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Abstract: Transformers have performed better than traditional convolutional neural networks (CNNs)
for image super-resolution (SR) reconstruction in recent years. Currently, shifted window multi-head
self-attention based on the swin transformer is a typical method. Specifically, the multi-head self-
attention is used to extract local features in each window, and then a shifted window strategy is used
to discover information interaction between different windows. However, this information interaction
method needs to be more efficient and include some global feature information, which limits the
model’s performance to a certain extent. Furthermore, optimizing the utilization of shallow features,
which exhibit significant energy reserves and invaluable low-frequency information, is critical for
advancing the efficacy of super-resolution techniques. In order to solve the above issues, we propose
the feature-enhanced fused attention (FE-FAIR) method for image super-resolution. Specifically, we
design the multi-scale feature extraction module (MSFE) as a shallow feature extraction layer to extract
rich low-frequency information from different scales. In addition, we propose the fused attention
block (FAB), which introduces channel attention in the form of residual connection based on shifted
window self-attention, effectively achieving the fusion of global and local features. Simultaneously,
we also discuss other methods to enhance the performance of the FE-FAIR method, such as optimizing
the loss function, increasing the window size, and using pre-training strategies. Compared with
state-of-the-art SR methods, our proposed method demonstrates better performance. For instance,
FE-FAIR outperforms SwinIR by over 0.9 dB when evaluated on the Urban100 (×4) dataset.

Keywords: transformer; super-resolution; feature-enhanced fused attention (FE-FAIR); multi-scale
feature extraction module (MSFE); fused attention block (FAB)

1. Introduction

Image super-resolution reconstruction (SR) [1] refers to the reconstruction of low-
resolution (LR) images into information-rich high-resolution (HR) images. This technique
stands as a pivotal technology within computer vision, contributing significantly to various
computational vision tasks like image denoising and target detection while simultaneously
economizing on transmission and storage expenses.

Early image SR methods based on deep learning [2–4] mainly relied on simple convo-
lutional neural network (CNN) structures for optimizing image reconstruction. In order to
extract more image features, deeper network layers combined with more complex structures
such as residual connections [5,6] and dense connections [7] were adopted. The attention
mechanism enables the network to prioritize important information while disregarding
irrelevant details. Various studies have demonstrated that using channel attention [8],
layer attention [9], and high-order channel attention [10] can help the SR model recover
more detailed features and improve the quality of the image. Nevertheless, limited by
local convolution operations, the CNN method based on the attention mechanism ex-
hibits a diminished ability to perceive long-range pixel relationships, thereby restricting
enhancements in image quality.
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Transformers [11] have attracted widespread attention in computer vision due to their
excellent long-range dependency modeling capabilities. Many transformer models [12–15]
have been proposed for low-level computational vision tasks. Subsequently, Liang et al. [16]
combined the advantages of CNNs and transformers and proposed an image SR method
based on the swin transformer, showing excellent performance across tasks such as image
SR, image denoising, and image compression. This model, using a pre-training strategy and
hybrid attention mechanism [17–19], effectively enhances the image reconstruction quality.
The swin transformer, using shifted window technology for feature extraction, currently
stands as a compelling structure for transformer-based image SR methods. However,
although the swin transformer has excellent modeling capabilities for local features, its
information interaction efficiency between different windows should be better and more
effective for capturing global features. In addition, the classic super-resolution model
consists of three parts: a shallow feature extraction layer, a deep feature extraction layer,
and an upsampling layer. The low-frequency features obtained from the shallow feature
extraction layer directly contribute to the network’s upsampling process. Additionally, the
rich low-frequency features can provide more practical information for the subsequent
deep feature extraction module. Hence, shallow features play a crucial role in SR tasks,
and enhancing the effectiveness of the shallow extraction layer is crucial for improving
image quality.

To address these challenges, we propose feature-enhanced fusion attention for image
super-resolution (FE-FAIR). FE-FAIR mainly includes a shallow feature extraction layer,
a deep feature extraction layer, and an image reconstruction layer. The shallow feature
extraction layer uses the more effective multi-scale feature extraction (MSFE) module, which
employs convolutional layers of varying depths combined with atrous convolutional layers
to extract shallow features from multiple scales effectively, surpassing traditional single-
layer 3 × 3 convolutional layers. MSFE also introduces richer low-frequency information for
subsequent deep feature extraction layers. Inspired by the efficacy of channel attention in
integrating global information and enhancing image reconstruction [8,20], we introduce the
fused attention block (FAB). The FAB combines a multi-head self-attention mechanism with
a channel attention mechanism, using residual connections to integrate global information
into each self-attention layer. This enables the FAB to fuse information across local and
global scales, proving highly very effective. Furthermore, we explore various methods to
improve the performance of SR methods. These include enlarging the window size of the
swin transformer for enhanced feature extraction, utilizing SmoothL1 Loss for smoother
model training, employing effective data augmentation techniques such as rotation and
RGB channel shuffling during training to enhance robustness, implementing a pre-training
strategy on ImageNet [21], and fine-tuning the model using the DF2K [22] dataset to
further optimize performance. The comparison results between our proposed FE-FAIR
and the state-of-the-art SR methods on the Manga109 and Urban100 benchmarks are
shown in Figure 1. It demonstrates that FE-FAIR achieves state-of-the-art performance
across all image super-resolution tasks and scales. In comparison to SwinIR, it exhibits a
significant improvement of 0.84 dB to 0.96 dB on the Urban100 benchmark. In summary,
our contributions can be summarized as follows:

• We propose a better transformer-based super-resolution reconstruction method called
FE-FAIR. It combines a shallow feature enhancement module with a fused attention
mechanism to achieve better model performance.

• We propose a more effective shallow feature extraction layer known as the multi-
scale feature extraction (MSFE) module, aimed at enhancing the model’s capability to
capture low-frequency information. By adjusting the depth and channel number of
the convolutional layers of different branches and adding dilated convolutions, the
receptive field is expanded and finer-grained shallow features are extracted.

• We analyze the characteristics of window self-attention and propose the fused attention
block FAB. Based on moving window multi-head self-attention, we add channel
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attention through the residual structure to achieve information fusion of global and
local features.

• We explore several additional strategies aimed at enhancing the model’s performance.
These include employing data augmentation techniques, implementing a smoother
SmoothL1 Loss function, enlarging the window size of the swin-transformer, and
adopting pre-training strategies.
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Figure 1. Comparative performance evaluation between FE-FAIR and the state-of-the-art methods
NLSN, SwinIR, and EDT. Quantitative analysis using PSNR (Y-channel only) on Urban100 and
Manga109 Datasets at scale factors ×2, ×3, and ×4.“†” indicates we use a pre-training strategy
on ImageNet.

The subsequent sections of this paper are organized as follows. Section 2 describes
the research background for this research methodology. Section 3 describes the overall
architecture of the FE-FAIR method. Section 4 introduces the evolution process of FE-FAIR
and the experimental results on benchmark tests of performance in different tasks. Section 5
summarizes the contributions of this work.

2. Related Work

In this section, we briefly describe part of the evolution of the image SR method.
First, we give an overview of attention mechanism methods and then analyze transformer-
based methods.

2.1. Deep Network Methods for Image SR

Since SRCNN [2] first introduced convolutional neural networks into image SR, people
have successively proposed a variety of deep network methods [3,5–7] to improve the
performance of the model, thereby improving the quality of model reconstruction images. For
example, sub-pixel convolution techniques [4], deeper networks and residual blocks [5,6], and
more complex dense blocks [7] are used to improve the expressive ability of the model. In
order to improve the visual quality after image reconstruction, Refs. [23,24] used generative
adversarial networks to generate more realistic images. Limited by CNN size effects
and feature extraction mechanisms, enhancing the performance of deep convolutional
neural networks (CNNs) in image SR tasks becomes increasingly challenging. To solve this
problem, some studies integrate attention mechanisms into various layers of CNNs [9,25],
allowing for a more detailed understanding and analysis of images at different levels. In
addition, researchers also explored techniques to introduce spatial and channel attention
into these mechanisms [8,10], aiming to improve model efficiency further. These pioneering
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efforts provide valuable insights and motivate us to advocate deeper integration of attention
mechanisms to effectively capture relevant information between different locations, thereby
improving model performance.

2.2. Transformer-Based Methods for Image SR

In recent years, the great success of transformers in natural language processing (NLP)
tasks has attracted attention in computer vision. Pure transformer-based methods per-
form excellently by handling long-distance dependencies well [13,15,26–30]. Some work
has shown that combining convolutions and transformers can achieve more advanced
results [31–33]. SwinIR [16] combines the advantages of convolutions and transformers
and proposes a network for tasks such as image SR, which performs well in various image
restoration tasks. EDT [17] explores the impact of pre-training mechanisms on transformer
methods to enhance the performance of SR networks further. However, these works under-
estimate shallow feature importance and fail to combine global features with local features
effectively. Therefore, our model focuses on more effective shallow feature extraction and
feature fusion during the deep feature extraction process, effectively improving the model’s
ability to depict image details.

3. Methodology

Inspired by the above work, we propose the FE-FAIR method in this section—the
specific network structure shown in Figure 2.
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Figure 2. The overall structure of FE-FAIR. Specifically, it mainly includes a multi-scale shallow
feature extraction (MSFE) module, fused attention block (FAB), and residual connection FAB (RFAB).

3.1. Network Architecture

FE-FAIR mainly consists of three modules: the shallow feature, deep feature, and
graphic reconstruction module. Specifically, the shallow feature module is mainly com-
posed of multi-scale feature extraction layers, using different numbers of convolutional
layers and atrous convolution combinations to extract shallow features from different
scales. The deep feature extraction module mainly comprises the shifted window self-
attention and channel attention mechanisms and introduces the residual structure. The
image reconstruction module mainly consists of convolutional and pixel-shuffle layers.
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Expressly, for the input low-resolution image ILR ∈ ωC0×H×W , we initially uti-
lize a multi-scale feature extraction (MSFE) module to extract shallow-layer features
F0 ∈ ωC×H×W in different dimensions as follows:

F0 = ϕMSFE(ILR) (1)

where H and W represent the height and width of the input image, C0 and C represent
the number of channels output by the input image and shallow feature extraction layer,
respectively, and ϕMSFE represents the MSFE module. The intelligence of the MSFE mod-
ule is to obtain rich low-frequency feature information from different perspectives and
levels. Subsequently, the deep feature extraction module ϕDF(F0) is utilized to obtain deep
features FDF ∈ ωC×H×W :

FDF = ϕDF(F0) (2)

where ϕDF consists of N residual fused attention block (RFAB) and a 3 × 3 convolutional
layer ϕConv. This structure can extract deep features layer by layer, as follows:

Fi = ϕRFABi(Fi−1), i = 1, 2, · · · , N (3)

FDF = ϕConv(Fi) (4)

where ϕRFABi represents the ith RFAB block. Subsequently, a 3 × 3 convolutional layer is
used after the deep feature extraction layer to aggregate features. Finally, the high-quality
image reconstruction module ϕHQ is applied to reconstruct the high-quality image ISR,
as follows:

ISR = ϕHQ(F0 + FDF) (5)

In order to enhance the stability of the model while effectively retaining the low-
frequency and high-frequency information of the image, we use residual connections to
transfer the low-frequency information to the image reconstruction block. In the image
reconstruction block, we utilize the pixel-shuffle to upsample the reconstructed image.

3.2. Multi-Scale Feature Extraction (MSFE) Module

The shallow feature extraction block mainly maps input features from low latitudes to
higher dimensions, usually containing low-frequency information. Convolutional layers
perform well in the early processing of visual tasks, thereby facilitating better-optimized
results [32]. Simultaneously, we concentrate on the correlation between the target pixel and
surrounding pixels, noting that this correlation diminishes as the pixel distance increases.
The atrous spatial pyramid pooling (ASPP) [34] uses multiple parallel atrous convolutional
layers with different sampling rates to extract features from different scales. Inspired by
ASPP, we design the MSFE module based on the concept of multi-scale convolution, with
the primary process outlined as follows:

Fin = HConv1(ILR) (6)

Fi = Hbranchi
(Fin), i = 1, 2, 3, 4

Fconcat = Concate(F0, F1, F2, F3)

Fout = HConv2(Fconcat + Fin)

where Fin indicates the mapped high-dimensional features, and branchi represents dilated
convolution modules of different scales. Conv1 implements the mapping of input fea-
tures from low to high dimensions, and Conv2 indicates the aggregation of features from
different branches.

As illustrated in Figure 3, for the input feature ILR ∈ ωC0×H×W , a convolutional layer is
employed to perform feature mapping from low to high dimensions. Subsequently, distinct
branches are utilized to acquire features at various scales. Each branch (branchi) comprises
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varying numbers of convolutional layers and dilated convolutional layers. The dilation
value of the dilated convolutional layer corresponds to the number of convolutional layers,
where a higher number of convolutional layers entails a larger dilation value [35]. This
design effectively expands the receptive field of the convolutional layer while enabling each
branch to focus on the interrelation between the central feature and surrounding features
across different scales. Ultimately, the information from different branches is concatenated,
and a residual structure is employed to incorporate previous level information, thereby
enhancing model stability.

C
o
n

ca
t

Conv

Dilated Conv

Element-wise sum

Figure 3. Multi-scale shallow feature extraction (MSFE) module.

3.3. Fused Attention Block (FAB)

The window-based multi-head self-attention mechanism can extract high-frequency
information and local features within the feature map. By adding global features, the model
can effectively integrate the information from the entire feature map. Previous studies have
demonstrated that convolutional layers can enhance the performance of transformers [36].
Channel attention, as proposed by Hu et al. [20], focuses on the importance and correlation
of different feature channels. It assigns different weight characteristics to each channel,
thereby enhancing model’s capability for global feature extraction. Consequently, the
fusion of multi-head self-attention and channel attention serves to amalgamate features
effectively. As illustrated in Figure 4, subsequent to passing through the LayerNorm layer,
the channel attention block (CAB) and W-MSA operate as parallel structures to calculate
the feature map across different dimensions, yielding a residual summation as output. To
balance channel attention and W-MSA, we multiply the original input and output features
of CAB by the adaptive weights of the sum, respectively. For an input feature X, the entire
FAB processing process is as follows:

Xnorm = LN(X) (7)

XMSA = W−MSA(Xnorm) + X

XT = MLP(LN(XMSA)) + XMSA

Xout = XT + αCAB(Xnorm) + βX

where Xnorm represents the layernorm (LN) layer, XMSA represents the intermediate result
of multi-head self-attention calculation, XT represents the output feature of W-MSA branch,
and Xout represents the output feature of the FAB. MLP stands for multi-layer perceptron
layer, and CAB stands for channel attention block.
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Figure 4. Fused attention block (FAB). ⊕ represents an element-wise sum operation. α and β represent
adaptive parameters used to adjust different branch weights.

The specific calculation process of the window self-attention mechanism is as follows:
given an input feature of size H × W × C, divide the input feature into non-overlapping
windows of size M2, then the total number of windows is HW

M2 . The input features can be
reshaped into HW

M2 × M2 × C. Subsequently, self-attention is calculated within each window

independently. For each window feature ∈ ℜM2×C, the query, key, and value matrix are
calculated as

Q = XMQ K = XMK V = XMV (8)

where MQ, MK, and MV represent the mapping matrices of query, key, and value, respec-
tively. Then, the self-attention of the window can be expressed as

Attention(Q, K, V) = So f tmax(
QKT
√

d
+ B)V (9)

where d represents the dimension of query/key, and B indicates the relative position encod-
ing. In addition, in order to promote information exchange between adjacent windows, the
shift window method is also utilized, with the shift size being set at half the window size.

The CAB module mainly consists of convolutional and standard channel attention
(CA) layers. The specific structure is shown in Figure 2. Due to the large number of
channels, a high computational cost will be incurred when the standard channel attention
layer is combined with the transformer. To address this, channels are compressed to C

γ while
maintaining similar performance using a convolutional layer. The entire CAB calculation
process is as follows:

Xout = CA(Conv(Xin)) (10)

where Xin, Xout, and Conv represent input features, output features, and convolution layer.
As shown in Figure 2, each residual group fused attention block (RFAB) contains N

fused attention block (FAB) modules and a 3 × 3 convolutional layer. Precisely, for the ith
RFAB, it can be calculated as

Fi,0 = Fi−1, i = 1, 2, · · · , N (11)

Fi,j = HFABi,j(Fi,j−1), j = 1, 2, · · · , M

Fi = HConvi (Fi,M) + Fi,0

where Fi,0 and Fi represent the input features and output features of the ith RFAB, HFABi,j
represents the ith FAB calculation block in the jth RFAB, and Hconv represents the convo-
lution layer of the ith RFAB module. This design offers two notable advantages. Firstly,
the incorporation of convolutional layers facilitates a more stable aggregation of infor-
mation. Secondly, the utilization of residual connections not only stabilizes the model’s
training but also enhances inter-layer relationships by incorporating information from
different modules.
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3.4. Loss Function

For previous image SR methods, L1 pixel loss is generally used as the loss function to
optimize the model. Under normal circumstances, L1 Loss can obtain better model performance.

L1 = ∥ISR − IHQ∥1

However, the L1 Loss suffers from nondifferentiability at specific points, which can
impede loss optimization. Secondly, in the later stage of model training, the difference
between the sum and the sum is slight, but its derivative is still a constant. In this way, the
loss value will fluctuate around the stable value when the learning rate remains unchanged,
making it challenging to achieve higher accuracy. Therefore, we use SmoothL1 Loss [37] as
the loss optimization function of the method. SmoothL1 Loss is expressed explicitly as

L =


0.5(ISR − IHQ)

2

θ
i f |ISR − IHQ| < θ

|ISR − IHQ| − 0.5θ otherwise
(12)

where θ is set to 1 by default in our method. As indicated by the formula above, SmoothL1
Loss employs the form of L1 Loss when |ISR − IHQ| ⩾ θ and uses the form of L2 loss when
|ISR − IHQ| < θ. This approach effectively addresses issues such as gradient explosion
arising from significant losses and accuracy concerns when losses are small.

4. Experiments

In this section, the FE-FAIR method proposed in this paper is compared with other
state-of-the-art methods, such as EDSR [6], RCAN [8], SAN [10], IGNN [38], HAN [9],
NLSN [25], SwinIR [16], EDT [17], CARN [39] , IMDN [40], LAPAR-A [41], LatticeNet [42],
BM3D [43], WNNM [44], DnCNN [45], IRCNN [46], FFDNet [47], NLRN [48], FOCNet [49],
MWCNN [50], DRUNet [51], DSNet [52], RPCNN [53], BRDNet [54], and IPT [15].

Simultaneously, the peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) [55] are utilized for evaluation. The calculation process of PSNR is demonstrated
as follows:

PSNR = 10 × log10
Max2

MSE
= 20 × log10

Max√
MSE

where the default value of Max is 255. The calculation expression of mean square error
(MSE) is presented as follows:

MSE =
1

M × N

M

∑
i=1

N

∑
j=1

(IHR(i, j)− ISR(i, j))2

where H and W are the number of pixels in the length and width of the image, respectively.
The value of PSNR depends on MSE, so the smaller the MSE, the greater the PSNR value,
which means the smaller the difference between the reconstructed image and the actual
image. The SSIM is also used to measure the similarity between the reconstructed and
authentic images from brightness, contrast, and structure. SSIM can be expressed as

SSIM =
(2µIHR × µISR + C1)(2σIHR × σISR + C2)

(µ2
IHR

+ µ2
ISR

+ C1)(σ
2
IHR

+ σ2
ISR

+ C2)

where µIHR , µISR , σIHR , σISR , ζ IHR , and ζ ISR represent the mean, standard deviation, and
covariance of IHR and ISR, respectively. C1 and C2 are constants. The closer the value of
SSIM is to 1, the higher the similarity between the two images.

All experiments are conducted using PyTorch version 2.0 on 4 NVIDIA Tesla V100
GPUs with CUDA version 12.2.
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4.1. Experimental Setup

In classical image SR, the DF2K dataset (comprising DIV2K [22] with 900 images
and Flickr2K [22] with 2650 images) containing 3550 images is utilized as the original
training set. Bicubic downsampling with scaling factors of ×2, ×3, and ×4 are performed
using MATLAB to generate low-resolution images. The test set includes popular super-
resolution benchmark datasets such as Set5 [56], Set14 [57], BSD100 [58], Urban100 [59], and
Manga109 [60]. Regarding the architecture of FE-FAIR, the parameters are configured as
follows: the number of RFABs, FABs, channels, attention heads, and window size are set to
6, 6, 180, 6, and 16, respectively. In lightweight image SR tasks, these parameters are set to
4, 6, 60, 6, and 16, respectively. The channel compression parameter γ in the MSFE module
is defaulted to 3 for classical tasks and 6 for lightweight tasks. The channel compression
parameter γ in CAB is set to 5, and α and δ in FAB are treated as adaptive parameters.

For image denoising, the training set comprises DIV2K (900 images), Flickr2K (2650 im-
ages), WED [61] (4744 images), and BSD200 [58] (200 images). The test set includes
Set12 [45], BSD68 [58], CBSD68 [58], Kodak24 [62], McMaster [63], and Urban100 datasets.
The parameter configurations remain consistent with classic SR.

For classical SR, we set the batch size to 32 and the total training iterations to 500 k.
The initial learning rate is 2 × 10−4, and it is halved at iterations [250 k, 400 k, 450 k, 475 k,
500 k], respectively. For lightweight SR, the batch size is 64, and the total number of
training iterations is also 500 k. For the image denoising task, the batch size is 8, and the
total number of training iterations is 1500 k. The initial learning rate is 2 × 10−4, halved at
iterations [600 k, 1000 k, 1300 k, 1450 k], respectively. For the pre-training model, 1.2 million
images from ImageNet [21] are used for 1000 k iterations. The initial learning rate is also
2 × 10−4, halved at iterations [300 k, 500 k, 750 k, 900 k, 1000 k]. Subsequently, the DF2K
dataset (DIV2K with 900 images + Flickr2K with 2650 images) is employed for fine-tuning
with 250 k iterations. The learning rate is initialized to 2 × 10−5 and halved at iterations
[130 k, 200 k, 230 k, 245 k, 250 k].

Simultaneously, to determine the optimal number of iterations in our proposed
method, experiments are conducted on the DF2K dataset, and results are shown in Figure 5.
We can observe that after 500 k iterations, the method converges in both tasks. Specifically,
compared with classic tasks, the lightweight SR methods can enter the convergence state
faster due to the smaller number of parameters and minor computational cost, and the
indicators are more stable during the training process. The classic task method has better
performance. Therefore, we set 500 k iterations in this work as the total training times.
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Figure 5. PSNR (Y channel) and SSIM trends in training on classic tasks (FE-FAIR) and lightweight
tasks (FE-FAIR-T).
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4.2. Ablation Experiment

In this part of the work, the impact of a series of methods proposed in this paper on
image SR are separately verified.

4.2.1. Effectiveness of MSFE

Rich shallow features can help the model retain sufficient low-frequency information [64]
while providing more effective feature information for the deep feature extraction module.
The MSFE module combines dilated convolutions with different numbers of convolutional
layers to achieve more detailed feature capture. The effectiveness of the proposed MSFE
module is demonstrated through experimental setups in our work. Using the traditional
single-layer convolutional layer as the baseline, this part of the work tests the method
gain of three convolutional layers, ASPP, and MSFE modules as shallow feature extraction
layers. The results are quantified on Set14, Urban100, and Manga109. As shown in
Table 1, when using MSFE as the shallow feature extraction layer, the network achieves a
performance gain of 0.06 to 0.11 dB compared to other methods, demonstrating a significant
improvement over alternative methods. All results show that MSFE can effectively improve
the performance of SR methods.

Table 1. The effects of different shallow feature extraction modules. Bold text and numbers indicate
the method we used and the best results among all methods.

Module Scale Set14 [57] Urban100 [59] Manga109 [60]

Conv 2 34.46/0.9250 33.81/0.9427 39.92/0.9797
3 × Conv 2 34.47/0.9252 33.82/0.9428 39.93/0.9796
ASPP [34] 2 34.48/0.9253 33.84/0.9431 39.94/0.9798

MSFE 2 34.52/0.9257 33.92/0.9435 39.98/0.9804

Conv 4 29.09/0.7950 27.45/0.8254 32.03/0.9260
3 × Conv 4 29.10/0.7949 27.47/0.8256 32.05/0.9259
ASPP [34] 4 29.12/0.7952 27.48/0.8259 32.07/0.9262

MSFE 4 29.15/0.7958 27.53/0.8271 32.11/0.9265

4.2.2. Effects of the FAB

The FAB module combines self-attention and channel attention mechanisms through
residual connections, enabling the integration of global features into local features. We
conducted experiments to demonstrate the effectiveness of the FAB module. Table 2
presents the quantitative performance on the Set14, Urban100, and Manga109 test sets for
×4 super-resolution. Compared to the baseline performance of the STL module in SwinIR,
the FAB module brings a performance gain of 0.05 to 0.09 dB. Adaptive weights α and β
are set to avoid conflicts between channel attention and window self-attention. We further
investigate the impact of these variable weights on model performance. Experiments show
that without adding parameters, the inclusion of α and β results in a performance gain of
0.03 dB based on the FAB module. This indicates that the adaptive parameters α and β
reduce negative impacts between different attention mechanisms, facilitating their fusion
and enabling improved model performance.

Table 2. The effects of the FAB module on performance. Bold text and numbers indicate the method
we used and the best results among all methods.

Module Set14 [57] Urban100 [59] Manga109 [60]

STL 29.15/0.7958 27.53/0.8271 32.11/0.9265
FAB 29.17/0.7959 27.62/0.8277 32.17/0.9270

FAB + α + β 29.19/0.7960 27.65/0.8282 32.20/0.9273
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4.2.3. Effects of SmoothL1

Loss SmoothL1 Loss offers smoother convergence and better performance compared
to traditional L1 Loss. To demonstrate the superiority of SmoothL1 Loss as a loss function,
experiments were conducted. Table 3 presents the quantitative results for the super-
resolution task with a scaling factor of ×4 on the Urban100 dataset. SmoothL1 Loss
achieves a performance gain of 0.03 dB compared to L1 Loss. These results indicate that
SmoothL1 Loss, when used as a loss function for image super-resolution tasks, enhances
the model’s performance.

Table 3. The effects of using different loss functions on performance. Bold text and numbers indicate
the method we used and the best results among all methods.

Module L1 Loss SmoothL1 Loss

PSNR/SSIM 27.65/0.8282 27.68/0.8289

4.2.4. Effects of Window Size

EDT explored the impact of window size on the performance of the window self-
attention mechanism. It has been proved that increasing the window size is a direct
method of improving the performance of the SR network. However, previous studies
only explored windows up to 12 × 12 in size. Therefore, we also examined the impact of
larger window sizes on network performance. Table 4 shows the quantitative test results
when the amplification factor is 4 on the Set14, Urban100, and Manga109 test sets. We
can find from the results that when the window size is 16, the model’s performance can
be effectively improved, especially the PSNR improvement on Urban100, which reaches
0.24 dB. Therefore, in FE-FAIR, we directly set the window size to 16.

Table 4. The effects of window size. Bold text and numbers indicate the method we used and the best
results among all methods.

Window Size
Set14 [57] Urban100 [59] Manga109 [60]

PSNR/SSIM PSNR/SSIM PSNR/SSIM

(8, 8) 29.20/0.7962 27.68/0.8289 32.23/0.9268
(12, 12) 29.22/0.7966 27.87/ 0.8348 32.28/0.9279
(16, 16) 29.21/0.7966 27.96/0.8377 32.32/0.9287

4.3. Comparison Result
4.3.1. Results on Classical Image Super-Resolution

Quantitative comparison. Table 5 shows the quantitative comparison results between
FE-FAIR and other state-of-the-art methods: EDSR [6], RCAN [8], SAN [10], IGNN [38],
HAN [9], NLSN [25], SwinIR [16], and EDT [17]. We can see that FE-FAIR exhibits the
best performance across all test sets and magnifications. Specifically, FE-FAIR achieves
a performance gain of 0.33–0.55 dB on Urban100 and 0.27–0.34 dB on Manga109. Thus,
FE-FAIR demonstrates superior performance in image super-resolution. Additionally,
we present quantitative comparison results between the pre-training strategy FE-FAIR
and state-of-the-art models IPT† [15] and EDT† [17]. The pre-trained model exhibits a
substantial performance improvement, notably surpassing the baseline (SwinIR) by 0.8 dB
on Urban100, thereby affirming the effectiveness of the pre-training strategy.

Visual Comparison. We selected several pictures (img011, img048, image074, im-
age092) from the benchmark to show the super-resolution reconstruction results of the
model. It can be found from Figure 6 that our results have greatly improved texture details
and authenticity.
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Urban100(4×): img074

Urban100(×4): img092

Uraban100(×4): img011

FE-FAIR(26.33/0.8585)IPT(24.95/0.8094) SwinIR(25.74/0.8257) EDT(25.57/0.8186)

SwinIR(19.87/0.7083) EDT(20.24/0.7225) FE-FAIR(20.98/0.7529)

IPT(20.80/0.8754) SwinIR(18.54/0.8273) EDT(18.60/0.8281) FE-FAIR(20.97/0.8864)

HR EDSR(22.16/0.7751) RCAN(23.12/0.7882) IGNN(23.58/0.7956)

HR EDSR(19.55/0.6934) RCAN(20.02/0.7184) IGNN(19.71/0.7125)

HR EDSR(18.15/0.8120) RCAN(18.21/0.8156) IGNN(18.65/0.8301)

IPT(20.38/0.7256)

Uraban100(×4): img048 IPT(21.23/0.8519) SwinIR(21.75/0.8665) EDT(21.64/0.8636) FE-FAIR(22.97/0.8980)

HR EDSR(20.74/0.8253) RCAN(20.98/0.8295) IGNN(20.85/0.8322)

Figure 6. Visual comparison with state-of-the-art methods (average PSNR/SSIM) for scale ×4. The
compared parts are marked with red markers in the image.

Table 5. Quantitative comparison with state-of-the-art methods (average PSNR/SSIM) for classical
image SR on benchmark datasets. The best and second-best performances are bolded and underlined,
respectively. “†” indicates we use a pre-training strategy on ImageNet.

Method Scale Training
Set5 [56] Set14 [57] BSD100 [58] Urban100 [59] Manga109 [60]

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

EDSR [6] ×2 DIV2K 38.11/0.9602 33.92/0.9195 32.32/0.9013 32.93/0.9351 39.10/0.9773
RCAN [8] ×2 DIV2K 38.27/0.9614 34.12/0.9216 32.41/0.9027 33.34/0.9384 39.44/0.9786
SAN [10] ×2 DIV2K 38.31/0.9620 34.07/0.9213 32.42/0.9028 33.10/0.9370 39.32/0.9792
IGNN [38] ×2 DIV2K 38.24/0.9613 34.07/0.9217 32.41/0.9025 33.23/0.9383 39.35/0.9786
HAN [9] ×2 DIV2K 38.27/0.9614 34.16/0.9217 32.41/0.9027 33.35/0.9385 39.46/0.9785
NLSN [25] ×2 DIV2K 38.34/0.9618 34.08/0.9231 32.43/0.9027 33.42/0.9394 39.59/0.9789
SwinIR [16] ×2 DF2K 38.42/0.9623 34.46/0.9250 32.53/0.9041 33.81/0.9427 39.92/0.9797
EDT [17] ×2 DF2K 38.45/0.9624 34.57/0.9263 32.52/0.9041 33.80/0.9425 39.93/0.9800
FE-FAIR ×2 DF2K 38.58/0.9629 34.73/0.9266 32.58/0.9048 34.30/0.9460 40.17/0.9804
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Table 5. Cont.

Method Scale Training
Set5 [56] Set14 [57] BSD100 [58] Urban100 [59] Manga109 [60]

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

IPT † [15] ×2 ImageNet 38.37/- 34.43/- 32.48/- 33.76/- -/-
EDT † [17] ×2 DF2K 38.63/0.9632 34.80/0.9273 32.62/0.9052 34.27/0.9456 40.37/0.9811
FE-FAIR † ×2 DF2K 38.66/0.9632 34.99/0.9275 32.66/0.9057 34.67/0.9490 40.54/0.9812

EDSR [6] ×3 DIV2K 34.65/0.9280 30.52/0.8462 29.25/0.8093 28.80/0.8653 34.17/0.9476
RCAN [8] ×3 DIV2K 34.74/0.9299 30.65/0.8482 29.32/0.8111 29.09/0.8702 34.44/0.9499
SAN [10] ×3 DIV2K 34.75/0.9300 30.59/0.8476 29.33/0.8112 28.93/0.8671 34.30/0.9494
IGNN [38] ×3 DIV2K 34.72/0.9298 30.66/0.8484 29.31/0.8105 29.03/0.8696 34.39/0.9496
HAN [9] ×3 DIV2K 34.75/0.9299 30.67/0.8483 29.32/0.8110 29.10/0.8705 34.48/0.9500
NLSN [25] ×3 DIV2K 34.85/0.9306 30.70/0.8485 29.34/0.8117 29.25/0.8760 34.57/0.9508
SwinIR [16] ×3 DF2K 34.97/0.9318 30.93/0.8534 29.46/0.8145 29.75/0.8826 35.12/ 0.9537
EDT [17] ×3 DF2K 34.97/0.9316 30.89/0.8527 29.44/0.8142 29.72/0.8814 35.13/0.9534
FE-FAIR ×3 DF2K 35.02/0.9326 31.02/0.8551 29.50/0.8162 30.22/0.8898 35.42/0.9547

IPT † [15] ×3 ImageNet 38.37/- 34.43/- 32.48/- 33.76/- -/-
EDT † [17] ×3 DF2K 35.13/0.9328 31.09/0.8553 29.53/0.8165 30.07/0.8863 35.47/0.9550
FE-FAIR † ×3 DF2K 35.14/0.9335 31.24/0.8569 29.53/0.8172 30.59/0.8944 35.62/0.9561

EDSR [6] ×4 DIV2K 32.46/0.8968 28.80/0.7876 27.71/0.7420 26.64/0.8033 31.02/0.9148
RCAN [8] ×4 DIV2K 32.63/0.9002 28.87/0.7889 27.77/0.7436 26.82/0.8087 31.22/0.9173
SAN [10] ×4 DIV2K 32.64/0.9003 28.92/0.7888 27.78/0.7436 26.79/0.8068 31.18/0.9169
IGNN [38] ×4 DIV2K 32.57/0.8998 28.85/0.7891 27.77/0.7434 26.84/0.8090 31.28/0.9182
HAN [9] ×4 DIV2K 32.64/0.9002 28.90/0.7890 27.80/0.7442 26.85/0.8094 31.42/0.9177
NLSN [25] ×4 DIV2K 32.59/0.9000 28.87/0.7891 27.78/0.7444 26.96/0.8109 31.27/0.9184
SwinIR [16] ×4 DF2K 32.92/0.9044 29.09/0.7950 27.92/0.7489 27.45/ 0.8254 32.03/0.9260
EDT [17] ×4 DF2K 32.82/0.9031 29.09/0.7939 27.91/0.7483 27.46 /0.8246 32.05/0.9254
FE-FAIR ×4 DF2K 33.05/0.9053 29.21/0.7966 27.97/0.7514 27.96/0.8377 32.32/0.9287

IPT † [15] ×4 ImageNet 38.37/- 34.43/- 32.48/- 33.76/- -/-
EDT † [17] ×4 DF2K 33.06/0.9055 29.23/0.7971 27.99/0.7510 27.75/0.8317 32.39/0.9283
FE-FAIR † ×4 DF2K 33.19/0.9075 29.35/0.7992 28.03/0.7531 28.41/0.8450 32.64/0.9301

4.3.2. Results on Lightweight Image Super-Resolution

Quantitative comparison. Table 6 shows the quantitative performance comparison
results between lightweight FE-FAIR and state-of-the-art lightweight methods: CARN [39],
IMDN [40], LAPAR-A [41], LatticeNet [42], SwinIR [16], and EDT [17]. The total number of
parameters in our method (evaluated on 1280 × 720 images) is also provided. As shown
in Table 6, the quantification performance of FE-FAIR is significantly better than other
methods, especially in SSIM. It proves that our method is effective in lightweight image
super-resolution tasks.

Table 6. Quantitative comparison (average PSNR/SSIM) with state-of-the-art methods for
lightweight image SR on benchmark datasets. The best and second-best performances are bolded
and underlined, respectively.

Method Scale # Params
Set5 [56] Set14 [57] B100 [58] Urban100 [59] Manga109 [60]

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

CARN [39] ×2 1592 k 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.36/0.9765
IMDN [40] ×2 548 k 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774
LAPAR-A [41] ×2 548 k 38.01/0.9605 33.62/0.9183 32.19/0.8999 32.10/0.9283 38.67/0.9772
LatticeNet [42] ×2 756 k 38.15/0.9610 33.78/0.9193 32.25/0.9005 32.43/0.9302 -/-
SwinIR [16] ×2 878 k 38.14/0.9611 33.86/0.9206 32.31/0.9012 32.76/0.9340 39.12/0.9783
EDT [17] ×2 917 k 38.23/0.9615 33.99/0.9209 32.37/0.9021 32.98/0.9362 39.45/0.9789
FE-FAIR ×2 2291 k 38.30/0.9621 33.10/0.9214 32.41/0.9027 33.37/0.9417 39.56/0.9808
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Table 6. Cont.

Method Scale # Params
Set5 [56] Set14 [57] B100 [58] Urban100 [59] Manga109 [60]

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

CARN [39] ×3 1592 k 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.50/0.9440
IMDN [40] ×3 703 k 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445
LAPAR-A [41] ×3 544 k 34.36/0.9267 30.34/0.8421 29.11/0.8054 28.15/0.8523 33.51/0.9441
LatticeNet [42] ×3 765 k 34.53/0.9281 30.39/0.8424 29.15/0.8059 28.33/0.8538 -/-
SwinIR [16] ×3 886 k 34.62/0.9289 30.54/0.8463 29.20/0.8082 28.66/0.8624 33.98/0.9478
EDT [17] ×3 919 k 34.73/0.9299 30.66/0.8481 29.29/0.8103 28.89/0.8674 34.44/0.9498
FE-FAIR ×3 2299 k 34.80/0.9311 30.75/0.8492 29.33/0.8105 29.25/0.8727 34.52/0.9518

CARN [39] ×4 1592 k 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.47/0.9084
IMDN [40] ×4 715 k 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075
LAPAR-A [41] ×4 659 k 32.15/0.8944 28.61/0.7818 27.61/0.7366 26.14/0.7871 30.42/0.9074
LatticeNet [42] ×4 777 k 32.30/0.8962 28.68/0.7830 27.62/0.7367 26.25/0.7873 -/-
SwinIR [16] ×4 897 k 32.44/0.8976 28.77/0.7858 27.69/0.7406 26.47/0.7980 30.92/0.9151
EDT [17] ×4 922 k 32.53/0.8991 28.88/0.7882 27.76/0.7433 26.71/0.8051 31.35/0.9180
FE-FAIR ×4 2310 k 32.59/0.9002 28.97/0.7903 27.79/0.7447 27.04/0.8139 31.41/0.9199

4.3.3. Results on Image Denoising

We further explore the performance of our method in image denoising. We show the
comparison results of FE-FAIR on grayscale and colour image denoising tasks with other
state-of-the-art methods: BM3D [43], WNNM [44], DnCNN [45], IRCNN [46], FFDNet [47],
NLRN [48], FOCNet [49], MWCNN [50], DRUNet [51], DSNet [52], RPCNN [53], BRDNet [54],
IPT, and SwinIR [16]. Tables 7 and 8 provide quantitative comparison results at noise levels
of 15, 25, and 50. Specifically, our method outperforms the state-of-the-art method SwinIR
by 0.2 dB on the Urban100 benchmark dataset.

Table 7. Quantitative comparison (average PSNR) with state-of-the-art models for grayscale image
denoising on benchmark datasets. The best and second-best performances are bolded and underlined.

Dataset σ
BM3D

[43]
WNNM

[44]
DnCNN

[45]
IRCNN

[46]
FFDNet

[47]
NLRN

[48]
FOCNet

[49]
MWCNN

[50]
DRUNet

[51]
SwinIR

[16] FE-FAIR

Set12 [45]
15 32.37 32.70 32.86 32.76 32.75 33.16 33.07 33.15 33.25 33.36 33.41
25 29.97 30.28 30.44 30.37 30.43 30.80 30.73 30.79 30.94 31.01 31.07
50 26.72 27.05 27.18 27.12 27.32 27.64 27.68 27.74 27.90 27.91 27.96

BSD68 [58]
15 31.08 31.37 31.73 31.63 31.63 31.88 31.83 31.86 31.91 31.97 32.04
25 28.57 28.83 29.23 29.15 29.19 29.41 29.38 29.41 29.48 27.50 27.54
50 25.60 25.87 26.23 26.19 26.29 26.47 26.50 26.53 26.59 26.58 26.61

Urban100 [59]
15 32.35 32.97 32.64 32.46 32.40 33.45 33.15 33.17 33.44 33.70 33.81
25 29.70 30.39 29.95 29.80 29.90 30.94 30.64 30.66 31.11 31.30 33.45
50 25.95 26.83 26.26 26.22 26.50 27.49 27.40 27.42 27.96 27.98 28.12

Table 8. Quantitative comparison (average PSNR) with state-of-the-art methods for colour image
denoising on benchmark datasets. The best and second-best performances are bolded and underlined.

Dataset σ
BM3D

[43]
DnCNN

[45]
IRCNN

[46]
FFDNet

[47]
DSNet

[52]
RPCNN

[53]
BRDNet

[54] IPT [15] DRUNet
[51]

SwinIR
[16] FE-FAIR

CBSD68 [58]
15 33.52 33.90 33.86 33.87 33.91 - 34.10 - 34.30 34.42 34.46
25 30.71 31.24 31.16 31.21 31.28 31.24 31.43 - 31.69 31.78 31.81
50 27.38 27.95 27.86 27.96 28.05 28.06 28.16 28.39 28.51 28.56 28.58

Kodak24 [62]
15 34.28 34.60 34.69 34.63 34.63 - 34.88 - 35.31 35.34 35.39
25 32.15 32.14 32.18 32.13 32.16 32.34 32.41 - 32.89 32.89 32.97
50 28.46 28.95 28.93 28.98 29.05 29.25 29.22 29.64 29.86 29.79 29.91

McMaster [63]
15 34.06 33.45 34.58 34.66 34.67 - 35.08 - 35.40 35.61 35.67
25 31.66 31.52 32.18 32.35 32.40 32.33 32.75 - 33.14 33.20 33.31
50 28.51 28.62 28.91 29.18 29.28 29.33 29.52 29.98 30.08 30.22 30.27

Urban100 [59]
15 33.93 32.98 33.78 33.83 - - 34.42 - 34.81 35.13 35.26
25 31.36 30.81 31.20 31.40 - 31.81 31.99 - 32.60 32.90 33.06
50 27.93 27.59 27.70 28.05 - 28.62 28.56 29.71 29.61 29.82 30.12
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5. Conclusions

In this paper, we re-explore the importance of shallow features and propose a multi-
scale shallow feature extraction module MSFE to obtain more prosperous and influential
low-frequency features. Concurrently, we integrate window self-attention and channel
attention in the form of residual connection, proposing the fused attention module FAB.
The FAB effectively achieves an effective combination of local feature information and
global feature information. In addition, we also incorporate other techniques to improve
the model’s performance, such as data augmentation and increasing the window size.
Combining these methods, we propose an image super-resolution reconstruction method
FE-FAIR. Comparative evaluations on benchmark datasets demonstrate FE-FAIR’s su-
perior performance compared to other state-of-the-art image super-resolution methods.
Additionally, our method exhibits better performance in image denoising tasks.

In the future, we will continue exploring further interactions between shallow and
deep features to achieve more fine-grained shallow feature capture. Additionally, investi-
gating the impact of various attention fusion methods on image super-resolution remains a
promising avenue of research. Due to the enormous potential of the transformer architec-
ture, we aim to further explore its applications across various tasks, including the field of
image SR.
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