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Abstract: Community detection has been a subject of extensive research due to its broad applications
across social media, computer science, biology, and complex systems. Modularity stands out as a
predominant metric guiding community detection, with numerous algorithms aimed at maximizing
modularity. However, modularity encounters a resolution limit problem when identifying small
community structures. To tackle this challenge, this paper presents a novel approach by defining
community structure information from the perspective of encoding edge information. This pioneering
definition lays the foundation for the proposed fast community detection algorithm CSIM, boasting
an average time complexity of only O(n log n). Experimental results showcase that communities
identified via the CSIM algorithm across various graph data types closely resemble ground truth
community structures compared to those revealed via modularity-based algorithms. Furthermore,
CSIM not only boasts lower time complexity than greedy algorithms optimizing community structure
information but also achieves superior optimization results. Notably, in cyclic network graphs, CSIM
surpasses modularity-based algorithms in effectively addressing the resolution limit problem.

Keywords: networks; community detection; structure entropy; community structure information;
modularity

1. Introduction

In various fields such as social media, computer science, biology, management science,
and engineering, complex systems are often represented in the form of complex networks.
These complex networks can be depicted as graphs in graph theory, where nodes in the
graph represent entities in the system, and edges represent interactions between entities [1].
For example, in online social networks, nodes may represent users on the platform, and
edges could signify friendship relationships or shared interests [2,3], and in a blockchain
network, nodes represent participants such as individuals, companies, or servers that
execute transactions, while edges represent the connections or interactions between these
nodes, often symbolizing specific transactions. Due to varying degrees of connectivity
between nodes of different types, these natural connections between nodes inherently facil-
itate the formation of communities. Communities are subsets of nodes within the network
that are tightly connected internally but have sparse connections between them. Commu-
nities often reflect common characteristics among nodes, such as similar backgrounds in
social networks or related functionalities in cellular metabolism [4–6].
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Measuring the community structure within networks holds significant implications
for understanding complex systems and characterizing organizational structures. Conse-
quently, metrics for community structure have rapidly garnered widespread attention in
computer science, leading to the introduction of several prominent measures such as mod-
ularity [7], modular density [8], surprise [9], and permanence [10], among others. Among
these metrics, modularity, initially proposed by Newman and Girvan [11], stands out as the
most renowned and widely applied. A specific class of community detection algorithms
is designed to optimize modularity. For example, hierarchical clustering optimization
has been utilized to optimize modularity [12], simulated annealing has been introduced
into modularity optimization [13], extremum optimization methods have been employed
for modularity optimization [14], the optimization of modularity using eigenvalues and
eigenvectors of special matrices has been explored [15], and mathematical programming
has been introduced for modularity optimization [16], among others. Among these, the
Louvain algorithm [12] has become the most commonly used algorithm due to its low time
complexity and high accuracy [17].

Despite the widespread application of modularity, it possesses inherent limitations,
with the most notable being the resolution limit problem [18]. This refers to modularity
optimization’s inability to detect communities smaller than a certain threshold, present-
ing a challenge, particularly in networks with heterogeneous communities or when cer-
tain communities are substantially smaller than the overall network. In such instances,
modularity-based community detection algorithms may overlook or merge smaller sub-
structures, resulting in a loss of granularity in community delineation. This challenge
stems from the inherent difficulty of the modularity function in striking an optimal balance
between the number and size of communities, potentially merging or obscuring small-scale
communities and impacting the accuracy and completeness of the detection process. In
response to this challenge, researchers have proposed various modifications and alternative
metrics [8,19]. However, these methods often address specific scenarios and come with
high time complexity.

In 2015, Li et al. introduced an information-theoretic measure of network complexity
termed the structure entropy of networks [20]. Structure entropy, defined for a graph,
G, represents the average number of bits required to identify the codes of a node, v
accessible from a step of random walk in G relative to a stationary distribution. They
subsequently proposed an algorithm for community detection in networks by minimizing
structure entropy, claiming that their approach achieves a more balanced community
size compared to modularity optimization algorithms. While their research presents a
promising avenue for community detection, the concept of structural entropy, derived from
coded random walks, may pose challenges in terms of intuitiveness and comprehension for
some researchers. Furthermore, their proposed algorithm exhibits higher time complexity
compared to the widely used Louvain algorithm [12], hindering its widespread adoption
and application in practical scenarios.

In summary, current research in community detection confronts several challenges
that warrant attention and further exploration. Firstly, modularity-based algorithms such
as Louvain, while renowned for their efficiency with low time complexity, are hindered by
the resolution limit problem. This limitation poses a significant obstacle, particularly when
dealing with networks exhibiting high heterogeneity or containing small-scale communities
that may be overlooked or merged. Secondly, methods based on structural entropy have
emerged as promising alternatives, boasting claims of achieving a harmonious balance
between community size and quantity. However, the concept of structural entropy, derived
from coded random walks, presents a steep learning curve and may prove less intuitive and
accessible to researchers unfamiliar with its intricacies. Moreover, while some approaches,
including those leveraging structural entropy, offer potential solutions to the resolution
limit problem in certain contexts, they often come with higher algorithmic complexity.
This increased computational overhead may limit their practical applicability, particularly
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in scenarios where computational resources are limited or where real-time processing
is required.

In this paper, we aim to address the above challenging issues. Specifically, we de-
fine community structure information as the average amount of information that can be
compressed per edge, given a known community structure, providing a more intuitive
representation of the essence of structural entropy. Secondly, drawing inspiration from the
Louvain algorithm, we introduce a fast community detection algorithm that optimizes the
value of community structure information. Finally, we validate the practical effectiveness of
the algorithm through experiments. The main contributions of this paper are summarized
as follows:

• We introduce a novel approach to defining structural entropy by focusing on the en-
coding of edge information, named community structure information. This approach
calculates the difference in the number of bytes required to encode an edge under
unknown and known community structures, capturing the amount of information
leaked via the community structure.

• We propose an algorithm, CSIM, for the approximate calculation of the maximum
community structure information, which can be employed for community detection.
Notably, for a social network with n nodes, the time complexity is the same as that of
the Louvain algorithm, with both having an average time complexity of O(n log n).

• We conducted experiments on real-world network data, and the results demonstrate
that the computational output of our proposed algorithm closely approximates the
maximum value of community structure information. Furthermore, the community
structure obtained through this algorithm aligns more closely with the ground truth
community structure.

We organized the paper as follows. Section 2 presents an overview of related works on
the measure of complex networks, community detection, and structure entropy. In Section 3,
we provide the definition of community structure information from the perspective of
encoding edge information and subsequently quantify the information leaked via the
community structure. In Section 4, we introduce a novel community detection algorithm
that maximizes community structure information, accompanied by proof of the algorithm’s
time complexity. In Section 5, we evaluate and analyze the performance of our algorithm
using real-world network data. In Section 6, we discuss the contributions and implications
of our study. Finally, we conclude our work in Section 7.

2. Related Work

In this section, we mainly focus on the related works on the metrics for structural
information in complex network, community detection, and structure entropy.

2.1. Metrics for Structural Information

In the domain of information theory, the precise quantification of structural informa-
tion poses a prominent challenge to computer and information science. Rashevsky [21] is
acknowledged for pioneering the initial measurement of complex networks, inaugurating
efforts to capture the intricacies of structural information. Over the years, researchers have
introduced a myriad of metrics targeting the delineation of structural complexities across
diverse network types, including notable measures like Shannon entropy, von Neumann
entropy [22], parametric graph entropy [23], and Gibbs entropy [24], among others.

While these traditional information metrics have made significant contributions, many
essentially represent variations of Shannon entropy tailored to distinct distribution types.
Recognizing the necessity of innovative approaches, recent advancements have explored
alternative perspectives on structural information [25].

Recognizing the importance of community structure in real-world networks, Newman [26]
introduced modularity as a metric to assess the strength of community divisions within
a network, becoming instrumental in uncovering underlying structures and patterns in
complex systems. Drawing inspiration from random walks, Rosvall et al. [27] proposed a
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novel metric calculating the average bits per step, leveraging ergodic node visit frequencies
within a network. This approach provides a nuanced understanding of structural informa-
tion dynamics. Describing structural information, Li et al. [20,25] introduced the concept of
K-dimensional structural entropy for graphs, defining it as the minimum bits required to
encode a vertex accessible from a random walk step. This metric explores the multidimen-
sional aspects of structural information, offering a more comprehensive characterization.

Additionally, Zhang et al. [28] proposed a novel metric of structural entropy for com-
plex networks, drawing on nonextensive statistical mechanics to enhance comprehension
of complex network structures and characteristics. Liu et al. [29] introduced A-entropy and
B-entropy, metrics tailored to gauge self-reinforcing substructures within multi-agent sys-
tems. Zhang et al. [30] proposed betweenness structural entropy based on betweenness
centrality, with the goal of shedding light on the structural organization and dynamics
of complex systems represented by networks. Cai et al. [31] presented SP structure en-
tropy, aiming to capture the complexity and organization of networks, especially those
characterized by series-parallel components.

Recent advancements highlight a transition towards more diverse and nuanced methods
for measuring structural information in complex networks, surpassing conventional entropy-
based metrics. Drawing inspiration from these metrics, this paper introduces a novel approach
to gauging structured information by encoding edge information perspectives.

2.2. Community Detection

Community detection, a crucial task in unveiling concealed structures within complex
networks, traces its rich history back to 1955, when Weiss and Jacobson pioneered the
analysis, leveraging relationships among members in government organizations to discern
working groups [32]. In contemporary times, the prevalence of complex networks, spanning
online social networks, online transaction networks [33], transportation networks, and
biological information networks [34,35], has provided fertile ground for the evolution of
community detection research.

Scholars from diverse disciplines have contributed myriad community detection
algorithms, each offering unique perspectives. Notably, algorithms for detecting non-
overlapping communities span various methodologies, including graph splitting [11,36],
spectral analysis [37,38], modularity optimization [15,16,39–41], information theory [20,27],
and others [42–44].

In recent years, traditional neural network approaches have been extended to handle
graph data, enabling the swift advancement of graph neural networks for community
detection. By directly applying filtering operations to the graph, graph neural networks
acquire a concise representation of nodes through semi-supervised training methods [45].
This node representation plays a crucial role in tasks such as node classification and
community detection [46]. Representative approaches include recurrent graph neural
networks [47], spectral-based convolutional graph neural networks [48], spatial-based
convolutional graph neural networks [49], graph autoencoders [50], and spatial-temporal
graph neural networks [51].

Among these algorithms, the multilevel modularity optimization algorithm known
as Louvain, proposed by Blondel et al. [12], stands out as the most renowned and widely
adopted. This algorithm excels in both accuracy and efficiency, contributing significantly to
the field. However, despite its widespread application, notable limitations persist, with
the resolution limit problem [18] emerging as a prominent concern. Future research may
explore novel algorithms that address these limitations and further enhance the efficacy of
community detection in complex networks.

2.3. Structure Entropy

In 1953, Shannon [52] proposed addressing communication system issues through
quantifying structural information. Over the past seventy years, this problem has remained
a significant challenge in information science and computer science. In 2016, Li and Pan [25]
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introduced the concept of K-dimensional structural entropy as a measure of the structural
information of networks, which has since garnered extensive research attention. This
concept provides a deeper understanding of the multidimensional aspects of structural
information, offering insights into the complexity of network structures. Minimizing K-
dimensional structural entropy serves as a principle for detecting natural or ground truth
structures in real-world networks [20].

Furthermore, the notion of graph resistance was introduced as a complementary con-
cept to structural entropy, measuring a graph’s resistance against strategic virus attacks
that cause cascading failures [53]. Li et al. [54] applied structural entropy to decode topo-
logically associated domains in Hi-C data with ultra-low resolution, demonstrating its
applicability in deciphering complex genomic structures. Moreover, Liu et al. [55] pro-
posed community-based structural entropy to express information leakage in community
structures and used it to preserve the privacy of community structures, showcasing the
versatility of structural entropy in diverse contexts.

In addition, Hirai et al. [56] introduced structural entropy as a measure to assess
uncertainty in latent structures within data, aiming to provide insights into the reliability
and stability of structural patterns. Wang et al. [57] introduced DS-entropy and applied it to
perform label-specificity attacks, emphasizing the role of structural entropy in addressing
security and privacy concerns in network data. Tian et al. [58] proposed a novel approach
based on structural entropy in social IoT networks, aiming to protect sensitive informa-
tion while enabling a meaningful analysis of network structure and clustering patterns.
Liu et al. [59] presented a graph-generative algorithm based on structural entropy, demonstrat-
ing its utility in generating synthetic networks that preserve key structural characteristics.

In summary, the applications of structural entropy are increasingly widespread [60,61],
spanning various domains including genomics, network security, privacy preservation,
and network synthesis. Inspired by the aforementioned studies, this paper introduces
a novel representation of structural information from the perspective of encoding edge
information, further contributing to the diverse applications and advancements in structural
entropy analysis.

3. Community Structure Information

In this section, we first address the problems with the definition of modularity. Build-
ing upon the research of these problems, we introduce the definition of community structure
information to overcome the shortcomings of modularity.

3.1. The Problem of Modularity

Modularity stands as the most frequently employed metric for guiding community
detection, utilized in methods like simulated annealing [62], extremal optimization [14],
and greedy approaches [63]. Grounded in the idea that a random graph should lack a
community structure, modularity is calculated as the difference between the actual density
of edges in a community and the expected density of the edges that are constructed regard-
less of community structure [2]. The anticipated edge density is contingent on the chosen
null model, which involves creating a copy of the original graph while maintaining the
same degree distribution but devoid of any community structure. Elevated discrepancies
indicate the potential existence of communities.

Suppose an undirected graph, G = (V, E), consists of a node set, V, and an edge set,
E. Let the number of edges between nodes i and j be denoted with Aij, typically 0 or 1,
although larger values are possible in networks allowing multiple edges. The quantities Aij
are the elements of the adjacency matrix. Simultaneously, the expected number of edges
between nodes i and j, if edges are randomly placed, is didj/2L, where di and dj are the
degrees of the nodes, and L = 1/2 ∑i di is the total number of edges in the network. Thus,
the modularity Q is the sum of Aij − didj/2L over all pairs of nodes i, j that fall in the
same community. If C = {C1, C2, . . . , CS} represents the community partition of G, then
the modularity associated with C is determined as follows [64]:
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QC =
1

2L ∑
i,j
(Aij −

didj

2L
)δij, (1)

where δij = 1 if i, j ∈ Cs for some 1 ≤ s ≤ S and δij = 0 if not. This equation can be
simplified to the following:

QC =
S

∑
s=1

[
ls
L
− (

νs

2L
)2], (2)

where S is the number of communities, ls is the number of edges inside community Cs,
L is the total number of edges in the network, and νs is the total degree of the nodes in
community Cs.

This definition introduces a novel perspective on measuring community detection,
specifically the distinction between a real graph and a null model with the same degree
distribution. However, certain issues in this definition warrant further consideration:

• The contribution term ls
L − ( νs

2L )
2 for community Cs in modularity is a linear function

of ls plus a quadratic function of νs. This implies that the contribution of adding a
new edge within community Cs to the QC value linearly diminishes with the scale
of νs. However, intuitively, this decay should be superlinear. For example, in two
communities with the same number of nodes, where one is densely connected inter-
nally and the other is sparsely connected, the contribution of a new edge to the sparse
community should be significantly greater than to the dense community.

• On the other hand, considering the addition of a new edge between Cs and other com-
munities, although the term ls

L − ( νs
2L )

2 implies a penalty for the new edge, this penalty
linearly increases with the scale of the community. This is counterintuitive because the
penalty for small communities should be high, while for large communities, it should
be low. This makes it easier for the optimization of QC to lead to the merging of small
communities into larger ones.

These issues call for a new metric to measure community structure information. Next,
we introduce the logarithmic function from information theory to address the aforemen-
tioned problems.

3.2. Community Structure Information

Complex networks represent the sum of all relationships among entities in a complex
system. For a network graph, G = (V, E), the relationships are the edges, E, and the
individuals are the nodes, V, in G = (V, E). Then, the total information of the graph, G,
can be defined as the sum of information for all its edges. However, how much information
does each edge carry? As illustrated in Figure 1, if we already know the degree of each
node, for any edge {u, v} ∈ E, since nodes u and v are independent, the probability of
{u, v} ∈ E occurring is (du/2L)(dv/2L), where du and dv represent the degrees of nodes u
and v, respectively. Consequently, the information content of edge {u, v} ∈ E is determined
using − log2[(du/2L)(dv/2L)]. Thus, the average information carried by one edge in G is
expressed as follows:

H(G) := − 1
|E| ∑

uv∈E
log2[(du/2L)(dv/2L)]. (3)

According to the definition,H(G) represents the average number of bits required to
encode the edges or relationships in the graph, G. It is worth noting that in the construction
of the edge u, v, the selection of nodes u and v is relatively independent. Therefore, the
average number of bits required to encode one edge is equivalent to twice the number of
bits required to encode one node:
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H(G) = − 1
L ∑

uv∈E
log2[(du/2L)(dv/2L)]

= −2 · ∑
u∈V

du

2L
log2

du

2L
. (4)

Figure 1. Example of encoding graph G when the community structure is unknown.

In the above definition,H(G) represents the average information required to encode
edges when the community structure is not considered. Let C = {C1, C2, . . . , CS} be a
partition of the node set V, satisfying that for any 1 ≤ s, t ≤ S, V = C1 ∪ C2 . . . CS and
Cs ∩ Ct = ϕ, thus C divides G into S communities {C1, C2, . . . , CS}. With the information
on the community structure, we know whether any two nodes are in the same community.
In this case, the process of selecting two nodes to form an edge is divided into two steps.
The first step is to identify the community to which the nodes belong, and the second step
is to choose the corresponding nodes from the identified community. Let νs be the total
degree of all nodes in community Cs. For any edge u, v ∈ E, the execution of these two
steps involves two scenarios:

(i) u and v belong to the same community Cs. In this case, we first identify community
Cs with a probability of νs/2L, and then we select u with a probability of du/νs and v
with a probability of dv/νs;

(ii) u and v belong to different communities, Cs and Ct, respectively. In this case, we
first identify Cs and Ct with probabilities νs/2L and νt/2L, respectively. Then, we
independently select u from Cs with a probability of du/νs and v from Ct with a
probability of dv/νt.

Therefore, for cases (i) and (ii), the information content of edge {u, v} is determined via
− log2[(νs/2L)(du/νs)(dv/νs)] and− log2[(νs/2L)(νt/2L)(du/νs)(dv/νt)], respectively. In
the case of (ii), this expression can be simplified to − log2[(du/2L)(dv/2L)]. Thus, if the
community structure, C, of graph G is known, the average information content per edge
can be expressed as follows:

HC(G) :=
1
L
(H1(G) +H2(G)), (5)

where

H1(G) = −
S

∑
s=1

∑
uv∈E&u,v∈Cs

log2[(νs/2L)(du/νs)(dv/νs)],

H2(G) = −
S

∑
s=1

∑
uv∈E,u∈Cs&v/∈Cs

log2[(du/2L)(dv/2L)],

andH1(G) andH2(G) correspond to cases (i) and (ii), respectively.
The simplification of Equation (5) yields the following:
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HC(G) =
S

∑
s=1

[
νs

2L
H(Cs)−

νs − ls
L

log2
νs

2L
]

= − ∑
u∈V

du

L
log2

du

2L
+

S

∑
s=1

ls
L

log2
νs

2L

= H(G) +
S

∑
s=1

ls
L

log2
νs

2L
, (6)

whereH(Cs) = −2 ∑u∈Cs
du
νs log2

du
νs , and ls represents the number of edges within commu-

nity Cs. Figure 2 illustrates an example of encoding graph G with a known community
structure. The value ofHC(G) reflects the average information required to encode an edge
when the community structure C is known. In other words, the community structure, C,
provides a certain amount of information, eliminating the uncertainty in encoding an edge.
This reduction in uncertainty is represented by the absolute value of the second term in
Equation (6).

Figure 2. Example of an encoding graph G when the community structure is known.

We define the information provided via the community, C, as a measure of community
structure information:

Definition 1. Let C = {C1, C2, . . . , CS} be the community structure (partition) of the graph,
G = (V, E). The community structure information of G relative to the community C is defined
as follows:

RC(G) = H(G)−HC(G) = −
S

∑
s=1

ls
L

log2
νs

2L
, (7)

where S is the number of communities, ls is the number of edges within community Cs, and νs is the
total degree of nodes in community Cs.

According to the definition, RC(G) reflects the information saved on average when
encoding the edge information of graph G with knowledge of the community structure,
C. The more pronounced the community structure, the greater the amount of saved
information, and the closer the community structure, C, is to the ground truth community
structure. Therefore, optimizing algorithms can be employed to find the maximum value
of RC(G) for community detection.

4. Community Detection Algorithm, CSIM

In this section, we introduce a community detection algorithm based on the maximiza-
tion of community structure information. Since community detection algorithms based
on modularity have been extensively studied, and many excellent algorithms have been
proposed [2,12,63], we drew inspiration from the ideas of these previous algorithms in
designing our algorithm.
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4.1. Preliminaries

Assuming the graph G = (V, E) is the network under investigation, C = {C1, C2, . . . , CS}
represents any community partition of the node set V. Here, ls and νs denote the internal
edge count and total node degree of community Cs, respectively, and L = |E| is the total
number of edges in graph G. The community structure, D, represents the configuration
obtained by merging two communities, Cs and Ct, from the partition, C, into a single
community. Without a loss of generality, let s < t. Then, D can be expressed as follows:

D = {C1, . . . , Cs−1, Cs+1, . . . , Ct−1, Ct+1, . . . , CS, Cs ∪ Ct}.

Then, {
RC(G) = R0 − ls

L log2
νs
2L −

lt
L log2

νt
2L

RD(G) = R0 − ls+lt+lst
L log2

νs+νt
2L ,

(8)

where R0 = −∑i ̸=s,t
li
L log2

νi
2L , ls, and lt are the numbers of edges within communities Cs

and Ct, respectively, and lst is the number of edges between communities Cs and Ct.
Let ∆Rs,t = RD − RC, and a derivation from Equation (8) leads to the following:

∆Rs,t = −
lst

L
log2

νs + νt

2L
+

ls
L

log2
νs

νs + νt
+

lt
L

log2
νt

νs + νt
. (9)

As we aim to maximize R∗(G), we merge communities Cs and Ct if ∆Rs,t > 0; other-
wise, we refrain from merging. It is noteworthy that, when lst = 0, the following holds:

∆Rs,t =
ls
L

log2
νs

νs + νt
+

lt
L

log2
νt

νs + νt
< 0.

Therefore, in the algorithm aimed at maximizing R∗(G), communities Cs and Ct are
not merged when there are no inter-community edges between them.

4.2. CSIM

Inspired by the Louvain algorithm [12], we designed a fast hierarchical aggregation
algorithm, CSIM. Assuming a graph to be undetected as G = (V, E) and any node vi ∈ V,
the structure {C1, C2, . . . , CS} represents the community partition when node vi is removed
from V. So, which community Ct is more suitable for placing vi? An intuitive idea is to
place vi in the community Ct that maximizes the gain in R∗(G) after placing vi in each
1 ≤ t ≤ S. This becomes a special type of community merging—merging a node as a
standalone community with another community.

Let C = {{vi}, C1, C2, . . . , CS}, D = {C1, . . . , {vi} ∪ Ct, . . . , CS}, and ∆Ri,t = RD − RC.
Then, according to Equation (9), we have the following:

∆Ri,t = −
lit
L

log2
di + νt

2L
+

lt
L

log2
νt

di + νt
, (10)

where lit is the number of edges between node vi and community Ct, and di is the degree
of node vi. Similarly, it can be observed that, if lit = 0, then ∆Ri,t < 0. In such a case, node
vi is not placed in community Ct.

Based on the above analysis, we designed a hierarchical clustering algorithm called
CSIM, as shown in Algorithm 1. It mainly consists of two steps: node movement and node
aggregation. Specifically, at the node movement step, each node is temporarily removed
from its community and then assimilated into the neighboring community that maximizes
the gain in RC(G). This process is repeated for all nodes, corresponding to lines 4 to 16 in
the algorithm. Subsequently, the algorithm performs node aggregation, transforming the
communities obtained from node movement into super-nodes. The total degree (weight)
within each community becomes the self-loop weight of the super-node, and the number of
edges (edge weight) between communities becomes the edge weight between super-nodes.
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This results in the construction of a new graph, corresponding to lines 17 to 19 in the
algorithm. These two steps are iteratively executed until RC(G) no longer increases.

Algorithm 1 Community Structure Information Maximization Algorithm: CSIM
Input: G = (V, E), V = {v1, v2, . . . , vn};
Output: Community structure C and RC(G);

1: do
2: Set each node as a community, namely Ci = {vi};
3: C

′ ← C;
4: for vi ∈ V do
5: ∆max = 0;
6: C ← C\vi;
7: for Ct ∈ C do
8: if lit > 0 then
9: Calculate the value of ∆Ri,t(G);

10: if ∆Ri,t(G) > ∆max then
11: ∆max = ∆Ri,t(G), t∗ = t;
12: end if
13: end if
14: C ← put node vi into Ct∗ of C;
15: end for
16: end for
17: if RC(G)− RC′ (G) > 0 then
18: G ← Aggregate communities into super-nodes, and keep track of the members

of each super-node;
19: end if
20: while RC(G)− RC′ (G) > 0
21: C ← Extract the super nodes in C′;
22: Return: C and RC(G)

Now, let us analyze the time complexity of this algorithm. In the first iteration, CSIM
executes approximately L times to calculate ∆Ri,t(G). In the subsequent iterations, the
nodes aggregated into super-nodes reduce the number to approximately log n. Thus, in
the second iteration, CSIM executes a maximum of log2 n ∆Ri,t(G) operations in the worst
case, and in the third iteration, the number of super-nodes is roughly log(log n), and so on.
Similar to the Louvain algorithm [12], CSIM has an average time complexity of O(n log n),
which outperforms the greedy hierarchical aggregation algorithm proposed in [20], where
the average time complexity is O(n logO(1) n). In the experimental section, we further
compare the performance of these two algorithms in optimizing RC(G).

5. Experiment

For this section, we conducted an experimental analysis of our algorithm with three
main objectives: (1) that, compared to modularity-based optimization algorithms, our
proposed algorithm can discover finer community partitions that are closer to the ground
truth community structure; (2) that, in comparison to the greedy algorithm proposed in [20],
our designed algorithm not only has lower complexity but also demonstrates advantages
in optimizing the maximum value of community structure information; and (3) that our
algorithm does not suffer from resolution limit issues on special cyclic graphs compared to
modularity-based algorithms.

5.1. Experimental Settings

Datasets with ground truth community structure. The experiments with community-
structured data utilized graph data discussed by Fortunato and Barthelemy [18]. Table 1
provides an overview of this data, where |V| and |E| correspond to the number of nodes
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and edges in the network graph. There are a total of five datasets, datasets Yeast, E. coli, Elect.
circuit and Social from link www.weizman.ac.il/mcb/UriAlon (accessed on 20 November
2021), dataset C. elegans from link http://cdg.columbia.edu (accessed on 5 November
2021). The types listed in Table 1 cover various real-world domains, including human
society, animals, microorganisms, and electronic circuits. The Yeast and E. coli represent
transcriptional regulatory networks of microorganisms, where nodes represent operons,
i.e., sets of genes transcribed onto the same mRNA. If operon A activates operon B, an edge
is placed between nodes A and B. In this data, yeast has 688 nodes and 1079 edges, while
E. coli has 423 nodes and 519 edges. The Elect. circuit represents an electronic circuit network,
where nodes are electronic components (capacitors, diodes, etc.), and edges represent wires.
The Social represents a social network, where 67 nodes represent a surveyed group of people,
and 182 edges denote positive emotions transferred from one person to another (based on
questionnaires). The C. elegans represents the neural network of the C. elegans roundworm,
where nodes are neurons, and edges represent synaptic or gap connections. The networks
can be both undirected and directed, and we uniformly treated them as undirected.

Table 1. Overview of graph data with ground truth community structure.

Data G |V | |E| Type Description

Yeast 688 1079 Microorganism Transcriptional regulatory network in brewing
yeast

E. coli 423 519 Microorganism Transcriptional regulatory network in Escherichia
coli

Elect. circuit 512 819 Electronic Electronic circuit network of electronic
components

Social 67 182 Social network Social network of positive emotions among
individuals

C. elegans 306 2345 Animal Neural network of Caenorhabditis elegans

Datasets without a ground truth community structure. In comparing our algorithm
with the experiments of the paper [20] in seeking the maximum value of community
structure information, we introduced some classic datasets, as shown in Table 2, in addition
to the data in Table 1. There are a total of seven datasets, datasets Karate, Dolphin, and
Facebook from link http://konect.cc/networks/ (accessed on 26 November 2021), datasets
Jazz, Email, and PGP from link https://deim.urv.cat/~alexandre.arenas/data/welcome.
htm (accessed on 26 November 2021), dataset Jazz from link https://networkrepository.
com/power-US-Grid.php (accessed on 26 November 2021). The Karate data are from the
well-known Zachary Karate Club network. The data were collected by Wayne Zachary from
a university’s karate club. In this network, each node represents a club member, and each
edge represents a relationship between two club members. The Dolphin data represents
a social network of bottlenose dolphins living near the New Zealand fjord. Edges in the
network represent frequent interactions. The Jazz data represent a collaboration network
among jazz musicians. The nodes represent jazz musicians, and the edges represent
musicians who play together in a band. The Email data represent a communication network
among members of the University of Rovira i Virgili, where edges indicate communication
between members. The Facebook data represent a friend network among some users
on Facebook. Each node represents a user, and the edges represent friendships between
users. The Power grid data represents the high-voltage power grid in the western United
States. The nodes represent transformers, substations, and generators, while the edges
represent high-voltage transmission lines. The PGP data represent a user network for the
Pretty-Good-Privacy algorithm used in secure information exchange, where the edges
represent instances of secure information exchanges between users. All of these networks
are considered undirected.

Benchmark. In this experiment, four community detection algorithms were consid-
ered. Two were based on maximizing modularity, and two were based on maximiz-

www.weizman.ac.il/mcb/UriAlon
http://cdg.columbia.edu
http://konect.cc/networks/
https://deim.urv.cat/~alexandre.arenas/data/welcome.htm
https://deim.urv.cat/~alexandre.arenas/data/welcome.htm
https://networkrepository.com/power-US-Grid.php
https://networkrepository.com/power-US-Grid.php


Electronics 2024, 13, 1119 12 of 19

ing community structure information. The four algorithms are described as follows:
(1) Louvain [12] is a heuristic algorithm based on modularity maximization, with av-
erage time complexity of O(n log n); (2) Q_greedy [63] is a greedy hierarchical clustering
algorithm that optimizes modularity through hierarchical merging, with an average time
complexity of O(n logO(1) n); (3) CISM is a heuristic algorithm designed by us based on max-
imizing community structure information, with an average time complexity of O(n log n);
and (4) R_greedy [20] is a hierarchical clustering method based on RC(G), achieving the
maximization of community structure information through hierarchical community merg-
ing, with a time complexity of O(n logO(1) n). In the experiment, the RC(G) values and
modularity Q values of the four algorithms were obtained from the corresponding com-
munity detection algorithms. Additionally, the datasets in Table 1 do not have completely
ground truth community structures, and the ground truth structure was obtained using
the method proposed by Fortunato [18], which involves two rounds of modularity opti-
mization. The network graph was initially partitioned, and then the communities with
significant substructures underwent a second round of partitioning until each community
had no obvious substructure.

Table 2. Overview of graph data without ground truth community structure.

Data G |V | |E| Type Description

Karate 34 78 Social network Social network among members of karate
clubs

Dolphin 62 159 Animal Social network of associations among
dolphins

Jazz 198 2742 Social network A collaboration network among jazz
musicians

Email 1133 5451 Communication Email communication network among
members of a university in Spain

Facebook 2888 2981 Online social Friendship network among selected users on
Facebook

Power grid 4941 6594 Infrastructure Topological network of the power grid in the
western United States

PGP 10,680 24,316 Online social Interacting network among PGP users

Evaluation index: NMI. Mutual information is one of the most commonly used
metrics in information theory. It measures the shared information between two random
variables and is typically employed to express the similarity between two variables [65]. If
we consider community partitions as variables, mutual information can be used to assess
the similarity between the detected community partition and the ground truth community
partition. Let C = {C1, C2, . . . , CS} be the ground truth community partition of the graph
G = (V, E), and let C′ = {C′1, C′2, . . . , C′T} be the artificial partition discovered using the
community detection algorithm. Denote that

H(C) = −
S

∑
i=1

|Ci|
|V| log

|Ci|
|V| , and H(C|C′) = −

S

∑
i=1

T

∑
j=1

|Ci ∩ C′j |
|V| log

|Ci ∩ C′j |/|V|
|C′j |/|V|

,

where |Ci| represents the number of nodes in community Ci, |Ci ∩C′j | represents the number
of nodes in the intersection of communities Ci and C′j , and |V| represents the total number
of nodes. Then, mutual Information is defined as I(C, C′) = H(C)−H(C|C′). Normalizing
the mutual information yields normalized mutual information (NMI) [66]:

NMI(C, C′) =
I(C, C′)

max{H(C), H(C′)} . (11)

The range of NMI is [0, 1], making it suitable for assessing the similarity between two
community partitions. A higher NMI indicates a closer proximity between the detected
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and ground truth community structures, reflecting better detection performance. When
NMI equals 1, the detected and ground truth communities are in perfect agreement.

5.2. Experimental Analysis

Comparison with optimized modularity. This experiment will use the datasets in
Table 1 to validate that, compared to optimizing modularity, detecting communities by
optimizing community structure information yields community partitions closer to the
ground truth community structure. We used the normalized mutual information (NMI)
mentioned in the experimental settings to measure the similarity between the detected
community partition and the ground truth community partition. The NMI values ranged
from 0 to 1, with values closer to 1 indicating a higher similarity to the ground truth
partition and, thus, a better detection result. To achieve this, we first obtained community
partitions of the graph data using the four detection algorithms and then calculated their
NMI values with the ground truth partition. Figure 3 shows the histogram of NMI values
between the partitions obtained via different algorithms and the ground truth partition
on different datasets. From the figure, it is evident that the NMI values of the results
from optimizing community structure information (algorithms CSIM and R_greedy) were
significantly higher than those from optimizing modularity (Louvain and Q_greedy). In
particular, the performance of algorithms CSIM and R_greedy was even close to 1 on
the E. coli, Social, and Yeast datasets, indicating that the partitions detected via these two
algorithms were nearly identical to the ground truth partition. This implies that maximizing
RC(G) not only approximates the number of ground truth communities but also ensures
high consistency among the members within the communities. Additionally, concerning
the optimization of community structure information, the results obtained via the CSIM
algorithm were slightly better than those obtained via R_greedy.

Figure 3. The NMI values between the partitions detected via the four algorithms and the ground
truth partitions.

Comparison of optimized community structure information. This experiment ver-
ified the advantage of our proposed algorithm in optimizing community structure in-
formation. Tables 1 and 2 together consist of 12 graph datasets, involving network data
from various real-world domains, including offline social domains, online social domains,
animal domains, infrastructure, microbial domains, electronic circuits, etc. We conducted
community detection using CSIM and R_greedy on these 12 datasets, outputting the max-
imum value of the optimized RC(G) for each algorithm. The results are presented in
Table 3. We have highlighted in black and bold text the maximum RC(G) value for each
dataset. It can be observed that, except for the E. coli dataset, for all the other datasets,
the CSIM algorithm obtained larger RC(G) values compared to R_greedy. On the other
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hand, although R_greedy achieved a slightly larger value than CSIM on the E. coli dataset,
their values were very close. This suggests that the CSIM algorithm is more effective than
R_greedy in optimizing RC(G). Combining our discussion on time complexity in Section 4,
it can be concluded that the CSIM algorithm excels in both efficiency and effectiveness
compared to R_greedy.

Table 3. A comparison between the CSIM algorithm and R_greedy in optimizing the value of
community structure information.

Data G RC(G) via CSIM RC(G) via R_greedy

Yeast 3.849 3.847
E. coli 4.005 4.032

Elect. circuit 4.117 4.097
Social 2.494 2.488

C. elegans 1.565 1.548
Karate 1.352 1.298

Dolphin 1.750 1.743
Jazz 1.434 1.308

Email 2.676 2.475
Facebook 2.723 2.723

Power grid 7.019 6.996
PGP 6.647 6.476

Comparison of resolution limits. This experiment verified the advantage of com-
munity structure information over modularity in addressing the resolution limit problem.
Fortunato et al. [18] provided an example illustrating the resolution limit problem when
optimizing modularity on a cyclic network composed of completely identical subgraphs
connected with single edges. In contrast, optimizing community structure information does
not suffer from this issue. We consider subgraphs of the cyclic network complete graphs
with three nodes, as shown in Figure 4. The portions enclosed in dashed circles represent
the community structures detected by optimizing the two metrics. When assuming that the
community structure in Figure 4a is A, and that the community structure in Figure 4b is B,
it is evident that A is the ground truth community structure. According to the definition
of modularity, the modularity value in the ground truth community structure, QA = 0.65,
is less than the value obtained by maximizing modularity, QB = 0.675. On the other
hand, the community structure information value in the ground truth community structure,
RA = 2.4914, is significantly greater than its value, RB = 2.0317, under community struc-
ture B. This implies that community structure information has an advantage in addressing
the resolution limit problem.
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(a) (b)

Figure 4. Comparison of modularity and community structure information in detecting commu-
nity structure. (a) Community structure detected by optimizing community structure information.
(b) Community structure detected by optimizing modularity.

6. Discussion

Here, we discuss the contributions of our study to theory and practice, as well as the
implications of the study.

6.1. Analysis of Contribution

In the preceding three sections, we presented the definition of community structure
information, devised the CSIM algorithm based on this information, and validated the
superior performance of the CSIM algorithm. Next, we explore the key factors contributing
to the outstanding performance of the CSIM algorithm, focusing on theoretical foundations,
algorithm design, and algorithm execution.

Theoretical foundations. In contrast to modularity, which focuses on the probability
of two nodes being connected by an edge [64], our definition of community structure
information was inspired by Shannon’s conception of information entropy, and it directly
focuses on the amount of information conveyed via the connection of two nodes [52]. It
reflects the community structure by compressing the amount of edge information conveyed
via the community structure, which better captures the essence of the community struc-
ture. Furthermore, compared to structural entropy [25], defining community structure
information from the perspective of edge information compression is more intuitive and
straightforward than using random walks.

Algorithm design. In the design of the CSIM algorithm, we drew inspiration from
the widely used Louvain algorithm and adopted a heuristic clustering method based on
node aggregation and graph reconstruction [12]. This approach significantly reduces the
algorithmic complexity of optimizing community structure information [20], bringing it
down to O(n log n), thus enabling the algorithm to be applied to large-scale social networks.
Moreover, similar to the Louvain algorithm, the CSIM algorithm also outperforms greedy
hierarchical clustering algorithms in optimizing community structure information, striking
a balance between efficiency and effectiveness.

Algorithm execution. At the algorithm execution level, due to the concept of commu-
nity structure information being theoretically more reflective of the essence of community
structure, the CSIM algorithm, which optimizes community structure information, can
achieve a balance between community size and quantity [20]. Unlike algorithms optimizing
modularity [18], it does not overlook or merge small-scale communities. Consequently, the
communities detected via the CSIM algorithm are closer to the ground truth communities,
and to some extent, the CSIM algorithm addresses the resolution limit problem.
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6.2. Implications

Although community detection has been studied for many years, this research has
provided important theoretical guidance and practical applications for this field. Firstly,
defining community structure information from the perspective of encoding edge infor-
mation is likely to change the traditional definition, which relies on edge density. This
is conducive to a deeper exploration of the essence of community structure, including
its application in areas such as graph compression, machine learning, and graph neural
networks. Secondly, the CSIM algorithm, based on the theory of community structure
information, offers advantages in both algorithm complexity and balancing community
size and quantity. It can replace traditional algorithms like Louvain, especially for graphs
with imbalanced community structures or a large number of small communities. Lastly,
the related theory and algorithms can be further expanded for applications such as over-
lapping community detection and multi-graph analysis, promoting advancements in the
field. Overall, this research provides a more intuitive, efficient, and effective method for
identifying community structures in complex networks, contributing to the advancement
of community detection.

7. Conclusions

This paper has investigated the direction of community structure detection in complex
networks. Despite the widespread research and application of community structure detec-
tion algorithms in fields such as social media, computer science, and biology, challenges
persist, including the lack of an essential definition of community structure, high algorith-
mic complexity, and the unreasonable structural characteristics of detected communities.
In addressing these issues, we introduced, for the first time, the definition of community
structure information from the perspective of encoding edge information. This information
reflects the essence of community structure by compressing the amount of edge information
conveyed via the community structure, thereby better expressing the intrinsic character-
istics of the community structure. By maximizing community structure information, we
further proposed the CSIM community detection algorithm, which achieves a balance
between community size and quantity to identify the most natural community structure.
Additionally, inspired by the heuristic clustering Louvain algorithm, we reduced the com-
plexity of CSIM to O(n log n), enabling its application to large-scale complex networks.
Our experimental results show that communities detected by optimizing community struc-
ture information are closer to ground truth communities, and they effectively address the
resolution limit problem, especially in cyclic graphs.

Future research can delve deeper into the rationale behind the definition of community
structure information and provide theoretical validation for the benefits of optimizing it.
This will involve investigating its role in striking a balance within a community structure
and overcoming the resolution limit problem. Additionally, the application of community
structure information will be extended to domains like machine learning and graph neural
networks, with the aim of enhancing existing algorithms for tasks such as node or graph
classification. Furthermore, diverse forms of community structure information will be
explored, including its utilization in identifying communities within multigraphs or those
with overlapping structures. Tailoring the granularity of community detection to specific
requirements will be a key focus, thereby broadening the scope of its applicability.
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