuit phenomena of some special circuits. Wang et al. [3] combined
an improved Dempster–Shafer (DS) evidence theory with a backpropagation (BP) neural
network to enhance the accuracy of diagnosing open-circuit faults in inverter transistors.
Mingyun Chen et al. [4] developed a fault injection strategy to aid in differentiating between
internal and external switch faults within 3L-NPC rectifiers. Their method facilitates the
quick and accurate detection of both single and multiple switch faults, improving overall
system reliability. Tiancheng Shi [5] introduced an enhanced diagnostic approach utilizing
a deep belief network (DBN) in conjunction with the least squares support vector machine
(LSSVM). This method proves highly effective in diagnosing diverse switch faults within
pulse-width modulation voltage source rectifier systems, showcasing a robust resistance to
interference and swift fault identification.

Another type is called a soft fault. Soft faults in analog circuits refer to instances
where component parameters deviate from expectations due to external factors such as
temperature variations, electromagnetic interference, prolonged usage, etc. These devia-
tions can render the circuit inoperable under certain conditions. In contrast to most hard
faults, soft faults exhibit a more covert nature and pose greater challenges for detection [6].
Scholars have extensively explored data-driven approaches to address soft fault issues in
electronic circuits, recognizing the need for advancements in this field. Mehran Aminian
and Farzan Aminian [7] have successively attempted to employ the PCA [8] method to
reduce the dimensionality of features obtained through wavelet transformation. Yingqun
Xiao et al. [9] have introduced a distinctive preprocessing technique, referred to as kernel
principal components analysis with a focus on maximal class separability, for analyzing the
time response of the analog circuit. Lipeng Ji et al. [10] leveraged the formidable of ResNet
networks in feature extraction and learning to identify crucial parameters defining analog
circuit performance to pinpoint the failing component. Ping Song et al. [11] introduced a
novel approach for fault feature extraction utilizing fractional Fourier transform (FRFT),
and SVM was employed to train the extracted features to achieve the effect of diagnosing
and categorizing the faults. Peng Sun et al. [12] introduced a fault diagnosis method for
modular analog circuits, utilizing support vector data description (SVDD) and integrating
Dempster–Shafer (abbreviated as DS) evidence theory. They performed simulation and
hardware experiments on a double-bandpass filter circuit, achieving favorable results.
Chaolong Zhan [13] introduced deep belief networks into the fault diagnosis of analog
circuits, and used a particle swarm optimization algorithm (QPSO) to optimize the learn-
ing rate of a DBN. Huahui Yang et al. [14] applied convolutional neural networks in one
dimension for diagnosing faults in analog circuits, aiming to simultaneously complete the
tasks of extracting relevant features and classifying faults within the input signal through
the neural network. Zhijie Yuan [15] used two popular methods in manifold learning
methods, local linear embedding (LLE) and diffusion mapping (DM), to optimize the di-
mensionality reduction techniques commonly used, so as to better extract the fault features
in analog circuits.

From the existing research, it can be seen that most studies follow the practice of first
extracting features from circuit signals, then reducing the dimensionality of the features,
and finally classifying faults. In the feature extraction step, many time-domain statistical
features are often ignored, while these features should be combined with frequency-domain
features to more completely represent the fault features of the circuit. However, this
combination will increase the dimension of the feature vector, and it is necessary to exclude
some less correlated and redundant feature parts from these high-dimensional features to
reduce the pressure of subsequent fault classification. To that aim, this paper introduces a
novel approach to diagnose faults in analog circuits, which relies on Boruta feature selection
and the LightGBM model. In order to achieve this, we rely on the technical contributions
listed below:
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(i) We use several time-domain statistical feature methods to extract the statistical features
of the time-domain signal and use wavelet packet transform to extract the frequency
features of the time-domain signal. By combining the two, the composite feature
vector of the circuit signal is obtained.

(ii) The Boruta feature selection method is proposed to extract low-dimensional effective
features from high-dimensional feature vectors.

(iii) The LightGBM model is proposed as a means for diagnosing analog circuit faults.
We also introduce the Bayesian optimization approach to effectively fine-tune the
hyperparameters of the model for enhanced performance.

The subsequent sections are structured as follows: Section 2 presents the pertinent
theoretical framework utilized in this research. Section 3 elaborates on the procedural steps
of the proposed methodology. In Section 4, the application of the proposed method to two
experimental circuits is discussed, along with an analysis of the experimental findings.
Additionally, a comparative experiment is outlined to showcase the efficacy of the proposed
approach. Finally, Section 5 provides a summary of the research conducted in this paper.

2. Related Theories
2.1. Boruta Feature Selection

The Boruta feature selection technique is categorized as a wrapper-based approach for
feature selection. Unlike filter-based methodologies, wrapper-based techniques evaluate
the significance of features by analyzing their performance within predictive models. They
aim to identify the most suitable subset of features while ensuring robustness against
irrelevant or noisy features [16]. Boruta is an all-relevant feature selection method, while
most other methods are minimally optimal. This means that it aims to find all the features
that carry information for prediction, rather than finding a possible compact subset of
features in which some classifiers have the minimum error amount. The detailed algorithm
steps are as follows [17]:

Step 1: Initialization. First, randomly generate a shadow dataset, where the values of
each feature are the shuffled values of that feature in the original dataset. Then, combine
the original dataset and the shadow dataset to obtain an extended dataset.

Step 2: Train the model. Train a classification model on the extended dataset. In this
paper, the LightGBM model is selected. Calculate the importance of each feature, which is
represented by the Zscore in the following fomula:

Zscore =
E f

f
(1)

where E f represented the mean of accuracy loss, and f represented the standard deviation
of accuracy loss.

Step 3: Confirm the features. Verify each feature to determine if it holds a greater
significance than the highest value of the importance score within the shadow feature. If so,
confirm the feature as a relevant feature.

Step 4: Iterate. Repeat Step 2 and 3 until all features are confirmed or the set maximum
number of iterations is reached.

The above Boruta feature selection method can represented by Figure 1:
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Figure 1. Boruta algorithm procedure.

2.2. Light Gradient-Boosting Machine (LightGBM)

The light gradient-boosting machine is a gradient-boosting tree model introduced
by Microsoft Research Asia in 2016. The origins of the LightGBM can be traced back to
the 1990s, a period when gradient-boosting tree models started to garner interest among
researchers. Gradient-boosting tree models are an iterative learning approach, progressively
enhancing the model’s performance by incorporating a tree during each iteration.

The LightGBM represents a refinement of the gradient-boosting decision tree (GBDT)
algorithm, employing weak classifiers such as decision trees to progressively refine the
model. Notably, the LightGBM offers advantages in terms of effective training outcomes
and a reduced risk of overfitting. In contrast to the GBDT, which necessitates multiple
passes through the entire training dataset during each iteration, the LightGBM mitigates
the need for loading the complete dataset into memory. This circumvents the limitations on
training data size imposed by memory constraints. Moreover, the LightGBM’s approach
addresses the time-consuming nature of repeatedly reading and writing training data by
implementing specific strategies to optimize performance. The specific implementation
methods include the following points [18,19]:

1. Histogram-based algorithm. This algorithm addresses eigenvalue segmentation with
both memory and computational efficiency. By discretizing continuous eigenval-
ues into k integers and constructing a corresponding histogram, it avoids extensive
data processing. Traversing the data once populates the histogram with relevant
statistics, enabling an efficient search for the optimal segmentation point within the
discrete representation. This significantly reduces both the memory footprint and the
computational complexity compared to alternative methods.

2. Leaf-wise growth. Unlike traditional level-wise tree growth, the LightGBM grows
trees leaf-wise. Instead of expanding all nodes at a given level, it continuously seeks
the leaf with the biggest potential improvement (split gain), leading to a potentially
lower error and higher accuracy at the same number of splits.

3. Gradient-based one-side sampling (GOSS). GOSS is a smart technique that speeds up
learning in decision trees by focusing on informative samples. The key idea of GOSS
is that samples with larger gradients (essentially, larger prediction errors) contribute
more to information gain. GOSS ranks all samples based on their absolute gradient
values, prioritizing those with large errors. To maintain data diversity, the algorithm
randomly samples a smaller number of remaining (lower gradient) samples. Then, it
adjusts the weights of these randomly selected samples slightly to emphasize their
importance without significantly altering the dataset’s overall distribution.

4. Exclusive feature bundling (EFB). High dimensional data tend to be sparse, and this
sparsity inspires us to design a lossless method to reduce the dimensions of features.
Usually, the features that are bundled are mutually exclusive (i.e., they do not have
both nonzero values, like one-hot), so that two features are bundled without losing
information. If the two features are not mutually exclusive (in some cases, they are
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both non-zero), we can use a metric called the collision ratio to measure the extent
to which the features are not mutually exclusive, and when this value is small, we
can choose to combine the two features without affecting the final accuracy. Exclusive
feature bundling (EFB) points out that the number of features can be reduced if some
features are fused and bound together. This will help to reduce the time complexity
when building the histogram.

2.3. Bayesian Optimization

Bayesian optimization is a global optimization technique that leverages Bayesian sta-
tistical theory to efficiently search for global optima. In contrast to traditional optimization
methods, Bayesian optimization for parameter tuning uses Gaussian processes, taking
into account previous parameter information, continually updating prior information,
effectively reducing the number of iterations in the tuning process, and demonstrating
robust performance when dealing with non-convex problems.

The Bayesian optimization framework primarily comprises two fundamental compo-
nents: a probabilistic surrogate model and an acquisition function [20]. The probabilistic
surrogate model contains a prior probability model and an observation model. In a narrow
sense, Bayesian optimization refers to sequential model-based optimization (SMBO) in
which the surrogate model is a Gaussian process regression model. Gaussian process regres-
sion involves using a Gaussian process model F(x) to the target function f (x). Initially, the
predefined mean function m(x) and covariance function K(x, x′) are established as the prior
distribution of the Gaussian process. Next, the sampling indices x1, x2, . . . , xt are selected,
obtaining observed values of the target function f (x1), . . . , f (xt), which correspondingly
are the random variables F(x1), . . . , F(xt) in the Gaussian process. The parameters of the
mean and covariance functions are adjusted based on the observed values, thereby deter-
mining the final form of the Gaussian process, completing the fitting of the function f (x).

Another important part of Bayesian optimization is the acquisition function []. Since
the surrogate model outputs the posterior distribution of function f , we can utilize this
posterior distribution F(x)|F(x1:t) = f (x1:t) to evaluate where the next sampling point
should be located. The acquisition function takes the form of A(x, F(x)|F(x1:t) = f (x1:t)) ,
where its input scores each sampling point ‘x’, with higher scores indicating points more
deserving of being sampled.

Generally, the acquisition function needs to satisfy several criteria. Firstly, it should
have smaller values at existing sampling points, as these points have already been explored.
Secondly, it should have larger values at points with wider confidence intervals (higher
variance) because these points possess greater uncertainty and are more worthy of explo-
ration. For maximization (or minimization) problems, the acquisition function should have
larger values at points with higher (or lower) function means, as the mean provides an
estimate of the function value at that point, making these points more likely to be near
extreme points. There are various choices of acquisition functions. Those commonly used
are the probability improvement (PI), expected improvement (EI), and the upper confidence
bound (UCB).

In summary, Bayesian optimization is an iterative process that primarily involves
three steps:

Step 1: Select the next most promising evaluation point xt based on maximizing the
acquisition function.

Step 2: Evaluate the objective function yt = f (xt) + εt at the chosen evaluation
point xt.

Step 3: Add the newly obtained input-observation pair {xt, yt} to the historical ob-
servation set D1:t−1, and update the probabilistic surrogate model in preparation for the
next iteration.
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3. Proposed Method
3.1. Obtain the Feature Vector

The time-domain statistical characteristics of a circuit signal provide essential insights
into the behavior and properties of the signal. Understanding these features is crucial
signal processing, system identification, and fault diagnosis in circuits.

This article selects six typical time-domain statistical features for a set of time-domain
signal vectors X = [x1, x2, . . . , xn], including the standard deviation, kurtosis, skewness,
entropy, waveform factor and impulse indicator:

Standard deviation is used to measure the dispersion of the data, with a larger standard
deviation indicating greater data spread, and is defined as Equation (2):

σ =

√√√√ 1
N

N

∑
n=1

(xn − µ)2 (2)

Kurtosis is used to describes the steepness of the data distribution, where a higher
kurtosis indicates relatively concentrated data and a lower kurtosis indicates a flatter
distribution. It is defined as follows.

KU =
1
N ∑N

n=1 (xn − µ)4

σ4 − 3 (3)

Skewness is used to measures the asymmetry of the data distribution, with positive
skewness indicating right-skewed data and negative skewness indicating left-skewed data,
and is defined as follows.

SK =
1
N ∑N

n=1 (xn − µ)3

σ3 (4)

Entropy is used to measure the complexity or uncertainty of a signal, where higher
entropy values indicate greater signal complexity or uncertainty. Entropy is defined
as follows.

e = −∑
i

P(x = ai) log P(x = ai) (5)

The waveform factor is defined as follows. It is used to described the degree of
distortion of a signal waveform.

SH(X) =
RMS(X)

1
N ∑N

n=1|xn|
(6)

where RMS represents for root mean square.
The impulse indicator is used to described the impulsive characteristics of a signal

and is defined as follows.

IM(X) =
max|X|

1
N ∑N

n=1|xn|
(7)

In addition to time-domain statistical features, we also selected wavelet packet trans-
form (WPT), a representative signal frequency-domain feature extraction method [21,22],
to extract the frequency-domain features of analog circuit responses. WPT is a further
decomposition of high-frequency signals on the basis of wavelet transform. The general
process is as shown in Figure 2. After n layers of decomposition, the original signal can be
decomposed into 2n sub-bands.

Assume that the initial signal is given by d1
0 = f (n), which could be represented after

WPT as follows:
dj,2n

l = ∑
k

hk−2ld
j+1,n
k (8)

dj,2n+1
l = ∑

k
gk−2ld

j+1,n
k (9)
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where dj,2n
l and dj,2n+1

l refer to the node coefficients of node (j, n) in the layer l of the
wavelet packet decomposition under a high-pass filter and low-pass filter, respectively.
hk−2l and gk−2l refer to the high-pass and low-pass filters. dj+1,n

k (n) is the node coefficient
of node (j + 1, n) at layer k of the wavelet packet.

Figure 2. Three-level wavelet packet decomposition.

The energy of the kth layer and jth band is defined as follows:

Ej
k =

M

∑
n=1

∣∣∣dj,n
k

∣∣∣2, j = 0, 1, 2, . . . , 2k − 1 (10)

where M denotes the length of the jth band.
And the corresponding band spectrum coefficient is:

rj =
Ej

E
, j = 0, 1, 2, . . . , 2k − 1 (11)

where E denotes the total energy of the kth layer. Thus, the sequence
{

rj, j = 0, 1, 2, . . . , 2k − 1
}

could be used as the frequency-domain feature of the signal.
In this paper, we combine the 6-dimensional statistical features of circuit responses

with the 8-dimensional frequency features extracted by the wavelet packet transform to
form a 14-dimensional feature vector. Then, we use the Boruta method to perform a feature
screening on the 14-dimensional features to achieve a feature dimension reduction. After
that, we use the reduced features as the input to train the LightGBM model, and optimize
the model parameters with the Bayesian optimization method. Finally, we use the model
to realize the fault diagnosis of the simulated circuits.

3.2. Steps of the Proposed Method

In this section, we outline the fundamental procedures for conducting feature extrac-
tion as follows and depicted in Figure 3:

Step 1: Obtain circuit response signals under various fault modes from the experiment
circuit. The features of the signals are extracted to obtain high-dimensional feature vectors
that simultaneously contain the time-domain statistical features and frequency-domain
features of the signals.

Step 2: The Boruta feature selection algorithm is utilized on feature vectors with a
high dimensionality to eliminate features that are weakly correlated or redundant.

Step 3: The refined characteristics are utilized as the input for the training of a Light-
GBM model. Bayesian optimization is utilized to optimize the hyperparameters of the
LightGBM model with the aim of improving its classification performance.
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Figure 3. Flowchart of the proposed method.

4. Analog Circuit Experiment

In this segment, we implemented the suggested approach on two standard circuits
to assess its efficacy and dependability. The circuits under consideration are the Sallen–
Key band-pass filter circuit and the four opamp biquad high-pass filter circuit. Based on
practical experience, circuits rarely have two or more components failing simultaneously;
therefore, this paper only considers single fault scenarios.

4.1. Sallen–Key Band-Pass Filter

The initial experimental circuit implemented is the Sallen–Key band-pass filter, as
shown in Figure 4. Sallen–Key band-pass filter. This filter configuration comprises five
resistors, two capacitors, and a fundamental operational amplifier. Through a sensitivity
analysis of the circuit, it is observed that the component values of C1, C2, R2, and R3
play a crucial role in determining the output characteristics of the circuit. Therefore, these
components are chosen as potential faulty components. In this paper, component faults
are defined as follows: if the actual parameters of a component deviate by 50% or more
from its nominal value, the component is considered faulty. The nominal values of the
potential faulty components and their fault modes for the Sallen–Key band-pass filter are
shown in Table 1. The symbols “↑” and “↓” in the table indicate that the actual value of the
component in this fault type exceeds or falls below its nominal value.
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Figure 4. Sallen–Key band-pass filter.

Table 1. Nominal and fault values for a Sallen–Key band-pass filter.

Fault Tag Fault Class Nominal Value Fault Value

F0 \ \ \
F1 C1 ↓ 5 nF 2.5 nF
F2 C1 ↑ 5 nF 7.5 nF
F3 R3 ↑ 2 kΩ 3 kΩ
F4 R3 ↓ 2 kΩ 1 kΩ
F5 C2 ↓ 5 nF 2.5 nF
F6 C2 ↑ 5 nF 7.5 nF
F7 R2 ↑ 3 kΩ 4.5 kΩ
F8 R2 ↓ 3 kΩ 1.5 kΩ

In the circuit simulation setting, according to practical experience, all resistors are set
to a 5% tolerance and all capacitors are set to a 10% tolerance. The circuit’s excitation source
is an alternating voltage signal with an amplitude of 5 V and a frequency of 1 kHz. The cir-
cuit’s sampling time is 1.2 ms. A Monte Carlo analysis is performed on the circuit 100 times
under each fault mode, and the circuit’s time-domain output response is extracted.

According to the previous text, the proposed method was used to perform feature
selection on the data features using the Boruta method and the selected results are the
kurtosis, skewness, and the eighth component of the wavelet packet decomposition. The
visualization of the fault features is shown in Figure 5. It can be seen from the figure that
the fault features have a good degree of discrimination.

Figure 5. Fault feature visualization of the Sallen–Key band-pass filter.
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Then, the filtered features were used as input to train a LightGBM model. Bayesian
optimization was employed to optimize the model’s hyperparameters. The optimized
hyperparameters are shown in Table 2. The classification results of the model on the data
are represented by a confusion matrix, as shown in Figure 6. The accuracy of the diagnosis
of each type of fault is above 94%, and the overall accuracy reaches 97.8%.

Table 2. Bayesian optimization results of Sallen–Key band-pass filter.

Parameter Value

n_estimators 296
learning_rate 0.1794

min_child_samples 26
min_child_weight 0.009

min_split_gain 0.89
num_leaves 43

Figure 6. Confusion matrix of the diagnostic results of the proposed method in a Sallen–Key band-
pass filter.

4.2. Four Opamp Biquad High-Pass Filter

The subsequent experimental setup is the four opamp biquad high-pass filter, depicted
in Figure 7. This filter comprises ten resistors, two capacitors, and four fundamental
operational amplifiers. Through sensitivity analysis, it is observed that the values of R1,
R2, R3, R4, C1, and C2 play a crucial role in determining the output characteristics of the
circuit. Therefore, these components are chosen as potential faulty components. Similarly,
if the actual parameters of an electronic component exceed or fall below its nominal value
by 50% or more, then the component is considered to be a faulty component. The nominal
values of the potential faulty components and their fault modes for the four opamp biquad
high-pass filter are shown in Table 3.

Similarly, in the circuit simulation setting, all resistors are set to a 5% tolerance and all
capacitors are set to a 10% tolerance. The circuit’s excitation source is an alternating voltage
source signal with an amplitude of 5 V and a frequency of 12 kHz. The circuit’s sampling
time is 0.5 ms. A Monte Carlo analysis is performed on the circuit 100 times under each
fault mode, and the circuit’s time-domain output response is extracted.
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Figure 7. Four opamp biquad high-pass filter.

Table 3. Nominal and fault values for the four opamp biquad high-pass filter.

Fault Tag Fault Class Nominal Value Fault Value

F0 \ \ \
F1 R1 ↑ 6.2 kΩ 9.3 kΩ
F2 R1 ↓ 6.2 kΩ 3.1 kΩ
F3 R2 ↑ 6.2 kΩ 9.3 kΩ
F4 R2 ↓ 6.2 kΩ 3.1 kΩ
F5 R3 ↑ 6.2 kΩ 9.3 kΩ
F6 R3 ↓ 6.2 kΩ 3.1 kΩ
F7 R4 ↑ 1.6 kΩ 2.4 kΩ
F8 R4 ↓ 1.6 kΩ 0.8 kΩ
F9 C1 ↑ 5 nF 7.5 nF

F10 C1 ↓ 5 nF 2.5 nF
F11 C2 ↑ 5 nF 7.5 nF
F12 C2 ↓ 5 nF 2.5 nF

According to the previous text, the proposed method was used to perform feature
selection on the data features using the Boruta method and the selected results are the
kurtosis, the seventh component, and the eighth component of the wavelet packet de-
composition. The visualization of the fault features is shown in Figure 8. As can be seen
from the figure, except for the F5 fault, which is more dispersed in the feature space, the
remaining faults have a relatively clear distinction in the feature space. To correctly classify
the fault modes, the classifier still needs to be trained further.

Figure 8. Fault feature visualization of the four opamp biquad high-pass filter.
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Then, the filtered features were used as input to train a LightGBM model. Bayesian
optimization was used to optimize the hyperparameters of the model. The optimized
hyperparameters are shown in Table 4. The classification results of the model on the data
are represented by a confusion matrix, as shown in Figure 9. As shown in the figure, the
accuracy of most features is high. Only F7 and F11 have lower diagnosis rates, but they
still have accuracies of 93% and 91%, respectively. The overall accuracy reaches 97.31%.
Overall, the results are still satisfactory.

Table 4. Bayesian optimization results of four opamp biquad high-pass filter.

Parameter Value

n_estimators 387
learning_rate 0.2708

min_child_samples 28
min_child_weight 0.007

min_split_gain 0.6355
num_leaves 59

Figure 9. Confusion matrix of the diagnostic results of the proposed method in a four opamp biquad
high-pass filter.

4.3. Comparison Experiments

To analyze the superiority of the proffered scheme, a comparative experiment is set
up in this paper. On the one hand, we conducted a comparative experiment based only
on statistical features and only on frequency-domain features. On the other hand, we
tried to choose common classifiers other than the LightGBM. And the results are shown
in Tables 5–7.

The results presented in Tables 5 and 6 indicate a moderate enhancement in the
classification accuracy of fault diagnosis when incorporating time-domain and frequency-
domain characteristics. Specifically, there is an enhancement in diagnostic precision ranging
from 0.5% to 0.6% for the Sallen–Key band-pass filter and from 2.3% to 2.9% for the four
opamp biquad high-pass filter. This comparative analysis suggests that Boruta effectively
identifies optimal features across both time and frequency domains. Furthermore, the
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outcomes detailed in Table 7 demonstrate that the LightGBM surpasses the SVM and
Random Forest as a classifier for the aforementioned circuits.

Table 5. Performance comparison of different domains in the Sallen–Key band-pass filter.

Fault ID Only the Time Domain Only the Frequency Domain Both

F0 1 1 1
F1 1 1 1
F2 1 1 1
F3 0.97 0.97 0.97
F4 0.96 0.97 0.97
F5 0.94 0.94 0.94
F6 0.94 0.94 0.94
F7 0.94 0.94 0.98
F8 1 1 1

Average accuracy 97.2% 97.3% 97.8%

Table 6. Performance comparison of different domains in the four opamp biquad high-pass filter.

Fault ID Only the Time Domain Only the Frequency Domain Both

F0 1 1 1
F1 0.95 1 1
F2 0.96 0.97 0.97
F3 1 1 1
F4 0.94 0.94 1
F5 0.90 0.90 0.95
F6 0.95 0.96 0.98
F7 0.94 0.93 0.93
F8 0.95 0.95 1
F9 0.96 0.91 0.94

F10 0.88 0.90 0.96
F11 0.90 0.88 0.91
F12 0.84 1 1

Average accuracy 94.4% 95% 97.3%

Table 7. Performance comparison of the classification methods.

Experiment Circuit LightGBM SVM Random Forest

Sallen–Key band-pass filter 97.8% 96.2% 96.6%
Four opamp biquad high-pass filter 97.3% 92.2% 94.0%

5. Conclusions

This study introduces a novel approach for diagnosing soft faults in analog circuits
by utilizing Boruta feature selection and a LightGBM model. The methodology integrates
the time-domain statistical characteristics and frequency-domain features of circuit signals,
employing the Boruta technique to identify the most effective low-dimensional features.
Subsequently, a LightGBM model with hyperparameters optimized through Bayesian
methods is employed to construct a soft fault diagnosis model for analog circuits using
training data. The evaluation of fault diagnosis effectiveness is performed on a test dataset,
yielding diagnostic accuracies of 97.8% and 97.3% for the Sallen–Key band-pass filter
and four opamp biquad high-pass filter experimental circuits, respectively. A compar-
ative analysis with feature datasets focusing solely on time-domain statistical features
or frequency-domain features demonstrates the superior feature selection capabilities of
the Boruta algorithm. Furthermore, comparative experiments reveal that the LightGBM
model optimized through Bayesian techniques exhibits superior classification performance
compared to SVM and random forest algorithms. The findings of the study suggest the
potential utility of the fault diagnosis technique in the realm of soft fault diagnosis within
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analog circuits or within a wider scope of fault-tolerant systems. This offers avenues
for future research endeavors. Subsequent studies could expand upon this groundwork
to assess the viability of implementing this approach in various circuit arrangements or
practical situations.
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Abbreviations
The following abbreviations are used in this manuscript:

LightGBM Light gradient-boosting machine
GBDT Gradient-boosting decision tree
DS Dempster–Shafer
DBN Deep belief network
PCA Principal component analysis
FRFT Fractional Fourier transform
SVM Support vector machine
SVDD Support vector data description
GOSS Gradient-based one-side sampling
EFB Exclusive feature bundling
SMBO Sequential model-based optimization
PI Probability improvement
EI Expected improvement
UCB Upper confidence bound
WPT Wavelet packet transform
Symbols
The following Symbols are used in this manuscript:
Zscore Score that evaluates the importance of each feature
E f Mean of accuracy loss
f Standard deviation of accuracy loss
σ Standard deviation
µ Mean of the data
KU Kurtosis
SK Skewness
H Entropy
SH Waveform factor
RMS Root mean square
IM Impulse indicator

References
1. Zhang, C.L.; Ye, L.L.; Wu, J.; Zhang, B.; Yao, N.G.; Wang, Y.Z. A Novel Analog Circuit Fault Diagnosis Approach. Recent Adv.

Electr. Electron. Eng. 2021, 14, 535–546. [CrossRef]
2. Liu, X.D.; Yang, H.C.; Gao, T.Y.; Yang, J.L. A Novel Incipient Fault Diagnosis Method for Analogue Circuits Based on an MLDLCN.

Circuits Syst. Signal Process. 2024, 43, 684–710. [CrossRef]
3. Wang, M.; Zhao, J.; Wu, Z.F.; Yang, H.W. Transistor Open-Circuit Fault Disgnosis of Three Phase Voltage-Source Inverter Fed

Induction Motor Based on Information Fusion. In Proceedings of the 12th IEEE Conference on Industrial Electronics and
Applications (ICIEA), Siem Reap, Cambodia, 18–20 June 2017; pp. 1591–1594.

4. Chen, M.Y.; He, Y.G. Multiple Open-Circuit Fault Diagnosis Method in NPC Rectifiers Using Fault Injection Strategy. IEEE Trans.
Power Electron. 2022, 37, 8554–8571. [CrossRef]

https://doi.org/10.2174/2352096514666210713101436
https://doi.org/10.1007/s00034-023-02524-x
https://doi.org/10.1109/TPEL.2022.3150885


Electronics 2024, 13, 1123 15 of 15

5. Shi, T.C.; He, Y.G.; Wang, T.; Li, B. Open Switch Fault Diagnosis Method for PWM Voltage Source Rectifier Based on Deep
Learning Approach. IEEE Access 2019, 7, 66595–66608. [CrossRef]

6. Catelani, M.; Fort, A. Soft fault detection and isolation in analog circuits: Some results and a comparison between a fuzzy
approach and radial basis function networks. IEEE Trans. Instrum. Meas. 2002, 51, 196–202. [CrossRef]

7. Aminian, F.; Aminian, M.; Collins, H.W. Analog fault diagnosis of actual circuits using neural networks. IEEE Trans. Instrum.
Meas. 2002, 51, 544–550. [CrossRef]

8. Siddique, M.F.; Ahmad, Z.; Ullah, N.; Kim, J. A Hybrid Deep Learning Approach: Integrating Short-Time Fourier Transform and
Continuous Wavelet Transform for Improved Pipeline Leak Detection. Sensors 2023, 23, 8079. [CrossRef]

9. Xiao, Y.Q.; He, Y.G. A novel approach for analog fault diagnosis based on neural networks and improved kernel PCA. Neurocom-
puting 2011, 74, 1102–1115. [CrossRef]

10. Ji, L.P.; Fu, C.Q.; Sun, W.Q. Soft Fault Diagnosis of Analog Circuits Based on a ResNet with Circuit Spectrum Map. IEEE Trans.
Circuits Syst. I-Regul. Pap. 2021, 68, 2841–2849. [CrossRef]

11. Song, P.; He, Y.Z.; Cui, W.J. Statistical property feature extraction based on FRFT for fault diagnosis of analog circuits. Analog
Integr. Circuits Signal Process. 2016, 87, 427–436. [CrossRef]

12. Sun, P.; Yang, Z.M.; Jiang, Y.M.; Jia, S.H.; Peng, X.Y. A Fault Diagnosis Method of Modular Analog Circuit Based on SVDD and
D-S Evidence Theory. Sensors 2021, 21, 6889. [CrossRef]

13. Zhang, C.L.; He, Y.G.; Yuan, L.F.; Xiang, S. Analog Circuit Incipient Fault Diagnosis Method Using DBN Based Features Extraction.
IEEE Access 2018, 6, 23053–23064. [CrossRef]

14. Yang, H.H.; Meng, C.; Wang, C. Data-Driven Feature Extraction for Analog Circuit Fault Diagnosis Using 1-D Convolutional
Neural Network. IEEE Access 2020, 8, 18305–18315. [CrossRef]

15. Yuan, Z.J.; He, Y.G.; Yuan, L.F.; Chen, P.; Cheng, Z. An efficient feature extraction approach based on manifold learning for
analogue circuits fault diagnosis. Analog Integr. Circuits Signal Process. 2020, 102, 237–252. [CrossRef]

16. Farhana, N.; Firdaus, A.; Darmawan, M.F.; Razak, M.F.A. Evaluation of Boruta algorithm in DDoS detection. Egypt. Inform. J.
2023, 24, 27–42. [CrossRef]

17. Muzoglu, N.; Adigüzel, E.; Akbacak, E.; Karaslan, M.K. Detection of Damaged Structures From Satellite Imagery Processed by
Autoencoder With Boruta Feature Selection Method. Electrica 2023, 23, 397–405. [CrossRef]

18. Bentéjac, C.; Csörgo, A.; Martínez-Muñoz, G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev. 2021,
54, 1937–1967. [CrossRef]

19. Tang, M.Z.; Meng, C.H.; Wu, H.W.; Zhu, H.Q.; Yi, J.B.; Tang, J.; Wang, Y.F. Fault Detection for Wind Turbine Blade Bolts Based on
GSG Combined with CS-LightGBM. Sensors 2022, 22, 6763. [CrossRef] [PubMed]

20. Wang, X.L.; Jin, Y.C.; Schmitt, S.; Olhofer, M. Recent Advances in Bayesian Optimization. Acm Comput. Surv. 2023, 55, 287.
[CrossRef]

21. Zhang, C.L.; He, Y.G.; Yang, T.; Zhang, B.; Wu, J. An Analog Circuit Fault Diagnosis Approach Based on Improved Wavelet
Transform and MKELM. Circuits Syst. Signal Process. 2022, 41, 1255–1286. [CrossRef]

22. Yang, Y.Y.; Wang, L.D.; Nie, X.B.; Wang, Y. Incipient fault diagnosis of analog circuits based on wavelet transform and improved
deep convolutional neural network. Ieice Electron. Express 2021, 18, 20210174. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2019.2917311
https://doi.org/10.1109/19.997811
https://doi.org/10.1109/TIM.2002.1017726
https://doi.org/10.3390/s23198079
https://doi.org/10.1016/j.neucom.2010.12.003
https://doi.org/10.1109/TCSI.2021.3076282
https://doi.org/10.1007/s10470-016-0721-5
https://doi.org/10.3390/s21206889
https://doi.org/10.1109/ACCESS.2018.2823765
https://doi.org/10.1109/ACCESS.2020.2968744
https://doi.org/10.1007/s10470-018-1377-0
https://doi.org/10.1016/j.eij.2022.10.005
https://doi.org/10.5152/electrica.2023.22232
https://doi.org/10.1007/s10462-020-09896-5
https://doi.org/10.3390/s22186763
https://www.ncbi.nlm.nih.gov/pubmed/36146110
https://doi.org/10.1145/3582078
https://doi.org/10.1007/s00034-021-01842-2
https://doi.org/10.1587/elex.18.20210174

	Introduction 
	Related Theories 
	Boruta Feature Selection 
	Light Gradient-Boosting Machine (LightGBM) 
	Bayesian Optimization 

	Proposed Method 
	Obtain the Feature Vector 
	Steps of the Proposed Method 

	Analog Circuit Experiment 
	Sallen–Key Band-Pass Filter 
	Four Opamp Biquad High-Pass Filter 
	Comparison Experiments 

	Conclusions 
	References

